National Aeronautics and Space Administration

Recent FY18/FY19 NTP Materials Development Activities at NASA Marshall

Presenting Author: Kelsa Benensky¹ Contributors: Marvin Barnes, Jhonathan Rosales, Dennis Tucker, Ryan Wilkerson, and Martin Volz

¹NASA Marshall Spaceflight Center

Pathways for NTP Fuel Development

W-Cermet Fabrication and Performance Assessment

FY17 MSFC Center Innovation Fund (CIF)

Optimization of High Volume loading W-UO₂ Cermets Fabricated via SPS

Hot hydrogen testing and microstructural characterization of W-ZrO₂, W-UO₂ cermets

Carpenter, W., Benensky, K., Barnes, M., and Tucker, D.. "Microstructural Evolution of High Density W-Cermets Exposed to Flowing Hydrogen at Temperatures Exceeding 2000 K."

Mo-Cermet Fabrication and Performance Assessment

FY18 MSFC Center Innovation Fund (CIF) Optimization of High Volume loading Mo Cermets Fabricated via SPS

Zillinger, J., Segel, B., Benensky, K., Barnes, M., and Tucker, D.. "Investigation of Process Parameter Effects on Spark Plasma Sintered Molybdenum Cermets for Nuclear Thermal Propulsion Applications

FY18 MSFC Center Innovation Fund (CIF)

Performance Assessment of Mo-Cermets under Thermal Cycling Conditions

Duffin, T., Benensky, K., Barnes, M., and Zinkle, S.. "Hot Hydrogen Testing and Microstructural Characterization of Molybdenum Cermets for Nuclear Thermal Propulsion

Mo-Cermet Fabrication and Performance Assessment

FY18 MSFC Center Innovation Fund (CIF) Optimization of High Volume loading Mo Cermets Fabricated via SPS

Zillinger, J., Segel, B., Benensky, K., Barnes, M., and Tucker, D.. "Investigation of Process Parameter Effects on Spark Plasma Sintered Molybdenum Cermets for Nuclear Thermal Propulsion Applications

FY19 MSFC Center Innovation Fund (CIF)

Performance Assessment of Mo-Cermets under Irradiation

Gaffin, N., Zinkle, S., and Benensky, K. "Review of Irradiation Hardening and Embrittlement Effects in Refractory Metals Relevant to Nuclear Thermal Propulsion Applications."

Recent Fuel Fabrication Developments

- Fabrication of net shape pellet <1" FTF, 19 x 0.25" coolant channels
- Optimization of Mo-HfN cermets
- Fabrication of rad Mo-cermets (Mo-UO₂)
- Initial fabrication studies of Mo29W mixed cermet pellets
- Assessment of challenges scaling up wafer production to net shape fuel elements
- Received dUN powder from LANL planned activities to assess feedstock and sinter Mo-UN, MoW-UN cermets

³⁰ Near TD Mo-HfN cermet microstructure

Mixed Mo (Green) 30W (Blue) ZrO₂ cermet

First Rad cermet Sample Made at MSFC! (Mo-UO2)

Net Shape Mo-HfN cermet wafer

Thank You!