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SENSOR ANALYSIS, MODELING, AND TEST FOR ROBUST
PROPULSION SYSTEM AUTONOMY

Jeb S. Orr⇤

An approach is presented supporting analysis, modeling, and test validation of
operational flight instrumentation (OFI) that facilitates critical functions for the
Space Launch System (SLS) main propulsion system (MPS). Certain types of OFI
sensors were shown to exhibit highly nonlinear and non-gaussian noise character-
istics during acceptance testing, motivating the development of advanced model-
ing and simulation (M&S) capability to support algorithm verification and flight
certification. Hardware model and algorithm simulation fidelity was informed by
a risk scoring metric; redesign of high-risk algorithms using test-validated sen-
sor models significantly improved their expected performance as evaluated us-
ing Monte Carlo acceptance sampling methods. Autonomous functions include
closed-loop ullage pressure regulation, pressurant leak detection, and fault isola-
tion for automated safing and crew caution and warning (C&W).

1 INTRODUCTION

The Space Launch System (SLS) is NASA’s next-generation exploration-class launch vehicle
for large-scale crewed and uncrewed space access, including such objectives as human transit to
Mars, rendezvous with near-earth asteroids, and the launch of unmanned probes to distant solar
system targets such as Europa. Its design provides for a level of performance and reliability that is
unmatched in any existing or planned launch system, including an ability to loft approximately 26
metric tons to trans-lunar injection (TLI) in its initial Block 1 configuration (Figure 1). Its evolved
configurations, Block 1B and Block 2, utilize the Exploration Upper Stage (EUS) to substantially
increase performance. The Block 1B with EUS has a cargo payload performance capability of
approximately 37 metric tons to TLI. The Block 2, more than 115 meters long and using upgraded
solid rocket motors (SRMs), is able to loft 130 metric tons to low Earth orbit (LEO) or 45 metric tons
to a heliocentric orbit. These capabilities place the SLS in a category of performance commensurate
with that of the Saturn V.

The SLS leverages hardware, processes, and design concepts derived from the Space Shuttle pro-
gram, including an 8.4 m diameter core stage containing more than 2.7 million liters of cryogenic
propellants.1 The core stage is powered by four RS-25E liquid engines derived from the highly suc-
cessful Space Shuttle Main Engine (SSME), each producing about 2.17 MN of thrust.2 Additional
thrust is provided by two 5-segment Reusable Solid Rocket Motor-V boosters (RSRMVs). Each
RSRMV provides a peak sea level thrust of about 14.6 MN and provides primary ascent propulsion
during the 126-second boost phase.
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Figure 1. Space Launch System Block 1 Configuration (NASA)

Importantly, SLS is a NASA human-rated system, with a commensurate level of reliability and
attendant subsystem complexity. The SLS Main Propulsion System (MPS) includes the RS-25
engines, the liquid hydrogen (LH2) and liquid oxygen (LO2) propellant tanks, the gaseous helium
(GHe) pressurization system, and numerous propellant flow paths. Engine operation, including
mixture ratio and throttle level, is regulated by the RS-25 engine controller.3

In contrast, fault tolerance, inlet condition regulation, and supervisory functions (such as caution
and warning) are performed in flight software (FSW) by the Vehicle Management (VM) subsystem
of the SLS avionics. Redundancy sets of Combined Control System Electronics (CCSE) and Flight
Computers (FCs) rely on MPS Operational Flight Instrumentation (OFI) in order to determine the
state of the propellant tanks and in turn open/close pressurization valves, identify faulted sensors or
functions, and alert crew and mission operations personnel in the event of an anomaly. Importantly,
these FSW functions are also used for largely autonomous execution of the upcoming green run
hot-fire test of the first integrated SLS core stage at the Stennis Space Center (SSC) B test com-
plex. These critical measurements must be available and reliable in order to achieve nominal MPS
operation and ensure successful mission execution.

2 RISK PRIORITIZATION

The sensors supporting the SLS MPS are the subject of this paper. Early in the integration of the
MPS hardware with the SLS avionics, it was recognized that limitations in the fidelity or availability
of detailed MPS OFI sensor models could increase risk of unmodeled or unexpected interactions or
failure modes that could not be identified via simulation-based analysis and verification. More than
100 OFI sensors are used to support the SLS MPS operation and mission management functions,
but not all sensor systems are involved in critical functions.
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Sensor Model Fidelity Description Model Score sm
High Fidelity Existing contractor-vetted DM supported by test data

delivered as software module with defined APIs
0.10

Medium Fidelity Contractor-vetted DM is based only on analysis and not
supported by test

0.25

Limited Fidelity NASA internally developed model based on data derived
from engineering specifications and other sources

0.50

Low Fidelity No model implemented but sufficient data and/or
experience exists to produce one internally or via action

to contractor

0.75

No Model Insufficient data exists to characterize sensor
performance and no model is available (sa = 1) by

default for this case)

1.00

Table 1. Sensor Model Fidelity Subcategories

In the evaluation of MPS subsystem risk, a scoring metric was developed to prioritize the iden-
tification of gaps in the understanding of MPS sensor interactions with flight software and its con-
sequences on other systems and functions. The majority of critical sensors used for SLS MPS VM
functions are pressure transducers, including the Active Electronics Pressure Transducers (AEPTs),
the Passive Electronics Pressure Transducers (PEPTs), Differential Pressure Transducers (DPTs),
and Ambient Pressure Transducers (APTs). In addition, MPS OFI includes the Cryogenic Level
Sensor System (CLSS) and various temperature transducers such as the Immersion Temperature
Probe Assemblies (ITPAs) and Resistance Temperature Detectors (RTDs).

In the development of the scoring metric, each device was assigned a model fidelity score sm, a
model availability score sa, and a model criticality score sc. Risk quantification was calculated as
the product of the scoring factors, r = sc ⇥ sa ⇥ sm. Categorical scores were assigned ad hoc to
multiple subcategories of each scoring metric. While the allocation of risk factors to each scoring
subcategory was empirical and based upon past program experience, the allocation of specific sen-
sors and sensor functions to those subcategories was based upon strictly defined evaluation criteria,
enabling a relatively objective assessment across the entire suite of MPS sensor functions. It is rec-
ognized that there are potentially infinite methods to weight some combination of scoring factors
si. It was determined that this simple multiplicative model was adequate to assess risk and agreed
well with subject matter expert (SME) insight.

Model fidelity subcategories are shown in Table 1. Model fidelity scoring is contingent primarily
on whether the sensor model in question has achieved Design Model (DM) certification as per the
Space Launch System Program (SLSP) Design Model Delivery Standard, SLS-STD-038, and has
been supported by test data. Also important for consideration is whether the model is delivered in a
format having defined, documented, and compatible application programming interfaces (APIs) for
integration with real-time (e.g., hardware-in-the-loop) avionics simulation facilities.

Most models evaluated for MPS functions were determined to be in the Limited Fidelity cat-
egory. In this case, and in part owing to NASA’s responsibility for VM flight software, NASA
leveraged reasonable engineering assumptions in the development of models for algorithm design
based on sensor hardware performance requirements that were flowed to vendors for parallel hard-
ware development. While designers endeavor to produce algorithms that are robust to variations
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Sensor Model Availability Description Model Score sa
Production Ready Model implemented in all relevant design and

verification simulations with V&V process completed
and documented and can support all SLS operations

0.10

Limited Model not implemented in all simulations or only for
algorithm design; V&V not completed or documented;

does not support all operational use cases

0.50

Not Implemented Model is not implemented or tested for design or
verification

1.00

Table 2. Sensor Model Availability Subcategories

in actual sensor performance, some risk is accepted that final acceptance and/or qualification tests
of actual sensor performance will not meet requirements, and either costly hardware redesign or
algorithm modifications will be necessary to ensure performance. More commonly, early subsys-
tem requirements have insufficient detail to capture the necessary performance specifications, and
vendors proceed with designs isolated from the actual engineering needs of the system.

Model availability subcategories are shown in Table 2. Model availability scoring is a measure
of the relative maturity of the integration of a hardware performance model into simulation envi-
ronments that are used for design verification and flight certification. A Production Ready model
supports design simulations, verification simulations, multiple hardware-in-the-loop environments,
and supports all use cases including its use for ground systems functions and off-nominal scenarios.
Models seldom reach this level of maturity prior to the commencement of flight operations when
flight data can be used to resolve observed anomalies and validate preflight math models. Most
models of MPS OFI evaluated for SLS were in the Limited category.

Finally, the criticality of each sensor function is scored in Table 3. Criticality scores range from
inconsequential (sc = 0.1) to safety critical (sc = 1.00). Due to the redundancy and fault detection
design paradigm that satisfies the human rating requirements of the SLS vehicle, no single vehicle
management MPS sensors were classified as safety critical since typically at least two sensor faults
in the same subsystem can be tolerated before a functional impact results. In contrast to sensors
used directly by the RS-25 engine controller, MPS OFI are associated with typically low-bandwidth
processes (such as ullage pressure regulation) that have long times-to-criticality and are backed up
by redundant hardware fail-safes (such as pressure relief valves). However, the ability to safely
continue the mission may be impacted in the event that an incorrect automated or human decision
is made, or contributed to, on the basis of faulty sensor data. These factors contributed to many OFI
functions being placed in the Mission Impact or Mission Critical categories.

3 MODELING AND ANALYSIS

The development of advanced sensor models and additional statistical assessment of certain func-
tions was informed by the risk analysis described above. The Active Electronic Pressure Transducer
(AEPT) device is of particular significance due to its use for closed-loop ullage pressure regulation,
engine helium supply leak detection, and other caution and warning functions. Early assessments of
the software design indicated that a false positive He leak detection could inadvertently trigger an
automated advance-to-shutdown safing action during the full-scale green run hot fire test, and while
not a threat to safety, this automated safing action was to be avoided due to the high operational
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Sensor Criticality Description Model Score sc
Inconsequential Sensor classified as OFI but not used for any software

functions other than logging or telemetry
0.10

Operational Concern Used in software functions but only for generating C&W
and no automated actions

0.25

Mission Impact Incorrect interpretation of sensor data may affect level of
redundancy or operability of non-mission critical

components, but will not compromise performance

0.50

Mission Critical Incorrect interpretation of sensor data will result in
actions that may result in loss of mission or abort, e.g.,

Launch Control Center (LCC) scrub or early RS-25
engine shutdown

0.75

Safety Critical Incorrect interpretation of data poses imminent threat to
vehicle integrity and/or crew safety, e.g., un-contained

engine failure

1.00

Table 3. Functional Criticality Subcategories

costs of a test recycle. In contrast, low-fidelity sensor models used in design simulations suggested
that small amounts of noise would lead to a large bias toward false negatives.

3.1 Helium Leak Algorithm

Detection of a high rate of consumption of gaseous helium is determined by polling each of
four AEPTs every 20 ms, each associated with the supply manifold of one of four heated 750
liter pressurized helium storage bottles. Each pressure system supplies GHe to one of four RS-25
engines and is used for functions such as propellant valve actuation. The nominal storage pressure is
approximately 17.2 MPa and is consumed at a nominal rate of mass flow such that dP

dt ranges from
approximately �15 to �20 kPa/s. Pressure rates exceeding �31 kPa/s are considered indicative of a
leak and are used to trigger a caution and warning action.

The software detection algorithm operates by buffering samples and continually finite differenc-
ing samples separated by j counts; d̂P

dt = (Pk � Pk�j) /�Tj . A persistence counter is used; if n
consecutive checks are flagged, a warning is latched.

Figure 2. Simplified Generic Transducer Model
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AEPTs are a family of state-of-the-art active analog transducers with a bandwidth of more than
200 Hz, providing an analog output with a range of 0.5-5.5V corresponding linearly to each sensor’s
design dynamic range. Dynamic range is tailored to each installation and depends on the physical
characteristics of the sense diaphragm. In the present application, the AEPT has a dynamic range of
34.5 MPa absolute. Initial analog to digital conversion of the sensor output occurs in the Combined
Control System Electronics (CCSE) avionics at approximately 150 Hz, where it is conditioned using
a passive analog single-pole input filter with a bandwidth of 25±5 Hz. Conversion of the pressure
value, following internal calibration, uses 12-bit linear quantization yielding a least significant bit
(LSB) of 8.4 kPa. The resultant value is then decimated with no further antialias filtering to the
avionics bus rate of 50 Hz. Narrowband aliasing risk in the decimation operation was assumed to be
negligible since the input signal is dominated by aeroacoustic noise with a broad, random spectral
component.

Design simulations using a simplified sensor model with additive Gaussian noise (Figure 2) indi-
cated that the algorithm was generally biased in the false negative direction. In this model, bias and
linearity (scale factor) errors are captured in addition to transducer dynamics, hysteresis, and sam-
pling/quantization effects. “Internal” and “external” noise sources (ni and ne) are modeled using
appropriately scaled discrete-time Gaussian noise approximations.

A false negative bias was not unexpected, as the noise levels were derived from early hardware
acceptance test data and were generally larger than allowed for in the engineering requirements.
Combined with a relative absence of filtering in the signal path and an LSB having a value of about
27% of the target threshold rate, the positive tail of the noise distribution could easily reset the
aforementioned persistence counter and would seldom latch a warning with the true leak rate at
least 1-2 LSBs above the threshold.

3.2 Monte Carlo Assessment

Statistical analysis using Monte Carlo sampling was performed to quantify the operating char-
acteristic curves and error probabilities for the threshold detection at a fixed confidence level. In
this process, a sample of simulation runs of size N over a dP

dt ranging from below nominal (-13.8
kPa/s) to above nominal (-48.3 kPa/s) is generated from a uniform distribution, such that the mean
consumption rate is equal to the target threshold of -31 kPa/s. Over each simulation run of a few
seconds, the consumption rate and sensor error parameters are held constant. Since the distribution
is uniform, approximately N/2 samples have actual consumption rates less than the threshold rate,
and vice-versa.

The simulation outputs are then separated into four populations in a contingency table as shown
in Table 4. The actual sample sizes of the populations possessing or not possessing leaks are sep-
arated into two groups of size N1 and N2. The corresponding errored cases (i.e., classifier made
an incorrect decision) are counted as k1 and k2, respectively. Using these data, the expected error
rates pf1 and pf2 and total failure rate pf can be constructed from the actual (arbitrary) sample sizes
using binomial statistics. These methods are commonly used in industrial acceptance sampling and
are applied extensively by NASA for requirements verification.4

The failure rate pf is derived from the cumulative binomial distribution,

FBIN(k, pf , N) =
kX

j=0

✓
N
j

◆
pjf (1� pf )

N�j (1)
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e.g., the probability that the sampling process can generate k or fewer failures when the underlying
failure rate is pf . The value of this distribution is the consumer risk (CR) or Type II error probability
�; the probability that the actual population failure rate is greater than the predicted failure rate. The
conservative estimate of the actual failure rate at a specified consumer risk � is given by the solution
of p?f | FBIN(k, p?f , N) = �. The value of p?f > pf can be found via the inverse of the F cumulative
distribution, or via numerical iteration. Of course, high reliability systems are hard to verify at high
confidence with small numbers of Monte Carlo runs; in fact, the minimum number of runs required
to verify a given success probability ps is N0 =

l
ln�
ln ps

m
. Thus, for “one-sided 3�” equivalent failure

rates of 0.135%, sample sizes on the order of N0 = 1800 are required. In the present two-outcome
problem, N = 4000 such that Ni ⇡ 2000.

Classifier Output
P N

True Value
T TP (N1 � k1, N1) FN (k1, N1)
F FP (k2, N2) TN (N2 � k2, N2)

Table 4. Leak Detection Contingency Table

Initial Monte Carlo assessments predicted that the reliability of the leak detection algorithm was
as low as 7.5%, with a FN rate of 92.5% (10% CR) and a mean time-to-warning of 37 seconds.

3.3 Analysis and Mitigation

The oversights in the initial algorithm design were a combined effect of insufficient requirements
that did not consider the tradeoff in algorithm performance as a function of time-to-detection in
the presence of noise and quantization error, and an insufficient focus on the effects of the real
transducer dynamics and signal flow paths in the underlying avionics hardware. In particular, the
sensor hardware was made more susceptible to noise due to the vendor’s implementation of a very
fast response time requirement that drove the sensor bandwidth to an extremely high value. This
requirement was partly to establish the capability for rapid detection of catastrophic failures, e.g.,
pressure bottle ruptures.

An ideal binary classifier in the presence of zero mean Gaussian noise can theoretically achieve
perfect performance in the limit as the decision time goes to infinity. However, in the present
application, leak detection times longer than about 30 seconds can potentially impact mission
objectives. Since the detection algorithm in question did not perform any stateful averaging of
measurements, its performance was unacceptably poor. Performance was significantly improved
by the implementation of a single-parameter first-order discrete-time software filter of the form
yn = (1�↵)yn�1+↵un where ↵ is the filter parameter and is related to the equivalent continuous-
time time constant ⌧ by ↵ = Ts/ (⌧ + Ts), where Ts is the sample time. A filter time constant
of ⌧ = 0.66 s was determined to provide an optimal balance of error rates, yielding a predicted
reliability of 99.5% (10% CR) with an intentional FP bias of 3.1%. The time-to-detection was also
improved to an average of 12 seconds, only 4 seconds longer than the minimum imposed by the
length of the software buffers used for finite differencing. The nearly ideal distribution of the op-
erating characteristic curves is achieved, where the probability of detection is uniformly distributed
until reaching a region very near the threshold.
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4 TEST VALIDATION

Following the analysis and software modifications conducted to improve the performance of the
GHe leak detection and other algorithms using OFI MPS pressure sensors, a data analysis campaign
was initiated to perform a detailed assessment of high-fidelity AEPT test data that was collected
during the initial hardware acceptance test program. Since acceptance testing revealed higher-than
anticipated noise levels in the time domain, it was desired that the program fully quantify its ef-
fects and the adequacy of models previously developed to support the aforementioned statistical
performance assessment.

During this test activity, instrumented flight-qualified devices were attached to a test fixture and
their output was recorded by a calibrated data acquisition system (DAQ) at a rate of 100 kHz with
a fixed pressure input. A simulated vibration profile matching the predicted flight environment
spectrum at maximum dynamic pressure was ramped to the full acceptance power level over ap-
proximately 60 seconds. While data was collected and analyzed in all three axes, the driving case is
derived from vibration input in the sense axis as the motion is normal to the transducer diaphragm.
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Figure 3. Power Spectrum and Distribution of Representative Sensor Output in Test

Spectral analysis of the test data revealed an unexpected characteristic of the sensor output: a
relatively high energy, broadband, biased and non-Gaussian noise spectrum centered at about 40
kHz with harmonics as low as 900 Hz. The effect of the vibration input on the noise response, in
fact, was shown to be comparable to the overwhelming harmonic content at higher frequencies. The
spectrum in question has the telltale signature of a switched mode power supply, with the added
concern that the 100 kHz DAQ bandwidth was insufficient to prevent aliasing of a probable 60
kHz sideband (Figure 3). It was determined that lacking any specific requirement to the contrary,
the vendor’s efforts to satisfy the response time specification resulted in an omission of effective
filtering and isolation from the signal lines, which coupled the power supply harmonics directly into
the measurement.

The result of this test complicated the verification and validation effort. First, it was immedi-
ately apparent that a simplified sensor model with zero mean Gaussian noise would not be sufficient
to capture the observed dynamics of the sensor, which in addition to noise effects, included some
random bias components and other nonlinearities. In addition, the intermediate analog antialias
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Figure 4. High Fidelity Transducer Model

filtering, sampling, and decimation operations including the analog to digital conversion (ADC)
polling mechanism were modeled in order to mitigate the risk of aliasing of the troublesome har-
monics below the 25 Hz Nyquist bandwidth of the flight computer. The simplified simulation model
previously described was replaced by a high-fidelity model as shown in Figure 4.

Since it would be necessary to verify the mission software in the presence of the problematic
harmonics, the use of an enveloping Gaussian noise PSD was considered but abandoned as it would
induce excess conservatism into the noise model. Instead, a specialized noise model was constructed
that uses a discrete noise sequence followed by a bilinear transformation of the following second-
order biquadratic transfer function,

T (s) =
as2 + s!0(k � b) + c!2

0

s2 + !0
Q s+ !2

0

(2)

where a, b, k,!0, and Q are parameterized to produce an “inverse notch” resonance with a low
damping ratio (⇣ ⇡ 0.0005) such that the filter, driven by discrete noise, produces an output whose
power spectrum closely matches that of the observed test data (Figure 5, left). In addition, the large
quantity of high-rate data was used to implement background denoising using a spectral subtraction
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method, and anomalies attributed to structural resonances in the test fixture were removed from the
model (Figure 5, right).

Cascaded filters were used to capture the primary harmonics below 2 kHz, above which the
CCSE ADC input filter provided sufficient attenuation. These models were then implemented for
real-time simulation to support hardware-in-the-loop verification, albeit at high computational cost
compared with the simplified model in Figure 2. Fortunately, the robust filtering designed for the
low-fidelity model was found to be adequate, with no measurable change to the leak detection
algorithm operating characteristics discussed in Section 3.3.
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Figure 5. Comparison of Model Versus Test Data With Test Fixture Structural Modes

5 CONCLUSIONS

For the SLS program and all human-rated flight operations, careful management of risk is paramount
to ensure that critical systems such as mainstage propulsion are able to execute autonomous func-
tions without undue threats to the mission, the crew, or the public. Careful engineering integration
and attention to real hardware performance must be considered early in the development lifecycle.
In the case of the subject transducers and associated algorithms, the parallel development of hard-
ware and software to support autonomy functions introduced interactions that were not anticipated
early in the software development lifecycle. In part, the issues with noise were a result of incom-
plete requirements that drove the development of advanced sensor hardware whose performance
capabilities exceeded actual functional needs.

The incorporation of autonomy into complex systems is a challenging exercise that must consider
all factors from the physics of the transducer element to the results of autonomous actions. The
present case study highlights the value of Model-Based Engineering (MBE) in the development of
complex autonomous systems, although it does suggest that the MBE process needs to be applied
much earlier in the development lifecycle. It also clarifies that gaps in subsystem requirements can
readily manifest as unmodeled interactions; that is, the rigor and benefit of MBE is only as good as
the models employed. Importantly, element engineers must be guided by expert insight that reaches
across subsystem boundaries. For example, software engineers may lack hardware experience,
electronics engineers may not be familiar with the physics of flight vibration environments, and
systems engineers may formulate specifications that are disjoint with functional goals.
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MBE helps identify gaps and connect interfaces, but test-based validation of the underlying mod-
els is crucial. In the case of the MPS pressure transducers, the rigorous verification activities allowed
the identification and resolution of a potential performance issue in software, whose mitigation sub-
sequently alleviated a hardware problem uncovered during acceptance testing.
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