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Definitions

e Ablation is removal of material from the surface
of an object by melting, vaporization, chipping, or
other erosive processes.

* Pyrolysis is the decomposition of a material
brought about by high temperatures

* Pyrolyzing Ablator is a material that undergoes
sub-surface decomposition when heated and
when becomes sufficiently hot, loses surface
mass loss through melting or vaporization



Applications of
Pyrolyzing Ablator
Modeling

Rocket Nozzles Plasma Heating



Heated Pyrolyzing Ablator

Virgin Material
Char Material Irgin IVliateria

From Baskaya, A. O. “CFD Analysis of The Cork-Phenolic Heat Shield Of A Reentry Cubesat In Arc-Jet
Conditions Including Ablation And Pyrolysis”, 15th International Planetary Probe Workshop



General Problem lllustration
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Modeling Requirements for Pyrolyzing Ablators

Non-linear heat conduction in solids

Non-linear, thermal boundary conditions

Moving boundaries

Non-linear, time-dependent quasi-solid in-depth reactions

Transport and thermal properties as a function of material
state as well as temperature

Inclusion of the thermal effects of gas flow within the solid
material

In-depth pore pressure due to pyrolysis gas transport (not
always employed)
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Decomposition Model

Material consists of three constituents (although the number
could be increased)

p =T(pa+pp)+ (1 —TD)pc
Components A and B decompose according to:

0\ _ oo L\ (Pizpr Vi
ot , i€XP RT Po,i Do

Material properties are a function not only of temperature,
but also material state




In-Depth Temperature History

* |n-depth temperature time history can come from:
— Thermogravimetric Analysis (TGA)

— Steady-State energy balance (1-D transformed coordinate)

d ([ OT . h dph
2=+ (2220 + 5[ ZL25) = 0
dy \ dy dy dy

— Transient energy balance (1-D transformed coordinate)

e (70Y 12 (0N rery (22) 4 spe (OT) 4L (2alioA
ppaty_Aay 0y ), atySppaytA oy ),

— Transient Energy Balance (1- and 2-D fixed coordinate)

aT 1 _ d 1



Surface Energy Balance and Pyrolysis Gas Flow
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Surface
thermochemistry
conditions
computed from
equilibrium
thermochemistry in
terms of normalized
mass fluxes.

B, = mc/peueCM
Bé = Mg /PelleCy

Bc = Be(p, By, T5)
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Implementation
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Problem is for a two-
dimensional, axisymmetric
puck

Top of puck heated with
Gaussian flux profile

Pyrolysis gas flow calculated
from potential flow

Full surface thermochemistry
with recession

2-D COMSOL Multiphysics®
results compared to a series
of 1-D results

Two-Dimensional Transient Example

I =1I,-exp(=C (r/1)%)
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Iy

14



Time=0.00 Total Density, kg/m?

2-D Problem Animation
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Original and Deformed Mesh
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Summary

COMSOL is a suitable tool for modeling pyrolyzing ablative
materials

General capabilities of COMSOL Multiphysics® allow for a
wide variety of geometries and problems to modeled

COMSOL allows for modifications to model to be made quickly
and easily

Solution algorithms are efficient and stable

Integrated environment provides a very user friendly and
powerful system for modeling

Multiphysical modeling capability allows for structural and
external flow to be incorporated into analysis (in progress)



For Additional Information

Risch, T., “Verification of a Finite-Element Model for Pyrolyzing
Ablative Materials”, presented at the AIAA 47th AIAA
Thermophysics Conference, Denver CO, June 5-9, 2017.



QUESTIONS?
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Example Problems

* Look at four examples solved with COMSOL
— Thermogravimetric Analysis (TGA)

— Steady-state one-dimensional thermal and density
profile

— One-dimensional transient temperature and
recession history

— Two-dimensional transient temperature and
recession history



Thermogravimetric Analysis (TGA) Example
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Thermogravimetric Analysis (TGA) Example

Three component TACOT model
Linear ramp increase in temperature at 10 K/min
First-order time integration, not a spatial problem

Results provide density and reaction rate for three
components as a function of time

COMSOL Multiphysics® results compared to independent
fourth-order Runge-Kutta calculation
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TGA Results - 1l
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Steady-State Profile Example
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Steady-State Profile Example

After long times in an infinite sample with a fixed surface
temperature and recession, temperature and density profile
will reach a steady state

Problem solution becomes independent of time

Specified surface temperature (3000 K) and steady recession
rate (1x10* m/s)

COMSOL Multiphysics® results compared to independent
second order finite difference calculation and results from the
Fully Implicit Ablation and Thermal Analysis Program (FIAT)



Finite Difference Temperature Profile Comparison
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Finite Difference Density Profile Comparison
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One-Dimensional Transient Example
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One-Dimensional Transient Example

Problem is for a planar, finite width slab heated on one
surface

Frontface free stream enthalpy of 40 MJ/kg, a heat transfer
coefficient of 0.1 kg/m?-s, and reradiation

Backface is adiabatic
Full surface thermochemistry

Thermocouples located at 0.001, 0.002, 0.004, 0.008, 0.016,
0.024, and 0.050 m

COMSOL Multiphysics® results compared to FIAT results
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FIAT In-Depth Temperature Comparison
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Two-Dimensional Transient Example

40



BACKUP



Density Comparison 1-D vs 2-D
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Thermophysical
properties defined
separately for virgin and
char constituents.
Composite properties
determined by mixing
rule based on mass.
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Material Enthalpy
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Pyrolysis gas enthalpy
computed from
equilibrium
thermochemistry as a
function of
temperature and
pressure.
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Surface
thermochemistry
conditions
computed from
equilibrium
thermochemistry in
terms of normalized
mass fluxes.

B, = mc/peueCM
Bé = Mg /PelleCy

Bc = Be(p, By, T5)
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Surface Thermochemistry —Gas Phase Enthalpy
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Example Uses of Pyrolyzing Ablator
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Objective

NASA primarily relies on custom written codes to analyze
ablation and design TPS systems

The basic modeling methodology was developed
50 years ago

Through the years, CFD, thermal, and structural
mechanics calculations have migrated from custom, user-
written programs to commercial software packages

Objective is to determine that a commercial finite
element code can accurately and efficiently solve
pyrolyzing ablation problems



Advantages of Commercial Codes

e Usability (e.g. GUI)

* Built=in pre- and post-processing
* Built-in grid generation

e Efficient solution algorithms

 Multi-dimensional capability (planar, cylindrical, 1-D,
2-D, & 3-D)

e Built in function capability (predefined, analytic, and tabular)
e Validated by a wide user base

* Reduced life cycle cost

* Regular upgrades and maintenance

* Modeling flexibility

e Better documentation



Material Selection

 For comparisons, utilize Theoretical Ablative
Composite for Open Testing (TACOT) Material
Properties

* Open, simulated pyrolyzing ablator that has been used

a baseline test case for modeling ablation and
comparing various predictive models

* Properties Required

— Solid virgin and char specific heat, enthalpy, thermal
conductivity, absorptivity and emissivity

— Pyrolysis gas enthalpy

— Surface thermochemistry mass loss and gas phase
enthalpy



