Fuel Sensitivity of Gas Emissions, Lean Blowout and Combustion Dynamics for a 9-point LDI Combustor

Zhuohui J. He, Derek P. Podboy and Clarence T. Chang NASA Glenn Research Center, Cleveland, Ohio, 44135

Introduction

Pratt & Whitney, Axially Controlled Stoichiometry (ACS)

- NASA has been investigated the using synthetic fuel on aircraft combustor for decades.
 Advanced Air Transport Technology (AATT) Program
 - 50%/50% alternative fuel/ jet-a blended
 - 80% NOx emissions reduction of ICAO CAEP 6.

Environmentally Responsible Aviation (ERA)

- **75% NOx reductions**
- 50%/50% Rentech / Jet-A blended.
- Alterative fuels tested recently:
 - hydrotreated tallow (HRJ),
 - direct sugar fermentation (Amyris AMJ-710)
 - Fishcher-Tropsch processes (Rentech).

General Electric, twin-annular pre-mixing swirler

National Jet Fuels Combustion Program (NJFCP)

- highly-coordinated, involving several government agencies, universities, industry partners and international collaborations
- focused on the impacts of fuel compositions and physical properties on aviation engine combustor operability
 - lean blowout
 - high altitude ignition
 - cold start
- The fuels under investigation
 - Category A fuels are petroleum base fuels, (JP-8 (A1), JP-A (A2), or JP-5 (A3))
 - Category C fuels are bended fuels, with unconventional properties, composition or distillation curves

OBJECTIVE

- Compare behavior of test fuels C1 and C3 to average Jet A (A2)
- A lean-burn combustor
 - 9-point Lean Direct Injection (LDI)
 - Short fuel-air mixture preparation time
- High pressure and high temperature conditions (T3 = 575 K to 825 K, P3 = 689 to 1723 kPa)
- Gas emissions and combustion dynamics
 - Near Lean blow-out, NO_x emissions, combustion dynamics, ignition.

Experimental Set Up

- NASA Glenn Research Center's CE-5 test facility
- Ceramic liners, rectangular cuboid, (7.6 cm X 7.6 cm X 46 cm)
- Inlet air temperature up to 830 K and inlet air pressure up to 2400 kPa or 24 bar.
- Standard gas-analysis procedure, SAE-ARP1256D
- Three dynamic pressure sampling locations

Test Hardware

- Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) injector configurations
- A lean burn concept
 Three fuel circuits
- Local fuel air equivalence ratios were similar among the nine fuel air mixers for most conditions

b) Cross-sectional drawing

2015 test

- Fuel:
 - random batch of Jet-A, A2, C1,C3.
- Injector configuration:
 - Co-rotating pilot

2016 test

Fuel:

- A2 and C1
- Injector configuration,
 - Counter-rotating pilot

Fuels Properties

- A2, (POSF 10325), "average/nominal" Jet-A
- C1, (POSF 11498)
 - high molecular weight duel-component iso-paraffin
 - low cetane number
 - long ignition delay time
 - 80% fuel distillated at a temperature of 35°C lower, faster vaporazation rate.
- C3, (POSF 12341)
 - high viscosity (upper specification limit at -20C)
 - look at the effect of atomization

Properties	A2	C1	C3		
Overall composition	Petroleum Jet A	Gevo ATJ; C12/C16	64% A-3; 36% Amyris		
	(w/ average properties)	highly-branched iso-	farnesane (C15 iso-paraffin)		
		paraffins			
Viscosity, -20 C (cSt)	4.5	4.9	8.0		
Cetane number	48.3	17.1	47		
Distillation (°C), 90%	244	228	245		
80%	230	195	243 NAS		
50%	205	182	230		

Results-NO_x emissions

- A random batch of Jet-A, C3 about the same as A2.
- C1 lower NOx emissions
 - 12% El lower at T3 of 725 K,
 - 5% El lower at T3 of 825 K.
- Possible explanation for Lower NOx with C1
 - Longer ignition delay time, low cetane number
 - faster vaporization rate.
- NOx emissions do not appear to correlate with Cetane Number.
 - Current testing shows similar NOx emissions for C1 (DCN=16) and A2 (DCN=48)
 - Previous HRJ (Cetane Index =69) testing showed similar NOx emissions as Jet-A

Results-ignition

- The C1 fuel was hard to ignite.
- Auto-ignition temperature for A2 is about 700k.
- One successful C1 ignition (P3=1379 kPa, T3=810 K, phi=0.49)
- Also tried fueling the center (pilot) mixer with A2 (instead of C1) at lower T3 and P3 conditions, but no successful ignition.

Fuel used	P ₃	T ₃	DP%	Φ	Φ	Φ	Φ	Successful
	(kPa)	(K)		(Pilot)	(Main1)	(Main2)	(total)	ignition
C1 only	1723	727	2	0.96	0.37	0.37	0.43	NO
C1 only	1034	727	2	0.96	0.36	0.36	0.42	NO
C1 only	1379	810	3	0.97	0.37	0.37	0.44	NO
C1 only	1379	810	3	0.97	0.43	0.43	0.49	YES
Pilot A2/	862	672	2	1.05	0.37	0.37	0.44	NO
Main C1								
Pilot A2/	862	672	2	1.67	0.37	0.37	0.51	NO
Main C2								

Results-Near lean blow-out

2016 test data

- The C1 flame blows out at a calculated adiabatic flame temperature 25 K higher than the A2 fuel.
- Near LBO results are independent of T3, inlet air temperature

- CO curves vary with combustor design
 - Rich burn or lean burn with relatively higher pilot fuel air ratio tend to stay lite even at lower fuel air ratio and at high CO emissions conditions
- C3 has higher CO emissions than C1 and A2 at similar adiabatic flame temperature.
 - high viscosity property of C3
 - the fuel injector may produce larger fuel drop sizes relative to A2 and C1

Low power conditions, high PILOT Φ OF 0.68

Combustion Dynamics

Conclusion

Two tests series were completed

- Used a 9-point LDI combustor
- Measured gaseous emissions and combustion dynamics
- Iong ignition delay time. faster vaporization rate than A2
- promotes better fuel air mixing and lower NO_x emissions
- C1 blows out at a flame temperature 25 K higher than A2
- **C**3

C1

- high in viscosity. larger size fuel droplets and slower vaporization rate
- no NO_x emissions differences observed
- At low power, higher CO emissions observed

No combustion dynamics difference observed between the three fuels.

Acknowledgments

This work supports the objectives and goals of NASA's Advanced Air Transportation Technology Project funded by the Aeronautics Research Mission Directorate.

Questions and Comments

