≫ RICI

USRA

Astromaterials Research & Exploration Science

LUNAR AND PLANETARY

vitally impacting the future – today

UNIVERSITY HOUSTON-

Calculated Thicknesses of Volcanically Derived Water Ice Deposits at the Lunar Poles

Debra Needham NASA/Marshall Space Flight Center

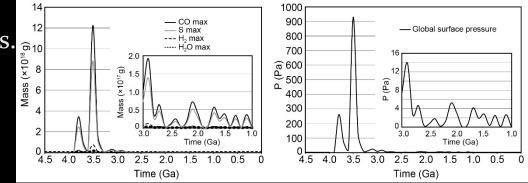
NOTRE DAM

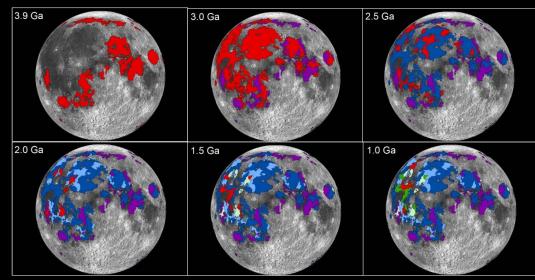
and

Matthew Siegler SMU/PSI Shuai Li U. Hawaii at Manoa David Kring CLSE/SSERVI – LPI

50th Lunar and Planetary Science Conference March 22, 2019

vitally impacting the future – today

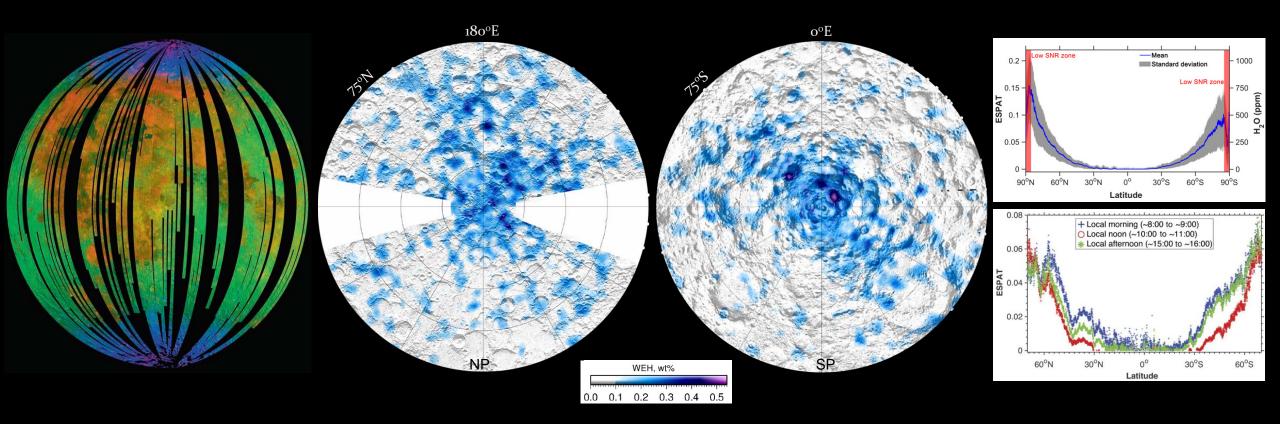

Overview


- What we know:
 - Volcanically derived volatiles.
 - Timing of volatile release.
 - Current observations of lunar polar volatiles.
- How volatiles migrated on the Moon.
- Thickness of resulting deposits.
- Implications for the current distribution of lunar volatiles.

CENTER FOR LUNAR SCIENCE AND EXPLORATION Vitally impacting the future - today

Volcanic Volatiles Released from the Moon

- Apollo mare basalt samples: CO, H, OH, H₂O, and S volatiles.
 - e.g., Housley, 1978; Robinson and Taylor, 2014; McCubbin et al., 2010; Shearer et al., 2006
- Volcanic activity peaked 3.8 Ga and 3.5 Ga.
 - 60% of all volcanically derived volatiles were released 3.5 Ga.
 - 20% released 3.8 Ga; remaining 20% released during all other mare eruptions.
- Peak volatile release may have resulted in the formation of a transient lunar atmosphere.
 - Some volatiles lost to space, others settled to the surface as atmosphere dissipated.

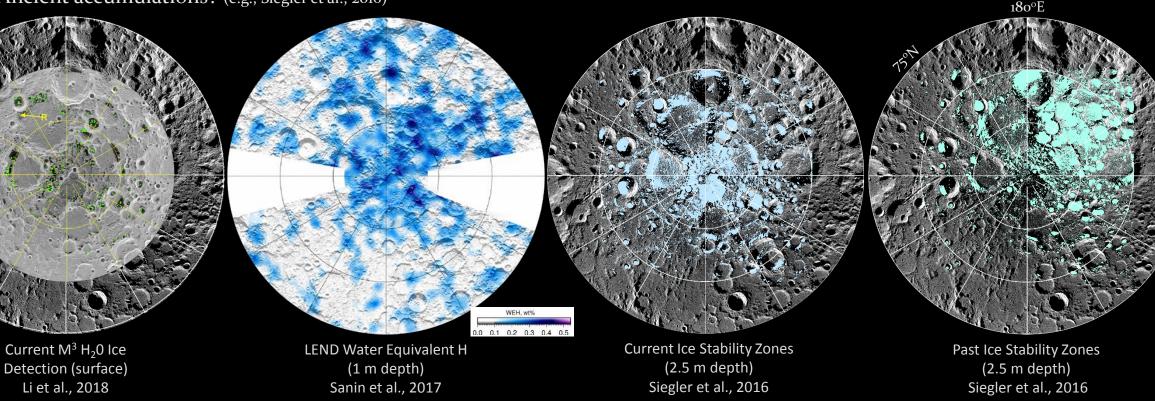


Based on data presented in Hiesinger et al., 2011; Whitten et al., 2011

Needham and Kring, 2017, EPSL.

vitally impacting the future – today

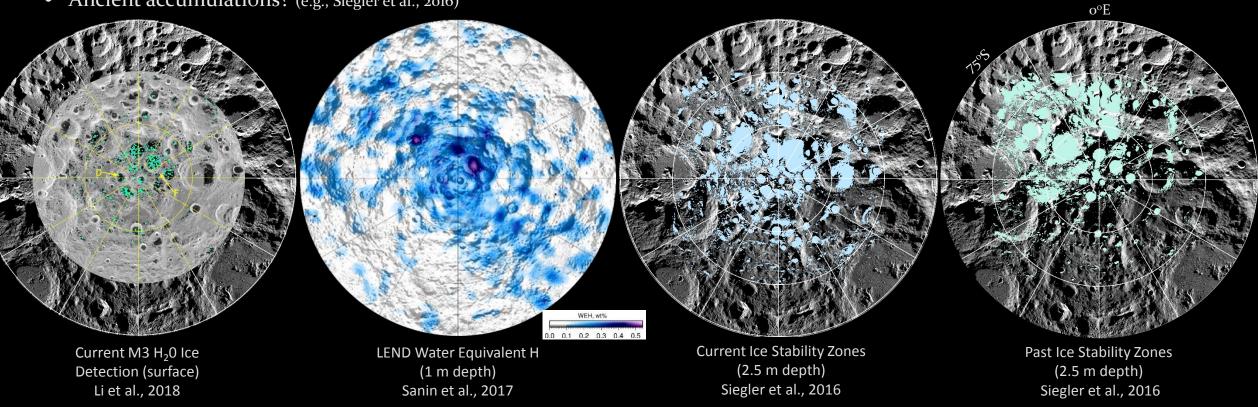
Recent Polar H-Bearing Material Detections from Orbit


Moon Mineralogy Mapper surface detection of OH/H₂O at lunar poles (blue/purple); Pieters et al., 2009 LEND detection of water equivalent H (1 m depth) via neutron suppression at lunar poles; Sanin et al., 2017

OH/H₂O variability by latitude and day from M³; Li and Milliken, 2017

vitally impacting the future – today

Where Lunar Volatiles are Now: North Pole


- Water at surface: Centered about North Pole.
 - Modern accumulations?
- Water at 1 m depth: Offset to 90°E 180°E.
 - Ancient accumulations? (e.g., Siegler et al., 2016)

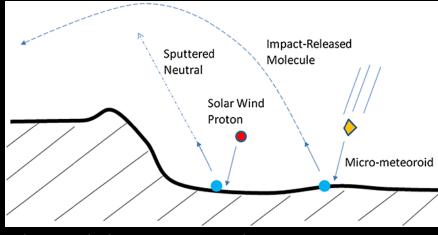
vitally impacting the future – today

Where Lunar Volatiles are Now: South Pole

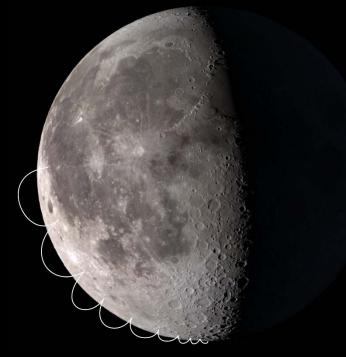
- Water at surface: Centered about South Pole.
 - Modern accumulations?
- Water at 1 m depth: Offset to 270°E 0°E. (?)
 - Ancient accumulations? (e.g., Siegler et al., 2016)

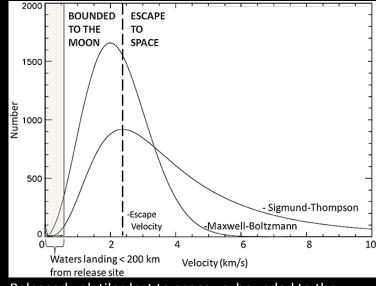
vitally impacting the future – today

Volcanic Volatiles Released from the Moon


- Questions:
 - Where did the volatiles settle on the Moon?
 - How thick would the resulting deposits have been?
- Results have implications for the current distribution of lunar volatiles.

vitally impacting the future – today


Migration of Lunar Volcanically Derived Volatiles


• In the absence of a lunar atmosphere:

- Volatiles 'hop' based on energy gradient, traveling towards lower energy (to the poles).
- Assume erupted volatiles migrated to nearest pole dependent on eruption location.

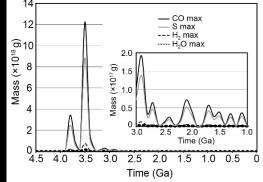
Releasing volatiles via sputtering and impact vaporization processes; Farrell et al., 2015.

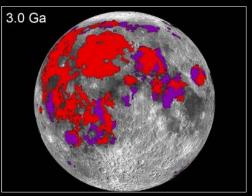
Released volatiles lost to space vs. bounded to the Moon; Farrell et al., 2015.

vitally impacting the future – today

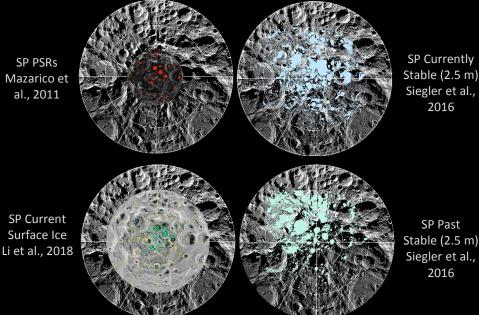
Migration of Lunar Volcanically Derived Volatiles

- In the presence of a lunar atmosphere:
 - Volatiles entrained in globally distributed atmosphere.
 - Equatorial and mid-latitude volatiles likely to migrate to the poles (e.g., Soto et al., 2018)
 - Assume erupted volatiles deposit evenly at each pole as the atmosphere dissipates 50% erupted volatiles to each pole.
- Volatiles trapped in areas of stability.




vitally impacting the future – today

Max Equivalent Thickness of H-Bearing Volcanic Volatile Deposits

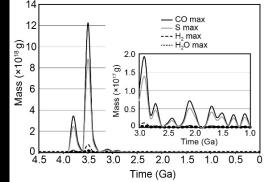

- Assumptions:
 - Volatiles released 3.5 Ga and 3.8 Ga (~80%) split between poles.
 - All other volatiles migrated to nearest pole (mostly north pole).
 - Assume no $H_2O loss (2.4 \times 10^{14} \text{ kg}) \text{max deposit thickness.}$
 - H,O/OH only; assume H is lost to space
 - Know areas of expected volatile preservation (NP/SP):

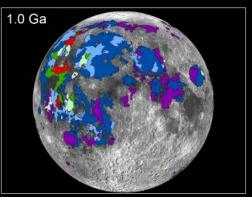
Region	NP Area (km ²) SP Area (km ²) Reference		Reference
Current PSRs	12866	16055	Mazarico et al., 2011
Currently Stable 2.5 m	94565	90884	Siegler et al., 2016
Past Stable 2.5 m	86285	82772	Siegler et al., 2016
Observed Surface Water	35	115	Li et al., 2018

Needham and Kring, 2017, EPSL.

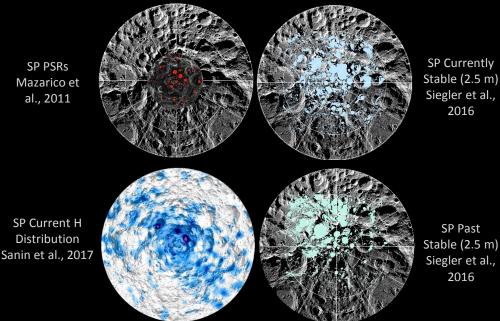
SP Past Stable (2.5 m) Siegler et al.,

2016


2016

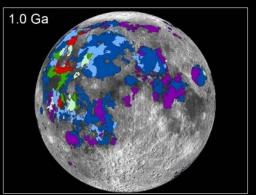

vitally impacting the future – today

Max Equivalent Thickness of H-Bearing Volcanic Volatile Deposits


- Assumptions:
 - Volatiles released 3.5 Ga and 3.8 Ga (~80%) split between poles.
 - All other volatiles migrated to nearest pole (mostly north pole).
 - Assume no $H_2O loss (2.4 \times 10^{14} \text{ kg})$ max deposit thickness.
 - H₂O/OH only; assume H is lost to space
 - Know areas of expected volatile preservation (NP/SP):

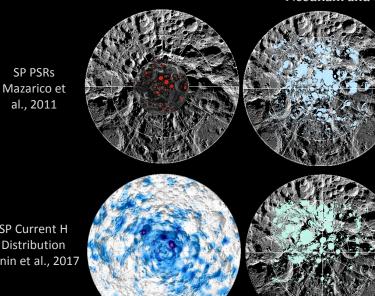
Region	NP Area (km ²)	SP Area (km ²)	Reference
Current PSRs	12866	16055	Mazarico et al., 2011
Currently Stable 2.5 m	94565	90884	Siegler et al., 2016
Past Stable 2.5 m	86285	82772	Siegler et al., 2016

Needham and Kring, 2017, EPSL.



vitally impacting the future – today

Max Equivalent Thickness of H-Bearing Volcanic Volatile Deposits


• South Pole Results:

14		1	_		_	CO ma S max H ₂ max			
ຼິ ອີ10			-	2.0		H_2Om			_
8 ×10				1.5					
Mass (×10 ¹⁸ g)		-	(×101	1.0	1				
Ξ ₄			Mass (×10 ¹⁷ g)	0.5	A	A	A		
2		АH	_	0 3.0	2.5	2.0 Time		<u>V//</u> .5 1	.0
0 4	.5 4.0) 3.5	3.0	2.5	2.0	1.5	1.0	0.5	
					e (Ga)			- / -	

Needham and Kring, 2017, EPSL.

Region	Area (km ²)	Area Reference	Equiv. Thickness (m)
Current PSRs	16055	Mazarico et al., 2011	7.18
Polar Wander Present Stable to 2.5 m	90884	Siegler et al., 2016	1.39
Polar Wander Past Stable to 2.5 m	82772	Siegler et al., 2016	1.27

SP Past Stable (2.5 m) Siegler et al.,

2016

SP Currently

Stable (2.5 m)

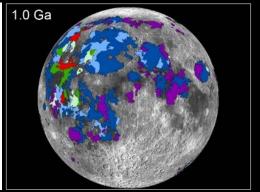
Siegler et al.,

2016

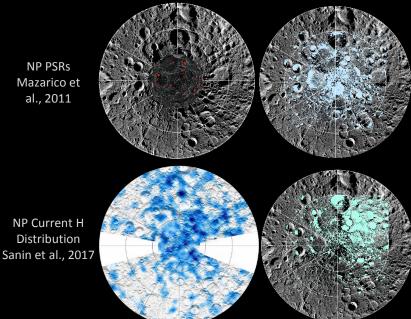
SP Current H Distribution Sanin et al., 2017

SP PSRs


al., 2011

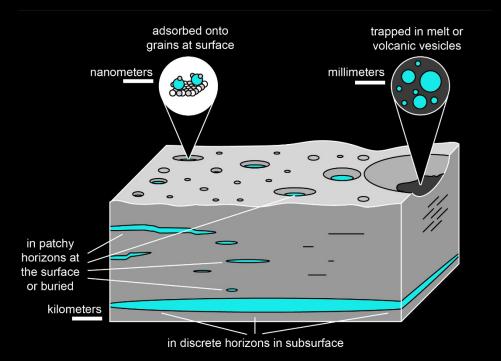

vitally impacting the future – today

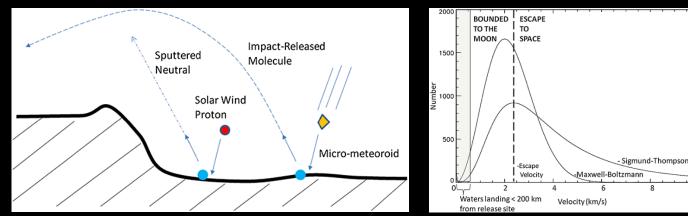
Maximum Thickness of H-Bearing Volcanic Volatile Deposits


• North Pole Results:

				Ma
Region	Area (km ²)	Area Reference	Equiv. Thickness (m)	L
Current PSRs	12866	Mazarico et al., 2011	9.70	
Polar Wander Present Stable to 2.5 m	94565	Siegler et al., 2016	1.45	
Polar Wander Past Stable to 2.5 m	86285	Siegler et al., 2016	1.32	

Needham and Kring, 2017, EPSL.

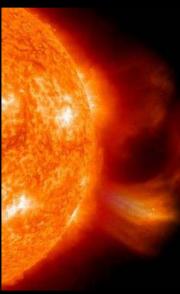

NP Currently Stable (2.5 m) Siegler et al., 2016

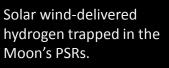

NP Past Stable (2.5 m) Siegler et al., 2016

vitally impacting the future – today

Implications for Distribution of Polar Lunar Volatiles

- Ice ~1.5 m thick deposited in stable regions at each lunar pole.
 - Subsequently covered by ejecta, vaporized, and gardened by subsequent impacts.
 - Expected to have 6-10 m ice-bearing regolith above thinner subsurface ice horizon. (Fa and Jin, 2010; Kobayashi et al., 2010)

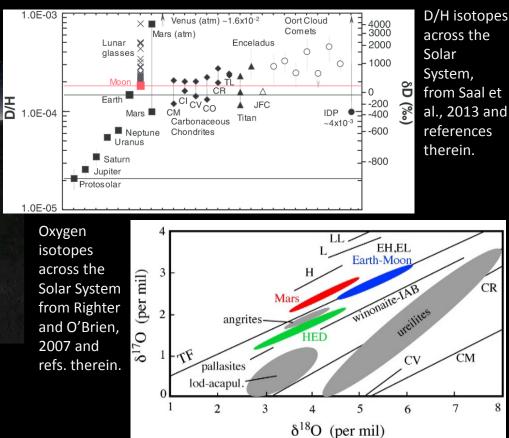

Releasing volatiles via sputtering and impact vaporization processes; Farrell et al., 2015.


Released volatiles lost to space vs. bounded to the Moon; Farrell et al., 2015.

vitally impacting the future – today

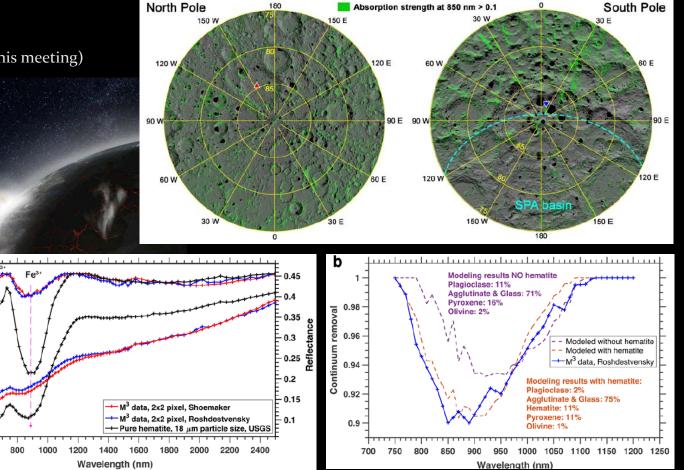
Implications for a Mission Prospecting for Lunar Volatiles

- The source of volatiles can affect the composition of these volatile deposits.
 - H, O isotopes
 - Alteration minerals like hematite! (Li et al., this meeting)



Water delivered by asteroid and comet impacts on the Moon.

Water-building components erupted during volcanic eruptions.


vitally impacting the future – today

Implications for a Mission Prospecting for Lunar Volatiles

• The source of volatiles can affect the composition of these volatile deposits.

Wa

- H, O isotopes
- Alteration minerals like hematite! (Li et al., this meeting)

Solar wind-delivered hydrogen trapped in the Moon's PSRs.

Water delivered by asteroid and comet impacts on the Moon.

CENTER FOR LUNAR SCIENCE AND EXPLORATION Vitally impacting the future - today