
National Aeronautics and Space Administration

Autonomous Power Control

Jeffrey Csank NASA Glenn Research Center Cleveland, OH

2018 Energy Tech

Agenda

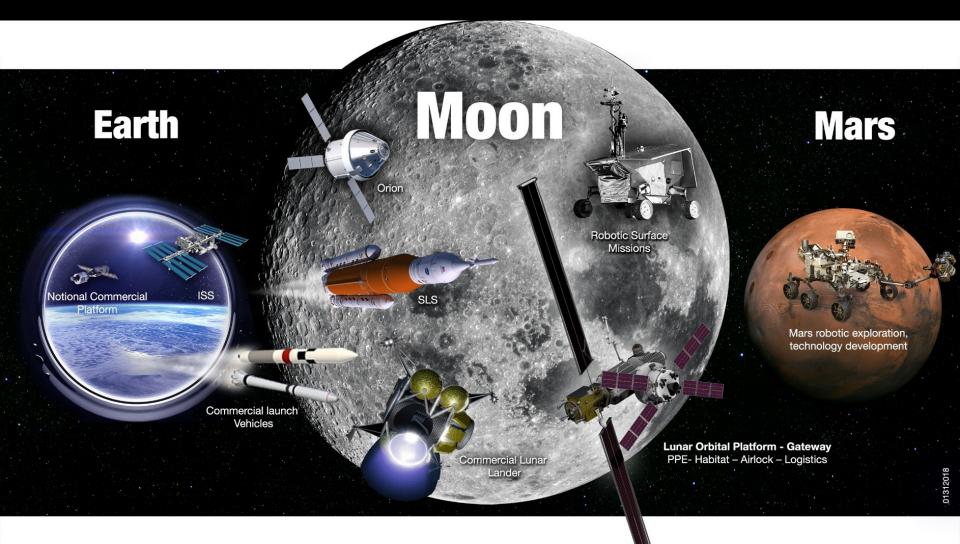
Deep Space Exploration

- Current NASA mission goals and objectives
- Deep space human exploration challenge

Autonomous Power Control

- What is autonomous power control
- Proposed solution

Current Autonomous Power Control Capability


- What have we accomplished to date

Transition to Aeronautics

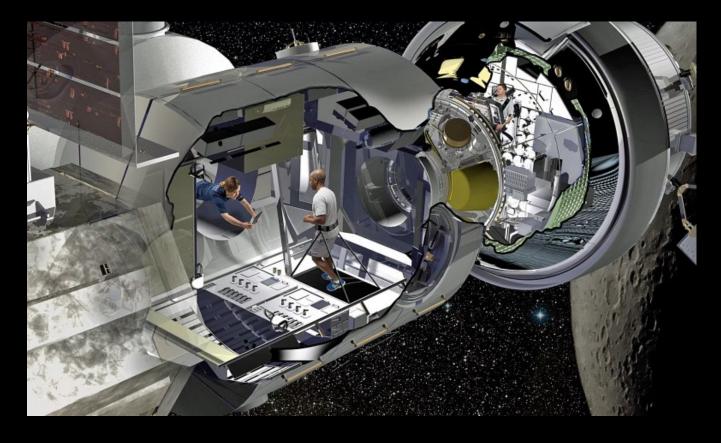
Apply this technology to aeronautics

NASA's Vision of Future of Human Exploration

In LEO Commercial & International partnerships In Cislunar Space

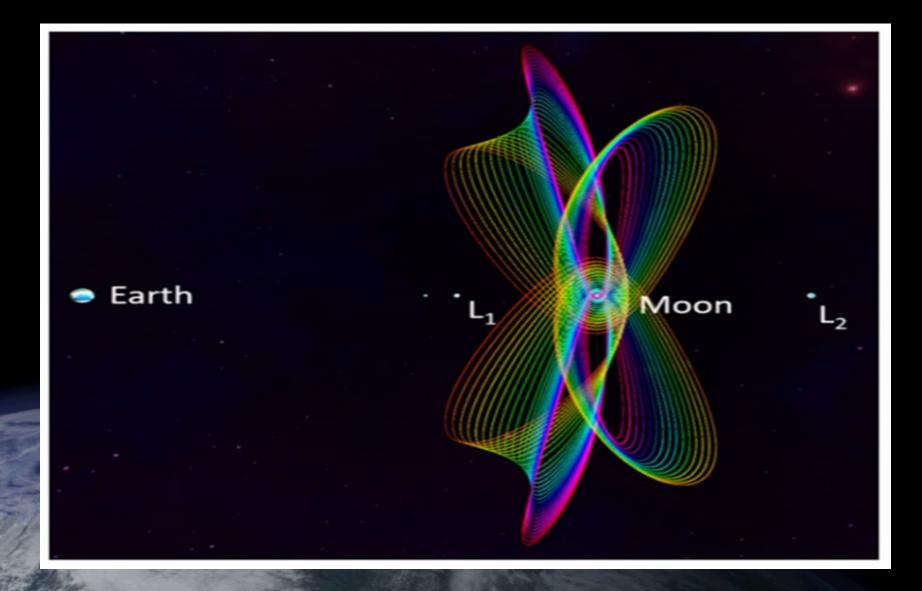

A return to the moon for long-term exploration

On Mars Research to inform future crewed missions


Gateway

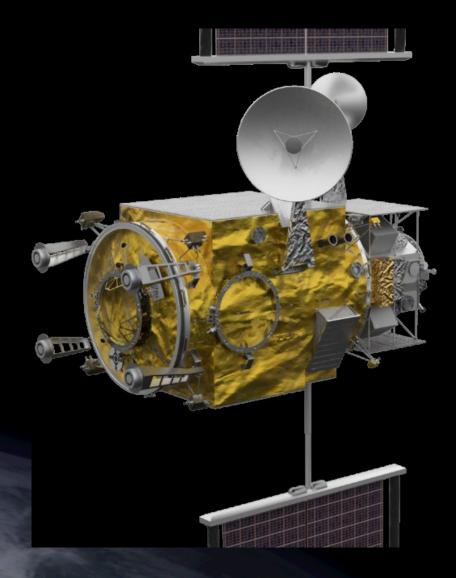
- Crew of 4 to 6
- Provide living space for long duration missions
 - 30 to 60 Days
- Solar Array / Battery System
 - 24+ KW Habitation
 - 39 kW for propulsion
- Potential to be operated in Low Lunar Orbit, Near Rectilinear Orbit or Deep Space
- Provides docking accommodation for multiple vehicles – resupply as well as landers
- Platform for the checkout and validation of advanced technologies
 - Advanced automation systems
 - Etc.

Deep Space Gateway



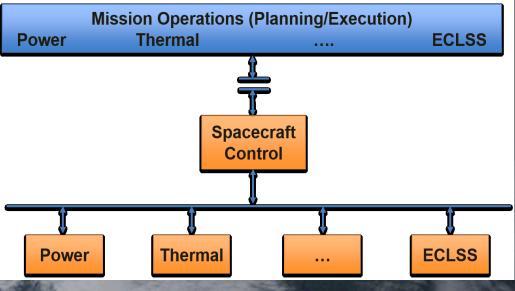
- Concept for DSG Habitation Element
 - Crew Quarters
 - Exercise
 - Experiments
 - Galley
 - Modular Equipment

NRHO Orbit for Gateway



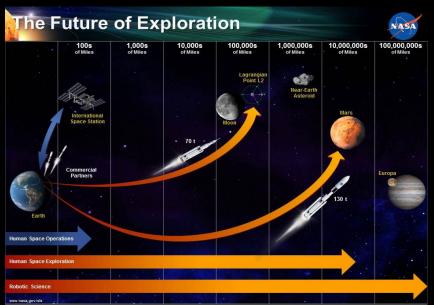
Power Propulsion Element

- Development led by NASA Glenn
- Provides 60+ kW of electric power
 - 60 + kW of Solar Array
 - 16 kW hr of batteries
 - 120 Vdc power
 - 27 kW to Habitat etc.
 - 39 kW to Thursters
- 4 Ion Thrusters
 - 600 milli-Newtons of thrust
 - 0.135 lbs. of thrust
 - Xenon propellant
- Lifetime 15 years

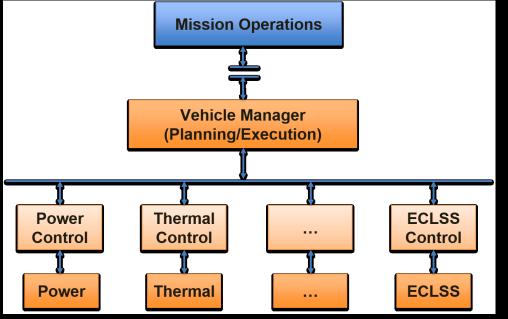


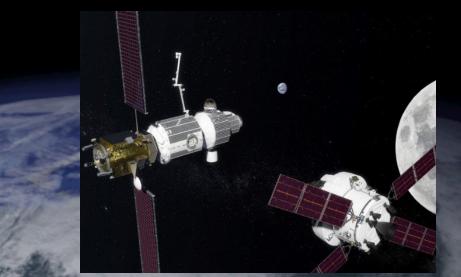
Traditional Spacecraft Architecture - ISS

- All subsystems planning and execution are done by <u>humans</u> on the ground
- Spacecraft control is basically a communication system
- Subsystems (power) basically execute commands and set points – Reactive Layer Control
- 50+ years of mission operations.

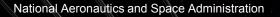


Deep Space Exploration Challenge


- Communication becomes a problem
 - Times are longer than any previous experience
- Power is your most critical system
 - Every system on the vehicle needs power
 - Electrical power needs a high level of availability and reliability
 - MUST operate autonomously



Mission	Communication Bandwidth	Communication Latency	
ISS	300-800 Mbps (TDRS)	Real-time	
Apollo / Orion	<2 Mbps (DSN)	1 to 2 seconds	
Deep Space Vehicle	<2 Mbps (DSN)	15 to 45 minutes	

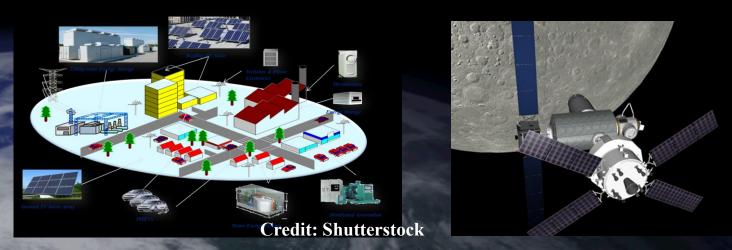

Autonomous Spacecraft Architecture

- Goal is to remove the human element from real-time operation of the vehicle.
- Mission operations are included as oversight and to deal with mission level objectives
- Planning of vehicle operations are done at the vehicle manager level in coordination with the subsystem controllers.
- Autonomous subsystem controllers contains all the knowledge of the particular subsystem
- Distributed / Federated vehicle control architecture

Autonomous Power Control

17.1

What is an Autonomous Power System?

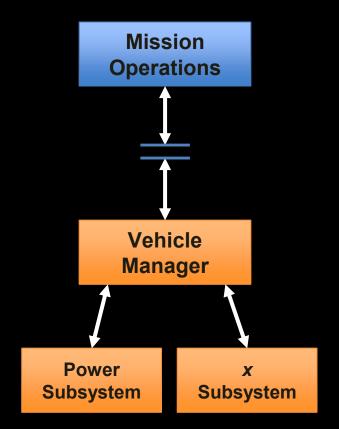


Power System Needs

- Operate safely at all times
- Service the highest priority loads within the constraints of the generation and distribution systems

Power System Control Functions

- Interact with the System (Vehicle) Manager to safely execute the mission
- Manage the power system to provide desired capability without human intervention
- Permit humans to consent to any operations / actions during habitation


Vehicle Autonomous Control Architecture

Mission Operations

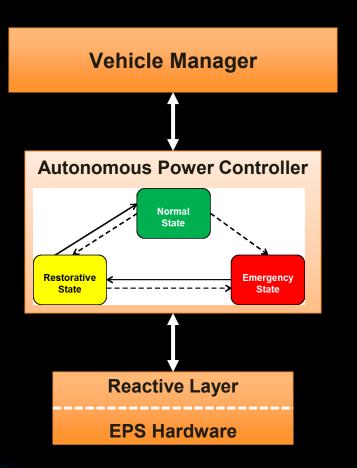
- Monitors vehicle operations
- Adjusts long term mission objectives

Vehicle Manager

- Ensures mission objectives are met
- Contains knowledge of all subsystems requirements and current state
- Plan vehicle operation to achieve mission objectives and meet all subsystems constraints
- Deals with faults across subsystems
- Subsystem (Autonomous)
 - Operates subsystems safely (within constraints) and for subsystem fault management
 - Responsible for operating independently of human operator in the loop

Vehicle Autonomous Power Control Architecture

Vehicle Manager


- Meet mission objectives
- Coordinate vehicle subsystems

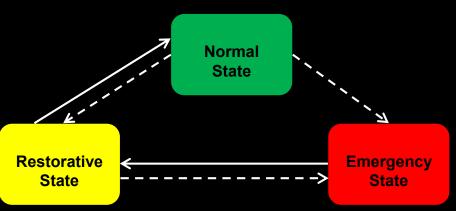
Autonomous Power Controller

- Forecast energy availability (provides constraints for vehicle to operate within)
- Safely operate the EPS hardware and EPS fault management
- Provide power to the highest priority loads

Reactive Layer (Full Digital Control)

- Provides closed-loop control of the EPS hardware
- Protect EPS from hard faults (safe the system)

Autonomous Power Controller


Energy Management

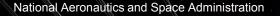
- Manage the power generation and energy storage assets
- Determine power and energy availability into the future
- Evaluate proposed load schedules
- Fault Management
 - Monitor system performance for soft faults
 - Respond to detected faults within the EPS
- Maintenance, Mitigation, and Recovery
 - Reconfigure the power system as required
 - Determine alternative configurations for maintenance
- Executioner
 - Coordinate APC responses
- External Interfaces
 - Vehicle manager provide EP constraints and current state
 - EPS send commands and examine telemetry

Autonomous Control State Diagram

Controlled State Transition

Uncontrolled State Transition

Normal State:

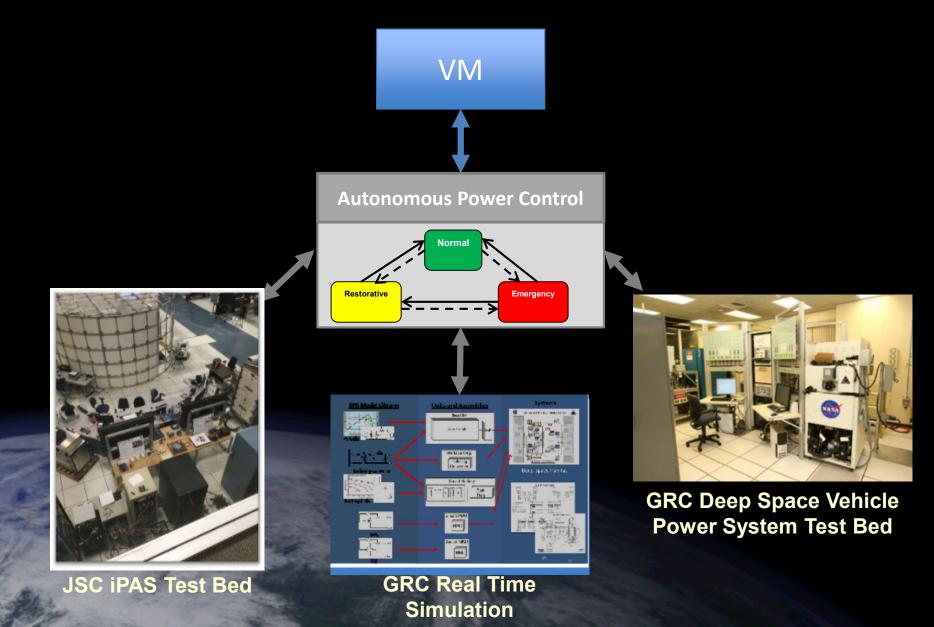

- System operating properly
- Calculates and provides an energy availability and power profile
- Analyzes proposed load schedules
- With no failures, continue indefinitely.

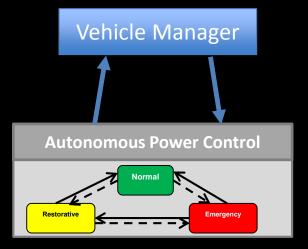
Emergency State:

- Failure has occurred in the EPS
- Reactive control will respond to any immediate faults and temporarily put the system in safe mode.
- APC reconfigures the system

Restorative State:

- System is in a reduced power state and may not be servicing the complete normal load
- APC can perform all the operations of the normal state, with reduced power constraints.




Current Autonomous Power Control Capability

System Integration Capability

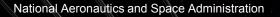
Demonstrations

Energy Availability (to VM)

	time	Peak (kw)	Nominal (kw)
2	1	7.68	5.76
	2	7.68	5.76
11	3	7.68	5.76
	4	7.68	5.76
5	24	7.68	5.76
	Total	energy (kW t	u) 138.24

Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	9	9	9	9	9
6	11	11	11	11	11
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	12	12	12	12	12
14	10	10	10	10	10
15	3	3	3	3	3
16	0	0	0	0	0

Fault Mode


time	Peak (kw)	Nominal (kw)
1	7.68	2.88
2	7.68	2.88
3	7.68	2.88
4	7.68	2.88
24	7.68	2.88
201. TC	1000	
Total e	nerøv (kW ti	u) 69.12

Load Schedule (from VM)

Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	9	9	9	9	9
6	11	11	11	11	11
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	12	12	12	12	12
14	10	10	10	10	10
15	3	3	3	3	3
16	0	0	0	0	0
-					

Load	Tu1	Tu2	Tu3	Tu4	Tu5
1	7	0	7	0	7
2	1	1	1	1	1
3	0	7	0	7	0
4	2	2	2	2	2
5	0	0	0	0	0
6	0	0	0	0	0
7	6	6	6	6	6
8	0	0	0	0	0
9	8	0	8	0	8
10	5	5	5	5	5
11	0	8	0	8	0
12	4	4	4	4	4
13	0	0	0	0	0
14	0	0	0	0	0
15	3	3	3	3	3
16	0	0	0	0	0

Other Potential Applications for Autonomous Power Control

Power Autonomy in Aeronautics

- Synergy between Space and Aeronautics regarding autonomous power systems
- Transfer Space technologies to Aeronautics
 - Automation architecture
 - Algorithms for
 - Electrical power system fault management
 - Energy management
 - System reconfiguration
 - Platform for algorithm execution and coordination

Conclusion

•Autonomous Power System capability is required for long term operation far from earth.

•Developed and demonstrated the ability to safely operate an electrical power system without a human operator in the loop.

•Technology developed for deep space exploration vehicles can be transition to other areas

•Aeronautics for use with hybrid electric airplanes

- Terrestrial micro-grids
- Moon base

Thank you! Questions?

17.0

