5...4...3...2...1...

SPACE LAUNCH SYSTEM

Efficient On-Orbit Singularity-Free Geopotential Estimation

Joel Amert, MSFC/NASA Evan J. Anzalone, MSFC/NASA 2019 AAS GNC Conference

Overview

- The complexity of the geopotential model can heavily impact the navigation error in satellites and spacecraft
- Geopotential models of the accuracy needed for spaceflight are too complicated for flight computers to run at the rate needed by the navigation system
- There are methods to make the geopotential model more efficient while maintaining the needed accuracy, which include:
 - -Using an efficient method for the full model
 - Propagating to avoid singularities
 - -Running the full model at a low rate and propagating to the needed rate
- These methods can decrease the computational requirement enough to be run by the flight computer at the rate required of the navigation system

Geopotential Model

The simplest gravity model assumes that the body is a point mass located at its center of gravity or a perfect sphere
Acceleration in this model is given by the equation

$$\ddot{r} = -\mu \frac{r}{r^3}$$

• Where:

- -r is the vector from the spacecraft to the body
- μ is the gravitational parameter
- This is the first order term in higher order models, and is the dominant term of any gravity model, becoming more dominant for higher derivatives

Higher Order Geopotential Models

Higher order gravity models have the form

$$V = \frac{\mu}{r} \left[\sum_{n=0}^{n_{max}} \left(\frac{a}{r} \right)^n \sum_{m=0}^n \left(\bar{C}_{nm} \cos m\lambda + \bar{S}_{nm} \sin m\lambda \right) \bar{P}_{nm} (\sin \phi) \right]$$

• Where:

- V is the gravitational potential
- ϕ is the geocentric latitude
- λ is the geodetic longitude
- a is the semi-major axis
- $-\mu$ is the gravitational parameter
- \bar{C}_{nm} , \bar{S}_{nm} are the fully normalized gravitational coefficients given by the model
- $-\bar{P}_{nm}$ is the fully normalized associated Legendre function
- Non-Normalized or Quasi-Normalized coefficients and Legendre functions can also be used
- The first derivative of the potential is acceleration
- The second derivative is the Jacobian of the acceleration, or the partial matrix, which is used in the navigation filter
- The third derivatives are the Hessian matrixes of acceleration

Geopotential Implementation Methods

There are numerous methods to implement the spherical harmonic gravity equation, four are summarized below:

Forward Column (Legendre)

Uses stable forward column recursion for the Associated Legendre Functions (ALF)
 Includes singularity at the poles above a latitude of ±89.999999° which can be eliminated through propagation

Clenshaw

Revision of Legendre method based on the Clenshaw approach to the summation of products of functions obeying a three-term recurrence relation
 Includes the same singularity as the Forward Column method

Pines

 Derived Legendre Polynomials are used instead of ALFs in order to get rid of any singularity, at the cost of using a redundant set of variables

Cunningham

-Uses forward recursion on a certain differential operator to avoid any singularities, at the cost of using a redundant set of variables

Forward Column Method

- The forward column method has been shown to be among the most efficient methods of calculating the geopotential
- The associated Legendre Function is calculated using recursion, going forward in the column
- This includes a singularity at the poles, which must be calculated separately
- This method must also be optimized to work efficiently

Comparison of Geopotential Implementation Methods

.7

Geopotential Propagation

- Even when using an efficient method of calculating the geopotential, it can have too large of a computational requirement for the flight computer
- One method to lower the computational requirement is to run the full geopotential model at a lower rate, for example 1 Hz, then propagate at a higher rate, for example 100 Hz, between full model runs
- There are multiple options to propagate, including first order, second order, or three-step propagation

First Order Propagation

 In order to calculate gravity at a high rate, it can be estimated through a first order expansion, which has the form

 $g(\mathbf{r}) \approx \mathbf{g}(\mathbf{r}^*) + \mathbf{G}(\mathbf{r}^*)[\mathbf{r} - \mathbf{r}^*]$

• Where:

- $-g(\mathbf{r})$ is the gravity at location \mathbf{r} (current location)
- $-g(\mathbf{r}^*)$ is the gravity at location \mathbf{r}^* (location where full gravity model was calculated)
- $-G(\mathbf{r}^*)$ is the partial derivative matrix at location \mathbf{r}^*
- This method does not update the gravity partial matrix, which is only updated during the full gravity call
- On Orion EFT1, the full gravity model was called at a 1 Hz rate, resulting in being almost 2 seconds old when used, and propagated at 40 Hz using a first order expansion
- If higher accuracy, increased propagation time, or update of the partial matrix is required, a second order approximation can be used

Second Order Geopotential Propagation

The second order Taylor series can be approximated as

$$g(r) \approx g(r^*) + (G(r^*) + \Delta G)[r - r^*]$$

• Where: ΔG is the change in the G matrix

ΔG can be approximated as:

$$\mathbf{A}\mathbf{G} = \frac{\mathbf{G}_{PM}(r) - \mathbf{G}_{PM}(r^*)}{2}$$

• Where $G_{PM}(r)$ is the first order (point mass) gravity partial matrix at point r, and $G_{PM}(r^*)$ is the first order gravity partial matrix at r^* which is defined as

$$\mathbf{G}_{PM} = \frac{\mu}{r^5} \begin{bmatrix} 3x^2 - r^2 & 3xy & 3xz \\ 3xy & 3y^2 - r^2 & 3yz \\ 3xz & 3yz & 3z^2 - r^2 \end{bmatrix}$$

Second Order Geopotential Propagation

 Instead of needing to calculate the point mass gravity gradient matrix at each G update, the second order Taylor series expansion of gravity can be calculated by

$$g(r) \approx g(r^{*}) + G(r^{*})[r - r^{*}] + \frac{1}{2} \begin{bmatrix} [r - r^{*}]'H_{\chi}(r^{*})[r - r^{*}] \\ [r - r^{*}]'H_{\chi}(r^{*})[r - r^{*}] \\ [r - r^{*}]'H_{z}(r^{*})[r - r^{*}] \end{bmatrix}$$

 Where: H_i(r*)are the 3x3 Hessian matrixes of the acceleration components at r*. The G matrix at r can be updated as

$$G(r) \approx G(r^{*}) + \frac{1}{2} \begin{bmatrix} [r - r^{*}]' H_{\chi}(r^{*}) \\ [r - r^{*}]' H_{\chi}(r^{*}) \\ [r - r^{*}]' H_{\chi}(r^{*}) \end{bmatrix}$$

Propagation Accuracy

Geopotential Error

SLS

.12

Three-Step Geopotential Propagation

- The first order and second order methods can be combined to result in a method more computationally efficient than the second order method and more accurate than the first order method
- At a low rate, for example 1 Hz, the full geopotential model is calculated
- At a high rate, for example 100 Hz, a first order model is used to propagate the geopotential to the current location
- At a medium rate, for example 10 Hz, a second order model is used to update the geopotential

.13

Propagation Computational Efficiency

 The longer the propagation interval, the lower the effect on the runtime that increasing the propagation interval will have, approaching the computation requirement as the propagation method

Singularity Avoidance

- Instead of using redundant variables to avoid dividing by zero, a first or second order propagation can be used to avoid any singularities when using the Forward Column or the Clenshaw methods
- This results in maintaining accuracy while avoiding any singularities, while maintaining the increase in computation efficiency from not using redundant variables

Error Caused by Approaching the Poles

Conclusion

- The complexity of the geopotential model can heavily impact the navigation error in satellites and spacecraft
- Geopotential models of the accuracy needed for spaceflight are too complicated for flight computers to run at the rate needed by the navigation system
- There are methods to make the geopotential model more efficient while maintaining the needed accuracy, which include:
 - -Using an efficient method for the full model
 - Propagating to avoid singularities
 - -Running the full model at a low rate and propagating to the needed rate
- These methods can decrease the computational requirement enough to be run by the flight computer at the rate required of the navigation system