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What is a Thin Film?

Thin film: thickness typically <1000nm.

Special properties of thin films: different from bulk materials, it may be –

• Not fully dense

• Under stress

• Different defect structures from bulk

• Quasi ‐ two dimensional (very thin films)

• Strongly influenced by surface and interface effects
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Other Deposition Techniques
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CVD Process 
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Thin-Film Engineering
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Vapor-phase deposition of inorganic materials 

Microelectronics Solar energy Solid-state lighting 

James River Semiconductor First Solar The New Ecologist 
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Common Denominator
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•Deposition only occurs on substrates that “see” the target.
•Plasma process can damage the substrate
•Poor thickness control
•Poor Step Control
•High Pressure High Temperature Environment

Step Coverage Example

Step coverage of metal over non-planar topography.
(a) Conformal step coverage, with constant thickness on horizontal and vertical surfaces.
(b) Poor step coverage, here thinner for vertical surfaces.

conformal non-conformal



Atomic Layer Deposition

Atomic

Layer

Deposition
} A thin film“nanomanufacturing” tool that allows for 

the conformal coating of materials on a myriad of 
surfaces with precise atomic thickness control. 

Based on:

 Paired gas surface reaction chemistries

 Benign non-destructive temperature and pressure environment

• Room temperature -> 250 °C (even lower around 45 °C)

• Vacuum 



ALD Analogy (Checkers)

Introduction of Precursor • 

1 Pair Stacked Chips 

Purge Excess & 
Reacted Speci~ 

Random Precursor Surface Rxn Surface Limited State 

i 

Surface Limited State 

Purge Excess & 
Reacted Species 

~- I t 
LJ Introduction of Precursor • 

Random Precursor Surface Rxn 



ALD Analogy Chemistry

OH+ Al(CH3)3-> O-Al(CH3)2 + CH4 
1.1 A/Cycle 

., ., ., .,., .,., ., 
O-Al(CH3)2 + 2H20-> O-Al-(OH)2 + 2CH4 



ALD
Precursor A + Precursor B → Solid film + Gas by-products 

Cyclic operation: A → purge → B → purge → A → purge → ··· 

Atomic-level thickness control ... 

... equivalent to a 60 μm layer 

over a city-sized wafer 



ALD Advantageous Property

Epitaxial Growth

Batch Process

Substrate Independence
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Schematic of a 30 ban:ery integrated in a Si- substrate. 

in the battery stack as well as the candidiite materials. 

Multilayer c:om1sting of: 
Al203 25nm 
T1N 20nm 
Al203 25nm 
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ALD Material Systems

• Gordon, Roy (2008). Atomic Layer Deposition (ALD): An Enable for Nanoscience and Nanotechnology. 
PowerPoint lecture presented at Harvard University, Cambridge, MA.
• Elam, Jeffrey (2007). ALD Thin Film Materials. Argonne National Laboratory
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NASA Impacts

ISS Orbit 400 km
Atomic O Density = 1 x 108 cm-2 s-1

v = 7.2 x 105 cm s-1

-> 1 O impact nm-2 s-1

KE = 4.2 eV

Conformal, flexible, 0(100 nm), nonvolatile 
oxide coating 

Low temperature (100 °C) deposition process 



STORM XRI

NASA GSFC 
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ZnO
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UV Absorption 
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ALD For Radiators - Pigments
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Problem
Spacecraft charging is the condition that occurs when a spacecraft accumulates excess
electrons or ions. For a conducting spacecraft, the excess charges are on the surface. The
term spacecraft surface charging (absolute charging) is used to clearly denote charging on
the spacecraft surface as opposed to other charge distributions such as the voltage
differences between electrically isolated parts of the spacecraft (differential charging).

HAZARD

If a charge builds up that is too big for the spacecraft’s material to hold, discharge arcs, 
which are essentially strong electrical currents, will occur. 

And depending on where those arcs go, they can damage electronic components, destroy 
sensors, or damage important materials such as thermal control coatings.



Problem

ESA EURECA satellite solar array sustained arc damage.
Credits: ESA

Arc damage in laboratory tests of the chromic acid anodized thermal 
control coating covering ISS orbital debris shields.
Credits: NASA/T. Schneider

https://www.nasa.gov/sites/default/files/thumbnails/image/arc_damage.png


Radiator - Vary in Size

The space station’s radiator system, which is a 
critical component of the active system, consists of 
seven panels (each about 6 by 12 feet) Wide Field Planetary Camera 2 (WFPC2) 

that was installed on the Hubble Space 
Telescope in December 1993, and 
removed during the last servicing mission 
in 2009

Origami Inspired

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwjJ2Pyt6dLeAhVSTt8KHd0SDaUQjRx6BAgBEAU&url=http://toughsf.blogspot.com/2017/07/all-radiators.html&psig=AOvVaw27oVt3m_jujlrWDkAdPl-s&ust=1542248343353366


Motivation

• Most white pigments do not dissipate electrical charge without a dopant or 
additive

• Two most commonly used dissipative thermal coatings (Z93C55 and AZ2000) 
rely on indium hydroxide or tin oxide as charge dissipative additives utilizing 
sol gel wet chemistry

• ITO formed locally on a macroscopic scale due to seeding and ITO crystal 
formation on the boundaries of the pigment grains. Thickness and dispersion 
throughout the coating are difficult to control.

Instead of postprocessing the dissipative coating can we preprocess the 
dissipative coating before binding directly on the pigment itself?



Experimental Procedures

• The first set of experiments were conducted on flat substrates for the ALD of In2O3

and ITO, the films were deposited on a variety of substrates including n-type 
Si(100) wafers for thickness measurements and glass microscope slides for sheet 
resistivity determination. 

• The In2O3 ALD on the particle substrates was applied to Z93P pigments provided by 
Alion Science and Technology; these particles had a mean size of 2 microns. 

• Thickness and conformity of the ALD films on the Si wafers of In2O3 and ITO were 
measured using a J.A. Woollam M-2000D Spectroscopic Ellipsometer. The sheet 
resistivity of the ALD films on the microscope glass substrates was measured using 
a Lucas Signatone S-302 four-point probe 

• The bulk resistivity of the ALD deposited pigment system is measured in air after 
the formation of a pellet of 1 in. diameter and a thickness of approximately .5 in. 
The pigment is compressed lightly by hand and held in place by a 3D printed 
electrically insulating hollow nylon/Teflon annulus spacer held on an aluminum 
plate.   Resistivity was measured in air and vacuum.



Results

Uncoated Pigment Coated Pigment



Results



Results

Spectrum Label Zinc Oxide Particles Indium Oxide Coated 

C 57.73 73.72 

O 33.23 24.76 

Zn 9.04 1.28 

In - 0.23 

XPS of Particle Composition
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Results

Pressure (Torr) Sample Voltage (V) R (ohms)

7.60E+02 In2O3 ALD Z93 40 1.30E+08

Z93 40 5.10E+08

7.00E+01 In2O3 ALD Z93 40 1.60E+08

Z93 40 8.00E+10

7.00E-02 In2O3 ALD Z93 40 1.80E+08

Z93 40 1.80E+11

6.00E-02 In2O3 ALD Z93 100 7.00E+07

Z93 100 6.00E+10

As vacuum is increased the resistivity of the Z93 

pigment powders increases several orders of 

magnitude while the indium oxide treated Z93P 

pigment remains relatively stable. This increase in 

resistivity can be attributed to either the removal of 

moisture within the bulk powder or the compression 

of the powder filling the void space allowing for an 

increased number of conduction paths. 



Results

Reflectance measurements were taken on lightly compressed pellets of the untreated and 

indium oxide treated Z93P pigment and show approximately one percent reflectance 

differences across the solar spectrum
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ISS Opportunity 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=imgres&cd=&ved=2ahUKEwiG8MPV5dLeAhWhm-AKHUy2B2YQjRx6BAgBEAU&url=https://en.wikipedia.org/wiki/International_Space_Station&psig=AOvVaw0slrX20jgBJawwO2dK1Psn&ust=1542247467866177


MISSE-FF

The Materials ISS Experiment Flight Facility 
(MISSE-FF) with MISSE Sample Carriers (MSCs) in 
the fully open position exposing 
samples/experiments to the harsh environment 
of space in low-Earth Orbit (LEO). Image courtesy 
of Alpha Space.

An earlier MISSE mission
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Related 

NASA TV Coverage Set for November Cygnus 
Launch to the International Space Station 
4daysago 

Cygnus Dedicated to Astronaut John Young 

19daysago 

Dellingr: The Little CubeSat That Could 

ZZdaysago 

NASA Launching Mars Lander Parachute Test 
from Wallops Sep. 7 
Zmonthsago 

Launch of Orbital ATK Antares From NASA's 
Wallops Flight Facility 
6monthsago 

NASA Sends New Research on Orbital ATK 
M1ss1on to Space Station 
6monthsagr, 

Nov. a, 2018 

Catch the Nov.\ Antares Launch from Wallops 

Get up ea~y Nov. 15 to view the Northrop Grumman's Antares rocket launch from the Mid-Atlantic 

Regional Spaceport at NASA's Wallops Flight Facility. 

The NASA Wallops Flight Facility and Virginia's Mid-Atlantic Regional Spaceport are set to support the 

launch of the Antares rocket, carrying the company's Cygnus cargo spacecraft to the International 

Space Station at 4:49 a.m. EST, Nov. 15. 

The launch may be visible, weather penmlttlng, to residents throughout the East Coast of the United 

States. 

The NASA Visitor Center at Wallops opens at 1 a.m. on launch day for public viewing. Additional 

locations for catching the launch are Robert Reed Park on Chincoteague Island or Beach Road 

spanning the area between Chincoteague and Assateague Islands. Assateague Island National 
SeashOre/Chlncoteague National Wildlife Refuge In Virginia will not be open for viewing the launch. 



The numerical values in each colored cide indicore the time (in seconds) ofter liftoff. This volue con be used to determine when 
the rocket become visible within the associated colored region. Viewing ovailabllity is based on clear weather conditions. 
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