



### ASSESSMENT OF GRID CONNECTIVITY QUALITY AND ENHANCEMENTS ON AUTOMATIC ESTIMATES ON HOLE BOUNDARY PLACEMENT

William M. Chan

**Shishir Pandya** 

### **NASA Ames Research Center**

12<sup>th</sup> Symposium on Overset Composite Grids and Solution Technology, Atlanta, Georgia, October 6 - 9, 2014



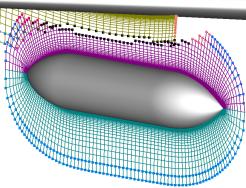


# **OVERVIEW**

- Overset grid connectivity quality
  - Review of quality measures that point to sources of orphan points and degradation of solution accuracy
  - Visualization tools in latest OVERGRID
- Hole boundary offset from minimum hole
  - Automatic variable distance estimate (work in progress)
- Summary and conclusions



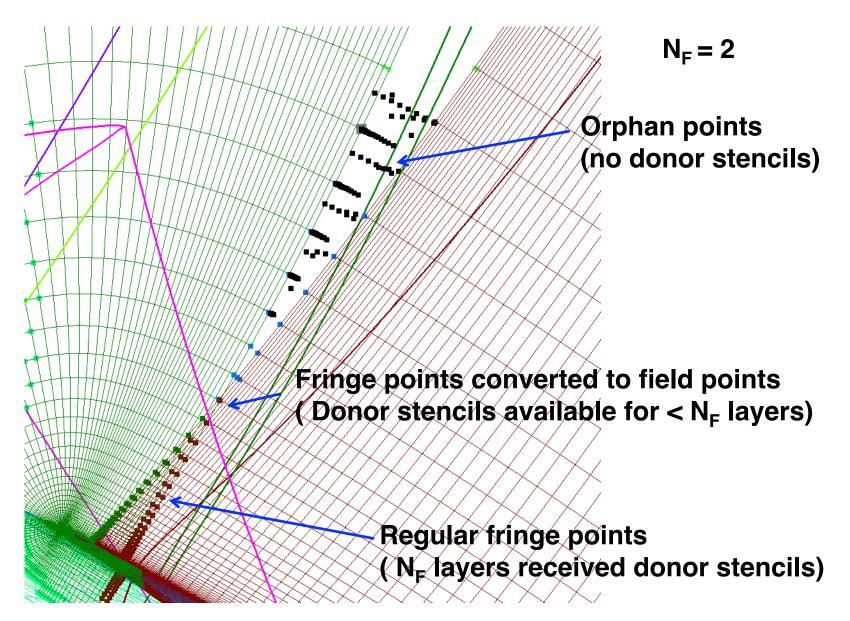
## **GRID CONNECTIVITY QUALITY**


Fringe points: grid points at outer boundaries and hole boundaries that require interpolation data from another grid

N<sub>F</sub> = Number of layers of fringe points requested

| Fringe<br>point | Donor<br>stencil           | Treatment                                                                                                                                                   | Quality                                                                                                    |
|-----------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Orphan          | None                       | Averaged from neighbors                                                                                                                                     | Poor                                                                                                       |
| Mixed           | < N <sub>F</sub><br>layers | Fringe points with no donor<br>stencils converted to field points<br>(reduced accuracy)<br>Fringe points with donor stencils<br>get trilinear interpolation | Accepted in most<br>standard practices if<br>number of converted<br>points is a small<br>fraction of total |
| Regular         | N <sub>F</sub><br>layers   | All fringe points receive trilinear interpolation                                                                                                           | Okay – Excellent<br>(varies depending on<br>fringe point / donor<br>stencil compatibility)                 |




3





### FRINGE POINTS AND DONOR STENCILS SCENARIOS









# **OVERGRID (2.3t) DIAGNOSTICS MODULE**

| Iblank Analysis                            | Orphan Analysis                                         |  |  |  |  |
|--------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Compute All Compute Selected               | Total Display 100000                                    |  |  |  |  |
| Points Total No. % of Total                | None     All     Selected     Table                     |  |  |  |  |
| Blanked                                    | Color   Black/White  Grid #                             |  |  |  |  |
| Fringe                                     | Hole Boundaries Display                                 |  |  |  |  |
| Total                                      | <ul> <li>None</li> <li>All</li> <li>Selected</li> </ul> |  |  |  |  |
| Interpolation Stencil Analysis             | Converted Fringe Points                                 |  |  |  |  |
| Read Show                                  | Total 0 Nfringe 2                                       |  |  |  |  |
| Fringe Pt. / Interp. Stencil Compatibility | None     All     Selected     Table                     |  |  |  |  |
| 0.0 <= Vol. ratio <= 0.01 Show             | Color <ul> <li>Grey</li> <li>Grid #</li> </ul>          |  |  |  |  |
| Color • Grey • Grid # Table                | Cut Plane                                               |  |  |  |  |
| Negative Jacobians                         | • 0 • x • y • z Coord 0.0                               |  |  |  |  |
| Compute Show                               | Show Cut cells Cut edges Comp                           |  |  |  |  |

- Neighboring grid planes of selected orphan point
- 3-D hole boundaries
- Cut plane over curvilinear and Cartesian cells
- Converted fringe points
- Donor stencil compatibility





### **ORPHAN POINTS ANALYSIS**

#### **Orphan Points Display**

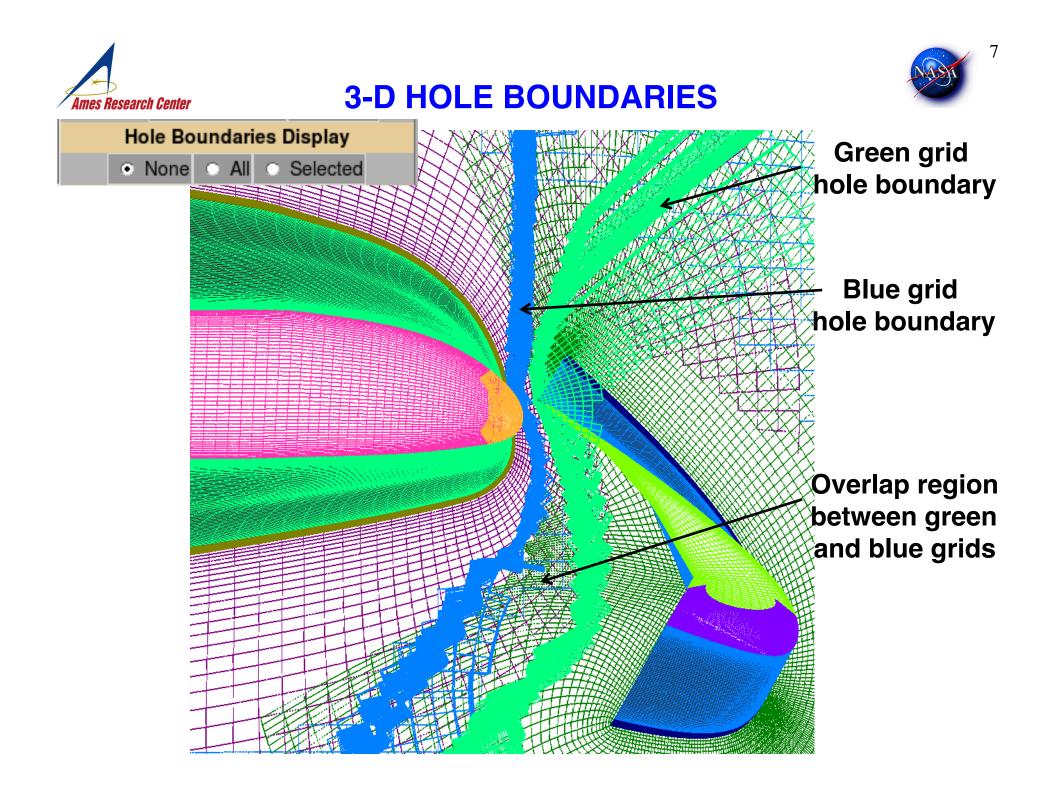


#### Orphan Points Count

#### Grid # Count

| 5     | 21  | $\square$ |
|-------|-----|-----------|
| 7     | 13  |           |
| 8     | 86  |           |
| 10    | 2   |           |
| 12    | 7   |           |
| 13    | 6   |           |
| 14    | 13  |           |
| 15    | 1   |           |
| 18    | 1   |           |
| 19    | 1   |           |
| 23    | 9   |           |
| Total | 160 |           |

Previous procedure: Manually select grid planes to display


Current procedure: Mouse pick orphan point

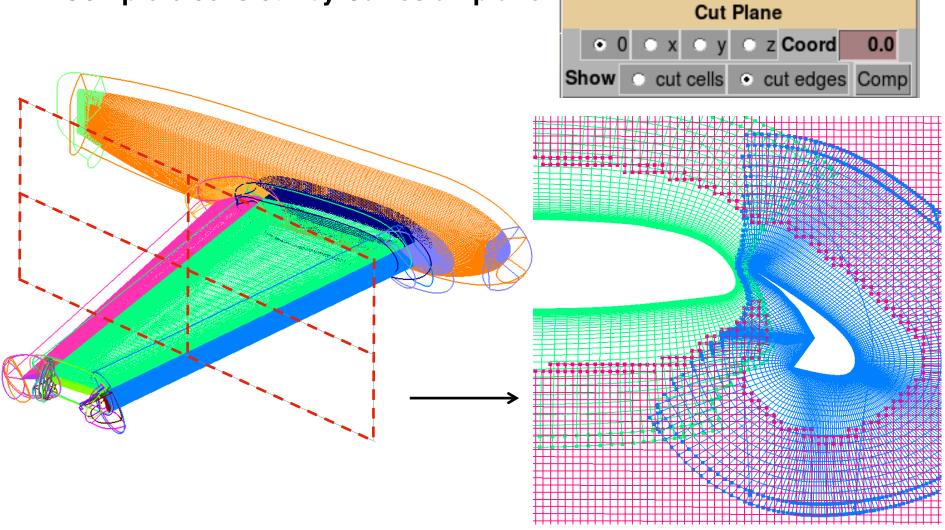
#### **Neighboring Grid Slices Display**

|                            | et w   | itr | ٦J  | ı İslic | s | Pla | ne   | T | <b>DQ</b> | ale  | <mark>S</mark> ⊡× |
|----------------------------|--------|-----|-----|---------|---|-----|------|---|-----------|------|-------------------|
| Neighboring Slices Display |        |     |     |         |   |     |      |   |           |      |                   |
|                            |        |     |     |         |   |     |      |   |           |      |                   |
|                            | Grid # |     | J   | Jmax    |   | К   | Kmax |   | L         | Lmax | Hide              |
| Orphan point               | 8      |     | 31  | 49      |   | 1   | 97   |   | 54        | 63   |                   |
| Orphan grid                | 8      | ٠   | 31  | 49      | • | 1   | 97   | • | 54        | 63   |                   |
| Neighboring grid           | 5      | •   | 289 | 329     | • | 96  | 96   |   | 53        | 63   | ٠                 |
|                            | 7      | •   | 84  | 84      | • | 9   | 97   |   | 54        | 63   |                   |
|                            | 10     | •   | 205 | 331     | • | 87  | 93   |   | 55        | 63   | •                 |
|                            | 11     | •   | 39  | 49      | • | 1   | 49   |   | 55        | 63   | •                 |
|                            | 12     | •   | 1   | 97      | • | 1   | 97   |   | 54        | 63   | •                 |
|                            | 18     | •   | 119 | 239     | • | 72  | 94   |   | 63        | 63   | •                 |
|                            | 23     | •   | 55  | 252     | • | 286 | 365  | • | 103       | 195  | •                 |
|                            | 24     | •   | 53  | 99      | • | 18  | 57   | • | 41        | 81   | •                 |
|                            |        |     |     |         |   |     |      |   |           |      |                   |

☐ Hide All Slices

Auto display of grid planes from neighboring grids that may cover point



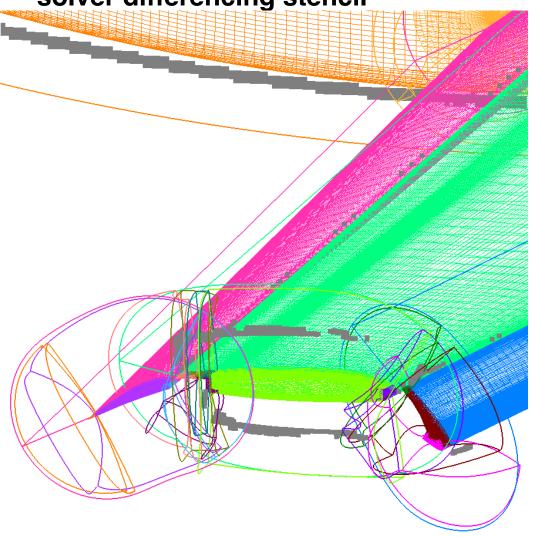





### **CONSTANT CARTESIAN CUTPLANE**

#### **Display options:**

- Edges formed by intersection of Cartesian plane and hex cells
- Complete cells cut by Cartesian plane






## **CONVERTED FRINGE POINTS**

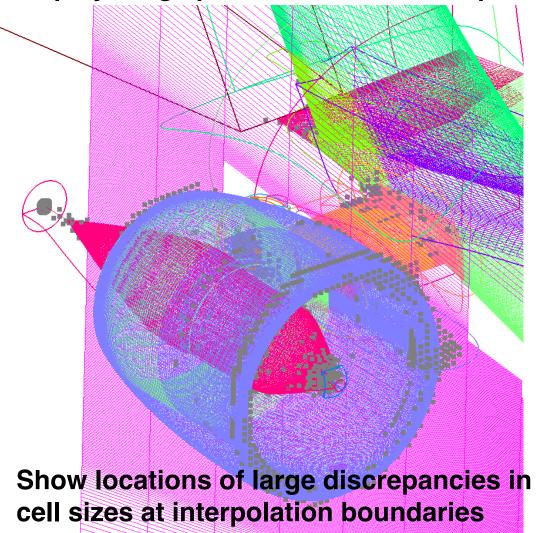


Display of level 2 or higher fringe points that have been converted to field points due to insufficient overlap – reduction in solution solver differencing stencil



| Converted Fringe Points  |       |   |          |       |  |  |
|--------------------------|-------|---|----------|-------|--|--|
| Total 0 Nfringe 2        |       |   |          |       |  |  |
| <ul> <li>None</li> </ul> | • All | ٠ | Selected | Table |  |  |
| Color   Grey  Grid #     |       |   |          |       |  |  |

### Fringe Repair Points Count


| Gria # | Count |  |
|--------|-------|--|
| 4      | 81    |  |
| 5      | 65    |  |
| 6      | 13    |  |
| 7      | 49    |  |
| 8      | 223   |  |
| 9      | 98    |  |
| 10     | 193   |  |
| 12     | 241   |  |
| 13     | 48    |  |
| 14     | 48    |  |
| 15     | 65    |  |
| 16     | 160   |  |
| 18     | 2     |  |
| 22     | 1119  |  |
| 23     | 1063  |  |
| Total  | 3468  |  |
|        |       |  |







Vr = ratio of cell volume of fringe point and cell volume of donor stencil Range: 0 < Vr <= 1.0 (smaller volume / larger volume) Display fringe points with Vr inside specified range

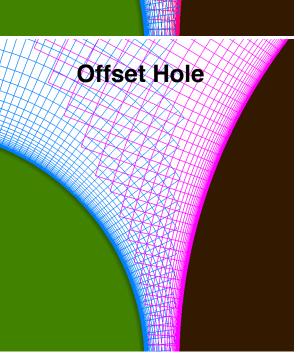


| Fringe Pt. / Interp. Stencil Compatibility |                 |                                  |  |  |  |  |
|--------------------------------------------|-----------------|----------------------------------|--|--|--|--|
| 0.0 <= Vol. ratio <= 0.01 Shore            |                 |                                  |  |  |  |  |
| Colo                                       | r 💿 Grey        | Grid # Table                     |  |  |  |  |
|                                            | f               | compat _ 🗆 🗙                     |  |  |  |  |
| Fringe I                                   | Points and Inte | erpolation Stencil Compatibility |  |  |  |  |
| Grid #                                     | 0.0 <= Vol. ra  | tio <= 0.001 Fraction of total   |  |  |  |  |
| 3                                          | 271             | 0.001115                         |  |  |  |  |
| 4                                          | 160             | 0.002431                         |  |  |  |  |
| 8                                          | 812             | 0.007737                         |  |  |  |  |
| 11                                         | 15              | 0.000425                         |  |  |  |  |
| 12                                         | 122             | 0.004387                         |  |  |  |  |
| 16                                         | 175             | 0.001214                         |  |  |  |  |
| 17                                         | 2954            | 0.019011                         |  |  |  |  |
| 18                                         | 513             | 0.004790                         |  |  |  |  |
| 19                                         | 22251           | 0.205512                         |  |  |  |  |
| 20                                         | 493             | 0.012559                         |  |  |  |  |
| 21                                         | 1123            | 0.028608                         |  |  |  |  |
| 22                                         | 828             | 0.003422                         |  |  |  |  |
| 23                                         | 830             | 0.006498                         |  |  |  |  |
| 24                                         | 12308           | 0.130355                         |  |  |  |  |
| 26                                         | 1291            | 0.001500                         |  |  |  |  |
| 30                                         | 28              | 0.000159                         |  |  |  |  |
| 34                                         | 20              | 0.000173                         |  |  |  |  |
| 36                                         | 1               | 0.000002                         |  |  |  |  |
| 37                                         | 1               | 0.00008                          |  |  |  |  |
| 38                                         | 198             | 0.000358                         |  |  |  |  |
| 41                                         | 473             | 0.002026                         |  |  |  |  |
| Total                                      | 44867           |                                  |  |  |  |  |



### HOLE-CUTTING METHODS BEYOND MINIMUM HOLE




#### **Minimum hole**

- Blank all points that are inside solid bodies

### **Offset from Minimum Hole**

- Perturb hole boundary points away from solid surface
- Many acceptable solutions

| Hole cut    | Implicit                                                                                                                                   | Explicit                                                     |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Description | Find donor stencils<br>for ALL points in<br>volume grid.<br>Use cell attribute<br>criteria to settle on<br>final hole boundary<br>location | User specifies<br>minimum hole<br>cut and offset<br>distance |
| User time   | Low                                                                                                                                        | High                                                         |
| CPU time    | High                                                                                                                                       | Low                                                          |



**Minimum Hole** 



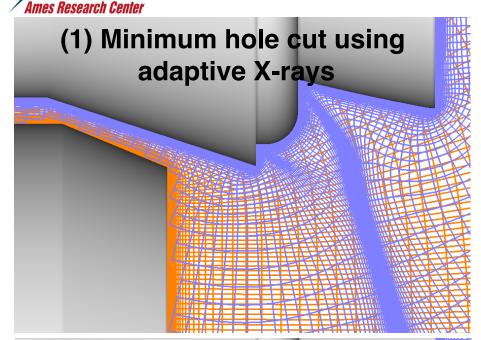
Input: flow solver boundary conditions, component ID on solid walls

#### **Automatic**

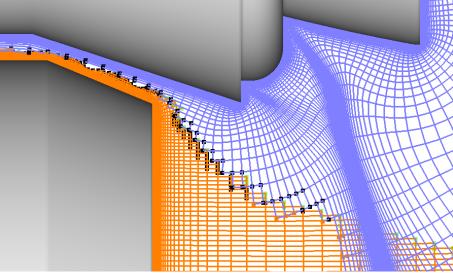
- determination of grid points to be cut by each X-ray
- generation of adaptive X-rays to cut minimum hole
- initial hole boundary offset estimates using wall distance rules
- orphan points removal iterations by adjusting hole boundaries

#### **Publication**

*Chan, W. M., Pandya, S. A., Rogers, S. E., Efficient Creation of Overset Grid Hole Boundaries and Effects of Their Locations on Aerodynamic Loads, AIAA Paper 2013-3074, AIAA 21<sup>st</sup> Computational Fluid Dynamics Conference, San Diego, CA, June, 2013* 


#### Deficiencies

- Hole boundary offset estimate based on assumption of constant outer boundary extent of near-body grids and iblanks are ignored


# **HOLE-CUTTING PROCEDURE IN C3P**

and the day of the





## (3) After 1 orphan removal iteration



(2) Initial hole boundary estimate using wall-distance heuristic rules

Deficiency: May result in many orphan points

(4) After 3 orphan removal iteratio<mark>ns</mark>



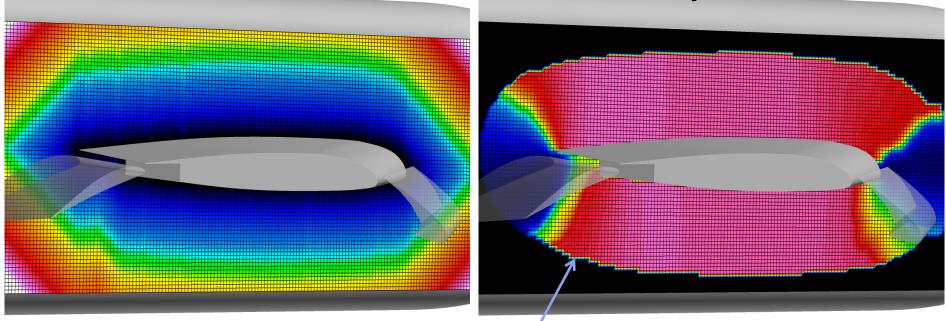


## **OBJECTIVES OF CURRENT WORK**

1. Given minimum hole boundary, automatically determine spatially variable offset that results in as few orphan points as possible so that orphan removal iterations can be omitted

2. CPU time for auto offset needs to be no more expensive than orphan removal iterations



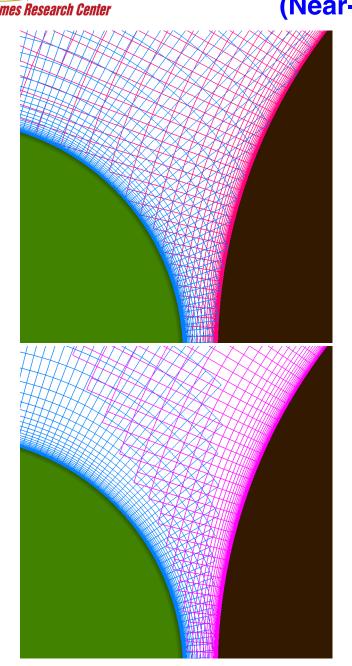



For each geometric component, use Cartesian map to determine

- distance to component wall
- local outer boundary extent of component near-body grids after (1) minimum hole cut, (2) near-body hole cut estimate

**Distance to main-wing wall** 

Local outer boundary extent of main-wing near-body grids after near-body hole cut




Volume grid outer boundary of main-wing

### HOLE BOUNDARY ESTIMATE PROCEDURE (1) (Near-Body Grids Blanking)

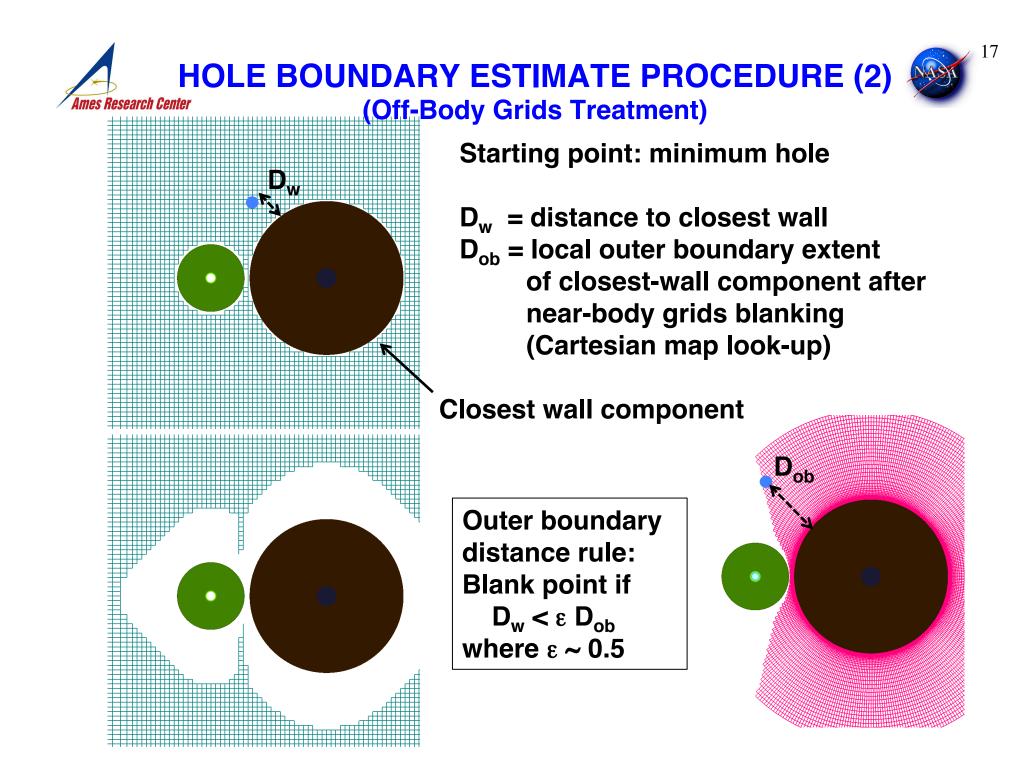


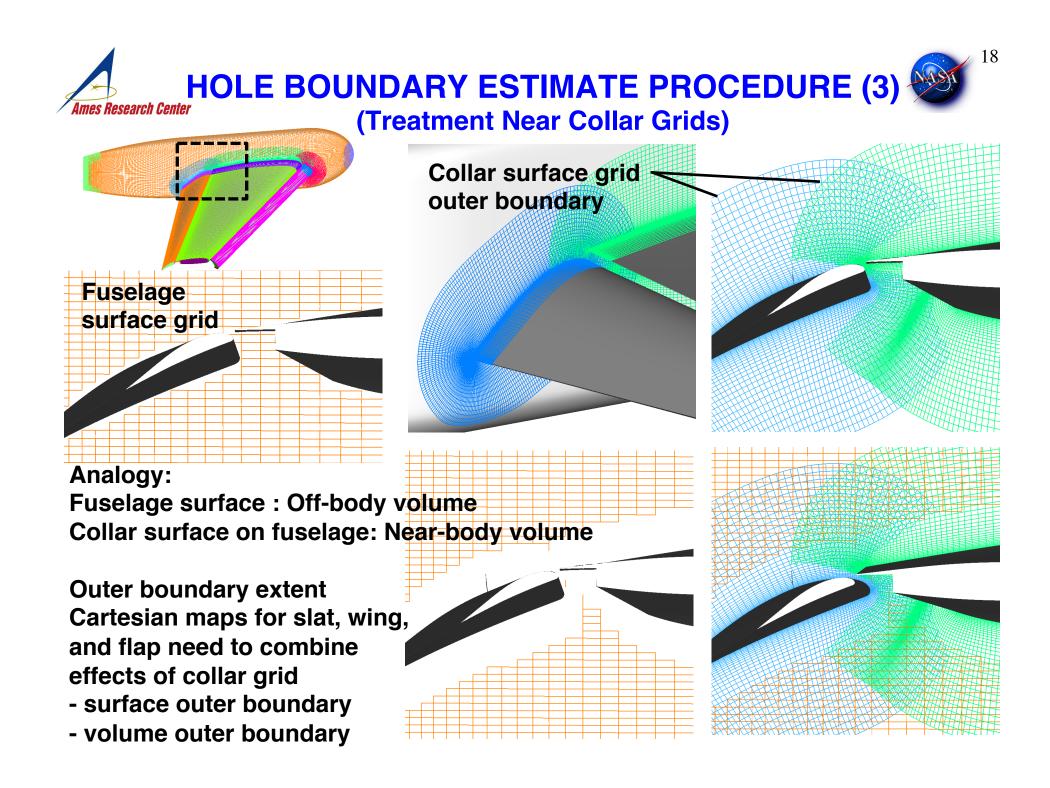
16



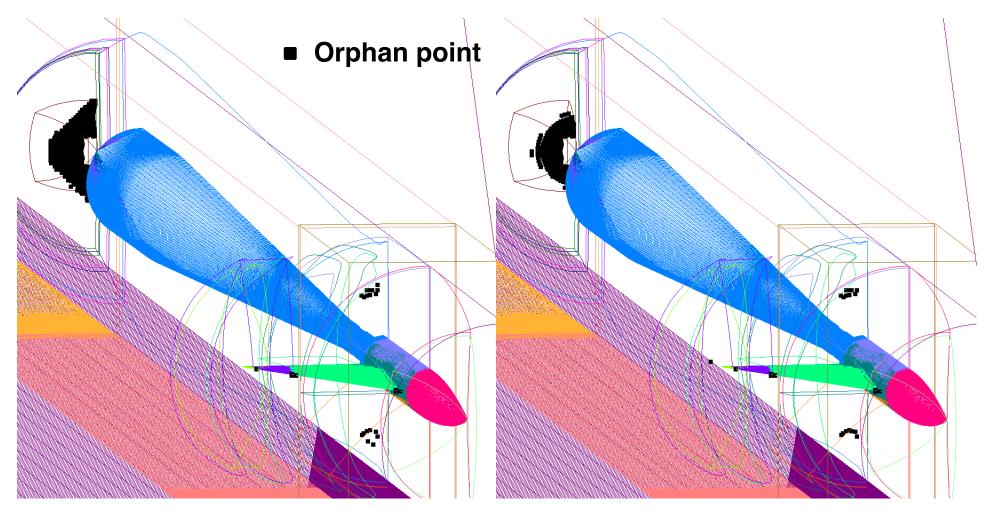
Starting point: minimum hole

- **D**<sub>w</sub> = distance to wall of another component
- $D_n = distance to wall of own component$


 $N_F = no.$  of layers of requested fringe points


Mid-distance rule:

- For each ray from surface, find first index  $L_{mid}$  in normal direction L where  $D_w < D_n$ 


- Blank all points  $L > L_{mid} + N_F$ 



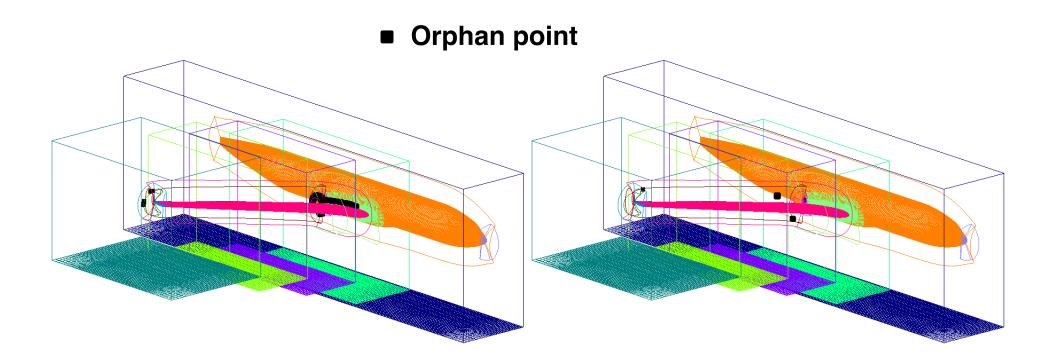




# HOLE BOUNDARY ESTIMATE TEST CASE 69° Delta-wing / Body / Sting (AIAA Sonic Boom Workshop) 32.6 million points, 17 grids



Previous: 1674 orphans


New: 1042 orphans

19





### HOLE BOUNDARY ESTIMATE TEST CASE Subsonic Wing/Body: Common Research Model (CRM) 17.8 million points, 14 grids



#### **Previous: 513 orphans**

New: 34 orphans

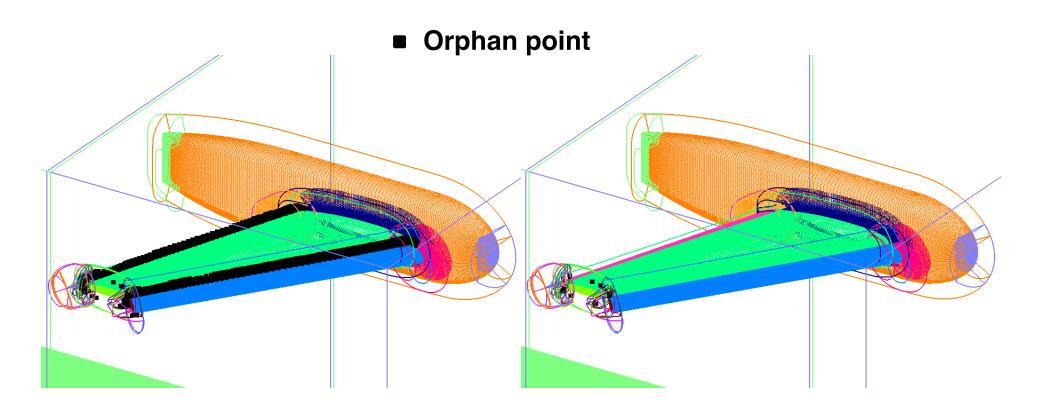




## HOLE BOUNDARY ESTIMATE TEST CASE

#### Tank and Booster 28.5 million points, 6 grids

Orphan point

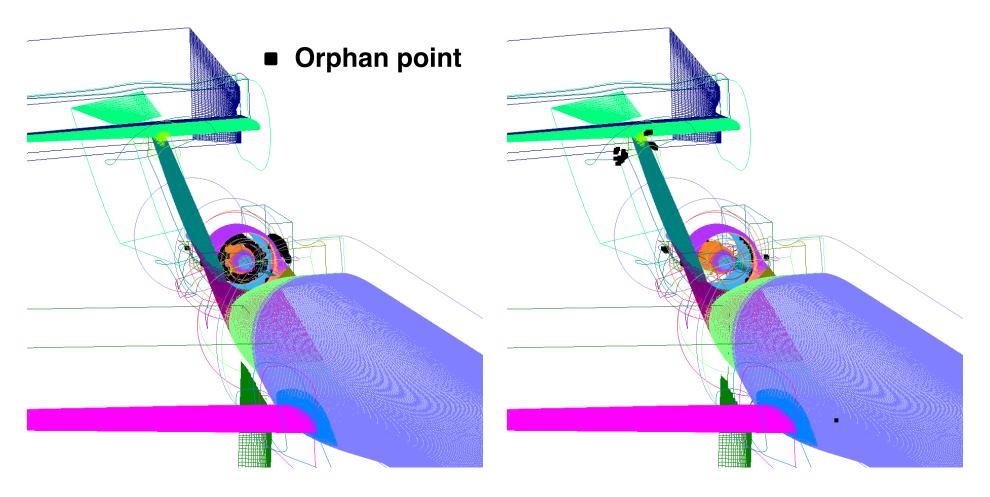



**New: 2 orphans** 





### HOLE BOUNDARY ESTIMATE TEST CASE Fuselage with Slat, Wing, and Flap High Lift System (Trapwing) 50.6 million points, 24 grids




**Previous: 85000 orphans** 

New: 32 orphans



#### 156.5 million points, 66 grids



**Previous: 61200 orphans** 

New: 693 orphans





# **TEST CASES AND RESULTS**

CPU time to perform minimum hole cut, hole boundary estimate, donor stencil search, and I/O

Linux workstation, 8 OpenMP threads

| Test Case     | # Grid pts<br>(x10 <sup>6</sup> ) | Previous           |     | New       |          |  |
|---------------|-----------------------------------|--------------------|-----|-----------|----------|--|
|               |                                   | # orphans CPU time |     | # orphans | CPU time |  |
| Delta Wing    | 32.6                              | 1674 30s           |     | 1042      | 26s      |  |
| CRM           | 17.8                              | 513                | 25s | 34        | 24s      |  |
| Core/SRB      | 28.5                              | 112500             | 46s | 2         | 36s      |  |
| Trapwing      | 50.6                              | 85000              | 94s | 32        | 73s      |  |
| D8 blend nac. | 156.5                             | 61200 651s         |     | 693       | 600s     |  |
|               | 1                                 |                    |     |           |          |  |
|               | n Can's                           | stop here          |     |           |          |  |

removal iterations

Can stop here for cases 2,3,4

New time ~ 77% – 96% of previous time





**Overset grid connectivity quality visualization in OVERGRID (2.3t)** 

- Various displays related to grid connectivity
- Facilitate rapid location of
  - sources of orphan points
  - local degradation of solution accuracy due to reduction in differencing stencils, or large discrepancies in inter-grid cell sizes

### Improved spatially variable hole boundary offset from minimum hole

- Successful use of distance rules requires local estimates enabled by Cartesian maps
  - Distance to wall
  - Outer boundary extent of near-body grids with iblanks accounting
- Rules for near-body grids, off-body grids, collar grids
- Compared to previous procedure
  - Significant reduction in number of orphan points (most cases)
  - Reduction in CPU time