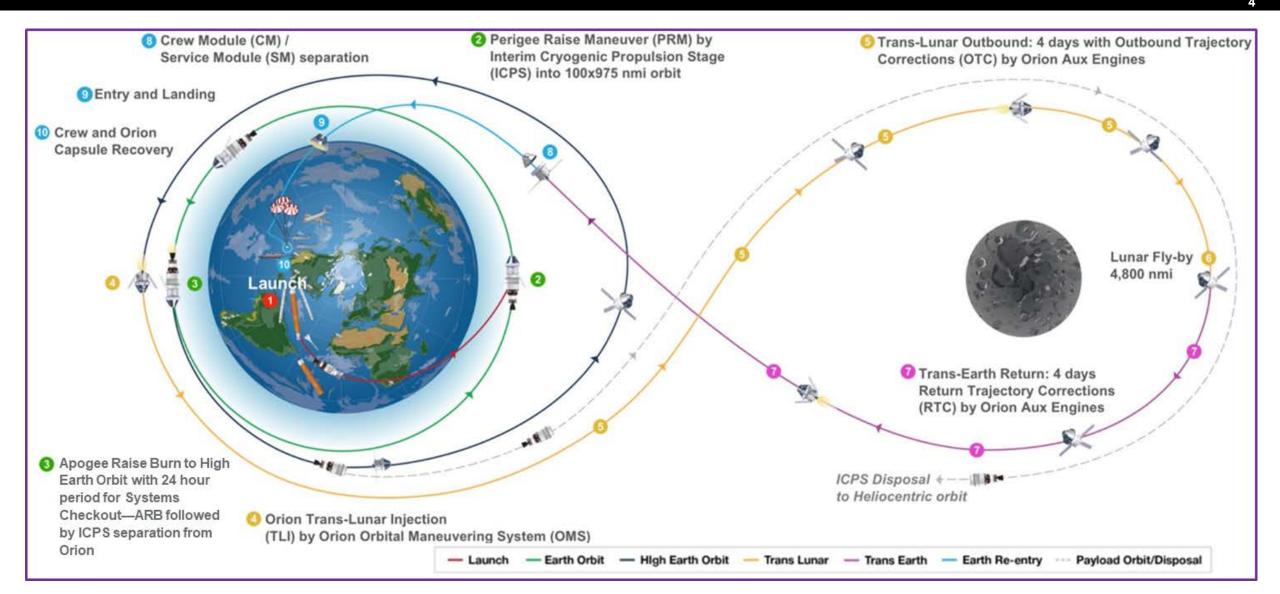
National Aeronautics and Space Administration

DEEP SPACE EXPLORATION SYSTEMS

NASA Exploration Mission 2 Mission Design

www.nasa.gov

Authors


- Scott Craig, Aerospace Engineer, Guidance Navigation and Mission Design Branch, NASA MSFC
- Chris Berry, Aerospace Engineer, Flight Mechanics and Trajectory Branch, NASA JSC
- Michael Bjorkman, Aerospace Engineer, XI4, Jacobs Technology, NASA JSC
- Eric Christiansen, Aerospace Engineer, XI411, NASA JSC
- Jerry Condon, Aerospace Engineer, Flight Mechanics and Trajectory Branch, NASA JSC
- Adam Harden, Aerospace Engineer, Guidance Navigation and Mission Design Branch, Bevilacqua Research Corporation/Jacobs Space Exploration Group, NASA MSFC
- Jeff Little, Aerospace Engineer, Systems Analysis Branch, Jacobs Space Exploration Group, NASA MSFC
- Trey Perryman, Aerospace Engineer, GV111, NASA JSC
- Seth Thompson, GN&C Engineer, Guidance Navigation and Mission Design Branch, Troy7/Jacobs Space Exploration Group, NASA MSFC

Background for Trade

- Transition from B1B to B1 for EM-2 drives necessary re-optimization to account for ICPS performance
 - Assumed roughly similar mission design of Hybrid-Free Return
 - B1B EUS assumed 100 nmi circular departure orbit not achievable by ICPS
 - EM-2 Orion mass is different than EM-1
 - Maturing system design results in available performance margins
- Initial MAIA analysis narrowed trade scope based on performance to key drivers
 - Conducted from May through July for initial B1 update
 - Eliminated circular orbits, lower HEO apogees, and alternate disposal targets
- Key drivers identified to evaluate trade results:
 - Mission availability resulting from integrated performance
 - Orion abort performance for both LEO and in-space
 - Activation & checkout operations & Orion LEO performance
 - MMOD risk from LEO exposure

Stakeholder EM-2 Block 1 Trajectory

Trajectory Design Ground Rules and Assumptions

• SLS

- Copernicus calls a database of ascent trajectories to find the optimal ascent for the mission constraints

• ICPS

- Mass and propulsion data is derived from data provided to support EM-1
- ICPS will perform 3 RL10 burns on EM-2 where EM-1 only had 2 burns
- ICPS disposal targets a Earth barycenter relative C3 of 0.35 km²/sec² 10 days after lunar flyby

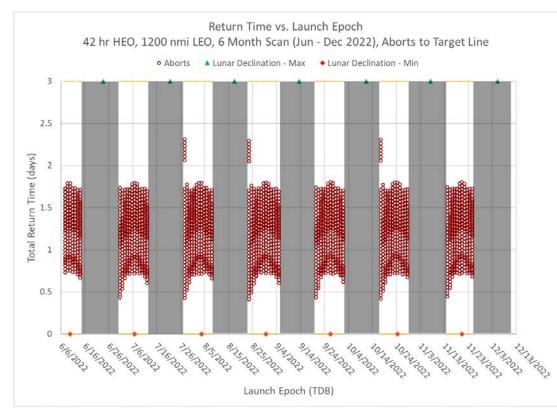
• Orion

- Mass is the Not to Exceed requirement
 - 300 lbm (136 kg) of propellant is offloaded to meet this requirement
- OME provides all the major maneuvers
- A short separation burn is performed using the auxiliary thrusters after ICPS separation
- Spends approximately 1 rev in the HEO
- Free return duration is ~8 day
- Launch availability was assessed from June 7, 2022 through June 7, 2023.
- ICPS and Orion performance are weighted equally in the objective function

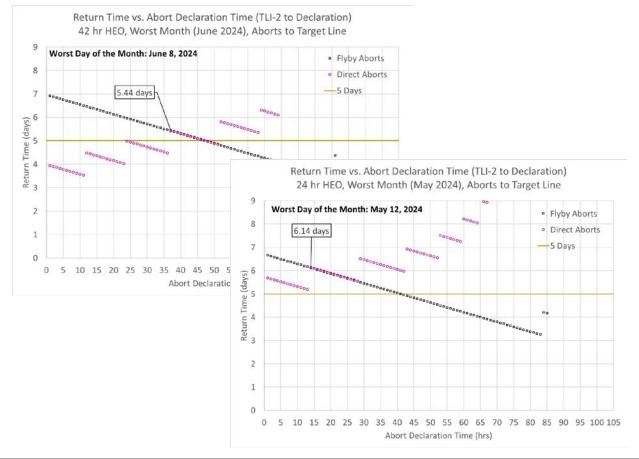
Parametric Analysis

- Allow more continuous time for Orion checkouts prior to the ARB
- Orion can delay solar array deploy until after PRM if performed early enough
- Performance impact increases as the PRM is moved earlier in the trajectory
- Core Stage Insertion Apogee
 - 975 nmi (baseline)
 - 1200 nmi
- Intermediate Orbit Period
 - 24 hour (original baseline)
 - 42 hour
- First Revolution Apogee Raise Burn
 - Reduces the number of passages through the heavy orbital debris bands

Mission Scans

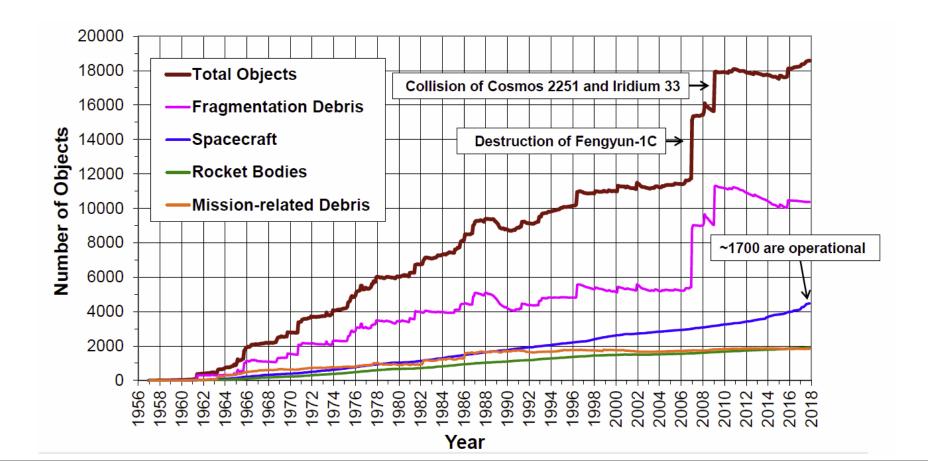

- Mission Scans were run for a total of 10 trajectory cases listed here
- The grey shaded cases were not selected for further screening

Option	Traj Case #	Insertion (nmi)	PRM Timing	Resulting LEO Apogee (nmi)	ARB Rev Start	HEO Period
А	1	975	apogee	975	2nd	24 hr
	2	975	10 min	1200	1st	24 hr
	3	1200	apogee	1200	2nd	42 hr
С	4	1200	10 min	1450	2nd	42 hr
D	10	1200	10 min	1450	1st	42 hr
	5	1200	2 min	variable	1st	42 hr
	6	1200	2 min	3100	1st	42 hr
В	7	975	apogee	975	1st	24 hr
Е	8	1200	2 min	3100	1st	24 hr
F	9	1200	2 min	2000	1st	42 hr


Orion Aborts Analysis

 Orion was able to abort to the entry interface target line in all instances from both the 24 and 42 hour HEO. Maximum return times were ~2.5 days.

• The 42 hour HEO helped aborts by increasing the amount of propellant remaining on Orion, allowing for faster return times



MMOD Risks

9

 MMOD risks have increased steadily since the beginning of manned space ventures

Mission Design Parameter Effects

- Higher Insertion Apogee:
 - Improves mission availability by decreasing ICPS performance demand
 - Reduces core stage ascent margin
- Earlier PRM Timing:
 - Increases resulting LEO apogee and decrease time in MMOD field
 - Improves Orion checkout ops by removing PRM interruption
 - Solar array deploy occurs in stable orbit, array parking not required for PRM, PRM has no interference on checkout ops
 - Orion IVP improvement from high apogee
 - Decreases Earth albedo, increased orbits times for power generation solar insolation
 - Decrease in mission availability from ICPS performance impact

- Number of LEO Revs/time in LEO:
 - Decreases MMOD field transits
 - Decreases Orion LEO checkout time
 - FOD study indicates success oriented risk at 60min required, highly desired 90-120 min
 - Improves Orion IVP (power)
- Increasing HEO size:
 - Decreases Orion TLI prop use improving post-TLI abort capability
 - Decreases mission availability

Competing effects result in a challenge to balance risk across the system

System Trade Summary

• LEO discriminators are mission availability & MMOD

- Adequate opportunity exists for LEO apogees in the 975-2000 nmi range
- Balanced MMOD risk and checkout time set by tailoring apogee on 1st rev
- HEO primary discriminator is minimization of Orion Post-TLI abort times
 - HEO aborts capability and mission opportunities were similar between both options

	Insertion (nmi)	PRM (min)	Apogee (nmi)	Rev	HEO (hrs)	Msn Avail (dd/mm)	Total PRA (1 in x LOC)	MMOD Stack (1/x LOM/LOC)	Abort Capability	LEO Ops/Perf.
А	975	45	975	2	24	12-14	188	150/868	Degraded post-TLI	Required + Desired
В	975	10	1150	1	24	10-11	199	276/1,190	Degraded post-TLI	Required only
С	1200	10	1450	2	42	10-11	189	194/904	Improved post-TLI	Required + Desired
D	1200	10	1450	1	42	10-11	~205	374/1,380	Improved post-TLI	Required + IVP benefit
E	1200	2	3100	1	24	5-8	198	447/1,160	Degraded post-TLI	Required + Desired + IVP benefit
F	1200	2	2000	1	42	7-9	201	397/1,270	Improved post-TLI	Required + Desired + IVP benefit

- Preference to maximize Orion post-TLI prop available and minimize crew contingency risk
- ULA has assessed the capability to perform these missions as low risk
 - Only perturbation would be the addition of an extra COPV for Option E (3,100 nmi apogee)—with no undue technical or schedule risk

Trade recommended Option F, but the JICB chose Option D due to the higher mission availability at the cost of checkout time in LEO