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Abstract. Human operators interacting with machines or computers continually 
adapt to the needs of the system ideally resulting in optimal performance. In some 
cases, however, deteriorated performance is an outcome. Adaptation to the situ-
ation is a strength expected of the human operator which is often accomplished 
by the human through self-regulation of mental state. Adaptation is at the core of 
the human operator's activity, and research has demonstrated that the implemen-
tation of a feedback loop can enhance this natural skill to improve training and 
human/machine interaction. Biocybernetic adaptation involves a “loop upon a 
loop,” which may be visualized as a superimposed loop which senses a physio-
logical signal and influences the operator’s task at some point. Biocybernetic ad-
aptation in, for example, physiologically adaptive automation employs the “steer-
ing” sense of “cybernetic,” and serves a transitory adaptive purpose – to better 
serve the human operator by more fully representing their responses to the sys-
tem. The adaptation process usually makes use of an assessment of transient cog-
nitive state to steer a functional aspect of a system that is external to the operator’s 
physiology from which the state assessment is derived. Therefore, the objective 
of this paper is to detail the structure of biocybernetic systems regarding the level 
of engagement of interest for adaptive systems, their processing pipeline, and the 
adaptation strategies employed for training purposes, in an effort to pave the way 
towards machine awareness of human state for self-regulation and improved op-
erational performance. 
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1 Introduction 

Human operators generally face a complex, dynamic and uncertain environment under 
time pressure. The occurrence of unexpected events (e.g., critical failure) requires flex-
ibility and cognitive regulation policies to meet task demand (Sperandio, 1978). Vari-
ous strategies may be employed by humans to achieve adaptation. In a study of the 
physiological effects of a kinetically adaptive environment, Jager et al. (2017) describe 
the reciprocal relationship between adaptive humans and such environments. Schwarz 
and Fuchs (2017) point out that “humans are adaptive systems themselves”, that is, they 
are able to mitigate critical user states by applying self-regulation strategies. They cite 
as examples “investing more effort if task demands increase or drinking coffee to com-
bat fatigue”. Additionally, the system itself can be made to adapt to the human.  

Some examples of the integration of simultaneous human and system adaptation are 
aimed at psychophysiological goal achievement, not necessarily at the immediate 
achievement of optimal performance. Biocybernetic adaptation has been employed as 
a self-regulation training method for application in clinical and sports settings (Pope, et 
al. 2014). In these technologies, the adaptation approach involves physiological signals 
modulating some aspects of the training tasks in such a way as to reward trainees for 
approaching a target signal. These physiological self-regulation training technologies 
are designed to improve adherence to a training regimen by delivering the training 
through engaging, motivating, and entertaining experiences. The processing employed 
in these technologies is minimal to enable real-time feedback. Likewise, the decision 
rules are usually simple, e.g., modulating a single task element based upon signal level. 
For instance, some consequences in a digital game or simulation reward the user for 
achieving a psychophysiological goal by diminishing an undesirable effect in a game 
(analogous to negative reinforcement). Other consequences reward the user for achiev-
ing a psychophysiological goal by producing a desirable effect (analogous to positive 
reinforcement) such as additional scoring opportunities. That is, some modulation ef-
fects enable superimposed disadvantages in a digital game or simulation to be reduced 
by progression toward a psychophysiological goal, whereas others enable advantages 
to be effected by progression toward a psychophysiological goal.  

Schmorrow proposes a system that adapts to a trainee’s level in the context of flight 
training: “Imagine an aviation recruit experiencing a simulator that is tailored to the 
trainee at the most fundamental neurophysiological level. Imagine that this simulator’s 
integrated helmet and sensor suite are hooked up to a ‘black box’ that modifies the 
simulated flight exercise based on a real-time assessment of the student pilot’s cogni-
tive state, using information collected by the sensor suite.” (Schmorrow, 2005). Simi-
larly, the task modulation concept embodied in the self-regulation training technology 
based on biocybernetic adaptation may be adapted for use in task simulators. The sim-
ulator embodiment of the closed-loop modulation concept, Stress Counter-response 
Training (Palsson & Pope, 1999), integrates physiological self-regulation training into 
the practice of mission-relevant tasks. Stress Counter-response Training is based upon 
the concept of instrument functionality feedback which ties the functionality of a sim-
ulator to the requirement to maintain the physiological equanimity suited for optimal 
cognitive and motor performance under emergency events in an airplane cockpit. 



In these technologies, the physiological modulation method is tailored to the overall 
game or simulation task, but without regard for changes in the task context or other 
situational factors. Fuchs and Schwarz (2017) identify this as a “hard-coded” adaptation 
strategy, where the system triggers a predetermined adaptation strategy. As will be 
shown, even more complex adaptation strategies have considerations in common with 
the simple self-regulation training strategy. 

2 Biocybernetic loop implementation for adaptive systems 

A first and important step for biocybernetic adaptation is to determine what temporal 
and magnitude changes in physiological signals reflect operator or trainee state changes 
that warrant mitigation. Indeed, one important concern with the implementation of such 
assisting systems is to succeed in providing assistance in a timely and appropriate man-
ner (Parasuraman et al., 1999). Spurious triggering of the assistance system may have 
negative consequences on human operators (Parasuraman et al., 1997). Therefore, an 
approach is to target mental states that are 1) relevant predictors of human performance 
and 2) that can be robustly identified via behavioral and neurophysiological measures. 
Mental states of interest are discussed, followed by a description of the biocybernetic 
adaptation pipeline. 

Traditionally, most of the research has focused on mental workload-based biocyber-
netic adaptation. However, the usability of the mental workload construct remains lim-
ited. Although theoretically and practically interesting, it remains ill-defined (Mandrick 
et al., 2017), providing a non-specific and generic index rather like a thermometer. 
Moreover, mental workload should not be viewed as the result of an external demand 
applied on an individual passively adapting to it, but rather as an active process that 
depends on the human operator’s level of engagement. For instance, a highly demand-
ing situation will not necessarily induce high workload if an individual does not engage 
to achieve. Several reasons may account for this lack of engagement such as excessive 
task difficulty (Durantin, Gagnon, Tremblay, & Dehais, 2014), repetitive and boring 
tasks (Durantin, Dehais, & Delorme, 2015) and cognitive fatigue (Hopstaken et al., 
2015). Conversely, over-engagement in a non-priority and non-demanding task could 
induce high workload (e.g., interacting with the entertainment system or texting while 
driving) and jeopardize safety (Lee, 2014; Dehais, Causse, Vachon, & Tremblay, 
2012).  Thus, human cognitive performance has to be considered the byproduct of the 
level of task demand by the level of task engagement. Interestingly, the concept of en-
gagement is related to a triad of attentional states: attentional disengagement, atten-
tional over-engagement, and attentional in-engagement. Also, the study of engagement 
is richer than the concept of workload: this concept accounts for neurophysiological 
and behavioral phenomena and it can be characterized with portable measurement tools 
(Verdiere, Roy, & Dehais, 2018). For example, a biocybernetic system was designed 
to mitigate task disengagement due to automation by triggering changes in task mode 
based on the fluctuations of an engagement index constructed as a ratio of EEG band 
powers (Scerbo, et al., 2000). Derivation of the engagement index was based on the 
proposition that the closed-loop paradigm that represents the adaptive configuration in 



which physiological indices are to have a steering role can also serve as a prior valida-
tion test bed for the indices themselves (Pope, et al., 1995). 

Firstly, attentional disengagement occurs when task demand is too low leading to 
episodes of mind wandering (Durantin et al., 2015) or when task demand exceeds men-
tal capacity. In these two extreme situations, human operators generally drop the pri-
mary task to focus on automatic secondary tasks. These two states are characterized by 
the disengagement of the executive network, underpinned by the deactivation of the 
dorsolateral prefrontal cortex (Durantin et al., 2014; Harrivel, Weissman, Noll & Pel-
tier, 2013). Secondly, attentional over-engagement, also referred to attentional tunnel-
ing (Wickens, 2005) and “channelized attention” (Harrivel, et al., 2016), is defined as 
“the allocation of attention to a particular channel of information, diagnostic hypothesis 
or task goal, for a duration that is longer than optimal, given the expected cost of ne-
glecting events on other channels, failing to consider other hypotheses, or failing to 
perform other tasks”. Some authors postulate that this impaired attentional state results 
from a disengagement deficit of the orientation network underpinned by the thalamus 
(LaBerge et al., 1992). Whereas the assessment of such brain structure remains difficult 
to be perform in operational context - it requires the use of fMRI – some studies have 
disclosed that attentional over-engagement is associated with an attentional shrinking 
and long fixation time (Dehais et al., 2011). Recently, the EEG engagement index pro-
posed by Pope, Bogart, & Bartolome (1995) was shown to be sensitive to episodes of 
over-engagement leading to inattentional deafness to auditory alarm under real-flight 
settings (Dehais et al., 2014). 

Lastly, recent work has shown the existence of an attentional in-engagement state 
whereby human operators are unable to engage their attention to process relevant in-
formation when facing critical situations. One could describe this state as “panic mode” 
in a vernacular fashion. This state, that is the exact opposite of attentional tunneling, is 
explained in terms of impaired thalamus tonic mode to maintain focused attention. This 
state of “attentional confusion” or “attentional entropy” is associated with high saccadic 
activity and absence of long fixations (Dehais et al., 2015). 

Another interesting approach could be to identify the dynamic model of such fea-
tures. Tools derived from the linear algebra and control communities can be applied to 
perform an approximation of the neurophysiological features model that could be ex-
plored to monitor the engagement of an operator. The method provides a smooth inter-
polation of all the data points enabling the extraction of frequency features that reveal 
fluctuations in engagement with growing time-on-task (Poussot-Vassal et al., 2017). 
Alternatively, the use of large-scale EEG connectivity is a relevant approach not only 
to detect but also to predict future performance and fluctuation of engagement (Sen-
oussi et al., 2017). 

The implementation of the biocybernetic adaptation pipeline mostly consists of the 
classical steps of a Brain-Computer Interface, that is to say a signal acquisition step 
(e.g., EEG), a preprocessing step that generally deals with artifacts (e.g., eye blinks) 
and better conditions the signal, a feature extraction step (e.g., extraction of the average 
power in specific frequency bands), a machine learning step (e.g., a classification step), 
and lastly an adaptation step (Roy & Frey, 2016). This last step can consist of providing 
the estimated mental state to the system’s decisional unit. The decisional unit system 



allows the loop to be closed. This is done by implementing a decisional unit driven by 
a policy resulting from the resolution of a (Partially Observable) Markov Decision Pro-
cess ((PO)MDP) that takes into consideration uncertainties on actions, partial observa-
ble states (i.e., mental states) or potentially non-deterministic behavior of the human 
operator (Gateau et al., 2016; Drougard et al., 2017). Eventually, a last step is to design 
a catalogue of adaptive solutions to mitigate decline in performance and improve hu-
man performance. These solutions are presented in the next section. 

3 Successful implementation of adaptive solutions 

Self-regulation training can be deliberate as described earlier or could occur inad-
vertently as a result of an operator’s exposure to an adaptive system. Technology in the 
field of self-regulation training has commonly taken into account the fact that the phys-
iological self-regulation behavior and skill of the trainee changes as training progresses. 
These systems have incorporated algorithms that respond to momentary, transient 
changes in physiological signals in real time, as well as longer time course changes that 
reflect a trainee’s emerging ability to voluntarily control physiological parameters. The 
momentary changes are displayed as information and reward feedback for learning of 
self-regulation skill, while the longer time course measurements are assessed to guide 
the setting of higher and higher self-regulation performance goals.  

An early example is an electromyographic biofeedback training system that imple-
mented a shaping procedure by adjusting the gain of the feedback loop after each inter-
val of training based on a trainee’s success at lowering EMG levels (Pope and Gersten, 
1977). This system employed a fixed strategy by which task characteristics are adapted 
to the individual. A training strategy implies a set of assertions relating strategy char-
acteristics and their effects on training progress. In a more advanced implementation, a 
data base of these assertions could be updated on-line and the training system would be 
self-improving. In effect, the system would evaluate the results of mini-experiments 
with various strategy versions within a session and modify the strategy accordingly. 
O'Shea and Sleeman (1973) developed this hierarchical framework in the context of 
adaptive teaching systems. 

Similarly, physiologically adaptive systems will need to be designed to respond ap-
propriately not only to transient changes and spontaneous drifts in operator state due to 
developing conditions such as fatigue, but also to conditioning of physiological changes 
as a result of an operator’s extended exposure to information feedback about their phys-
iological state. Accordingly, an adaptive implementation that took into consideration 
the operator “training” effect of its information feedback employed a continually up-
dated model of the operator analogous to the “template of average performance” in the 
“symbionic cockpit” (Reising & Moss, 1985). Techniques developed for adapting a 
brain-computer interface classifier to adjust for possible features drift could be applied 
to address this type of consequence (Vidaurre et al., 2011). Configuration of an adaptive 
system that takes into consideration these long-term and short-term processes is de-
picted in Figure 1. 



 
Fig. 1. Configuration of an adaptive system for managing human user engagement. The De-
sired Short-Term Engagement Criteria and Long Term Engagement Trends vary according to 
context (e.g., phase of flight). The Adjustable System has adjustable parameters, such as auto-
mation level. The Adjustable System is adjusted by the currently invoked Short-Term Adapta-
tion Strategy and is driven by input from the human user. The Selectable Short-Term Adapta-
tion Strategy has a catalog of selectable strategies, each one of which is in effect for a selectable 
duration. The currently invoked Strategy is selected by the Long-Term Adaptation Scheme and 
is driven by the discrepancy between the desired engagement criteria and actual engagement 
status. The Long-Term Adaptation Scheme is driven by the discrepancy between the desired 
and actual engagement trend. The Achieved Engagement Output is the level of an engagement 
index derived from physiological and behavioral measures and is driven by the effects of the 
Adjustable System on the Human User. 

An additional strategy is the deliberate exercise of self-regulation skill acquired as a 
result of self-regulation training. Prinzel, Pope, and Freeman (2002) demonstrated that 
participants given feedback of the accuracy of their estimates of engagement levels, 
across a partitioning of the range of an EEG-based engagement index into six 
subranges, were able to achieve “a 70% level of correct identifications.” Further, while 
interacting with an adaptive automation system, “Participants in the self-regulation con-
dition were better able to maintain their task engagement level within a narrower range 
of task modes, thereby reducing the need for task mode changes. The effect of this was 
an increase in task performance as well as a decrease in reported workload.” Prinzel et 
al. (2002) further comment, “The neurofeedback provided during training may have 
allowed these participants to better manage their cognitive resources and thereby regu-
late their engagement state, allowing them to better respond to a change in automation 
mode. The results of this study support other research that has shown that physiological 
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self-regulation could enhance the cognitive resource management skills of pilots and 
complement the benefits of adaptive automation.” An outcome of self-regulation train-
ing accomplished with an adaptive system is improved cognitive state management 
skill which is effectively meta-awareness on the part of the trainee. This effect demon-
strates an observing system as defined in second order cybernetics (von Foerester, 
1995). 

In addition to clinical and sports applications, biocybernetic adaptation as self-regu-
lation training is applied in a third area, the aircrew training context (Stephens, et al., 
2017). In this application, the instructor-trainee interaction is influenced, closing the 
loop on a broader time scale. Here the adaptation involves an attention management 
training approach to complement the usual observations of airline training instructor 
pilots by informing them, in the training context, of the occurrence of attention-related 
human performance limiting states (AHPLS) experienced by their trainees. Classifier 
models are trained to recognize trainee state during simulated flight scenarios based on 
patterns of the physiological signals measured during benchmark tasks (Harrivel, et al., 
2016). Machine learning models’ real time determinations of the cognitive states in-
duced by the scenario tasks are displayed as gauges embedded in a mosaic of windows 
that also displays real time images of the scenario tasks that the trainee is performing 
(e.g., scene camera, simulator displays, animation of simulator controls), and this mo-
saic1 is video recorded (Harrivel et al., 2017). The loop is closed when their state infor-
mation is conveyed to the trainee as part of each session debrief. This approach involv-
ing trainee-trainer interaction leverages the effective bio-social influences on learning 
specified by Kamiya (Strehl, 2014). Like the adaptive automation application, the ad-
aptation strategy here takes into consideration contextual parameters such as the in-
structor’s discretion regarding the appropriateness of conveying particular state infor-
mation to the trainee. 

This psychophysiologically-based AHPLS detection and mitigation system is mod-
eled after the Hypoxia Familiarization Training (HFT) employed in aviation. The focus 
of HFT is on recognizing symptoms of hypoxia and taking steps to recover from the 
hypoxia being experienced. Similarly, recognition and recovery from AHPLS is in-
tended to improve self-monitoring of and response to one’s own attentional perfor-
mance, maintaining more effective states and managing attention. Such meta-aware-
ness results from this form of self-regulation training intended to develop attention 
management skill. If deployed in ground-based commercial aviation training contexts, 
the intent is to mitigate potential in-flight loss of airplane state awareness (ASA) and 
thus reduce aviation accidents and incidents. 

Biocybernetic adaptation can be applied within autonomous systems to imbue fur-
ther intelligence into the systems about the humans involved in operations. In a poten-
tial adaptive automation application, the cognitive state of the operator of a semi-au-

                                                             
1  This concept is captured in a non-provisional patent application: Stephens, C., Harrivel, A., 

Pope, A., & Prinzel, L. (2017, patent pending) “System and Method for Training of State-
Classifiers.” [NASA Case No.: LAR-18996-1] 



tonomous vehicle would be tracked by the vehicle system. The system uses the cogni-
tive state information to judge the operator’s ability to take back control of the system 
in critical or noncritical hand-off instances2. 

4 Conclusion 

The implementations of specific adaptations described in this paper represent actual 
systems designed for improving human/machine interaction and furthermore enabling 
human operators to improve self-regulation skills. The adaptation strategies described 
herein include combinations of technological advances in the areas of neuroscience and 
psychophysiology designed for specific contexts including clinical, aviation, and 
sports. The example implementation systems instantiate concepts and enable practical 
and empirical testing to evaluate adaptation strategies. Adaptation management issues 
were discussed including dynamic selection and configuration of adaptations. Devel-
opment of adaptation strategies can create further questions for consideration such as 
how to handle possible side effects on the human operator caused by setting up a bio-
cybernetic loop. This and other questions require empirical results to be sufficiently 
addressed. Ongoing research efforts at NASA and the Institut Supérieur de l'Aéro-
nautique et de l'Espace (ISAE) seek to apply adaptation strategies to answer these ques-
tions and reveal further questions with the ultimate goals of improved safety and effi-
ciency in aerospace operations. 
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