Thermal Moonquake Location Algorithm and Analysis

Deanna Phillips¹, Renee C. Weber²

Contact: deanna.phillips@uah.edu ¹The University of Alabama in Huntsville, ² NASA MSFC

Thermal Moonquakes

- What: Thermal moonquakes are small amplitude events that are produced by diurnal temperature changes.
- Why: Finding the locations of thermal moonquakes will lead to information about lunar surface processes.
- Where: Apollo 17 Lunar Seismic Profiling Experiment (LSPE) is able to locate thermal moonquake unlike Apollo 12-16.
- The primary science goal was an active source experiment to study the detailed structure of the lunar crust using 8 explosive packages (EPs).
- The secondary science goal was to passively listen for lunar seismic activity.

Figure 1: Partially fragmented 20 m boulder near central peak complex of Schiller crater (Basilevsky et. al., 2013).

Figure 2: Apollo 17 EP2, 3, 4, and 8 (red diamonds) locations with LSPE geophones (black plus) and the lunar module (Haase et. al., 2013).

Location Algorithm

 How: We used arrival times to locate thermal moonquakes using a least squares location algorithm incorporating ray tracing with several shallow structure velocity models.

Figure 3: Apollo 17 EP4 waveform data from Geo1, Geo2, Geo3, and Geo4. The red line is the chosen arrival time.

Figure 4: Ray tracing using Sollberger velocity model including EP4 as the source (black diamond), Geo2 as the receiver (black triangle), and the depth of the resulting path.

			Calllaanaan	Heffels
	Cooper	Heffels	Sollberger	Modified
0-4 m	100 m/s	285 m/s	100 m/s	100 m/s
4-32 m	327 m/s		370 m/s	285 m/s
32-60 m	495 m/s			
60-96 m			500 m/s	
96-390 m		580 m/s		580 m/s
390-410 m	960 m/s			
410-773 m			1100 m/s	
773 m-1 km		1825 m/s		1825 m/s
1-1.385 km			4.90 km/s	
1.385-2 km	4.90 km/s			
2-15 km		4.90 km/s		4.90 km/s

Location Analysis

Figure 5: Theoretical EP4 location using location algorithm showing the geophones (light blue circles), lunar module (light blue diamond), and the known location of the EP (light blue x). The red x is the theoretical location using a) Cooper, b) Heffels, c) Sollberger, and d) modified Heffels velocity models with a 95% chi squared confidence region (red contour).

Future Work

- Considering the grouping of EP2, EP3, EP4, and EP8, we can possibly find a velocity model that is split on both sides of the geophone array.
- Additionally, we are exploring options to perform local noise tomography on the Moon.

References

- Basilevsky, A. T. et. al. (2013). *PSS*, 89, 118–126
- Cooper, M. R. et. al. (1974). Rev Geophy Space, 12(3), 291–308.
- Duennebier, F. (1976). 7th Lunar Sci Conf (pp. 1073–1086).
- Haase, I. et. al. (2013). 44th (LSPC) 1966.
- Heffels, A. et. al. (2017). *PSS*, 135, 43–54.
- Nakamura, Y. (1983). JGR, 88(10), 677–686.
- Sollberger, D. et. al. (2016). *GRL*, 43, 10078–10087.

Acknowledgments

- Dr. Max Bonamente (UAH Advisor)
- This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Grant 80NSSC18K1318.