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We present an approach to aerodynamic optimization in which the shape control is
adaptively parameterized. Starting from a coarse set of design variables, a sequence of
higher-dimensional nested search spaces is automatically generated. Refinement can be ei-
ther uniform or adaptive, in which case only the most important shape control is added.
The relative importance of candidate design variables is determined by comparing objective
and constraint gradients, computed at low cost via adjoint solutions. A search procedure for
finding an effective ensemble of shape parameters is also given. We first demonstrate this
system on a multipoint drag miminization problem in 2D with many constraints, showing
that an adaptive parameterization approach consistently achieves smoother, more robust,
and faster design improvement than fixed parameterizations. We also establish a 3D shape-
matching benchmark, where we demonstrate that our approach automatically discovers the
necessary parameters to match a target shape. By largely automating shape parameteriza-
tion, this work also aims to remove a time-consuming aspect of shape optimization.

Nomenclature

S Continuous surface
S Discrete tesselated surface
C Shape control
Cc Candidate shape control
P Function parameterizing shape deformation
D Deformation function
X Vector of design variable values
J Objective functional

C Constraint functional
w Window width
r Reduction factor for trigger
g Vector of growth rates in # of parameters
ψ Adjoint solution
I Importance indicator
KKT Karush-Kuhn-Tucker conditions
DV Design variable

I. Introduction

Automated meshing and flow simulation tools play a central role in aerodynamic shape optimization. In
this work, we examine the degree to which the shape parameterization might also be automatically and

adaptively generated to meet the particular demands of a given problem. The primary goal is to radically
reduce user setup time and to increase robustness. Additionally, we aim to avoid the most common pitfalls of
a manually constructed shape design space: Excessive numbers of design variables (which leads to inefficient
navigation), shape control that permits only inadequate exploration of the design space, and unintentional
bias towards familiar designs.

Figure 1 illustrates our basic approach. Starting from a low-dimensional search space, higher-resolution
shape control is added as the design evolves. In the limit of uniform refinement, this process approaches the
continuous shape optimization problem of the full design space. Additionally, it encourages rapid improvement
up front, introducing complexity only later if necessary and if resources permit. Although automated, this
progressive approach also reflects the natural design process:

• Large-scale changes are made early, while detailed adjustments happen last.
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• The optimization ultimately explores the full design space, not just a restricted subspace defined by a
static parameterization.

• The important design variables do not need to be predicted before design begins. Rather the important
shape parameters are discovered as a natural consequence of optimization, and are clearly visible to
the designer in the emergent pattern of shape parameters.
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Figure 1: Search space refinement for wing design. Air-
foil control is refined independently on each section.

In addition, a growing body of evidence indicates
that substantial design acceleration can be achieved
by using variable shape control,1–6 an observation we
corroborate in this study.

Progressive shape parameterization for aerody-
namic optimization was first proposed in 1993 both
by Beux and Dervieux7 and by Kohli and Carey.8 A
series of subsequent papers from INRIA demonstrated
that substantial design acceleration can be achieved
with nested parameterizations.9–15 Their approach is
well-documented in a detailed report by Duvigneau,1

which in large part motivated this work. Making an
analogy to grid sequencing and multi-grid techniques in
PDE solutions, they find that a sequence of refined de-
sign spaces performs substantially better than a fixed
fine parameterization. They further argue that op-
timization is an inherently “anti-smoothing” process,
and that design space sequencing is analogous to a pre-
conditioner for the entire optimization process. Their
results generally suggest that redistribution of exist-
ing design variables is at least as effective as enriching
the parameterization. However, their adaptation crite-
rion is based on a geometrical regularization operator,
which is insensitive to the specific design problem. Another early effort is that of Olhofer et al.,3 who per-
formed genetic optimization in adaptively refined design spaces. Because they used a gradient-free approach,
they by evolved several candidate parameterizations in parallel for several iterations before selecting the most
promising one.

Hwang and Martins developed a conceptually reversed approach that starts from an initial fine parameter-
ization, and then uses coarsened search spaces to accelerate design improvement, analogous to grid sequencing
in PDE solvers.4 Their major achievement is an exact transfer of the Hessian information when switching
between search spaces, avoiding the initial Hessian build-up time. The disadvantage of this approach is that
the sequence of search spaces must be provided a priori.

The most functionally similar approach to ours is that of Han and Zingg,2,16 who most notably introduced
an adaptation criterion based on the objective gradients to the candidate design variables, making the
adaptation sensitive to the particular design problem. In this work we develop two new problem-specific
adaptation criteria based on constraint gradients and Hessian information, and we present a search procedure
for finding an effective ensemble of shape parameters. We also discuss an efficient triggering mechanism to
determine when to transition to a new search space. Our approach focuses on discrete geometry modelers,
which offer unique advantages for adaptive parameterization.

II. Optimization with Progressive Shape Control

Under a traditional static-parameterization approach, the space of all reachable shapes is prescribed
before each optimization begins. This can restrict the design space in irrelevant ways, needlessly hindering
the discovery of superior designs outside this envelope. One recourse is to use a very large number of design
variables. However, as shown in Figure 2, while finer parameterizations can reach superior designs, they take
longer to converge, even with gradient-based optimizers, whose running time scales roughly as O (NDV ). In
practice, a designer will typically perform an optimization and then manually refine the parameterization if
necessary — a time-consuming task.
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Cost

Figure 2: BFGS-style optimization converges in O(NDV )
search directions. A progressive parameterization can fol-
low the “inside track”, making rapid gains early, while still
approaching the continuous optimal shape.

Using a progressive parameterization approach,
we start in the coarse search space, and then au-
tomatically transition to finer parameterizations at
strategic moments. This constitutes a single opti-
mization process that encourages rapid design im-
provement early on, while driving the shape towards
the local optimum of the continuous problem.

A. Optimization Formulation

The aerodynamic shape optimization problem we
consider consists of finding a shape S that minimizes
an objective function

min
S
J (S,Q(S)) (1)

where J is a scalar functional that is evaluated after
solving for the flow variables Q. There may also
be design constraints of the form a ≤ Cj ≤ b. J
and Cj typically involve performance metrics such as
lift, drag, range, stability margins, maneuver loads,
or operating costs. They may also include more
specialized concerns such as reducing sonic boom
ground signatures or environmental impact.

B. Shape Parameterization

The surface S is continuous, and so the design space is infinitely dimensional. To reduce the search space to
a manageable dimension, the surface modifications are typically parameterized. A shape parameterization
technique, P , is a map from a vector C describing the shape control to a search space (a subset of the full
design space), consisting of a deformation function, D, and a set of shape parameters X. This deformation
function takes the shape parameters and generates a new surface S:

(Parameterize) P : C −→ D (2)

(Deform) D : X −→ S (3)

In other words, P describes how the shape control induces a set of shape parameters, while D describes how
those shape parameters deform the surface. The shape parameters X, or a subset thereof, serve as the design
variables for optimization. The local linearization of D provides the shape derivatives ∂S

∂X , which describe
the deformation modes of each parameter, and which are used in gradient-based optimization.
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Figure 3: Wing planform parameterization

Example: Wing Planform Design
Consider the simple wing parameterization scheme,
Pwing, illustrated in Figure 3. Twist, sweep and
chord are interpolated between the spanwise stations.
Here, the shape control C is the spanwise coordinates
of the control stations (blue lines), indicating where
twist, sweep or chord can be manipulated. Pwing

interprets this terse definition, expanding it into pre-
cise geometric descriptions of each deformation mode,
encoded by the deformation function D, which takes
the twist, sweep and chord values X and generates
a new surface.
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It is important to draw the distinction between the concept of the shape control C and the concept of
shape parameters X. In terms of our work, each optimization level involves a search in the space of values
X. When we transition to a finer search space, we are modifying the shape control C. There is not generally
a one-to-one correspondence between the two. In the example above, each shape control element Ci induces
three parameters (twist, thickness, sweep). Furthermore, each deformation mode is influenced not only by
Ci, but also by the neighboring shape controllers, Ci+1 and Ci−1, which also contribute to the interpolation.

C. Progressive Parameterization

In standard shape optimization approaches, the shape control C× is pre-determined by the designer. This
induces a static search space D×, which may be more or less effective at improving the objective function.
In our approach, we instead use a sequence of shape control resolutions (C0,C1,C2 . . . ), which induces a
sequence of search spaces (D0(X0), D1(X1), D2(X2) . . . ) that permit ever more detailed shape control. The
designer provides only the initial shape control C0. After an optimization in this design space, the shape
control is automatically refined, and optimization continues in the more detailed search space.

This approach aims to automate the generation of nested search spaces of increasing resolution, with little
manual labor. However, the designer is still responsible for establishing a basic framework for this process.
Specifically, the designer selects a type of shape control (e.g. twist vs. airfoil deformation), specifies an initial
coarse parameterization, and indicates how the shape control may be refined. We do not consider the much
less tractable problem of determining the best such shape control framework. All refinement is performed
within the framework defined by the initial shape control and the refinement mechanics.

Auto: Partition Feature/Constraint

Parameter

Auto: Parameterize

Binary 
Refinement

Auto: Refine

User: Mark Features and Constraints

Bound

A B C

D E F

Figure 4: Progressive parameterization with discrete, hierarchi-
cal shape control refinement

In this work we use nested, hierarchical
shape control, which implies a discrete ap-
proach to adding design variables. (In other
words, we do not consider optimal continuous
positioning of the shape controllers.) Figure 4
illustrates nested search space refinement as ap-
plied to airfoil design. Instead of providing a
static set of design variables, the designer estab-
lishes a more general shape control framework.
This may involve establishing important design
features as parameters or constraints, such as
the leading and trailing edges or spar locations
(black and orange dots in Figure 4. These fea-
tures partition the curve into several regions.
In each region we initially place a single shape
controller (blue dots). Finer shape control is
then gradually introduced as necessary through binary refinement. Conceptually, this allows the parameter-
ization to be viewed in terms of binary trees, with deeper levels corresponding to higher resolution shape
control. Later, we show how this approach extends to wing parameterization.

III. Implementation

The design loop now consists of an alternating sequence of optimization within the current search space
followed by a parameterization refinement, as given in Algorithm A. The function Optimize(·) represents a
standard shape optimization package, which for reference is outlined in Appendix A. Parameterize(·) is the
modeler-dependent implementation of Equation 2, which generates a search space from the shape control
description. It also manages the transfer of design variable bounds and scale factors from the previous design
space, and if possible, must ensure that the new shape is identical to the final previous shape. Unlike in
static optimization approaches, where this is a user-driven pre-processing step, here it is automated.

Algorithm A also introduces three new functions that govern the refinement strategy. The Trigger(·)
monitors the optimization progress to determine when to refine the shape control. Next, the modeler-
dependent GetCandidateShapeControl(·) generates a list of possible locations Cc where the shape control
may be refined. For example, in the wing planform example, the possible refinement locations might be
new stations at the midpoints between existing ones. Finally, some or all of these candidates are marked for
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refinement. The simplest approach is to add all the candidates to the active set, which we will call “uniform”
refinement. Alternatively, the system can try to predict which subset of the candidates would best enrich the
search space. This adaptive process is represented by AdaptShapeControl(·), a search procedure that chooses
an effective subset of the candidates to adda, based on objective gradients from a linearization about the
current design. We will discuss each of these functions in detail shortly. The ultimate convergence criterion
is based on convergence of the objective as the discrete shape control C approaches continuous shape control
(direct optimization of S or even S).

Algorithm A: Optimization with Adaptive Shape Control
Parametric Geometry Modeler

Refinement Strategy (modeler independent)

Input: Initial surface S0 and shape control C0, objective
J , constraints Cj , shape control growth rate g

Result: Optimized surface S

C←− C0,S←− S0

repeat
D,X0 ←− Parameterize(S,C)
S←− Optimize(D,X0,J , Cj) until Trigger(·)
Cc ←− GetCandidateShapeControl(C)
if adaptive then

C←− AdaptShapeControl(C,Cc, ψ,S,g)
else

C←− C ∪Cc // Uniform refinement

end

until convergence of J and Cj w.r.t. C

Algorithm A requires integration of
three basic components: (1) a geometry
modeler, (2) a gradient-based shape op-
timization framework, and (3) scripts to
guide search space refinement. Concep-
tually, these components can be viewed
as standalone tools, although in practice
there is a substantial degree of communi-
cation among them. The shape optimiza-
tion framework and geometry modeler are
treated as independent servers and are in-
voked during the outer loop over the se-
quence of search spaces.

A. Shape Optimization Framework

For the function Optimize(·) in Algo-
rithm A, we use a gradient-based aerody-
namic shape design framework17 that uses
an embedded-boundary Cartesian mesh
method for inviscid flow solutions. Objec-
tive and constraint gradients are computed
using an adjoint formulation. We leverage this same adjoint solution to prioritize candidate design variables
when refining the search space. Optimization can be handled with any black-box gradient-based optimizer;
for this study an SQP optimizer was used,b enabling proper treatment of constraints.

B. Parametric Geometry Generation

Throughout this work we optimize shapes by deforming discrete surface triangulations. Shape manipulation
is handled with a standalone modeler for discrete geometry, implemented as an extension to an open-source
computer graphics suite called Blender.19 This extension allows Blender to serve as a geometry engine for
optimization. For this work we developed custom shape parameterization plugins, which are described with
the corresponding examples in Section V. Shape sensitivities are computed analytically for each deformer.
Geometric functionals (e.g. thickness and volume) are computed by a standalone tool that provides analytic
derivatives to the functionals. The design framework communicates with these geometry tools via XDDM,
an XML-based protocol for design markup.17

When using discrete geometry, the shape is preserved exactly when transferring between shape search
spaces, which is a useful feature for our approach (and required for adaptive shape control). By contrast,
most constructive modelers (with a few notable exceptions2,12) require an approximate re-fitting procedure
when re-parameterizing, introducing a “jump” in the shape and typically a setback in the design process.
With discrete geometry, exact shape preservation means that no time is lost at these transfers.

We view each parameterization as a binary tree, restricting refinement to the midpoints between existing
parameters or stations, although we can search several levels deep from the current parameterization. Addi-
tionally, we prohibit large discrepancies between the refinement depth of adjacent regions on the surface. This
is essentially a parameter smoothing step, which was found to be important for robustness in certain cases.

aAlthough we do not consider it in this work, removing design parameters that are no longer useful is also possibility.
bStanford’s SNOPT optimization package,18 version 7.
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Each technique supports theoretically infinitely scalable shape control resolution, but we usually impose a
minimum spacing between adjacent parameters (equivalent to a maximum depth in the binary tree). This
prevents the shape control from becoming unreasonably closely spaced, and keeps it well out of the resolution
where it could begin to spuriously take advantage of surface and flow mesh discretization effects.

C. Triggering Search Space Refinement

Design iterations
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Figure 5: Late triggering leads to slow design improvement.
Here and early transition from a 14-DV search space to a
30-DV search space yields much faster results.

The Trigger(·) function in Algorithm A is a
stopping-condition that terminates the optimization
on the current set of design variables and initiates
a parameter refinement. The trigger is critical for
efficiency, as demonstrated in Figure 5. The two
branches show the performance impact of trigger-
ing at different times, for a simple shape-matching
problem. Over-optimizing on the initial parameter-
ization leads to sluggish design improvement. Re-
fining the search space earlier results in much faster
improvement per cost. Similar observations have
also been made by other authors in the context of
both adaptive parameterization1 and optimization
with progressively refined PDE meshes.20 We ruled
out simplistic triggers, such as setting the maximum
number of search directions proportional to the num-
ber of design variables. This would demand prior
knowledge of the rate of convergence for a problem,
which defeats the purpose of having a general and
automated system.

1. Optimality Trigger

One obvious and robust approach is to allow the optimization to converge until an optimality criterion based
on the KKT conditions is sufficiently satisfied. Han and Zingg2 used this approach to achieve maximal design
improvement within each search space. However, we found that on many problems, this type of trigger
frequently delayed refinement, substantially slowing progress. Additionally, as the magnitude of the gradients
are problem- and scaling-dependent, it is difficult to establish efficient cutoffs without prior experience with
a particular problem.

2. Slope Trigger

We propose a simple alternative approach: to trigger when the rate of design improvement starts to sub-
stantially diminish. To detect this, we monitor the slope of the objective convergence with respect to a
suitable measure of computational cost. We terminate the optimization when this slope falls below some
fraction r of the maximum slope that has occurred so far. We found this strategy to be less sensitive to the
cutoff parameter r than the optimality criterion. The normalization by the maximum slope accounts for the
widely differing scales that occur in different objective functions. For example, a drag functional is normally
O
(
10−2

)
while a functional based on operating range may be O

(
105
)
.

The slope is evaluated at major search iterations, which is monotonically decreasing.c The objective slopes
can be non-smooth, which can cause false triggering. To alleviate this, we use running averages over a small
window, which effectively smooths the objective history. This helps prevent premature triggering, but it
causes a lag equal to the size of the window, which delays the trigger for a few search directions. Therefore
the window should be as small as possible.

cFor attainable inverse design problems, the slope should be measured in log-space to better reflect the problem.
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For relatively simple design problems, such as unconstrained drag mininimization or geometric shape-
matching, we observe that it is best to use a fairly aggressive trigger (as high as r = 0.25, with window
w = 1). For more complex problems, especially ones with many competing constraints, we find that it is
more effective to allow deeper convergence on the coarser parameterizations before proceeding. An aggressive
trigger can introduce shape parameters earlier than strictly necessary. However, under an adjoint formulation,
the cost of computing gradients is quite low. The cost associated with having some extra design variables is
negligible compared to the cost of over-converging in a coarse search space.d

The slope-trigger tacitly assumes that diminishing design improvement indicates a nearly fully-exploited
search space. This assumption is not always correct: the optimizer could be simply navigating a highly
nonlinear or poorly-scaled region of the design space, after which faster design improvement would continue.
Systematic discernment between these two cases is difficult without prior knowledge that a superior design
is attainable. As it is infeasible to encode sophisticated problem-dependent logic in a simple trigger, for
practical design environments we also optionally allow the designer to manually signal the framework to
trigger (or delay triggering) a parameter refinement. If a signal is not sent, the automatic trigger is used.

IV. Adaptive Shape Control Refinement

At this point, we have described an automated, nested but uniform (non-adaptive) shape control strategy.
Uniform refinement is simple, robust, and consistent with the continuous optimal solution. However, uniform
shape control distribution may be suboptimal for a given number of shape parameters, which can adversely
impact efficiency. Even under an adjoint formulation, where the cost of gradient computations are much less
sensitive to NDV than under a finite difference approach, there are still costs that scale with NDV , including
computation of geometric surface derivatives and subsequent gradient projections. Minimizing the number
of design variables is generally highly desirable.

To enable selective adaptation, we develop a systematic method for choosing an effective combination of
refinement locations from among the myriad candidates. To do so, we compute various indicator metrics for
each candidate parameterization, and select the one that appears the best, when ranked by these metrics.
The expectation is not to find the truly ideal parameterization, but to substantially improve navigational
efficiency, while introducing fewer dimensions than uniform refinement.

A. Effectiveness Indicator

To predict the effectiveness of the various possible shape control refinements we use problem-aware metrics,
namely the local objective and constraint gradients to the candidate design variables, and possibly also an
approximation of the local Hessian matrix. Like any local metric in a nonlinear design landscapee, this is
only an approximation, but in the absence of a priori information, it is the best information available.

1. Gradient-Maximizing Indicator

In a convex, properly-scaled problem, and in the absence of active constraints or design variable bounds, a
higher objective gradient generally indicates that a parameter is more effective. This suggests taking the
effectiveness indicator I to be a norm of the vector of objective gradients with respect to the candidate design
variables Xc:

IG(Cc) =

∥∥∥∥
∂J
∂Xc

∥∥∥∥ (4)

Each gradient ∂J
∂Xc

gives a local forecast of the rate at which that individual candidate parameter will
help improve the design. Consistent with the fact that the adjoint is a linearization about the local state,
our experiments show that higher gradients are strongly correlated with short-term design improvements.
After a few design iterations, the accuracy of that correlation depends on the degree of nonlinearity and the
scaling of the problem.

dHowever, under a finite-difference optimization framework (i.e. without the adjoint), where the cost of each extra gradient
is two flow solutions, allowing more convergence on fewer design variables could prove more efficient.

eStemming from nonlinearities in the geometry, shape deformation, flow mesh discretization, and the flow equations.
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Function 2: GradientIndicator(·)
Input: Surface S, shape control C,

objective adjoint solution ψ
Result: Indicator I

D,X←− Parameterize(S,C)
foreach Xi in X do

∂S
∂Xi
←− ShapeDerivative(D,Xi)

∂J
∂Xi
←− ProjectGradient(ψ, ∂S

∂Xi
)

end

I ←−
√∑

i(
∂J
∂Xi

)2

Function 2 shows how IG is assembled. Importantly, the
objective gradients have modest additional cost. During op-
timization, the adjoint is used to compute gradients with
respect to existing shape design variables. However, after
a search space refinement is triggered, we reuse the adjoint
solution from the final design in the previous search space
to rapidly compute gradients with respect to the new candi-
date design variables. This reuse of the adjoint is possible
only if the geometry modeler exactly preserves the shape
when changing search spaces, so that the final shape in the
previous search space is identical to the launching point for
the next search space. This is generally true for all discrete
modelers.

2. Orthogonality of Objective and Constraints

If there are design constraints, it is desirable to prioritize parameterizations that have high objective gradients
in a feasible direction. A candidate shape parameter is not useful if it must violate a constraint to improve the
objective. In the specialized case of localized constraints (for example, wing thickness), a rough approach is
to simply exclude any candidate shape control stations that are located near the active constraints.2 However,
this does not extend to aerodynamic constraints such as lift or pitching moment, or to bulk geometric
constraints such as on wing volume.

To handle general constraints, we propose an approach based on the KKT conditions for optimality of
a constrained problem. Satisfaction of the KKT conditions indicates that no further progress is possible
within the current search space. Inverting this logic, we propose to add new parameters that make the KKT
conditions in the new search space as un-satisfied as possible. Assuming the final design in the current search
space satisfies the constraints, the KKT conditions for a candidate re-parameterization simplify to

∂J
∂Xc

=

nC∑

i=1

λi
∂Ci
∂Xc

(5)

where the Lagrange multipliers satisfy λi > 0 or λi < 0 for constraints at their maximum and minimum bounds
respectively, or λi 6= 0 for equality constraints. This is a non-square system of equations with dimensions
(nDV × nC), which is usually highly overdetermined. At the final design of the current search space, the
system should be nearly satisfied. Adding new shape parameters, however, introduces new equations, which
should make it no longer satisfied. Solving Equation 5 using a bounded least-squares solver yields a set of
best-fit λi. The least-squares residuals of this fit indicate distance from optimality and provide a convenient
indicator:

IKKT (Cc) =

∥∥∥∥∥
∂J
∂Xc

−
nC∑

i=1

λi
∂Ci
∂Xc

∥∥∥∥∥ (6)

Under this indicator, high objective gradients alone are insufficient. Roughly speaking, it prioritizes parame-
terizations where the objective gradients as orthogonal as possible to a linear transformation of the constraint
gradients.

Note that in the absence of constraints, Equation 6 simplifies to Equation 4. In our experiments IKKT and
IG typically result in very similar rankings, but in some cases, IKKT may avoid adding ineffectual parameters.
Like the objective gradients, the constraint gradients, ∂Ci

∂X , can be readily computed by reusing the existing
constraint adjoint solution(s) by a process similar to Function 2.

3. Maximal Design Improvement (Hessian) Indicator

Optimization approaches using approximations of the Hessian typically generate superior search directions
to a steepest-descent approach. Similarly, we can surmise that with an approximation of the Hessian of the
candidate search space, we can favor shape parameters that have longer-term usefulness than simply those
with the highest gradients.
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!11

feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
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required under a finite di↵erence formulation.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.

However, the adjoint in fact encodes much more information than traditional parametric shape optimiza-
tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
respect to existing shape design variables. After a design space refinement is triggered, we use the same final
design’s adjoint solution to rapidly compute gradients with respect to potential new design variables. Any
potential design variables that would drive the design forward more e↵ectively are then added into the design
space.

B. E↵ectiveness Indicator

The most challenging theoretical question for adaptive shape control is how to predict the e↵ectiveness of
the various possible shape control refinements. Our approach is to use local design space metrics, namely the
objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
matrix. Like any locally-based estimate in a nonlinear design landscapef, this can only be an approximation.
While we do not expect to find the truly ideal parameterization, our goal is to substantially improve design
space navigation.

1. Gradient-Maximizing Indicator

The objective gradients directly indicate the sensitivity of the objective and constraints to each design
parameter. In the convex region of a properly scaled problem, higher gradients generally indicate more
e↵ective parameters. This suggests using an e↵ectiveness indicator that is some norm of the vector of
objective gradients:
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Consistent with the fact that the adjoint is a linearization about the local state, our experiments show that
higher gradients are strongly correlated with short-term design improvements. After a few design iterations,
the usefulness of that correlation depends on the degree of nonlinearity and the scaling of the problem.

We can compute these gradients for modest additional cost, because the adjoint solution has already
been computed during optimization in the previous design space. We simply use the same standalone
gradient-projection function that the design framework applies to existing design variables.

2. Maximal Design Improvement Indicator

During optimization, the Hessian generates superior search directions to a steepest-descent approach involving
only local gradients. Similarly, we can surmise that by using the Hessian of the candidate design variables,
we can favor shape parameters that have longer-term usefulness than simply those with the highest gradients.

Consider the local quadratic fit of the candidate design space, based on the local objective value J (X),

gradients with respect to the design variables @J
@Xc

, and a Hessian approximation @2J
@X2

c
. The minimizer of this

fit has a known location and value. Most importantly, this minimal value is an estimate of how much design
improvement is possible under that parameterization. This leads to a very natural indicator
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which prefers design spaces that have high capacity for design improvement.
The next step is to generate an estimate of the Hessian without the exorbitant costs of finite-di↵erenced

flow solutions. First, switching to index-notation for accuracy, we rexpress the Hessian via the surface, which
is the intermediary between the design variables and the objective function:

fStemming from nonlinearities in the geometry, in the shape deformation, in the flow mesh discretization, and in the flow
equations themselves.
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feasible to optimize on very large numbers of design variables. The adjoint approach allows all NDV objective
gradients to be computed for a fixed cost of roughly one PDE solution, instead of the 2NDV PDE solutions
required under a finite di↵erence formulation.
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tion makes use of. Moreover, this information can be extracted at trivial cost, and might accelerate the rate
of design improvement if used correctly. During optimization, the adjoint is used to compute gradients with
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objective gradients to the candidate design variables, and possibly also an approximation of the local Hessian
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J (Xprev)

Figure 6: Local first- and second-order fits (dotted
lines) of a candidate search space’s actual behavior
(blue). With second-derivative information, the ex-
pected improvement Jexp can be estimated. A second
candidate search space with higher gradients (red)
may actually offer less potential design improvement
if its second derivatives are also high.

Consider Figure 6, which illustrates the local quadratic
fit of the candidate search space, based on the current ob-
jective value J (X0) (presumably the optimum achieved in
the previous design space), objective gradients ∂J

∂Xc
, and a

Hessian approximation ∂2J
∂X2

c
. The minimizer of this fit has

an analytically known location and value. Conceptually,
this minimal value is an estimate of how much design im-
provement is possible under that parameterization. This
leads to a very natural indicator

IH(Cc) ≡ −∆Jexp(Cc) =
1

2

∂J
∂Xc

T (∂2J
∂X2

c

)−1
∂J
∂Xc

(7)

which prioritizes search spaces that have high capacity for
design improvement.

This indicator can be expected to perform exception-
ally well at poorly-scaled problems, which are common
in aerodynamic design. For the analytical problem of ge-
ometric shape-matching, we will show that the Hessian
indicator IH is radically superior to the gradient indicator
IG. Unfortunately, for aerodynamic problems, no estimate
of the Hessian for the candidate design space is currently readily available, without the prohibitive cost of
2NDV finite-differenced flow and adjoint solutions. This is a target for future work.

B. Ranking Candidate Refinements

We now present a search algorithm for finding an effective parameterization. Recall from Equations 4, 6 and
7 that the indicator is defined for each candidate ensemble of parameters Cc, not simply for each individual
parameter. This is a critical point, and can have important consequences for efficiency. In general, the
deformation mode shape (and therefore the effectiveness) of a parameter also depends on where its neighbors
are located. To visualize why this is usually the case, consider interpolating deformation between consecutive
control stations. By moving one station relative to its neighbor, both of their shape deformation modes are
changed; the width of one shrinks, while the other expands.

For certain special types of deformers (notably, Hicks-Henne bump functions21) we can make a simplifi-
cation. If each deformation mode, described by ∂S

∂X , is a function of only one element of the shape control C,
then we can consider the effect of each parameter in isolation, which greatly reduces the expense of ranking
the parameters. Unfortunately, such deformers are the exception rather than the rule. The presence of any
form of interpolation renders this simplification invalid, ruling out almost all modelers, including spline-based
approaches, CAD systems, and custom deformers like the ones used in this work.

An important consequence of this is that multiple similar shape control candidates may have “redun-
dant potential”, in the sense that adding any one is useful, but adding a second would not help. Thus,
when searching for an effective shape control refinement, it is generally important to examine ensembles of
parameters.

1. Search Algorithm

Finding the best ensemble of parameters is a form of combinatorial optimization. An exhaustive search is
prohibitive: choosing the best subset of A out of B candidates would require A!

B!(A−B)! indicator evaluations.

One simple “search” procedure is to randomly sample combinations of parameters. However, this is highly
unlikely to find a good combination of parameters without very large numbers of samples. Although we did
not consider it, “metaheuristic” search procedures such as genetic optimization, could be used. However,
these typically require large numbers of functional evaluations (here indicator evaluations).

For this work we developed a “constructive” search procedure, illustrated in Figure 7. In the first phase,
each possible introduction of a single new parameter is analyzed. A priority queue is then formed by ranking
the candidates by their indicator value, as computed by any of the methods from section IV.A. In the second
phase, we make Nadd passes over the priority queue, reanalyzing only a sliding window, w, of the top few
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Figure 7: Constructive search algorithm for refining the shape parameterization.

candidates remaining in the queue, resorting the queue, and adding the top-ranked parameter. The choice of
the window size w is a tradeoff between the cost of evaluating more combinations and the potential benefit
of finding a more effective search space. This procedure is given more explicitly in Function 3. Its important
features are:

• By reanalyzing the top w candidates, we avoid adding redundant parameters.

• The cost for the entire search is bounded and O(Ncand).f

Function 3: AdaptShapeControl(·)
(Constructive search algorithm)

Input: Surface S, current shape control C,
candidate shape control Cc, adjoint
solutions ψi, growth rate g, window w

Result: Updated shape control C

Nadd ←− int(len(C) · g[i])
queue←− ∅
foreach Pcand in Cc do

I ←− ComputeIndicator(S,C ∪ Pcand, ψi)
queue.Add(Pcand, priority = I)

end
for i=1..Nadd do

foreach Pcand in queue.Best(w) do
I ←− ComputeIndicator(S,C∪Pcand, ψi)
queue.Update(Pcand, priority = I)

end
Pbest ←− queue.pop()
C←− C ∪ Pbest

end

This constructive procedure is most effective
when the initial priority queue remains a fairly ac-
curate ranking throughout the search. For many
problems this is strongly true, and we observe that
the procedure often returns the same result as an ex-
haustive search, but at a fraction of the cost. How-
ever, in cases with high “redundancy” among the
candidate shape parameters (an example of which
is given in Section V), it can yield far less optimal
results. Alternately, if the initial priority queue
is perfectly trustworthy (as in the special case of
Hicks-Henne bump functions or other linear param-
eterizations), one can use a window size of w = 0,
which is equivalent to immediately accepting the
top Nadd members of the queue.

The running time of the search depends on the
speed of the geometry modeler and gradient pro-
jection tools, which are invoked frequently, and on
the number of candidates being considered, and on
the window size. In our environment, we observe
highly practical running times, with cost usually
equivalent to no more than a few design iterations.
Naturally, this involves a tradeoff between spend-
ing longer to find a more efficient search space vs.
immediately making design progress, but in a suboptimal search space.

fAt most Ncand(1 + w
2

) indicator evaluations are required: Ncand evaluations to build the initial priority queue and
min(Nadd, Ncand − Nadd) more to add the rest, because if we are adding more than half of the candidates, we can work
backwards, removing one at a time.
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Setting the growth rate of the number of parameters
(g in Algorithm A) involves striking a balance be-
tween flexibility and efficiency. An inflexible search
space (with too few new design variables introduced)
will quickly stagnate, requiring additional shape con-
trol adaptation. Likewise, with too many design
variables, navigation is slow. The growth rate can
have an important impact on efficiency.

Consider manual specification of a relative
growth rate (e.g. “increase the number of design
variables by 50%”). Figure 8 compares the perfor-
mance of various growth factors from 1.25− 2× on
a geometric shape-matching problem. On this prob-
lem, a growth rate of 2× converges twice as fast as a
growth rate of 1.25×. The optimal pace will depend
on the problem. Here, the relative simplicity of the
geometric objective functional allows rapid and re-
liable design improvement regardless of the number
of design variables, thus favoring fast growth rates.
In more complex problems, we observe that slower
growth rates are superior. Other growth-setting strategies might also eventually prove useful, such as per-
forming a cost-benefit estimation (especially with the Hessian-based indicator), or even removing some design
variables from the active set for efficiency.

An additional consideration is how many shape parameters to start with. As we show in the first example,
starting with a truly minimal search space (e.g. one or two variables), leads to stunted growth early on. We
observe that it is often more effective to start with several design variables (at least 6-10), again dependent
on the problem.

V. Results

In a concurrently published applications paper,22 we provide results for solving four benchmarks posed
by the AIAA Aerodynamic Design Optimization Discussion Group. The benchmarks include two airfoil
design problems, a twist optimization for minimum induced drag, and a transonic wing design case. In these
benchmarks, we extensively demonstrate our progressive and adaptive shape parameterization approach on
practical design problems. We also discuss the importance of controlling discretization error in achieving
robust design improvement with progressive parameterization.

In this section, we demonstrate the approach on two additional cases that are deliberately challenging
for an adaptive approach. The first example examines transonic airfoil design with two design points and
many constraints, where optimization convergence is difficult. The second example establishes a benchmark
involving geometric shape-matching that is particularly challenging for our indicator and search procedure.

A. Transonic Airfoil Design

In this example we consider multipoint transonic airfoil design. The purpose is to demonstrate our approach
on a challenging 2D problem. We show that progressive shape control both smooths the design trajectory
and accelerates the optimization.

11 of 22

American Institute of Aeronautics and Astronautics



1. Problem Statement

The objective is to minimize an equally-weighted sum of drag at two flight conditions, Mach 0.79 and 0.82.
Lift-matching and minimum pitching moment constraints are imposed at both design points. Because we are
using an inviscid solver, we constrain the camber line angle γ at the trailing edge (see Figure 9) to prevent
excessive cambering that would result in poor viscous performance. We also specify a minimum and maximum
geometric closing angle φ at the trailing edge. Finally we require that the thickness be preserved at least
90% of its initial value everywhere (enforced at 20 chordwise locations ti), and that the total cross-sectional
area A maintain its initial value ARAE . The complete optimization statement is

!12

� �

Figure 9: Geometric con-
straints at the trailing edge

minimize J = CD1
+ CD2

s.t. CL1
= CL2

= 0.75

CM1
≥ −0.18 (V)

CM2
≥ −0.25 (V)

9◦ ≤ φ ≤ 13◦

γ ≤ 6◦ (V)

A ≥ ARAE ≈ 0.07787

ti ≥ 0.9tRAEi∀i

where (V) denotes constraints that are initially violated. Gradients for the six aerodynamic functionals are
computed using adjoint solutions. The 23 geometric constraints are computed on the discrete surface, with
gradients derived analytically.

2. Geometry and Parameterization
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Figure 10: Baseline geometry and first three levels of shape
control (2-DV, 6-DV and 14-DV)

The baseline geometry is a unit-chord RAE 2822
airfoil, shown in Figure 10, which is parameterized
using a direct manipulation technique. As shown in
Figure 4, we explicitly specify the deformation of
a set of “pilot points” along the curve, which serve
as the design variables. Deformation of the remain-
der of the curve is interpolated using radial basis
functions.15,23–25 We choose the cubic basis function
φ = r3, primarily because it requires no local tuning parameters, making it more amenable to automation.

Shape control refinement is binary, with adjacency and midpoints defined in terms of arclength along the
curve. In the language of Section II.B, the shape control C is the parametric locations of the pilot points
along the airfoil curve. Function PRBF “binds” these locations to the surface, resulting in a deformation
function D, which takes the control point deflections X and generates a new surface.

We consider several static shape parameterizations (with 6, 14, 30 and 62 design variables) and compare
their performance to two progressive shape control strategies starting from 2-DVs: (1) nested uniform refine-
ment and (2) adaptive refinement. We set a maximum tree depth equivalent to the 62-DV parameterization.
In other words, the two progressive approaches will ultimately arrive at the static 62-DV search space. This
refinement limit prevents the shape control from becoming unreasonably closely spaced.

3. Adaptive Strategy

The trigger for both progressive approaches was based on slope reduction, with a reduction factor of r = 0.01.
We used a large window of w = 6 for the first 3 levels to avoid early triggering while the constraints are
being driven to satisfaction. Subsequently, we reduced the window to w = 2 for efficiency. For the adaptive
approach, we used a target growth rateg of 1.75×, and used the constructive search algorithm (Function
7), with w = 3. As there are many constraints in this problem, we used the KKT-based indicator IKKT

(Equation 6) to rank candidate refinements.

gActual growth rates are also affected by regularity rules.
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parameterization. Bottom: Corresponding pressure profiles for the Mach 0.79 design point.

4. Optimization Results

!11

Figure 12: History of adaptive refinement
showing best airfoils attained under each pa-
rameterization.

Figure 11 shows the airfoil shape achieved by three of the stages
during the adaptive approach (4-DV, 15-DV, 26-DV). Examin-
ing the Mach 0.79 pressure profile, the loading is shifted forward,
and the added reflex camber at the trailing edge also adds some
lift near the trailing edge. The main shock is moved forward
and weakened. A small shock temporarily appears on the lower
surface while meeting the constraints, but is then eliminated
by the final design. Overall the drag at this design point is
reduced from over 300 counts to 66 counts. Similarly, at Mach
0.82, the drag is reduced from about 600 counts to 276 counts.
Figure 11 also shows the non-uniform final parameterization,
which is the result of adding design variables over five levels.
The sequence of adapted parameterizations is shown in Figure
12.

Figure 13 shows the evolution of the lift, drag and pitch-
ing moment functionals. The constraints are rapidly met and
held throughout the optimization, while the drag is gradually
reduced. The thickness constraints are satisfied at every design. The area and trailing edge constraints are
all active but satisfied by the end. At each re-parameterization, the quasi-Newton optimizer performs a “cold
restart”, which resets the Hessian approximation to the identity matrix. The main consequence is that the
lift constraints are violated for the first few search directions immediately after refining, before snapping back
to the target values. The design is still slowly improving. The fact that substantial gains were made even on
the final parameterization indicates that we have not yet reached the continuous limit of design improvement.
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Figure 13: Transonic airfoil: Convergence of aerodynamic functionals across all adaptively refined parameterization
levels (2-DV in blue, 4-DV in orange, etc.). Target/minimum constraint values shown in dashed lines.

5. Comparison to Static Parameterizations

The left frame of Figure 14 compares the convergence of the drag objective for the various parameterizations.
Initially, there is a somewhat convoluted startup period of 10-20 search directions, where the initially violated
constraints were being driven to satisfaction at the expense of drag. Afterwards, the progressive and
adaptive approaches strongly outperform any of the static parameterizations, achieving more consistent
progress, converging far faster, and ultimately reaching superior designs. This is a clear confirmation of the
predicted behavior, described and illustrated notionally in Figure 2 as following the “inside track” of the
static parameterizations.

Early in design, some of the static design spaces initially outperform the extremely coarse (2-, 4- and
6-DV) progressive and adaptive search spaces. This indicates that our choice to start with a minimal 2-
DV design space was not ideal. Practically speaking, it is probably more efficient to start with several
variables. Nevertheless, by the end, the progressive approaches have still solidly outperformed the static
parameterizations, which tend to stall well before reaching their theoretical potential,h most likely because
of the relative lack of smoothness in their design trajectories.

The computational savings are more stark in the right frame of Figure 14, which shows objective im-
provement vs. an estimate of wall-clock timei. The progressive and adaptive approaches reach the same
objective value as the 63-DV parameterization in one-third of the time. Each design iteration included an
adjoint-driven mesh adaptation to control discretization error,20,26 a flow solution for each design point,
and six adjoint solutions on the final adapted mesh to compute gradients for the aerodynamic functionals.
Notably, Figure 14 includes the cost of long line searches, visible especially in the 62-DV parameterization.
It also includes the usually neglected O(NDV ) computational time due to computation of shape derivatives
∂S
∂X by the geometry modeler, followed by gradient projections to compute ∂J

∂X and
∂Cj
∂X . Adaptive refinement

controls these costs by reducing the number of design variables. By adjusting the progressive and adaptive
strategies, even more speedup is certainly possible. For example, the relatively delayed trigger could be
tightened, as it resulted in several extended periods of little design improvement.

hWe performed cold restarts when the static parameterizations stalled, to verify that no further progress could be made.
iRough timings on 24 Intel Haswell cores
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Figure 15: Typical airfoils encountered during optimization under a progres-
sive parameterization (right) are consistently much smoother than airfoils
encountered under a static parameterization (left).

As a final note for this prob-
lem, Figure 15 shows several rep-
resentative airfoils encountered dur-
ing optimization. We observe that
with a progressive or adaptive ap-
proach, the entire design trajec-
tory is smoother. This is a desir-
able characteristic both from robust-
ness standpoint and also because
it makes it possible to stop at any
point during optimization and have
a reasonable design.

B. Geometric Shape Matching Benchmark

In this two-part example, we establish a benchmark to assess the ability of our approach to discover the
parameters necessary to solve a difficult optimization problem with a known solution. In the process, we
compare the different indicators and assess the performance of our search procedure.

The problem is geometric shape matching to a swept, twisted wing. In shape matching, we examine the
convergence from a baseline geometry to an attainable target shape. The objective function aims to minimize
the deviation between the current shape and the target in a least-squares sense:

J =

Nverts∑

i=1

‖vi − v∗i ‖2 (8)

where vi are the current vertex coordinates and v∗i are the corresponding target vertex coordinates. The
wing is represented by a discrete geometry with Nverts ≈ 197K.
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Figure 16: Baseline and target planform profiles. Initial shape control station is labeled L0, after which L1 is added,
followed by the L2 stations, etc.

Importantly, this is a problem with a known solution in two senses. We not only know the optimal shape,
but we also know the minimal shape parameterization that can achieve that design. The goal of this exercise
is to efficiently discover a parameterization that enables the optimizer to exactly match the target shape.

1. Initial Parameterization and Target

Figure 16 shows the the baseline and target shapes. The baseline is a straight wing with no twist, taper or
sweep. The wing planform deformation is parameterized using the technique illustrated in Figure 3, which
linearly interpolates twist, sweep and chord between spanwise stations, while exactly preserving airfoil cross-
sections. The initial parameterization has three design variables: twist, chord and sweep at the tip station
(marked “L0”), while the root is fixed. To refine the shape control, more spanwise stations are added (“L1”,
“L2”, etc.), opening up new degrees of freedom. Control over twist, sweep and chord can happen at different
stations, allowing for “anisotropic” shape control. The target geometry is a wing with the same airfoil section,
but substantial twist, chord-length and sweep profiles, as shown in Figure 16. For this academic example,
the target sweep profile is linear and the target chord-length profile is piecewise linear in two segments, while
the twist profile is quadratic.

The target shape is unattainable under the initial parameterization. Only through sufficient and correct
search space refinement can the target be reached. The problem is constructed such that we know in advance
the necessary and sufficient refinement pattern, i.e. the one that will allow the closest recovery of the target
with the fewest design variables. Namely, chord control at the break is required to recover the piecewise
linear chord profile. Next, progessively finer twist control should be added to approximate the quadratic
twist profile with piecewise linear segments. The intial sweep controller at the tip is sufficient to recover the
linear sweep distribution, so no additional sweep control should be added. We now test the degree to which
our system can recover or approximate this “ideal” parameterization.
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This seemingly simple problem is actually, by construction, pathological in several ways. First, it exhibits
highly anisotropic parameter refinement requirements. Second, it is scaled in precisely the converse way:
the objective gradients with respect to chord and sweep control are orders of magnitude higher than the
gradients with respect to twist, even though the twist variables are the most needed. Third, the candidate
parameters exhibit a high degree of “redundant potential”, making it challenging for the search procedure to
find an effective combination of parameters. Many aerodynamic problems share these same features, making
this an excellent preliminary benchmark for an adaptive approach.

2. Test 1: Indicator Comparison

Our first goal is to investigate the indicator’s ability to accurately guide the search space construction and
to discover the necessary parameters. In this exercise we sequentially add one new design parameter at a
time, followed by a brief optimization. We compare the predictive power of the two effectiveness indicators,
one based on gradients, IG, and one using Hessian information, IH , which is accurately computable for this
analytic objective.j

Figure 17 shows the resulting adaptation patterns that evolved. The right frame shows the pattern
produced by the Hessian indicator after 22 adaptation cycles. Sweep control is correctly ignored. Chord
control was correctly added at the break ( 13

32 span). Four extra chord variables were added, but this was
not a mistake. Under the binary refinement rules stipulated in Section III.B, the necessary station at 13

32
span was not considered a candidate until the stations at 1

2 , 1
4 , 3

8 , and 7
16 span were all first added. The

jThe Hessian is not exact, because the twist deformation modes are nonlinear with respect to the angle. The error due to
this effect is small, but it may explain some slightly imperfect predictions.
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Figure 17: Performance of gradient indicator IG and Hessian indicator IH . Top: IH recovers the expected parameters
with few extras, while IG mostly adds extraneous parameters. Bottom: Refinement patterns and optimized planform
distributions with IG (left) and IH (right).
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adaptation procedure did precisely this, and correctly identified the necessary parameters once the adaptation
was deep enough. Examining the twist profile, the system correctly added evenly spaced stations along the
span, optimally clamping down the error between the quadratic profile and the linear segments. It has also
begun to add the next nested level of control near the root.

Now compare the left half of Figure 17, which shows the results using the gradient-norm indicator IG
after 25 adaptation cycles.k Although the overall shape recovery is still quite decent, the refinement pattern
is inaccurate and fails to efficiently capture the important design variables, and therefore results in an inferior
match, especially in the twist profile.
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Figure 18: Shape-matching objective convergence for different indi-
cators and search strategies. Solid blue line shows the “best possible”
convergence, using the a priori known best possible 35-DV parameteri-
zation. Each color represents a different parameterization and ×-marks
denote search space refinements.

For this objective function, the chord
and sweep objective gradients were much
higher than the twist gradients. Thus
chord and sweep were favored, even
though they offered only extremely short-
term potential. On a well-scaled problem,
IG should perform much better. This sug-
gests a simple correction to the gradient
indicator to soften the impact of poor scal-
ing

I∗G(Cc) =

∥∥∥∥si
∂J
∂Xci

∥∥∥∥ (9)

where si are scaling factors, as used to
improve the conditioning of an optimiza-
tion. However, determining appropriate
values si is far from straightforward. IH ,
by constrast, was intrinsically sensitive to
the high second derivative of the objec-
tive with respect to the chord and sweep
parameters, revealing that they in fact
had low long-term potential. While com-
puting IH for aerodynamic functionals is
not currently feasible, this study high-
lights the tremendous gains that could
be made with even an approximation of
second derivative information.

Figure 18 compares the objective convergence under the two indicators. The gradient indicator frequently
adds parameters with almost no potential, leading it to stall for several adaptation cycles. Despite the
relatively poor performance of the gradient indicator, it still managed to reduce the objective by over 6 orders
of magnitude, indicating reasonable shape matching. The Hessian indicator, however, achieves good progress
at every cycle and reaches a superior design.

Performance is still relatively slow with respect to the “ideal” parameterization, shown in Figure 18. In
this exercise, it took many adaptation cycles to drive towards the target shape, because only one parameter
could be added at a time and we searched only one level deep in the parameter tree. As mentioned in section
IV.C, much higher growth rates generally lead to much faster design improvement.

3. Test 2: Search Procedure Evaluation

As a second test, we try searching deeper for candidates (two levels deep), and specify a faster growth rate
(adding three parameters per adaptation). For this test, we no longer exhaustively evaluate all combinations,
as this becomes prohibitive. Instead, we use the search procedure (Function 7) to seek a good, if not perfect,
ensemble of shape parameters, by evaluating a small number of candidates.

kAlthough we used the L2 norm of the gradients here, other norms provided nearly identical results.
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Figure 19: Final recovered planform distribution (search depth
of 2, adding 3 parameters at a time, Hessian-based indicator).

Figure 19 shows the adapted refinement pat-
tern. Although there are some more unneces-
sary parameters than before, the shape recov-
ery is excellent. Moreover, as shown in Figure
18, the convergence rate for this strategy is
much faster, starting to approach the perfor-
mance of the ideal parameterization.

As a final note, if there is an extremely high
degree of redundancy among candidates, the
performance of this search algorithm can suf-
fer. As a final experiment, we look five levels
deep, and request 32 design variables immedi-
ately, without any prior optimization. There
are a total of 93 candidates. An exhaustive
search would involve evaluating all ∼ 8 · 1024

possible combinations of the parameters, mak-
ing an efficient search procedure essential.

Figure 20 shows the initial priority queue
formed by analyzing each candidate shape con-
trol element independently, using the Hessian
indicator. The ideal shape control ensemble
of 32 parameters is highlighted in green. The
first pass over the candidates correctly identi-
fied the chord station at the break as the most
important shape controller to add. Initially, it
appears that the twist variables are the least
important in the queue.
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Figure 20: The priority queue after Phase I of the greedy algo-
rithm (search depth of 5, adding 32 parameters at once, Hessian-
based indicator). The 32 parameters that would best recover
the target shape are highlighted in green. After adding the first
parameter in the queue, all of the subsequent gray parameters
(chord and sweep controllers) become redundant.

With the addition of the chord parameter,
however, the next 50 elements in the queue
all become highly ineffective. Their initial ap-
praisal was based on the absence of the added
parameter; they could each have recovered
much of the same design potential that it of-
fered. The twist stations at the end of the
priority queue offer relatively little potential,
but that potential is independent of the chord
control, and thus they remain useful.

Our search procedure does work on this
problem, but it adds many extraneous vari-
ables. Function 7 must work its way through
all of the now-useless parameters, one window
(of size w) at a time, until finally discovering
the still-useful twist control. Studies are under-
way to determine whether a modification of the
constructive approach can perform well on this
(relatively rare) type of problem, or whether
alternate transformational strategies, such as
a form of genetic algorithm, or specialized ran-
dom search would perform better. From a prac-
tical standpoint, however, the easiest approach
is to limit the depth of the search to one or two
levels deeper than the current parameterization,
which eliminates most of the redundancy and
results in excellent performance from the basic
search procedure.
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VI. Conclusions

In a progressive shape control approach, the search space is enriched automatically as the optimization
evolves, eliminating a major time-consuming aspect of shape design, and freeing the designer to focus on
good problem specification. Recognizing that different design problems may call for different shape control,
and that for unfamiliar problems this may be difficult to predict, we developed an adaptive approach that
aims to discover the necessary shape control while concurrently optimizing the shape. We showed that with
progressive parameterization, the design is smoother, leading to more robust design improvement and offering
the ability to stop at any point and have a reasonable design. We also showed that the optimization often
achieves faster design improvement (as much as 3× in some cases) over using all the design variables up front.
Additional important benefits of this approach include:

• Completeness: The full design space can be explored more thoroughly, as it is not restricted by the
initial parameterization.

• Feedback: The refinement pattern conveys information about the design problem.

An important feature of our implementation is that it is architected to work with arbitrary geometry
modelers. Some additional development work is required to prepare a modeler for adaptive use. However,
the amount of setup time eliminated from each optimization strongly justifies this expenditure. With modest
tailoring, it can also invoke different aerodynamic design frameworks.

VII. Future Work

As the designer no longer specifies the exact deformation modes by which a surface is permitted to be
modified, care must be taken to explicitly specify (via constraints) how it may not be modified, to prevent
the optimizer from taking advantage of weak spots in the problem formulation. Many of these constraints
(such as non-self-intersection, limits on excessive curvature, etc.) can in theory be codified, which we hope to
address in the future.

The efficiency of our approach is highly dependent on the adaptation strategy, including the trigger, growth
rate, indicator and search algorithm. All told, our implementation added only about 10 new parameters
to tune the adaptation strategy. In the future, we hope to determine the degree to which we can robustly
automate some of these choices. Investigations are also underway to examine whether aerodynamic objectives
can take advantage of an approximated Hessian-based indicator. For highly redundant candidate pools, the
search procedure might be accelerated by using information on the orthogonality of the deformation modes,
or perhaps alternate search procedures would be more effective, a question we are actively investigating.
Finally, we also hope to demonstrate and evaluate the technique on more large-scale design problems, such
as wing-body-nacelle integration or low-boom design.
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Appendix A. Static Shape Optimization Algorithm

Adjoint-based parametric shape optimization frameworks typically follow the iterative loop outlined
in Function 4. A discrete tesselated surface S is generated by a geometry modeler, based on the shape
parameter values X. The solution domain is then meshed and the PDE is solved (for our purposes, the fluid
flow equations), enabling evaluation of the objective function J . Next, the adjoint equations are solved, which
allows rapid computation of the objective gradients ∂J

∂X to each design variable. Finally a gradient-based
optimizer determines an update to the design variables X, and the loop is continued.
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Function 4: Optimize(·)
Parametric Geometry Engine

PDE Solver Functions

Input: Shape deformation function D with initial design
variable values X0, objective function J ,
constraints Cj

Result: Optimized surface S, adjoint solution ψ
X←− X0

repeat
S←− GenerateSurface(D,X)
M←− DiscretizePDE(S)
Q←− SolvePDE(M)
J ←− ComputeObjective(Q,S)
ψ ←− SolveAdjoint(M,Q)
foreach Xi in X do

∂S
∂Xi
←− ShapeDerivative(D,Xi)

∂J
∂Xi
←− ProjectGradient(ψ, ∂S

∂Xi
)

end

X←− NextDesign(X, ∂J∂X ) // Optimizer

until Stop(J , ∂J∂X )
return S, ψ
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