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Mission Concept of Operations
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Mission Concept of Operations
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Mission Design and Concept of Operations

» Goal of Mission:
— To return ~5 kg sample from Mars back to Earth

« Goal of Ascent Venhicle:

— Receive sample from surface rover, and insert
sample into desired orbit (accuracy TBR) with long
lifetime (12+ months)

» Other Constraints:

— Launch vehicle propellant must be stable for 5+
years

— Entire ascent platform and vehicle must fit within
volume and mass requirements to land on Mars

— Autonomous pre-launch procedures and operations
during flight
— Synchronization with orbital relays for detailed flight

telemetry and reconstruction (to aid in rendezvous
with sample rendezvous spacecratft)

« Two Vehicle Configurations in Parallel Development
— 2-stage Solid Motor with actuator TVC + RCS
« HTPB + AP (NH,CIO,)
— 1-stage Hybrid with LI-TVC + RCS
* Re-startable (2-burns)
« MON25 + SP7




Vehicle Concept and System Requirements

« Mission Objectives . Blue = Solid Propellant
Ascent Profile :
— 23.06 [kg] payload, 343 x 343 [km] Orange = Hybrid Propellant
25° inc. orbit, 400 [kg] GLOM limit Frajectory: Altitude

* Requires dV ~ 4000 m/s

* Vehicle Design
— GLOM, payload goals drive compact,
energy-dense propulsion design

— Coupled propulsion design with
trajectory design and optimization to

Altitude

produce dV split, burn times, thrusts, e

other specs to meet mission eafectory: velocity
— Iterative design process for vehicle

closure

e Trajectory Design
— 3DOF vehicle trajectory optimized with
both OTIS and POST
— Resulting trajectories and vehicles for
hybrid and solid differ —

OTIS: Optimal Trajectories by Implicit Simulation — NASA Glenn Research Center
POST: Program to Optimize Simulated Trajectories Il (POST2) — NASA Langley Research Center 6
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Guidance and Navigation Architecture

« Strapdown inertial navigation during flight
— Inertial measurement unit supplying acceleration and angular rate
— Comparing variety of platforms from MEMS to Navigation-grade
— Trade between mass/volume and performance
— Additional IMU and sun sensor on lander platform potential for
initialization
 Onboard actuators
— Thrust vector control on 15t stage
— Roll Control System on 2" stage
» All software resides on upper stage of vehicle for operation during flight
« Staging design principles
— First stage to quickly gain altitude
— Coast to apogee
— Second stage to circularize orbit
« Autonomous sequence for initialization, countdown, and ascent
« Guidance Options
— Must be robust to propulsion architecture (liquid and solid)



Simulation Architecture and Tools

Mars Ascent Vehicle (MAV) Analysis Tool in Simscape (MANTIiS)

— Plant: Aero, Gravity, Atmosphere, Thrust, Mass

— Sensor Dynamics (state model ~ Markov Bias and noise)

— GNC: Two Stage Guidance, State Estimation, TVC and RCS commands
Other internal standalone tools

— Guidance Implementations in MATLAB

— Mars Ascent Vehicle Navigation (MAN) Toolkit in Python

— Generalized Lunar Lander Simulation in Simscape (GLASS)
MAN + GLASS share same parent code base

— Developing standardized inertial navigation toolkit with PYTHON, MATLAB, and C/C++
wrappers

— Updated common navigation model being integrated into MANTIS
— Validation planned against verified and validated SLS INS model
— Moving towards integrated/common code-based for GNC analysis for landers/small launch

vehicles
* Functionality: Variance-based Sensitivity Analysis, Monte Carlo Simulations, 1/2/X-D Trades
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Guidance Algorithm Development

* Primary Problem: Design guidance to allow for excess energy in solid
motors which must be burned, and which is applicable for use in hybrid motor

— Typical large vehicle solutions (solid: blow-out panels, liquid: PEG, IGM)
are either too heavy or do not apply to both solid and hybrid motors

« Algorithm Options for 1st Stage: Open Loop, Lambert, GEM
 Algorithm Options for 2"d Stage: Open Loop, Lambert, GEM, Inertial Hold
* Open Loop: Fly commanded launch inertial pitch from simulated trajectory
 Closed Loop Lambert:

— Calculate lambert solution to burn target every 1 second

— Pitch at a preset rate until current velocity vector matches Lambert
solution

* Closed Loop GEM:
— Energy wasting technique to ensure thrust terminates at burn target
— Requires accurate estimate of remaining motor dV capacity

— Pitch off from lambert solution until dV capacity matches lambert
solution, then employ lambert

* Inertial Hold:
— Align thrust with velocity vector and burn to circularize the orbit



Lambert & GEM Guidance

Lambert Guidance GEM (General Energy Management)
Burn Target

Burn Target
Thrust

Radius

1
1
1
i
VLambert Soln :
1 dV
i
1
i
- = magnitude of dV
—_— = Vmotor capacity magnitude
© = Offset Angle
VCurrent Vehicle
As the motor burns, the delta-V capacity of the
motor reduces. As that magnitude of the delta-
V capacity of the motor approaches that
required by the Lambert guidance, the offset
| . angle approaches zero. This ensures zero dV
Figures redrawn from: Zarchan, P., “Tactical and .
Strategic Missile Guidance,” Chapter 14. Lambert CapaC|ty and target accuracy at the end of the
Guidance, 2" ed., Vol 157, AIAA, Washington DC, burn

1994, pp. 292-298
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Navigation System Design

. Sensor options Inertial Z Position Error 1-Sigma

— STIM3000, LN200S, HQ, MQ, HG1930, 10m, .1 m/s, .5 deg

HG9900 STIM3000 HQ
 Inertial navigation approach , :

— Integrate measurements at 200Hz

— Assuming IMU coning-sculling compensation

— 2-body gravity model

— Use of launch-fixed inertial frame . L
« Approaches to initialization T e T

— Onboard gyrocompassing

— Transfer alignment from platform

— Sensitivity analysis for position and attitude
initialization requirements

» Performance along 3DOF trajectory with
generated 6DOF attitude dynamics to match
commanded pitch profile
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Navigation Capability

* Navigation Performance
— Assumed external initialization errors: 10m, .1 m/s, .1 deg
— Performed Monte Carlos for each sensor type
— Errors captured in inertial, RTN, and orbital elements
— Comparing external initialization vs. gyrocompassing
* Longer trajectory with liquid propulsion exhibits greater error growth
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Integrated Vehicle Performance

* Open loop attitude commanding (pitch)
as function of altitude (or time)

* Running 3DOF simulation with attitude 1-sigma Insertion Uncertainty with 0.1 Deg.
errors for effect on pitch command

— Assessing impact of initial attitude ALT Vmag Ha Hp Inc

uncertainty and error growth (m) (m/s) (m) (m) (deg)

— Applied attitude errors as rotation to ~ nit-Error Only 340~ 2.4 1500 1300  0.08
thrust vector HQ 930 2.25 1500 1800 0.08

— Includes thrust trace and mass flow LN200 1300 3.1 2000 2500 0.11
matching POST optimization STIM3000 2000 4.7 3100 3800 0.17

« Assess against variety of IMUs HQ w/ .01 Deg 93 0.22 150 180 0.01

* Next steps: continued analysis of GEM
vs. Lambert for both vehicles,
integration into 6DOF simulation
framework

Dispersed Trajectory with Initial Attitude Error 1-Sigma of 0.1 Deg.

HQ IMU LN200 STIM3000

.}



Continuing Analysis and Trades

Simulation Maturation and Continued Development
— Integration of updated GN algorithms into MANTISS framework for dispersed 6DOF
— Sync with latest thrust trace/trajectory design
Need for improved Sensors
— Technology pull, integration opportunity
— Order of magnitude mass/volume increases for uncertainty decreases
— Level of redundancy/internal systems
Incorporation of other measurements
— Ground tracking from launch platform
— Support from orbital assets
— Star tracking for attitude solution during coast
Post-flight reconstruction challenges
— Limited data and external measurements
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Conclusions

« MSFC developing Ascent Vehicle to support JPL-led Martian Sample
Return effort

— In-house propulsion, structures, GNC design

— Tightly constrained system due to need for autonomous operation,
transportation to Mars, and long delay between integration and flight

* Developing Guidance and Navigation architecture early to feed into
sensor selection and vehicle trades

* Overall design in iteration between disciplines as individual elements
continue to mature

— Propulsion, thermal, structures, mission design, GNC

e Continuing work to feed into PDR-level analysis in early/mid 2019
— Final sensor selection
— Guidance algorithm robust to propulsion options
— Integrated GN with C in detailed 6DOF simulation tools
— Continued assessment of external disturbances (i.e. atmosphere)
— Proposed approach to state initialization with available sensors
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National Aeronautics and Space Administration

Any questions?

Thank you!
Co-authors: Dane Erickson NASA/MSFC, Carlos Montalvo/Univ. South Alabama
Thanks to Darius Yaghoubi, Joey Powers, Robin Pinson (NASA/MSFC), and our
JPL partners
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