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Overview
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• The complexity of the geopotential model can heavily impact the 
navigation error in satellites and spacecraft  

• Geopotential models of the accuracy needed for spaceflight are too 
complicated for flight computers to run at the rate needed by the 
navigation system

• There are methods to make the geopotential model more efficient 
while maintaining the needed accuracy, which include: 

– Using an efficient method for the full model 
– Propagating to avoid singularities
– Running the full model at a low rate and propagating to the needed rate

• These methods can decrease the computational requirement enough 
to be run by the flight computer at the rate required of the navigation 
system 
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Geopotential Model
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• The simplest gravity model assumes that the body is a point mass 
located at its center of gravity or a perfect sphere

• Acceleration in this model is given by the equation 

�̈�𝒓 = −𝜇𝜇
𝒓𝒓
𝑟𝑟3

• Where:
– r is the vector from the spacecraft to the body
– μ is the gravitational parameter

• This is the first order term in higher order models, and is the dominant 
term of any gravity model, becoming more dominant for higher 
derivatives
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Higher Order Geopotential Models
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• Higher order gravity models have the form

𝑉𝑉 =
µ
𝑟𝑟 �

𝑛𝑛=0

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 𝑎𝑎
𝑟𝑟

𝑛𝑛
�
𝑚𝑚=0

𝑛𝑛

̅𝐶𝐶𝑛𝑛𝑚𝑚 cos𝑚𝑚𝑚𝑚 + ̅𝑆𝑆𝑛𝑛𝑚𝑚 sin𝑚𝑚𝑚𝑚 �𝑃𝑃𝑛𝑛𝑚𝑚 sin𝜙𝜙

• Where:
– V is the gravitational potential
– 𝜙𝜙 is the geocentric latitude
– λ is the geodetic longitude
– a is the semi-major axis
– μ is the gravitational parameter 
– ̅𝐶𝐶𝑛𝑛𝑚𝑚, ̅𝑆𝑆𝑛𝑛𝑚𝑚 are the fully normalized gravitational coefficients given by the model
– �𝑃𝑃𝑛𝑛𝑚𝑚 is the fully normalized associated Legendre function

• Non-Normalized or Quasi-Normalized coefficients and Legendre 
functions can also be used

• The first derivative of the potential is acceleration
• The second derivative is the Jacobian of the acceleration, or the partial 

matrix, which is used in the navigation filter
• The third derivatives are the Hessian matrixes of acceleration
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Geopotential Implementation Methods
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• There are numerous methods to implement the spherical harmonic gravity 
equation, four are summarized below:

• Forward Column (Legendre)
– Uses stable forward column recursion for the Associated Legendre Functions (ALF)
– Includes singularity at the poles above a latitude of ±89.999999°which can be 

eliminated through propagation
• Clenshaw

– Revision of Legendre method based on the Clenshaw approach to the 
summation of products of functions obeying a three-term recurrence relation

– Includes the same singularity as the Forward Column method
• Pines

– Derived Legendre Polynomials are used instead of ALFs in order to get rid of any 
singularity, at the cost of using a redundant set of variables

• Cunningham 
– Uses forward recursion on a certain differential operator to avoid any singularities, 

at the cost of using a redundant set of variables 
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Forward Column Method
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• The forward column method has been 
shown to be among the most efficient 
methods of calculating the 
geopotential

• The associated Legendre Function is 
calculated using recursion, going 
forward in the column

• This includes a singularity at the poles, 
which must be calculated separately

• This method must also be optimized to 
work efficiently
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Comparison of Geopotential Implementation Methods
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Geopotential Propagation
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• Even when using an efficient method of calculating the geopotential, it 
can have too large of a computational requirement for the flight 
computer

• One method to lower the computational requirement is to run the full 
geopotential model at a lower rate, for example 1 Hz, then propagate at 
a higher rate, for example 100 Hz, between full model runs

• There are multiple options to propagate, including first order, second 
order, or three-step propagation
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First Order Propagation
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• In order to calculate gravity at a high rate, it can be estimated through 
a first order expansion, which has the form

𝒈𝒈 𝐫𝐫 ≈ 𝐠𝐠 𝐫𝐫∗ + 𝐆𝐆 𝐫𝐫∗ 𝐫𝐫 − 𝐫𝐫∗

• Where: 
–𝐠𝐠 𝐫𝐫 is the gravity at location r (current location) 
–𝐠𝐠 𝐫𝐫∗ is the gravity at location 𝐫𝐫∗(location where full gravity model was 

calculated)
–𝐆𝐆 𝐫𝐫∗ is the partial derivative matrix at location 𝐫𝐫∗

• This method does not update the gravity partial matrix, which is only 
updated during the full gravity call

• On Orion EFT1, the full gravity model was called at a 1 Hz rate, resulting 
in being almost 2 seconds old when used, and propagated at 40 Hz 
using a first order expansion

• If higher accuracy, increased propagation time, or update of the partial 
matrix is required, a second order approximation can be used
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Second Order Geopotential Propagation

.10

• The second order Taylor series can be approximated as

𝒈𝒈 𝒓𝒓 ≈ 𝐠𝐠 𝐫𝐫∗ + 𝐆𝐆 𝐫𝐫∗ + 𝚫𝚫𝐆𝐆 𝒓𝒓 − 𝐫𝐫∗

• Where: 𝚫𝚫𝐆𝐆 is the change in the G matrix
• 𝚫𝚫𝐆𝐆 can be approximated as:

𝚫𝚫𝐆𝐆 =
𝐆𝐆𝑷𝑷𝑷𝑷 𝒓𝒓 − 𝐆𝐆𝑷𝑷𝑷𝑷 𝐫𝐫∗

2
• Where 𝐆𝐆𝑷𝑷𝑷𝑷 𝒓𝒓 is the first order (point mass) gravity partial matrix at point 

r, and 𝐆𝐆𝑷𝑷𝑷𝑷 𝐫𝐫∗ is the first order gravity partial matrix at 𝐫𝐫∗ which is defined 
as 

𝐆𝐆𝑷𝑷𝑷𝑷 =
𝜇𝜇
𝑟𝑟5

3𝑥𝑥2 − 𝑟𝑟2 3𝑥𝑥𝑥𝑥 3𝑥𝑥𝑥𝑥
3𝑥𝑥𝑥𝑥 3𝑥𝑥2 − 𝑟𝑟2 3𝑥𝑥𝑥𝑥
3𝑥𝑥𝑥𝑥 3𝑥𝑥𝑥𝑥 3𝑥𝑥2 − 𝑟𝑟2
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Second Order Geopotential Propagation
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• Instead of needing to calculate the point mass gravity gradient matrix at 
each G update, the second order Taylor series expansion of gravity can 
be calculated by

𝒈𝒈 𝒓𝒓 ≈ 𝐠𝐠 𝐫𝐫∗ + 𝐆𝐆 𝐫𝐫∗ 𝒓𝒓 − 𝐫𝐫∗ +
𝟏𝟏
𝟐𝟐

𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒙𝒙 𝐫𝐫∗ 𝒓𝒓 − 𝐫𝐫∗
𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒚𝒚 𝐫𝐫∗ 𝒓𝒓 − 𝐫𝐫∗

𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒛𝒛 𝐫𝐫∗ 𝒓𝒓 − 𝐫𝐫∗

• Where: 𝐇𝐇𝒊𝒊 𝐫𝐫∗ are the 3x3 Hessian matrixes of the acceleration 
components at 𝐫𝐫∗. The G matrix at r can be updated as 

𝐆𝐆 𝒓𝒓 ≈ 𝐆𝐆 𝐫𝐫∗ +
𝟏𝟏
𝟐𝟐

𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒙𝒙 𝐫𝐫∗
𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒚𝒚 𝐫𝐫∗

𝒓𝒓 − 𝐫𝐫∗ ′𝑯𝑯𝒛𝒛 𝐫𝐫∗
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Propagation Accuracy
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Three-Step Geopotential Propagation
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• The first order and second order methods 
can be combined to result in a method 
more computationally efficient than the 
second order method and more accurate 
than the first order method

• At a low rate, for example 1 Hz, the full 
geopotential model is calculated

• At a high rate, for example 100 Hz, a first 
order model is used to propagate the 
geopotential to the current location

• At a medium rate, for example 10 Hz, a 
second order model is used to update the 
geopotential 
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Propagation Computational Efficiency
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• The longer the propagation interval, the lower the effect on the runtime that 
increasing the propagation interval will have, approaching the 
computation requirement as the propagation method
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Singularity Avoidance
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• Instead of using redundant variables to avoid dividing by zero, a first or 
second order propagation can be used to avoid any singularities when 
using the Forward Column or the Clenshaw methods

• This results in maintaining accuracy while avoiding any singularities, while 
maintaining the increase in computation efficiency from not using 
redundant variables
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Conclusion
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• The complexity of the geopotential model can heavily impact the 
navigation error in satellites and spacecraft  

• Geopotential models of the accuracy needed for spaceflight are too 
complicated for flight computers to run at the rate needed by the 
navigation system

• There are methods to make the geopotential model more efficient 
while maintaining the needed accuracy, which include: 

– Using an efficient method for the full model 
– Propagating to avoid singularities
– Running the full model at a low rate and propagating to the needed rate

• These methods can decrease the computational requirement enough 
to be run by the flight computer at the rate required of the navigation 
system 
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