

Hybrid Fuel Coupling in a Pulsed Z-Pinch Rocket Engine

NETS 2019 Brian Taylor Dr. Jason Cassibry Dr. Rob Adams

THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Introduction

Introduction – Hybrid Nuclear Systems

Magneto Inertial Fusion

	ITER	MTF example	NIF
Geometry	Toroidal	Cylindrical	Spherical
Cost (SM)	10,000	51	3000
n, (/cm ³)	1014	10 ²⁰	1.4×10^{25}
p (g/cm ³)	4.2×10^{-10}	4.2×10^{-4}	57
T (keV)	8	8	8
p (atm)	2.6	2.6×10^{6}	3.6×10^{11}
B (kG)	50	1000	0
$\tau_L(s)$	0.9	9×10 ⁻⁷	6.6×10 ⁻¹²
M (mg)	350	1.7	0.01
a (cm)	240	0.6	3.5×10 ⁻³
V (m ³)	8.3×10^{2}	4.0×10^{-6}	1.8×10^{-13}
Enlar (J)	3.2×10 ⁸	1.6×10^6	9.3×10^{3}
Phone (W)	1.3×10^{8}	9.0×10^{10}	L1×10 ¹⁴
Ikee (W/cm ²)	18	$1.0 imes 10^{10}$	7.5×10^{17}

• Minimum Power Requirements

- Unmagnetized
- Magnetized
- Fundamental Physical Parameters

Lindemuth and Siemon, "The fundamental parameter space of controlled thermonuclear fusion", Am. J. Phys. 77, 2009

Introduction – What is a Z-Pinch?

- Current pulse (time varying current) travels along z axis inducing an azimuthal B-field and the Lorentz force toward the axis
- Heat material to a hot dense plasma
- Compresses and contains the dense plasma
- Fundamentally unstable process

Pinch radiation from experiment on Z machine D. D. Ryutov, et al, "*The physics of fast Z pinches*"

Pulsed Fission Fusion Engine (PuFF)

0D and 1D burn wave parameter space study

• Energy balance

- Yield from nuclear reactions
- Losses from conduction and radiation
- **OD** parameter space
 - calculated over a range of temperature, T, and areal density, ρR

• 1D burn wave

- defines density profile similar to post shock compression
- Energy balance for each time step
- Captures burn wave expansion and coupling between the fission and fusion reactions

Hybrid reactions significantly expand parameter space in 0D power balance

Minimal gain of 1-2 MJ occurs with cooling of the hot spot in 1D model

Minimal gain of 1-2 MJ occurs with cooling of the hot spot in 1D model

Breakeven at only a few MJ may be possible

THE UNIVERSITY OF ABAMA IN HUNTSVILLE

Conclusions

- A hybrid nuclear reaction has the potential to significantly decrease the energy and density requirements compared to a pure fusion system
- A vehicle propelled by a pulsed fission fusion engine could out perform current technology by orders of magnitude
- A hybrid z-pinch system could potential breakeven with an initial system energy of just a few MJ for optimal targets
 - However greatly dependent upon implosion dynamics
 - May be able to further reduce ignition requirements with an external neutron source
 - More sophisticated modeling is required for a better estimate
 - Modeling must be coupled with experiments

NAS

CLOSING DISCUSSION

THE UNIVERSITY OF ABAMA IN HUNTSVILL