The way to the future has already started: ICAO Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards and Protocol evolution update

Rafael Apaza, NASA Glenn Research Center, Cleveland, Ohio
Liviu Popescu, EUROCONTROL

September, 2018
Contents

1. Introduction
2. Aviation Operational Networks
3. Standardization
4. Proposed Mobility Solutions
5. Emerging Operational Concepts
6. Conclusion
Introduction

- Global aviation community is working on standardizing Aeronautical Telecommunication Network (ATN) using Internet Protocol Suite (IPS) Standards and Protocol
- Three mobility solutions under evaluation: Location/Identifier Separation Protocol, Asymmetric Extended Route Optimization and Mobile IPv6 with Extensions
- Communications for aviation dates back to 1920s where AT used colored flags to control takeoffs and landings.
- In 1930s, the Cleveland airport in Ohio was the first to use radio communications for Air Traffic Control (ATC)
- ATC communications technology has experienced many changes since the early days and increased complexity gave rise to new requirements for information exchange
- The modernization and evolution of global aviation requires a transition from analog communications to digital information exchange
- There is an increasing need for critical information exchange over multiple links between air and ground networks
Aviation Operational Networks

The Aircraft Communications Addressing and Reporting System (ACARS)

- Developed by ARINC and in use since late 1970’s for transmission of data only (no voice).
- Data link originally provisioned for services between the aircraft and Airline Operations Centers Systems, later expanded to support Air Navigation Service Providers and the aircraft.
- Airborne system consists of a Control Unit (CU) and a Management.
- Ground subnetwork is made-up of Remote Ground Radio Stations that are connected to a Datalink Service Processor
- Character-oriented
 - Send 7-bit characters
 - Maximum message of 220 characters
- Modulation on VHF band:
 - 2400 bps (bits-per-second) over AM (amplitude modulation) using MSK (Minimum Shift Keying) in the 25kHz channels.
- Aircraft Messages generated automatically based on discrete events e.g. brake release, Out of gate, Off the ground, On the ground, Into gate = OOOI
Aviation Operational Networks

• Based on the OSI reference model
• OSI model divides the communications functions into seven layers.
• ATN design to integrate data communications networks and services.
 – Consists of application entities and communication services that enable ground, air-to-ground, and avionics data subnetworks to interoperate
 – standardizes common interfaces, services, and protocols.
• ATN specified to provide data communications for Air Traffic Services Communication, Aeronautical Operational Control, Aeronautical Administrative Communication and Aeronautical Passenger Communication
Standardization

- 2010 - First publication of ICAO Manual on the Aeronautical Telecommunication Network using Internet Protocol Suite Standards and Protocol - Document 9896
 - Defined data communications protocols and services to be used for implementing ATN using the IPS
 - Provided technical specifications that addressed security, network and transport protocols, described applications
 - Based on IPv6 protocol
- 2015 Document 9896 R2 revised to include VoIP
- Document 9896 undergoing third revision to include mobility, multilink operations, DNS, naming and addressing.
- 2016 - EUROCAE WG-108 and RTCA SC-223 are collaborating in developing
 - Minimum Aviation System Performance Standards
 - IPS Technology Profile - used to provide useful guidance to the technology designers
 - Development use mature and proven IETF RCF standards to addresses both airborne and ground segments
Proposed Mobility Solutions - LISP

<table>
<thead>
<tr>
<th>Locator/Identifier Separation Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Developed by CISCO Corporation – RFC 6830</td>
</tr>
<tr>
<td>– Splits address into Endpoint Identifier (EID) and Routing Locator (RLOC)</td>
</tr>
<tr>
<td>• RLOC – Interdomain routing</td>
</tr>
<tr>
<td>• EID – Intradomain routing</td>
</tr>
<tr>
<td>– Overlay Architecture, requires LISP capable routers, uses packet encapsulation, UDP</td>
</tr>
<tr>
<td>– Decouples data (EID, RLOC space) and control plane (Mapping System similar to DNS)</td>
</tr>
<tr>
<td>– Incremental Implementation</td>
</tr>
<tr>
<td>• LISP based mobility solutions can be derived as follows:</td>
</tr>
<tr>
<td>– Aircraft based LISP Mobility</td>
</tr>
<tr>
<td>– Ground based LISP Mobility</td>
</tr>
<tr>
<td>• Attributes</td>
</tr>
<tr>
<td>– Optimized mobility – No anchor points, minimal/scoped state</td>
</tr>
<tr>
<td>– Streamlined load balancing and path preference model</td>
</tr>
<tr>
<td>– Guaranteed Packet delivery – Lossless mobility and convergence</td>
</tr>
<tr>
<td>– Simplicity of Aircraft functionality (minimal to no additions)</td>
</tr>
<tr>
<td>– Global Scale through Modular Design</td>
</tr>
<tr>
<td>– Interoperability for Incremental/regional adoption</td>
</tr>
<tr>
<td>– Normalized behavior for unicast and multicast with seamless mobility</td>
</tr>
</tbody>
</table>
Proposed Mobility Solutions - AERO

Asymmetric Extended Route Optimization

- Based on IETF standards and Internet-Drafts
 - Neighbor Discovery, BGP, Standard Encapsulation techniques
 - Overlay architecture (UDP)
- AERO Components - Clients, Proxys, Servers and Relays
 - AERO Clients are Aircraft that connect to data link subnetworks via aviation data links (also ATC/AOC/etc.)
 - AERO Proxys connect data link subnetworks to the ATN/IPS Internetwork, placed at boundaries
 - AERO Servers - BGP routing overlay over the Internetwork, tracks AERO Clients.
 - AERO Relays – COTS BGP Router
- Internetwork is a link that connects all AERO neighbors??
- Scalable by adding server/relay systems.
- AERO supports:
 - IPv6 Neighbor Discovery (ND) protocol
 - dynamic link selection
 - mobility management
 - Multilink
 - quality of service (QoS) signaling
 - route optimization
Proposed Mobility Solutions - MIPv6 with Extensions

- ICAO Document 9896, Version 2 defines the data communications protocols and services to be used for implementing the ICAO ATN/IPS.
- ICAO Document 9896 does not support multilink operations
- The fundamental approach to Mobile IP is packet forwarding
- Mobile Node (MN) has a permanent home address (HoA) and a dynamic CoA that changes as the mobile node changes its point of attachment.
- A Correspondent Node (CN), which can be any peer node an aircraft communicates with, sends packets to the home agent (HA) of the mobile node.
- Aircraft reaches the Home Agent (HA) through normal IP routing.
- Upon receipt of a packet from the CN (e.g. AT Control), the HA forwards these packets to the MN at its current CoA.
- The HA tunnels the original packet in another packet with its own source address and a destination address of the current CoA
- Mobile IPv6 with Multiple CoA: Extensions to bind more than one CoA to a HoA
- Mobile IPv6 with Flow Bindings: is used to identify a particular flow which is bound to one or more CoAs
Emerging Operational Concepts

• Voice Air-Ground Communications, the DOC 9896 provides the VoIP requirements only on the ground part of the existing VHF A/G communication infrastructure
• Unmanned aircraft fast evolution increasing demand for RPAS to operate in non-segregated airspace and at aerodromes.
• Small Unmanned Aircraft Systems (sUAS) vehicles are proliferating and regulation has been develop to enable safe operations.
• Unmanned Traffic Management (UTM) concepts to enable safe, efficient and organized use of airspace for altitudes between 0 and 400 feet
• Urban Air Mobility (UAM) is a NASA project that will investigate and develop technologies for airspace and vertiport management with the intent to enable urban missions by small electrified vehicles
Conclusions

• Need to enable seamless dissemination of information over diverse sub-networks
• ATN/IPS will enable mobility, multi-link, multi-homing, multi-service, end-to-end interconnectivity and support the integration of new vehicle types navigating existing and emerging airspace configurations
• Global aviation will eventually transition to a native IPS system.
• ATN/IPS will meet the challenging needs of different airspace users, vehicle types and enable continued aviation advances well into the future