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Wideband Autonomous Cognitive 

Radio(WARC) Architecture
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Satellite-to-Ground 

Cognitive Anti-Jamming(CAJ) 

Communications: Concept of Operations
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Implemented WACR System

WARC operation with two separate SDR modules instead of a single SDR module.
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Radiobot Cognitive Engine:

CAJ Policy Options

1. Load a pre-learned policy from a file and keep updating 
the policy during the communications phase.

2. Learn a policy during a training period and keep 
updating the policy during the communications phase.

3. Learn a policy during a training period and keep it fixed 
during the communications phase.
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CAJ Policy with Reinforcement Learning: 

Watkin’s Q-Learning Algorithm

𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
𝑎′

𝑄(𝑎, 𝑎′)

NOTE: Learning rate (𝛼) and Forgetting factor (𝛾) both held 

constant for this  experiment.
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Exploration vs Exploitation

• Learned policies can be used with an exploration 
rate (ε) during the communications phase.
– Allows discovery of possible new optimal (state, action) 

pairs.

– Must be balanced with exploitation of the already 
learned policy.

• Complete exploitation of previously learned policy 
is obtained setting ε to zero.

𝑎𝑡 𝑠 = ቊ
𝜋𝑡(𝑠) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜀

𝑈(𝐴\{𝑠}) 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜀

𝜋𝑡 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄𝑡(𝑠, 𝑎)
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CAJ with a Random Policy

• Set the exploration rate to unity during communications 
phase to achieve a random channel selection policy.

• Random channel selection policy does not mean it is a 
traditional radio.
– Even when the policy is to select channels randomly, the radio is still a 

WACR.

• Random policy is used to evaluate the effectiveness of the 
learning process, not the effectiveness of cognitive 
communications.
– To perform anti-jamming communications, even with a random policy, the 

radio still needs the spectrum knowledge of the cognitive radio.

– Hence, it is still autonomously mitigating the jammer.
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Flight Testing System Configuration
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Flight Testing

Ground Station Antenna Setup

Over-the-air jammer antenna setup on same rooftop as main ground station.

Jammer 
antenna

Communications 
antenna
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Flight Testing: Relative

Powers of Satellite and Jammer Signals
• 
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Flight Testing Event Data
T

es
t 

#

Jammer

Type
Policy Type

E
x

p
lo

ra
ti

o
n

 

R
a
te

(𝜀
) Total Number of 

Sensing Periods 

During the Complete 

Event-pass

Total Number of 

Sensing Periods with 

Sufficient Signal 

Quality Between 

Channel Transitions

Number of 

Channel 

Transitions

1 sweep random 1.0 214710 29380 21

2 sweep random 1.0 218545 96337 77

3 sweep pre-learned 0.3 235192 132380 81

4 sweep pre-learned 0.3 120370 298 4

5 Markov random 1.0 192751 51412 67

6 Markov pre-learned 0.0 229520 72908 79

7 Markov pre-learned 0.3 266661 112660 115

Learning rate (𝛼) set to 0.3, and Forgetting factor (𝛾) set to 0.8 for all tests.
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Flight Testing: Performance 

Evaluation of CAJ Communications

Test #
Jammer 

type
Policy Type

E
x

p
lo

ra
ti

o
n

R
a

te
(𝜀

) Average time in a 

Channel Without Being 

Jammed

Average Fraction of 

time in a Channel 

Without Being Jammed

1 Sweep Random 1.0 1399 0.14

2 Sweep Random 1.0 1251 0.44

1 & 2 Sweep Random 1.0 1325 0.20

3
Sweep

Pre-learned,  

continuously 

updated through 

exploration

0.3 1634 0.56

5 Markov Random 1.0 767 0.27

6 Markov
Pre-learned and 

fixed.
0.0 922 0.32

7 Markov

Pre-learned,

continuously 

updated through 

exploration

0.3 980
0.42
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Flight Testing: 

Policy vs Random Performance
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Conclusions

• Results show that the developed WACR approach is an effective anti-
jamming tool, regardless of learning type and channel selection 
algorithms are used.

• Reinforcement learning aided cognitive anti-jamming communications 
policy significantly outperforms the random channel selection policy, both 
in terms of the average unjammed time in a channel as well as the fraction 
of time in a channel without being jammed.

• Performance is consistent regardless of the type of the jammer: Sweep or 
Markov.

• Allowing learning-based policy update and policy exploration during 
actual RF environment will lead to better performance with cognitive 
anti-jamming communications.

• Best possible performance improvements with the CAJ communications 
policy can expected to be higher than what is observed in these tests since 
these tests only allowed a very short learning period length, and 
parameters of the algorithms (i.e. learning rate, and forgetting factor, etc.) 
were unoptimized arbitrary values.
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