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Motivation and Objectives

-
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* Proposed aircraft propulsion systems may be tightly integrated into
the airframe for performance benefits

* Integrated propulsion systems provide opportunities and challenges
for noise

* Use nearby surfaces for noise shielding
* New sound sources

* Develop reduced-order prediction methods for flow-surface
interaction noise to assess noise impacts of integrated propulsion



Approach: Rapid Distortion Theory (RDT)

* Linear analysis to study interaction of turbulence with solid surfaces

 Valid when turbulence intensity is small and the time scale for the interaction
is short compared with eddy decay time

* \Versions of RDT
* Incompressible
* Uniform mean flow
* Potential mean flow

* For application to noise predictions in integrated propulsion systems
 Compressible

e Sheared Mean Flow
e Goldstein (1979), Goldstein, Afsar and Leib (2013a,b), Goldstein, Leib and Afsar (2017)



RDT for a Transversely Sheared Mean Flow
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Applications of RDT for a Transversely Sheared
Mean Flow to Integrated Propulsion System Noise

* Trailing-Edge Noise
 Two-dimensional jet near a flat plate

= Goldstein, Afsar and Leib (2013), Afsar, Leib and Bozak (2017), Goldstein, Leib and
Afsar (2017)

* Round jet near a flat plate
* Current work in progress (Goldstein, Leib and Afsar)

* Inlet Turbulence Distortion and Noise

=" Two-dimensional model for turbulence distortion through a boundary-layer ingesting
inlet

» Current work in progress (Leib)



Trailing Edge Noise:
Two-Dimensional Jet Near a Flat Plate

* Approximation for large aspect ratio rectangular jet near a flat plate
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* Obtain solution for Green’s function subject to appropriate boundary

conditions

* Low- / high-frequency solutions

* Derive formula for the acoustic spectrum in terms of spectrum of the “gust”
* Derive relation between “gust” and physically measurable quantities far

upstream from the edge



Trailing Edge Noise:
Two-Dimensional Jet Near a Flat Plate

* Explicit formula for the trailing-edge noise:
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Two-Dimensional Jet Near a Flat Plate:
Resu\ts GLA (2017)
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Two-Dimensional Jet Near a Flat Plate
Results: RANS-Based Model ALB (2017)

B Experiment (Zaman)
- RANS Ma =0.9
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: RANS Ma =0.7
* Mean velocity and turbulence NS M0 e o
profiles computed from RANS
=, U~
* Extended source model S > oo
* Negative loops in transverse velocity
correlations
R . (n,7) = <PV’(¢O) (x, t)Pv’(lo) (X1 + 711X, %2, %3, + T)> /D, 120
195 115
0.8 .:. o 771/11 = 0.0 | 110%:
 Apply to smaller aspect ratio oo % M/l =04 :

N
E o4® + 11/l =08
D..,,.
nozzles Jea L em/hi=10

~ "er,
ok RDT op

75 > Data AR2
Teert! 70 L Data AR4
04 3 — 4 6 8 = | ~Data ARS)

A 0.2 0.3 0.4
Strouhal number



Trailing Edge Noise:
Round Jet Near a Flat Plate

* Conformal mapping
* Low-frequency solution for Green’s function
* Relation between “gust” and physical quantities similar to 2D problem

* Model for source similar to 2D problem
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railing Edge Noise:
Round Jet Near a Flat Plate

Formula for acoustic spectrum
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 Computer code for evaluation of edge noise spectrum

* Models for mean velocity profile and turbulence
* Obtain from experiment or RANS

* Preliminary comparisons with SHJAR data (Brown, 2013)
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Distortion of Turbulence Through a
Boundary-Layer Ingesting Inlet (BLI)

* Boundary-layer ingesting propulsion
* Performance benefits of ingesting lower momentum fluid (boundary layer)
* Little work done on noise impacts

* Objective:

* Apply RDT to evaluate the distortion of an incident turbulent flow though a
BLI

* Apply general solution for fluctuating transverse velocity

e Derive a relation between the statistics of the turbulence (spectrum) within the inlet (fan
face) and those upstream

* Use the distorted turbulence spectrum to evaluate pressure loading on fan
* Compute noise
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Boundary-Layer Ingesting Inlet-Fan Propulsor
Arend, et al AIAA 2017-5041

Aerodynamic Interface Distortion-Tolerant Fan
Plane Rotating Rake Array Stage: Rotor and EGV’s
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Application of RDT to BLI
Two-Dimensional Model Problem for Analytical Treatment

* Green’s function for Rayleigh equation — B2
 ———
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* Boundary conditions on duct walls and continuity across upstream extension
lead to Wiener-Hopf problem

* Further approximations:

* Low-frequency solution
* Piece-wise linear mean velocity profile



Transverse velocity spectrum

* Use Green’s function in general solution for transverse velocity fluctuation
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* Relation between transverse velocity spectrum within the duct and that
upstream
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Distortion of Turbulence Through a
Boundary-Layer Ingesting Inlet: Status and Plans

* Current Status:

* Formal solution to the Wiener-Hopf problem for the Green’s function in the
2D model problem

* Low-frequency approximation to Green’s function
* Details of WH solution for low-frequency solution — split functions

 Future work — short-term:

* Incorporate low-frequency solution into formula for transverse velocity
spectrum

* Numerical evaluation of the distorted turbulence spectrum

* Future work — longer-term:
* Evaluate fan loading due to distorted turbulence
* Predict noise
* Use conformal mapping to extend to realistic inlet geometries
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