Cognitive Anti-jamming Satellite-to-Ground Communications on NASA's SCaN Testbed

BUECOM Sudharman K. Jayaweera, Shuang Feng, Abriel Holland, and Christos Christodoulou.

BLUECOM Systems and Consulting LLC, Albuquerque, NM. **ECE Department, University of New Mexico**, Albuquerque, NM.

Work performed under NASA STTR contract NNX17CC01C

Dale Mortensen, Marie Piasecki, and Mike Evans

NASA Glenn Research Center, Cleveland, OH.

Presenter: Dale Mortensen

Wideband Autonomous Cognitive Radio(WARC) Architecture

Satellite-to-Ground

Cognitive Anti-Jamming(CAJ) Communications: Concept of Operations

Implemented WACR System

WARC operation with two separate SDR modules instead of a single SDR module.

Radiobot Cognitive Engine: CAJ Policy Options

- 1. Load a pre-learned policy from a file and keep updating the policy during the communications phase.
- 2. Learn a policy during a training period and keep updating the policy during the communications phase.
- 3. Learn a policy during a training period and keep it fixed during the communications phase.

CAJ Policy with Reinforcement Learning: Watkin's Q-Learning Algorithm

$$Q(s,a) = (1-\alpha)Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(a,a')\right)$$

NOTE: Learning rate (α) and Forgetting factor (γ) both held constant for this experiment.

Exploration vs Exploitation

 $\pi_t(s) = \arg \max_a Q_t(s, a)$

 $a_t(s) = \begin{cases} \pi_t(s) & \text{with probability} \quad 1 - \varepsilon \\ U(A \setminus \{s\}) & \text{with probability} & \varepsilon \end{cases}$

- Learned policies can be used with an exploration rate (ε) during the communications phase.
 - Allows discovery of possible new optimal (state, action) pairs.
 - Must be balanced with exploitation of the already learned policy.
- Complete exploitation of previously learned policy is obtained setting ϵ to zero.

CAJ with a Random Policy

- Set the exploration rate to unity during communications phase to achieve a random channel selection policy.
- Random channel selection policy does not mean it is a traditional radio.
 - Even when the policy is to select channels randomly, the radio is still a WACR.
- Random policy is used to evaluate the effectiveness of the learning process, not the effectiveness of cognitive communications.
 - To perform anti-jamming communications, even with a random policy, the radio still needs the spectrum knowledge of the cognitive radio.
 - Hence, it is still autonomously mitigating the jammer.

Flight Testing System Configuration

Flight Testing Ground Station Antenna Setup

Over-the-air jammer antenna setup on same rooftop as main ground station.

Flight Testing Event Data

Test #	Jammer Type	Policy Type	Exploration Rate (<i>ɛ</i>)	Total Number of Sensing Periods During the Complete Event-pass	Total Number of Sensing Periods with Sufficient Signal Quality Between Channel Transitions	Number of Channel Transitions
1	sweep	random	1.0	214710	29380	21
2	sweep	random	1.0	218545	96337	77
3	sweep	pre-learned	0.3	235192	132380	81
4	sweep	pre-learned	0.3	120370	298	4
5	Markov	random	1.0	192751	51412	67
6	Markov	pre-learned	0.0	229520	72908	79
7	Markov	pre-learned	0.3	266661	112660	115

Learning rate (α) set to 0.3, and Forgetting factor (γ) set to 0.8 for all tests.

Flight Testing: Performance Evaluation of CAJ Communications

Test #	Jammer type	Policy Type	Exploration Rate (<i>ɛ</i>)	Average time in a Channel Without Being Jammed	Average Fraction of time in a Channel Without Being Jammed
1	Sweep	Random	1.0	1399	0.14
2	Sweep	Random	1.0	1251	0.44
1 & 2	Sweep	Random	1.0	1325	0.20
3	Sweep	Pre-learned, continuously updated through exploration	0.3	1634	0.56
5	Markov	Random	1.0	767	0.27
6	Markov	Pre-learned and fixed.	0.0	922	0.32
7	Markov	Pre-learned, continuously updated through exploration	0.3	980	0.42

Flight Testing: Policy vs Random Performance

Conclusions

- Results show that the developed WACR approach is an effective antijamming tool, regardless of learning type and channel selection algorithms are used.
- Reinforcement learning aided cognitive anti-jamming communications policy significantly outperforms the random channel selection policy, both in terms of the average unjammed time in a channel as well as the fraction of time in a channel without being jammed.
- Performance is consistent regardless of the type of the jammer: Sweep or Markov.
- Allowing learning-based policy update and policy exploration during actual RF environment will lead to better performance with cognitive anti-jamming communications.
- Best possible performance improvements with the CAJ communications policy can expected to be higher than what is observed in these tests since these tests only allowed a very short learning period length, and parameters of the algorithms (i.e. learning rate, and forgetting factor, etc.) were unoptimized arbitrary values.

Contact Info:

jayaweera@bluecomsystems.com 505.615.1807

dale.mortensen@nasa.gov 216.433.6823