Additive Manufacture Development, Applications, & Lessons Learned

Omar Mireles NASA Marshall Space Flight Center Nuclear & Emerging Technologies for Space, 2019

Introduction

Additive Manufacture (AM)

- A process of joining materials together to create objects from 3D model data.
- <u>Not</u> the ultimate manufacture solution. Conduct trades.
- Takes practice (design through in-service).

Appropriate Application

 High complexity = difficult to manufacture = long lead times = low production rate = high cost.

Advantages

- Increased design freedom and customization
- Near net-shape complex geometry
- Part count reduction
- Performance improvement (i.e. weight reduction)
- One-off and discontinued parts
- Shorter lead times
- Properties better than cast, 10-15% below wrought

AMDE Ox Turbopump Stator. Courtesy Derek O'Neal.

AMDE Fuel Turbopump Test. Courtesy Marty Calvert.

Disadvantages

• Misconceptions

- <u>MORE</u> expensive than traditional manufacturing (high hourly rates offset by reducing labor costs).
- Waste generation: spent powder, build plates, failed builds.
- Substantial touch labor.

• Disadvantages:

- Powder Bed Fusion (PBF) limited to weldable alloys
- Build envelope size limits
- Design constraints: overhang surfaces, minimum hole size
- Surface roughness
- As built microstructure will require post processing

• Property Variability

- Properties dependent on starting powders, parameters, and post-processing
- Anisotropic properties in the build direction (Z)
- Size: small-scale vs. full-scale builds
- Build volume spatial location

Spent build plates and oversized powder

Vacuumed power

Think instead: Conservation of Complexity

Overview of Various Metallic AM Techniques

Other metal additive processes are being developed and exist such as binder-jet, material extrusion, material jetting vat photopolymerization, although public data limited at this time.

Courtesy Paul Gradl, NASA MSFC.

Based on Ref:

Ek, K., "Additive Manufactured Metals," Master of Science thesis, KTH Royal Institute of Technology (2014).

Gradl, P., Brandsmeier, W., Calvert, M., et al., "Additive Manufacturing Overview: Propulsion Applications, Design for and Lessons Learned. Presentation," M17-6434. 1 December (2017).

ASTM Committee F42 on Additive Manufacturing Technologies. Standard Terminology for Additive Manufacturing Technologies ASTM Standard: F2792-12a, (2012).

Why choose one AM method over another?

Examples of AM Metallic Alloys

Materials developed for SLM, EBM, and DED processes (not fully inclusive)

Ni-Base Inconel 625 Inconel 718 Hastellov-X	Al-Base AlSi10mg A205 F357	<u>Ti-Base</u> Ti6Al4V γ-TiAl Ti-6-2-4-2	Bi-Metallic GRCop-84/IN625 C-18150/IN625
Haynes 230	6061 / 4047		<u>MMC</u>
Haynes 282 Haynes 188 Monel K-500 C276	Fe-Base SS 17-4PH SS 15-5 GP1	Co-Base CoCr Stellite 6, 21, 31	Al-base Steel-base Ni-base
Waspalloy	SS 304	Refractory	
Cu-Base GRCop-84 GRCop-42 C-18150	SS 316L SS 420 Tool Steel (4140/4340) Rene 80 Invar 36	W, W-25Re Mo, Mo-44Re, Mo-47.5Re C103 Ta	
C-18200 Glidcop CU110	SS347 JBK-75 NASA HR-1		

Laser Powder Bed Fusion (L-PBF)

Process Illustration. Image courtesy Simufact.

L-PBF Operational Example

EOS M290, IN718

SLM Combustion Chamber Assembly & Testing

GRCop-84 3D printing process developed at NASA and infused into industry

GRCop-84 AM Chamber Accumulated **2365** sec hot-fire time at full power with no issues

LOX/Methane Testing of 3D-Printed Chamber Methane Cooled, tested full power

Ox-Rich Staged Combustion Subscale Main Injector Testing of 3D-Printed Faceplate

AM IN718 Injectors Hot-fire Tested at NASA MSFC. Thrust range from 1,200 lb_f to 35,000 lb_f (5.3 kN to 155.7 kN)

Directed Energy Deposition (DED)

Freeform fabrication technique focused on near net shapes as a forging or casting replacement and also near-final geometry fabrication. Can be implemented using powder or wire as additive medium.

Blown Powder Deposition / Hybrid

Melt pool created by laser and off-axis nozzles inject powder into melt pool; installed on gantry or robotic system

Laser Wire Deposition A melt pool is created by a laser and uses an offaxis wire-fed deposition to create freeform shapes, attached to robot system

Integrated and Hybrid AM

- Combine SLM/DED
- Combine AM with subtractive
- Wrought and DED

NASA SLM/DED

*Photos courtesy DMG Mori Seiki and DM3D

Arc-Based Deposition (wire)

Pulsed-wire metal inert gas (MIG) welding process creates near net shapes with the deposition heat integral to a robot

Electron Beam Deposition (wire)

An off-axis wire-fed deposition technique using electron beam as energy source; completed in a vacuum.

Large Scale AM Deposition Nozzle

Bimetallic AM Components

- NASA has developed bimetallic combustion chambers using Cualloy liners and Inconel structural jacket (GRCop-84 to IN625)
 - SLM to fabricate the liner and DED for structural support
 - Similar processes used for Spark Ignition Systems with bimetallic but using wrought material and DED (C-18150 to IN625)

IN625-GRCop84 Bimetallic ASTM E8 Tensile Bar

Courtesy Chris Protz & Robin Osborne, NASA MSFC

Low Cost Upper Stage Propulsion

Additive Manufacture Demo Engine (AMDE)

Thrust Structure

Main Oxidizer Valve Part Reduction: 6 to 1 Successfully tested

<u>Fuel Turbopump</u> Part Reduction: 40 to 22 Schedule Reduction: 45% Successfully tested to 90k rpm

Combustion Chamber Schedule Reduction: > 50% Bimetallic SLM/DED Successfully tested to 100%

Injector

Part Reduction: 252 to 6 Cost Reduction: 30% Eliminated braze joints Successfully tested to 100%

Oxidizer Turbopump Part Reduction: 80 to 41 Currently being tested

Main Fuel Valve Part Reduction: 5 to 1 Successfully tested

OTBV

1 vs. 5 parts.

Mixer (Hidden) 2 vs. 8 parts CCV (Hidden) 1 vs. 5 parts.

Cross-Over Duct 1 vs. 9 parts. Regen Nozzle D

Turbine Discharge Duct

AMDE Main Stage Test (early April 2019)

Assembly, fit check, process mock-up.

AMDE assembly.

AMDE on the test stand at MSFC.

AM Process Flow

BUILD PREPARATION

- Repair .stl

- Build placement & orientation
- Thermal stress/distortion prediction

- Build

DESIGN & ANALYSIS - Performance Requirements

-Design for AM, GD&T, export .stl

- Support generation	n
- Slicing	
- Scan strategy	2 2 8 9
	40 5

pata Mil. utpeta Mil. utpeta				
bi Delete				
len Deterce:				
1.000 m	2	1	5	

BUILD OPERATIONS

- Machine preparation
- Build via parameters
- Process Controls
- Powder refill
- Lens cleaning
- Restarts 🗧

arameters ontrols fill ing

POST-PROCESS

- Powder Removal
- Stress Relieve
- Support Removal
- Plate Separation
- HIP
- Heat Treatments
- Machine/Surface mod
- Mechanical Testing

NONDESTRUCTIVE EVALUATION

- Structured light scanning

- X-ray CT -Compare inspection models to CAD

IMPLEMENTATION

- Test & post-ops inspection

- NDE / Destructive evaluation

MSFC AM Machines: Metal

Concept Laser M2 250x250x280 mm Power 400 W Laser Diameter: 70 μm Material: GRCop84, GRCop42

Concept Laser M1 250x250x250 mm Power: 400 W Laser Diameter: 70 μm Material: IN718, IN625, Monel K500.

Concept Laser X-Line 1000R 630x400x500 mm Power 1000 W Laser Diameter : 70 μm Material: IN718

EOS M290 250x250x325 mm Power: 400 W Laser Diameter : 80 μm Materials: IN718, IN625.

EOS M100 Ø100x95 mm Power: 200 W Laser Diameter: 40 μm Material: Ti64, 316L, CoCr, Haynes 230. In-development: Haynes 282, JBK-75, HR-1.

Holistic AM Design Flow & Considerations

- Holes & Passages
 - Size limits (Horizontal: Min: 0.4 mm, Max: 8 mm; Vertical: Min: 0.4 mm, Max: unlimited).
 - Channel surface roughness variable on size: powder sintering for smaller OD and overhang angle for larger OD.
 - Hole sag in the Z-axis: circular hole becomes a horizontal ellipse, vertical ellipse becomes near-circular hole.

supporting are approximately:

- Stainless steels: 30 degrees
- Inconels: 45 degrees
- Titanium: 20-30 degrees
- Aluminium: 45 degrees
- Cobalt Chrome: 30 degrees

Self-Supporting Angles

1 mm hole array micrographs (45°)

Hole size & surface roughness

The design engineer of the 21st century is successful if parts can be repeatedly and economically manufactured.

Advanced Design for AM

Topology Optimization

- Designer provides a design then specifies no-mod zones, constraints, loads, material, and FS.
- Program generates a design by subtracting unnecessary mass regions.
- Apply when interface, flow, or thermal features are required but mass reduction is desired.

Topology Optimization FDM Tool Rack. Courtesy Zach Jones.

Generative Design

- Define interface geometries, enclosure, constraints, loads, material and FS.
- Software generates numerous point designs and displays an an Ashby chart.
- Select and prioritize optimized designs: mass, strength, stiffness.
- Apply when mass and structure dominate.

Generative Design. Courtesy Autodesk.

Build Simulation: Residual Stress & Distortion Failure Prediction

AMPd Engine LOX Impeller (Shrouded) V1 on EOS M290. Build time - \$0.3k (3 hrs), Powder - \$0.01k (0.25 kg), Saw - \$0.2k, Plate resurface - \$0.2k, Total - \$0.71k

MET1 Injector V1 on EOS M290. Build time - \$5.5k (55 hrs), Powder - \$ 0.32k (5.82 kg), Saw - \$0.2k, Plate resurface - \$0.2k, Unsuccessful total - \$6.22k. Successful total \$6.22k. Total Cost \$12.44k. 15 minute long simulation.

Build Process

Chess Rotated Exposure Strategy. Courtesy Concept Laser.

SLM Build Artifacts & Defects

Porosity & weld pool path in AlSi10Mg

Weld pool path in AlSi10Mg

Weld pool depth of IN718

Gas porosity in AlSi10Mg. Trace H_2O reacts with Al to form H_2 bubbles in the melt pool that are trapped upon solidification.

Shrinkage (keyhole) porosity in IN718 results from high laser power or fast scan speed.

DED Microstructure & Properties

Material properties are dependent on a number of processing parameters (material, build rates, environment, orientation...) => highly variable

Inco 625 As-Built - Axial

Stress Relief

- *Stress Relief* Reduces residual stress as a result of the SLM process.
 - IN718: 1065 ± 14 °C, 1.5 hrs -5/+15 min in argon, furnace cool venting to air as soon as allowable.
- *Recrystallization* Microstructure change from dendritic (stressed) to equiaxed grains (stress free).

Cooling shrinkage behavior.

Nucleation, Recrystallization & Grain Growth

Microstructure of IN718

- IN718 is a precipitation strengthened alloy^{1,2}
 - $-\gamma$ matrix solid solution: Ni-Cr, face-centered cubic (FCC).
 - $-\gamma'$ phase: Ni₃(Al, Ti, Nb), FCC.
 - $-\gamma''$ phase: Ni₃Nb, body centered tetragonal (BCT).
 - δ phase: Ni₃Nb, orthorhombic (needle-like).
 - MC-type carbide phase: (Nb,Ti)C, FCC.
 - Laves phase: (Fe,Ni)₂Nb, hexagonal close packed (C14). Intermetallic prone to cracking.
- Solidification sequence^{1,2}
 - − L→ L + γ (1359 °C), L→ γ + MC (1289 °C), L→ γ + Laves (1160 °C).
 - δ phase precipitate (solid state reaction) at 1145 \pm 5 °C.
 - $-\gamma^\prime$ and $\gamma^{\prime\prime}$ phases precipitate at 1000 \pm 20 °C.

Microstructural change & phase evolution of IN718¹.

¹Courtesy Mostafa et. al, 2017. ²Manikandan, 2015. ³Courtesy Bhadeshia, 2018.

Hot Isostatic Press (HIP)

HIP - Closeout porosity and potential to heal defects. T = 0.7-0.9T_m, P = 100-207 MPa (15,000-30,000 psig), t = 1-4 hrs.

Monel K500 SEM BSE micrographs 500x (L) and 1600x (R) showing porosity along grain boundaries. Courtesy UA Senior Materials Team.

HIP pore close-out. Courtesy Metal AM, Winter 2017.

MSFC HIP Furnace

SLM IN718 Tensile Strength vs. Condition. Courtesy Hazeli.

Homogenization: Solutionize & Age

- Solutionize: Creates γ as the only stable phase in solution then quench to supersaturate the solution.
 - AMS 5664: 1066 ± 13°C, time thickness dependent, air quench.
- Age: γ " nucleate uniformly in the microstructure and grown to an optimal size.
 - AMS 5664: 760°C for 8h (γ" forms), cool to 650°C, hold for 20 h (γ" grow), air cool.

MSFC Vacuum Furnace

General phase diagram showing heat treatments.

Notional Phase Diagram- IN718

NDE

Visual Borescope

Structured Light Scanning

CAD-scan data comparison

Detect trapped powder

Structured Light Scanning

- Limited spatial resolution

relatively inexpensive

- Geometric distortion/deviation

Equipment expensive but operation

Surface mapping

- Large flaws
- Limited spatial resolution (excludes micro-focus CT)
- Material determines scan time/resolution
- Expensive & time consuming

Radiograph showing powder filled channels

In-situ Inspections

CT showing trapped powder in a manifold

Known flaws in AlSi10Mg block. Left: Regular CT. Right: Micro-CT

Surface Finish Modification

Roughness/Primary/Waviness profile

• As built roughness

- PSD & parameters influence Ra.
- High cycle fatigue (HCF) knock down due to near-surface porosity.

Surface finish modification

- Shot peen
- Tumble
- Machine
- Extrude/slurry hone
- MicroTek (removes 0.05 mm)
- Electro-polish

Software induced tesselation

KEYENCE VR-3000 G2

Measurement equipment

	reader annune manne	ricuburcu ruiuc	Onic
1	Ra	5.4351	μm

Material	R _a (μm)
Inconel 718	5.05
GRCop-84	5.44
AlSi10Mg	3.29
Ti-6Al-4V	?

As-built surfaces of AlSi10Mg on Concept Laser X-Line.

Typical as-built surface roughness (SLM)

Build Artifacts & Defects

Witness marks on the surface and interior

Edge Porosity can result from an excessive beam offset.

Edge Porosity

Horizontal Lack of Fusion (LOF) defect from ejecta.

H-LOF defect from insufficient laser power (set point or attenuation).

Vertical-LOF defect from wide hatch spacing.

LOF defects decrease mechanical properties such as tensile strength, elongation, high cycle fatigue.

Courtesy Arthur Brown

Lattice Structure Applications

- Relative density & surface area gradients.
- Reduce weight, retain stiffness.
- Gas/liquid permeable solid: porous foam • & Regimesh replacement.
- Metal Matrix Composite (infiltrate).
- Custom property potential: mimic properties of different materials in the same part using the same material in adjacent regions.
- Computationally expensive.

CFM Magnetically Coupled Rotor, Heat Exchanger, LAD demos

ECLSS 4-Bed Molucular Sieve (4BMS-X) Heater Plate

Cold-Head

MSFC AM Flight Certification Standard

- Standardization is essential for consistent and reliable production of flight critical AM components.
- NASA cannot wait for organizations to issue standards since human spaceflight programs already rely on AM:
 - Commercial Crew
 - SLS
 - Orion
- Objective: Develop an appropriate AM standard
 - MSFC-STD3716 & MSFC-STD-3717.
 - Draft released in 2015 for peer review.
 - Final revision released October 2017.
 - Iterative (living) document.

Process specification: From powder to acceptance

MSFC-STD-3716 & -3717

Standard for Additively Manufactured Spaceflight Hardware by Laser Powder Bed Fusion in Metals.

