

Modeling Pyrolyzing Ablative Materials with COMSOL Multiphysics[®]

Tim Risch Deputy Branch Chief Aerostructures Branch NASA Armstrong Flight Research Center

COMSOL Day Los Angeles March 21, 2019

Outline

- Definition and Applications
- General Pyrolyzing Ablator Problem
- Solution Example Using Finite Element Model
- Summary and Conclusions

Definitions

- Ablation is removal of material from the surface of an object by melting, vaporization, chipping, or other erosive processes.
- Pyrolysis is the decomposition of a material brought about by high temperatures
- Pyrolyzing Ablator is a material that undergoes sub-surface decomposition when heated and when becomes sufficiently hot, loses surface mass loss through melting or vaporization

Laser Machining

Reentry Heat Shields

Applications of Pyrolyzing Ablator Modeling

Wood Combustion

Rocket Nozzles

Plasma Heating

Heated Pyrolyzing Ablator

From Başkaya, A. O. "CFD Analysis of The Cork-Phenolic Heat Shield Of A Reentry Cubesat In Arc-Jet Conditions Including Ablation And Pyrolysis", 15th International Planetary Probe Workshop

General Problem Illustration

Modeling Requirements for Pyrolyzing Ablators

- Non-linear heat conduction in solids
- Non-linear, thermal boundary conditions
- Moving boundaries
- Non-linear, time-dependent quasi-solid in-depth reactions
- Transport and thermal properties as a function of material state as well as temperature
- Inclusion of the thermal effects of gas flow within the solid material
- In-depth pore pressure due to pyrolysis gas transport (not always employed)

Material Pyrolysis

Decomposition Model

Material consists of three constituents (although the number could be increased)

$$\rho = \Gamma(\rho_A + \rho_B) + (1 - \Gamma)\rho_C$$

• Components A and B decompose according to:

$$\left(\frac{\partial \rho_i}{\partial t}\right)_{\mathcal{Y}} = -A_i \exp\left(-\frac{E_i}{RT}\right) \rho_{o,i} \left(\frac{\rho_i - \rho_{r,i}}{\rho_{o,i}}\right)^{\psi_i}$$

 Material properties are a function not only of temperature, but also material state

In-Depth Temperature History

In-depth temperature time history can come from:
 Thermogravimetric Analysis (TGA)

$$T = \beta t + T_0$$

Steady-State energy balance (1-D transformed coordinate)

$$\frac{\partial}{\partial y} \left(k \frac{\partial T}{\partial y} \right) + \left(\frac{\partial \dot{m}_g h_g}{\partial y} \right) + \dot{s} \left(\frac{\partial \rho h_s}{\partial y} \right) = 0$$

- Transient energy balance (1-D transformed coordinate)

$$\rho C_p \left(\frac{\partial T}{\partial t}\right)_y = \frac{1}{A} \frac{\partial}{\partial y} \left(kA \frac{\partial T}{\partial y}\right)_t - \bar{h}(T) \left(\frac{\partial \rho}{\partial t}\right)_y + \dot{s} \rho C_p \left(\frac{\partial T}{\partial y}\right)_t + \frac{1}{A} \left(\frac{\partial \dot{m}_g h_g A}{\partial y}\right)_t$$

- Transient Energy Balance (1- and 2-D fixed coordinate)

$$\rho C_p \left(\frac{\partial T}{\partial t} \right) = \frac{1}{A} \nabla (kA\nabla T) - \bar{h}(T) \left(\frac{\partial \rho}{\partial t} \right) + \frac{1}{A} \nabla \cdot \left(\dot{\boldsymbol{m}}_g h_g A \right)$$

Surface Energy Balance and Pyrolysis Gas Flow

 $\alpha I + \rho_e \, u_e C_H (h_r - h_w) + k \frac{\partial T}{\partial y} - F \sigma \varepsilon (T_w^4 - T_\infty^4) - \left(\dot{m}_w h_w - \dot{m}_c h_c - \dot{m}_g h_g \right) = 0$

Surface Thermochemistry – Normalized Mass Loss

Surface thermochemistry conditions computed from equilibrium thermochemistry in terms of normalized mass fluxes.

Implementation

Two-Dimensional Transient Example

- Problem is for a twodimensional, axisymmetric puck
- Top of puck heated with Gaussian flux profile
- Pyrolysis gas flow calculated from potential flow
- Full surface thermochemistry with recession
- 2-D COMSOL Multiphysics[®] results compared to a series of 1-D results

2-D Problem Animation

Animation is twice actual speed

Original and Deformed Mesh

Summary

- COMSOL is a suitable tool for modeling pyrolyzing ablative materials
- General capabilities of COMSOL Multiphysics[®] allow for a wide variety of geometries and problems to modeled
- COMSOL allows for modifications to model to be made quickly and easily
- Solution algorithms are efficient and stable
- Integrated environment provides a very user friendly and powerful system for modeling
- Multiphysical modeling capability allows for structural and external flow to be incorporated into analysis (in progress)

For Additional Information

Risch, T., "Verification of a Finite-Element Model for Pyrolyzing Ablative Materials", presented at the AIAA 47th AIAA Thermophysics Conference, Denver CO, June 5-9, 2017.

QUESTIONS?

Final Recession Profile at 30 s

Example Problems

- Look at four examples solved with COMSOL
 - Thermogravimetric Analysis (TGA)
 - Steady-state one-dimensional thermal and density profile
 - One-dimensional transient temperature and recession history
 - Two-dimensional transient temperature and recession history

Thermogravimetric Analysis (TGA) Example

Thermogravimetric Analysis (TGA) Example

- Three component TACOT model
- Linear ramp increase in temperature at 10 K/min
- First-order time integration, not a spatial problem
- Results provide density and reaction rate for three components as a function of time
- COMSOL Multiphysics[®] results compared to independent fourth-order Runge-Kutta calculation

TGA Results - I

TGA Results - II

Steady-State Profile Example

Steady-State Profile Example

- After long times in an infinite sample with a fixed surface temperature and recession, temperature and density profile will reach a steady state
- Problem solution becomes independent of time
- Specified surface temperature (3000 K) and steady recession rate (1×10⁻⁴ m/s)
- COMSOL Multiphysics[®] results compared to independent second order finite difference calculation and results from the Fully Implicit Ablation and Thermal Analysis Program (FIAT)

Finite Difference Density Profile Comparison

FIAT Temperature Profile Comparison

FIAT Density Profile Comparison

One-Dimensional Transient Example

One-Dimensional Transient Example

- Problem is for a planar, finite width slab heated on one surface
- Frontface free stream enthalpy of 40 MJ/kg, a heat transfer coefficient of 0.1 kg/m²-s, and reradiation
- Backface is adiabatic
- Full surface thermochemistry
- Thermocouples located at 0.001, 0.002, 0.004, 0.008, 0.016, 0.024, and 0.050 m
- COMSOL Multiphysics[®] results compared to FIAT results

FIAT Surface Temperature Comparison

FIAT Recession Comparison

Char and Pyrolysis Surface Mass Loss Rates

FIAT In-Depth Temperature Comparison

FIAT Temperature Profile Comparison after 60 s

FIAT Density Profile Comparison after 60 s

Two-Dimensional Transient Example

BACKUP

Density Comparison 1-D vs 2-D

1-D

2-D

Pyrolysis Gas Flowrate

Thermophysical Properties

Thermophysical properties defined separately for virgin and char constituents. Composite properties determined by mixing rule based on mass.

$$k = xk_v + (1-x)k_c$$

$$C_p = xC_{p,v} + (1-x)C_{p,c}$$
$$x = \frac{\rho_v}{\rho_v - \rho_c} \left(1 - \frac{\rho_c}{\rho}\right)$$

Material Enthalpy

----Virgin

--Char

7,000

6,000

Virgin and char enthalpies computed from integration of specific heats.

specific heats.

$$h = \int_{T_0}^{T} C_p dT + h_0$$

$$h = xh_v + (1 - x)h_c$$

$$h =$$

Pyrolysis Gas Enthalpy

Pyrolysis gas enthalpy computed from equilibrium thermochemistry as a function of temperature and pressure.

$$h_{pg} = h_{pg}(p,T)$$

Surface Thermochemistry – Normalized Mass Loss

Surface thermochemistry conditions computed from equilibrium thermochemistry in terms of normalized mass fluxes.

Surface Thermochemistry –Gas Phase Enthalpy

Enthalpy of gases at the wall computed similarly from equilibrium thermochemistry.

$$h_w = h_w(p, B'_g, T_s)$$

w

0

X∄

COMSOL Multiphysics[®] User Interface

	2-D Axisymmetric3 14 May V5.3.m	ph - COMSOL Multiphysics
File Home Definitions Geometry Materials Physics Mesh	Study Results Developer Temperature, 3D (ht)	
Volume Slice Line Arrow Line Plot Plot Arrow Volume Sosurface Contour Mesh Surface Arrow Surface Streamline Annotation Plot Not Add Plot	Image: Second Point for Cut Line	Cut Line Direction Second Point for Cut Plane Normal Cut Line Surface Normal Cut Plane Normal First Point for Cut Plane Normal Cut Plane Normal from Surface Select Export
Model Builder ← → ↑ ↓ ☞ < □↑ □↓ □ ● ② 2-D Axisymmetric3 14 May V5.3.mph (root) ● ③ Global Definitions ↑ Parameters ● ③ Global Definitions ↑ Parameters ● ③ Global Definitions ↑ Parameters ● ③ Definitions ● △ Coefficient Form PDE (rho) ● △ Coefficient Form PDE 2 (p) ● △ Coefficient Form PDE (rho) ● △ Domain ODEs and DAEs (Volume) ● △ Study 1 ▲ Study 1 ▲ Study 1 ▲ Study 1 ▲ Derived Values ▲ ② Derived Values ▲ ■ Temperature, 3D (ht) <	Settings 3D Plot Group Plot ← → Label: Temperature, 3D (ht) ▼ Data Data set: Revolution 2D 1 Imme (s): 30 ▼ Title ▼ Plot Settings View: View 3D 2 ● Show hidden entities ● Propagate hiding to lower dimensions ✓ Plot data set edges Color: Black Frame: Material (r, phi, z) ▼ Color Legend ✓ Show units Position: Right ▼ Position: Right	Graphics Graphics Time=30.0 Temperature, K
CD Pyrolysis Mass Loss Z Signature Strength Str	Number Format	· · · · · · · · · · · · · · · · · · ·
	819 MB 1015 MB	

🔺 🖿 🐗 🌜 🗎 🔌

7:01 AM

6/5/2017

Example Uses of Pyrolyzing Ablator

Objective

- NASA primarily relies on custom written codes to analyze ablation and design TPS systems
- The basic modeling methodology was developed 50 years ago
- Through the years, CFD, thermal, and structural mechanics calculations have migrated from custom, userwritten programs to commercial software packages
- Objective is to determine that a commercial finite element code can accurately and efficiently solve pyrolyzing ablation problems

Advantages of Commercial Codes

- Usability (e.g. GUI)
- Built-in pre- and post-processing
- Built-in grid generation
- Efficient solution algorithms
- Multi-dimensional capability (planar, cylindrical, 1-D, 2-D, & 3-D)
- Built in function capability (predefined, analytic, and tabular)
- Validated by a wide user base
- Reduced life cycle cost
- Regular upgrades and maintenance
- Modeling flexibility
- Better documentation

Material Selection

- For comparisons, utilize Theoretical Ablative Composite for Open Testing (TACOT) Material Properties
- Open, simulated pyrolyzing ablator that has been used a baseline test case for modeling ablation and comparing various predictive models
- Properties Required
 - Solid virgin and char specific heat, enthalpy, thermal conductivity, absorptivity and emissivity
 - Pyrolysis gas enthalpy
 - Surface thermochemistry mass loss and gas phase enthalpy