
AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Page 1 
 
 

 

Unravelling complex geologic histories using U–Pb and trace element 

systematics of titanite 

Hugo K. H. Olierook1†*, Richard J. M. Taylor1,2, Timmons M. Erickson1,3, Chris Clark1, 

Steven M. Reddy1, Christopher L. Kirkland1,4, Inalee Jahn1, Milo Barham1 

1School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 

6845, Australia 

2Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK 

3Center for Lunar and Space Exploration, Lunar and Planetary Institute – Universities Space 

Research Association, 3600 Bay Area Boulevard, Houston, TX, 77058, USA 

4Centre for Exploration Targeting – Curtin Node; School of Earth and Planetary Sciences, 

Curtin University, GPO Box U1987, Perth, WA 6845, Australia 

*Corresponding author: hugo.olierook@curtin.edu.au 

 

Keywords: Sphene; Zircon; Gascoyne; Mutherbukin; geochronology; petrochronology 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Page 2 
 
 

 

Abstract 

Unravelling the spatio-temporal evolution of orogenic terranes requires a comprehensive 

understanding of the duration and extent of metamorphic events and hydrothermal alteration. 

Commonly used minerals such as zircon and monazite may not fully record geological histories 

in complex tectonic settings because their elemental constituents do not react under many 

metamorphic and metasomatic conditions. Here, we complement the current geochronological 

record of the Capricorn Orogen, Western Australia, with titanite U–Pb geochronology and 

geochemistry of felsic intrusive rocks to draw conclusions about the use of titanite in 

understanding the evolution of orogenic terranes. Because titanite usually incorporates common-

Pb and may be variably reset by multiple metamorphic and hydrothermal events, a workflow is 

provided here for the systematic and robust interpretation of titanite U–Pb data. The addition of 

trace element data in titanite is particularly effective for differentiating whether a grain is igneous, 

recrystallized or metamorphic. We have developed several petrogenetic indices to differentiate 

these three types of titanite using Zr-in-titanite temperature, Th/U, Th/Pb, Al/(Al+Fe), light to 

heavy rare earth element ratio, and Eu anomalies. The addition of trace element geochemistry can 

also highlight anomalously radiogenic 207Pb/206Pb reservoirs. Utilization of our workflow in the 

Capricorn Orogen reveals that titanite ages from the same samples as published zircon U–Pb data 

range from coeval to several hundreds of Myr of age difference between the two minerals. 

Titanite geochronology and trace element geochemistry indicates ~30 Myr of previously 

unrecognized prolonged cooling for the Capricorn Orogeny to ca. 1750 Ma. The spatial extent of 

reworking of the Mutherbukin Tectonic Event is also broadened significantly farther north and 

south than previously recognized. Incorporating titanite geochronology and trace geochemistry 
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with more commonly used techniques (e.g., zircon and monazite petrochronology) extends our 

ability to resolve the complete history of large-scale orogenic terranes.  
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1 INTRODUCTION 

Precambrian orogenic belts record complex tectonic and geodynamic histories over large 

areas. Minerals such as zircon and monazite are often employed as a means of unravelling the 

evolution of orogenic belts because of their relative ease in obtaining coupled age and 

geochemical data, their preferential incorporation of U over Pb, and their ability to retain age 

information due to high-closure temperatures (Hawkesworth and Kemp, 2006; McFarlane 

and McCulloch, 2007). However, zircon and, to a lesser extent, monazite may not fully 

capture the geological history of orogenic belts because they do not always participate with 

metamorphic and hydrothermal fluids (Harley et al., 2007; Rubatto et al., 2001). In order to 

more fully illuminate the (tectono)thermal history of orogenic belts, it is necessary to 

investigate other U and Th bearing accessory minerals that more readily participate in 

metamorphic reactions but still have relatively high closure temperatures.  

Titanite (CaTiSiO5) can host small amounts of uranium in its structure and can therefore be 

used as a U–Pb geochronometer (Kohn, 2017). Titanite has a relatively high closure 

temperature for Pb of ~650–700° C, estimated from both empirical (Pidgeon et al., 1996; 

Scott and St-Onge, 1995; Verts et al., 1996) and experimental observations (Cherniak, 1993). 

Thus, titanite may record hydrothermal and metamorphic events at temperatures at or just 

above ~650–700 °C at which other minerals (e.g., zircon and monazite) may still be 

completely retentive to Pb (Lawley et al., 2014; Rasmussen et al., 2013). However, because 

recent studies have shown evidence of partial Pb retention for tens of Myr at temperatures of 

750–800 °C (Kohn, 2017; Spencer et al., 2013), titanite can sometimes record high-

temperature metamorphic events. Titanite is a widespread accessory mineral that can occur in 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Page 5 
 
 

 

igneous rocks (calc-alkaline felsic and mafic plutons), metamorphic rocks (calc-silicates, 

pelites and amphibolites), and may also be present as a detrital component in sedimentary 

rocks (Frost et al., 2001). Titanite may also incorporate various trace elements which, like 

zircon and monazite, can be used to reveal the petrogenetic conditions during crystallization 

(Aleinikoff et al., 2002; Mazdab, 2009). 

The main drawback to titanite geochronology is that titanite may incorporate significant 

concentrations of common-Pb during crystallization due to the similarity of Ca2+ and Pb2+ 

ionic radii in the 7-fold coordinated Ca cation site (Kirkland et al., 2017; Kohn, 2017; 

Shannon, 1976). This means that accurate correction for common-Pb is paramount for 

obtaining geologically accurate U–Pb ages. Because of this inherent complexity, titanite 

geochronology has been neglected in favour of zircon and monazite, plus geochronometers 

with lower closure temperatures such as 40Ar/39Ar hornblende, mica and feldspar. With the 

advent of laser ablation inductively coupled mass spectrometry (LA-ICP-MS), it is now 

possible to cost-effectively collect campaign-style geochronological and geochemical data 

from across orogen-scale features of the crust (Kylander-Clark et al., 2013; Spencer et al., 

2013). This is because the laser ablation method enables rapid, simultaneous acquisition of 

trace element and isotopic compositions from small volumes. 

The incorporation of common-Pb in titanite can also pose a significant problem if a sample 

records more than one geological event. If a single sample records an igneous crystallization 

and metamorphic recrystallization event, differentiation between the two is usually possible 

in a mineral with negligible common-Pb (e.g., zircon) because a discordia line will intercept 

the U–Pb concordia between the first and second event (e.g., Taylor et al., 2014; Zhang et al., 
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2006). However, for a sample with two geological events, any mineral that has significant 

quantities of common-Pb will yield a triangular envelope that makes it difficult to identify 

even a single event (Kirkland et al., 2017). Resolving complex titanite age spectra remains a 

problem that needs to be addressed. 

Here, we present results of titanite geochronology and trace element geochemistry of felsic 

intrusive rocks (meta-granitoids) from the Capricorn Orogen in Western Australia, an 

orogenic belt that has experienced at least two Paleoproterozoic collisional events and over 

one billion years of intracontinental reworking (Johnson et al., 2013). Systematic 

investigation of titanite geochronology and geochemistry data in conjunction with previously 

obtained geochronological data on other minerals (e.g., zircon) allows us to develop several 

trace element indices in titanite that may be applied to orogenic terranes that are less well-

constrained than the Capricorn Orogen. We also use this new titanite petrochronological data 

to better understand the tectonic and geodynamic processes that operated during the 

formation of the Western Australian Craton and its subsequent reworking. 

 

2 GEOLOGICAL BACKGROUND OF THE CAPRICORN OROGEN 

The Capricorn Orogen records the protracted tectonothermal geological history of the 

amalgamation of the West Australian Craton. Composed of Archean–Paleoproterozoic 

terranes, microcontinents and sedimentary basins, the Capricorn Orogen denotes the suture 

zones between the Pilbara Craton, Glenburgh Terrane and Yilgarn Craton (Figs. 1 & 2; 

Cawood and Tyler, 2004; Johnson et al., 2011b; Johnson et al., 2013). With over one billion 

years of intracontinental reworking and sedimentation spanning most of the Proterozoic, the 
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complex geological history of the Capricorn Orogen is now subdivided into at least eight 

distinct tectonothermal events: (i) the 2215–2145 Ma Ophthalmia Orogeny, which sutured the 

Glenburgh Terrane to the Pilbara Craton (Krapež et al., 2017; Rasmussen et al., 2005), (ii) the 

2005–1950 Ma Glenburgh Orogeny, which amalgamated the combined Pilbara Craton–

Glenburgh Terrane with the Yilgarn Craton to form the West Australian Craton (Johnson et 

al., 2010; Johnson et al., 2011b; Occhipinti et al., 2004; Sheppard et al., 2004), (iii) the 1830–

1780 Ma Capricorn Orogeny, the first of a series of intracontinental orogenies/tectonic events 

(Sheppard et al., 2010a), (iv) the 1690–1660 Ma Mangaroon Orogeny (Piechocka et al., 2017; 

Sheppard et al., 2005), (v) the 1320–1170 Ma Mutherbukin Tectonic Event (Johnson et al., 

2011a; Korhonen et al., 2017), (vi) the 1030–990 Ma Edmundian Orogeny (Martin and 

Thorne, 2004; Piechocka et al., 2017; Sheppard et al., 2007), (vii) the 955–830 Ma Kuparr 

Tectonic Event (Occhipinti, 2007; Occhipinti and Reddy, 2009; Olierook et al., in review; 

Piechocka et al., 2017; Piechocka et al., 2018), and (viii) the c. 570 Ma Mulka Tectonic Event 

(Sheppard et al., 2010b; Wingate and Giddings, 2000). 

 

3 METHODOLOGY 

3.1 Sample selection and preparation 

Titanite was extracted from 43 meta-granitoid samples from across the Capricorn Orogen; 23 

yielded statistically valid ages and five other samples yielded geologically-meaningful 

estimates. This suite comprised a combination of samples from the archives of the Geological 

Survey of Western Australia and samples collected during 2014–2016 field campaigns (Figs. 

1–2). Four samples were selected from the Sylvania Inlier, an exposed portion of the Pilbara 
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Craton (Tyler, 1991). Nine samples were analyzed from rocks that have affinity to the 

Yilgarn Craton including: the Narryer Gneiss Terrane (n = 1), the Yarlarweelor Gneiss 

Complex, a reworked portion of the Narryer Gneiss Terrane (n = 2); the Kalgoorlie Terrane 

(n = 1), and; the Marymia Inlier (n = 2) and Goodin Inlier (n = 3), both probable reworked 

fragments of the Youanmi Terrane (Mole et al., 2013). Five samples were related to the 

2005–1950 Ma Glenburgh Orogeny including the Dalgaringa Supersuite, (n = 2), the Nardoo 

Granite (n = 1) and Bertibubba Supersuite, (n = 2; Johnson et al., 2011b; Johnson et al., 2013; 

Occhipinti et al., 2004; Sheppard et al., 2004). Nineteen samples were collected from the 

Moorarie Supersuite, which comprises predominantly granitic (sensu lato) intracontinental 

plutonism related to the 1830–1780 Ma Capricorn Orogeny (Sheppard et al., 2010a). Six 

samples were analyzed from the Durlacher Supersuite, a suite of intracontinental granitic 

plutons emplaced during the 1690–1660 Mangaroon Orogeny (Piechocka et al., 2017; 

Sheppard et al., 2005). See Table 1 for rock type designation, formation name and precise 

locations. 

Rocks were crushed and their heavy mineral fractions separated using heavy liquids and a 

Frantz isodynamic magnetic separator. Heavy mineral grains were subsequently hand-picked, 

mounted in 25 mm epoxy rounds and polished to expose their interiors. 

3.2 Titanite imaging 

Each mount was imaged using transmitted and reflected light to provide internal grain 

textural information. Grain mounts were then analyzed using the Tescan Integrated Mineral 

Analyzer (TIMA), a field emission gun scanning electron microscope (FEG-SEM) housed 

within at the John de Laeter Centre (JdLC) at Curtin University. Due to its four integrated 
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energy dispersive X-ray (EDX) detectors, the TIMA enables rapid acquisition of qualitative 

chemical data, which was used to identify titanite and their inclusion/intergrowth 

assemblages in heavy mineral populations. Atomic number contrast back scatter electron 

(BSE) images were then collected using the Tescan Mira3 FEG-SEM from the JdLC using a 

12 kV beam current, also at the JdLC. Backscattered electron images were used to document 

internal zonation patterns (e.g. oscillatory, sector, patchy), identify recrystallization textures 

and recognize the present of any crystal rims. These identification procedures aid in 

elucidating whether grains were originally magmatic (igneous), metamorphic or experienced 

recrystallization. 

3.3 In situ U–Th–Pb and trace element analysis 

Titanite U–Th–Pb isotopic and trace element measurements were collected using a 

Resonetics S-155-LR 193 nm excimer laser ablation system coupled to an Agilent 7700x 

quadrupole mass spectrometer housed within the JdLC at Curtin University. All samples 

were measured in situ from the polished 25 mm epoxy rounds and multiple spots were 

collected from both grain fragments and individual crystals. A brief overview of operating 

conditions is given here; for a detailed outline of the LA-ICP-MS instrumentation and 

techniques, see Kylander-Clark et al. (2013). The laser spot diameter was 33 or 50 µm, the 

laser fluence was ~1–4 J cm-2, the repetition rate was 3–4 Hz for a 30-second total of 120 

shots, which ablates at a rate of 0.05–0.15 µm per pulse. All uncertainties quoted in the text, 

in tables and in figures are at 2σ. 

Analyses of unknowns were bracketed with primary reference materials every ten unknown 

analyses to monitor and correct for mass fractionation and instrumental drift, including Khan 
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(522.2 ± 2.2 Ma; Heaman et al., 2002; Kinny et al., 1994) and OLT1 (1014.8 ± 2.0; Kennedy 

et al., 2010). Secondary standards BLR-1 (1047.1 ± 0.4 Ma; Aleinikoff et al., 2007) and 

MKED1 (1517.32 ± 0.32 Ma; Spandler et al., 2016) were used to internally monitor data 

accuracy and precision, and were corrected for mass bias and fractionation based on 

measured isotopic ratios of the primary reference material using Iolite software (Paton et al., 

2011). Precision on individual analyses depend on volume and concentrations of U, Th and 

Pb, with secondary standards, after normalisation to the primary standard, yielding 1–7% 

precision on the uncorrected 206Pb/238U ratios and typically 2–11% precision on the 

uncorrected 207Pb/206Pb ratios. The optimum precision for 207Pb/206Pb vs 206Pb/238U ratios 

changes at ca. 2.0 Ga. All titanite weighted mean ages older than 2.0 Ga are presented as 

207Pb/206Pb ages and ages younger than 2.0 Ga are presented as 206Pb/238U ages. Curtin 

internal laboratory standard Khan (522.2 ± 2.2 Ma; Heaman, 2009) was used for all titanite 

trace element concentrations. Khan titanite has been repeatedly characterised by LA-ICPMS 

(Curtin) and electron probe micro-analysis (Adelaide) for this purpose (see supplemental 

Table A for element concentrations of Khan titanite). Uncertainties on trace elements in Khan 

titanite are typically 1.0–1.5% at 2σ (supplemental Table A). The National Institute of 

Standards and Technology standard BHVO glass (Kent et al., 2004) was used as a secondary 

reference material. Trace element data collected on the same titanite grains as U–Pb data, and 

include Na, Al, V, Cr, Mn, Fe, high field strength elements (HFSE; Y, Zr, Hf, Nb, Ta) and 

rare earth elements (REE; La–Lu).  

All age uncertainties are reported at the 95% confidence interval, assuming a Gaussian 

distribution of measurement errors. The different distributions of U–Pb dates means that there 

may be several methods for calculating an age, including a discordia fit through the data, a 
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concordia age of concordant data only, a weighted mean of uncorrected 206Pb/238U or 

207Pb/206Pb dates, or a weighted mean of 207Pb-corrected 206Pb/238U dates. Analyses are 

considered concordant if they overlap within analytical uncertainty on the 207Pb/206Pb vs. 

238U/206Pb Tera-Wasserburg concordia curve (Spencer et al., 2016). Because most samples in 

this study exhibit a broad spread of U/Pb ratios, we use a discordia fit through the 

uncorrected data, where the y-axis intercept (207Pb/206Pb) reveals the composition of the 

common-Pb component and the lower concordia intercept equals the sample age. 

There are several instances where a concordia intercept age calculation of all the data 

(excluding outliers) is not appropriate. First, samples where a statistically-consistent 

207Pb/206Pb intercept was not available (p < 0.05) but a linear trend still exists, the regressed 

intercept is an estimate only. Here, the percentage of common-Pb (f207%) was calculated as 

an estimate of the amount of non-radiogenic Pb based on the distance from concordance 

along a projection towards contemporaneous common-Pb. An age estimate is then calculated 

from uncorrected 207Pb/206Pb (>2.0 Ga) or 206Pb/238U (<2.0 Ga) ratios that have f207 < 1% 

(Kirkland et al., 2018; Kirkland et al., 2017). Secondly, where data do not form a linear trend 

because all or the majority of data is concordant, a weighted mean of the concordant 

uncorrected 206Pb/238U dates or 207Pb/206Pb dates are calculated; such an approach only 

applies to one sample (88412) in this study. Lastly, where excess scattering in the U–Pb data 

occurs that cannot be resolved by titanite textures, no age is calculated. 

Zr-in-titanite temperatures were calculated using the method of Hayden et al. (2008). 

Although zircon and quartz are commonly observed to coexist with titanite in the analyzed 

samples, rutile rarely coexists with titanite here. Thus, the activation energy of TiO2 (aTiO2) is 
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lower than 1. Given the plausible limits of aTiO2 = 0.5 in typical crustal rocks (Ferry and 

Watson, 2007; Hayden and Watson, 2007), the maximum likely overestimation of the 

crystallization temperature would be ~30 °C at temperatures of 500–700 °C and 0.5–1 GPa. 

Independent geological and P–T–t–x modelling suggests that average pressure estimates are 

0.8 GPa for the ca. 2005–1970 Ma Dalgaringa Supersuite (Johnson et al., 2011b), 0.5 GPa for 

the 1965–1945 Ma Bertibubba Supersuite (Johnson et al., 2011b), 0.4 GPa for the ca. 1830–

1780 Ma Capricorn Orogeny (Sheppard et al., 2010a), 0.6 GPa for the ca. 1690–1660 Ma 

Mangaroon Orogeny (Piechocka et al., 2017; Sheppard et al., 2005) and 0.4 GPa for the ca. 

1320–1170 Ma Mutherbukin Tectonic Event (Korhonen et al., 2015; Korhonen et al., 2017). 

To simplify matters, a constant pressure of 0.5 GPa was used for all data. Temperature 

estimates may be overestimated by up to 30 °C due to the absence of rutile, and 

underestimated by up to 30 °C due to higher pressures in the Dalgaringa and Bertibubba 

Supersuites. To account for this, an uncertainty of ±30°C was added to the calculated 

uncertainty from Zr concentrations and equation uncertainties (Hayden et al., 2008). 

Full isotopic and trace elemental data set for the samples is given in supplementary Table B. 

3.4 Multivariate statistical methods 

Principal component analysis (PCA) was undertaken on titanate geochemical data using the 

statistical analysis software PAST (Hammer et al., 2001). Geochemical data were screened, 

with spurious spot analyses removed. Data were log-normalised using a centered log-ratio 

transformation in recognition of the importance of scale invariance with compositional data 

(Aitchison, 1982) using CoDaPack 2 (Comas Cufí and Thió i Fernández de Henestrosa, 

2011) in preparation for multi-dimensional analysis. Using PCA, data dispersion is simplified 
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to the most significant principal components (PC) with weightings determined for each 

variable that contributes to the different principle components. The significance of each PC is 

discussed below with respect to the percent variance of the total dataset that it explains, i.e. 

the ratio of each PC eigenvalue normalized to the sum of all eigenvalues. The first two PCs 

account for over 83% of the total data variance (PC1= 69% and PC2= 14%) and are 

discussed here. Loadings on each element variable and the sample dispersion scores are 

displayed graphically. 

 

4 RESULTS 

Given the quantity of data collected for this study (43 samples), only the salient features are 

highlighted below. The full results for each of the 43 samples are given in the supplemental 

material, including BSE images for each titanite type, Tera-Wasserburg and (where 

applicable) weighted mean plots for the U–Pb data, and brief description of results. 

4.1 Titanite grain textures 

Backscatter electron analysis of titanite grains within the 43 samples spanning Archean to 

Neoproterozoic reveal a variety of textures, including sector zoning (Fig. 3a), oscillatory 

zoning (Fig. 3b), BSE-homogenous grains (Fig. 3c), twinning (supplementary material) and 

‘sugary’ alteration (Fig. 3d). The only systematic differences in titanite textures between the 

different suites in the Capricorn Orogen is that the Archean samples tend to show a greater 

number of inclusions in titanite grains and more alteration that titanite from Proterozoic 

samples. 
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The majority of the textural difference in titanite is related to inclusions/adjoining minerals or 

whether titanite grains are igneous, recrystallized or metamorphic in origin (confirmed by 

zircon ages, see section 4.2.1). Igneous grains most commonly show sector zoning (Fig. 3a) 

or are homogenous in BSE (Fig. 3c) and rarely faint oscillatory zoning (Fig. 3b). Inclusions 

of zircon are common, particularly from Archean samples. Inclusions or adjacent grains of 

apatite, feldspar, mica, quartz, amphibole (kaersutite) are also occasionally present in igneous 

titanite (Fig. 3d–f). Recrystallized titanite grains often show clear cores and rims (Fig. 3g) but 

are otherwise similar to igneous grains in terms of their internal texture. Metamorphic titanite 

are predominantly homogenous in BSE and rarely sector-zoned (Fig. 3g–h). Ilmenite 

inclusions are very common in metamorphic titanite (Fig. 3i).  

4.2 Titanite U–Pb geochronology 

Of the 43 analyzed samples, 23 yielded statistically-reliable ages (Table 1). The simplest U–

Pb spectra display statistically-consistent discordia between a common-Pb upper intercept 

and a lower intercept with the concordia curve (Fig. 4a, b). The percentage of concordant data 

in a given sample varies from almost predominantly concordant (~87%) to wholly discordant 

(Fig. 4a, b). For samples where some scatter exists such that a statistically-consistent 

discordia line and 207Pb/206Pb intercept cannot be calculated, it is possible to calculate an age 

using only points that have negligible common-Pb (i.e., concordant data, Fig. 4c, d). For 

Proterozoic samples, the discordia line is at high angles to the concordia curve so that this 

calculation is relatively straightforward (e.g., Fig. 4c). Some Archean titanite U–Pb spectra 

are significantly more complicated because their linear distribution of U–Pb data between 

common-Pb and a lower concordia intercept tends to be tangential to the concordia curve 
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(Fig. 4d). Here, it is best to calculate the percentage of common-Pb and assume negligible 

common-Pb is defined as f207 < 1% (Fig. 4d). 

Still other samples yield widely scattered U–Pb spectra that are not resolvable based on 

textural criteria alone (Fig. 5). All of the examples shown in Figure 5 may be resolved 

utilizing trace elemental information, which acts as a powerful discriminant for highlighting 

different groupings, trends and outliers in U–Pb space (section 4.3). The most appropriate 

trace element abundances and ratios used to discriminate between titanite dates are REE 

slope (La/Sm or La/Yb), Th/U, U, Pb and Zr-in-titanite temperatures (Fig. 4, Fig. 5). 

The application of trace elements to U–Pb data allow the identification of igneous and 

subsequent recrystallization events in a single sample (Fig. 5). For example, sample 120644 

from the Goodin Inlier yields a main cluster at ca. 2.7–2.6 Ga with high Pb and Zr-in-titanite 

temperatures trending towards a common-Pb intercept, with a calculated uncorrected 

207Pb/206Pb age of 2644 ± 17 Ma (f207 < 1% only; Fig. 5a). Six additional data with low Zr-

in-titanite temperatures and low Pb abundances form a statistically-consistent discordia 

between the igneous crystallization age and a subsequent recrystallization age of 1850 ± 120 

Ma (Fig. 5a). As the upper intercept overlaps with the age for the main cluster and these 

grains are characterised by decreasing Pb with younger ages, we suggest that these analyses 

were formed by partial to complete Pb-loss. 

It is not always possible to place accurate age constraints on some of these complex U–Pb 

spectra. For example, titanite U–Pb data in sample 84599 from the Sylvania Inlier reveal a 

systematic but continuous variation in Th/U ratio with 207Pb/238U (i.e., the slope of a 

207Pb/206Pb vs. 238U/206Pb Tera-Wasserburg plot; Fig. 5b). In another example, sample 195826 
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from the 1690–1660 Ma Durlacher Supersuite is affected by both partial Pb-loss and partial 

Pb-gain, meaning that it is uncertain if the oldest concordant dates record the igneous 

crystallization event or are already affected by Pb diffusion (Fig. 5c). 

4.2.1 Comparison of titanite U–Pb ages with zircon 

All zircon ages for the same samples where titanite was dated have been previously 

interpreted as recording the igneous crystallization of the rocks (Table 2, Fig. 6). In the 

majority of cases, calculated titanite ages overlap within 2σ confidence of the published 

zircon ages (Table 2, Fig. 6a, b). However, several samples from the Paleoproterozoic 

Moorarie and Durlacher Supersuites revealed ages that were tens of Myr younger than their 

zircon counterparts (e.g., samples 88412, 88414; Fig. 6b). Still other titanite ages were 

hundreds of Myr younger than the zircon ages (e.g., samples 190661, 135501; Fig. 6c). 

4.3 Titanite trace element geochemistry 

The knowledge of titanite textural information (Fig. 3) and differences between U–Pb zircon 

and U–Pb titanite ages (Fig. 6) provide a robust assignment of whether grains are igneous, 

recrystallized or metamorphic in most samples. For some analyses, this is not straightforward 

due to the high U–Pb uncertainties and ambiguous textural information (see supplementary 

Table B). Here, we interpreted what the most likely origins for these equivocal titanite grains.   

4.3.1 Trace element variation with discordance 

Uranium and Pb abundances are useful discriminators for assessing whether discordance (i.e., 

data spread) is a product of common-Pb incorporation or variable common-Pb to radiogenic-

Pb ratios. Common-Pb incorporation displays systematic variable Pb and constant U (Fig. 
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4d), whereas variable common-Pb to radiogenic-Pb is exhibited as constant Pb but systematic 

variation in U (Fig. 4b). For example, sample 195821 from the Moorarie Supersuite shows 

higher Pb concentrations closer to the common-Pb intercept, indicative of higher common-Pb 

away from the lower concordia intercept (Fig. 4d). Conversely, sample 88420 from the 

Moorarie Supersuite shows increasing U concentrations towards the lower concordia 

intercept (Fig. 4b). This suggests that the less discordant analyses with more U have higher 

radiogenic Pb concentrations and more discordant analyses (with less U) have lower 

radiogenic to common-Pb concentrations. 

4.3.2 Trace element variation with igneous, recrystallized and metamorphic grains 

The strongest control on titanite trace element geochemistry is whether grains are 

neocrystallized igneous, recrystallized igneous or neocrystallized metamorphic in origin (Fig. 

7). Calculated Zr-in-titanite temperatures, Th/U, Th/Pb, REE slopes, Eu anomalies and 

Al/(Al+Fe) are all effective criteria for differentiating neocrystallized igneous and 

metamorphic grains and, to a lesser extent, identifying recrystallized igneous crystals (Fig. 7). 

Calculated Zr-in-titanite temperatures are most effective at differentiating different titanite 

grains, yielding average temperatures of 730 °C, 675 °C and 625 °C for igneous, 

recrystallized and metamorphic titanite, respectively (Fig. 7). In samples where both 

neocrystallized igneous and recrystallized igneous titanite grains or rims exist, Zr-in-titanite 

temperatures in the primary domains can be preserved (e.g., sample 195826, Fig. 5c) or 

lowered due to partial Zr diffusion (e.g., sample 120644, Fig. 5a). However, when all samples 

are plotted together, there is not always a clear differentiation between neo- and recrystallized 
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igneous grains (Fig. 7a). Where Zr has diffused out of the crystal lattice, most other trace 

elements are also reduced in titanite. 

Another important chemical index is the proportion of minor elements Al and Fe (Fig. 7b). 

Although Al varies considerably for neocrystallized igneous, recrystallized igneous or 

neocrystallized metamorphic titanite, Fe proportions are systematically higher for igneous 

than for metamorphic titanite (Fig. 7b). As an index, neocrystallized igneous, recrystallized 

igneous and neocrystallized metamorphic titanite have Al/(Al+Fe) ratios of 0.2–0.6, 0.5–0.8 

and 0.9, respectively (Fig. 7c). Thus, Al/(Al+Fe) is particularly effective at differentiating 

neocrystallized igneous titanite from grains that have experienced interaction with 

hydrothermal fluids, either through recrystallization or new metamorphic growth. 

Th/U and Th/Pb ratios are also useful discriminants of the three titanite types (Fig. 7d,e). 

Neocrystallized igneous, recrystallized igneous and neocrystallized metamorphic titanite have 

Th/U ratios of 0.0001–2, 0.05–3, and 0.05–10 (Fig. 7d), and Th/Pb ratios of 0.0001–0.2, 

0.05–1 and 0.02–1, respectively (Fig. 7e). Thus, Th/Pb and, to a lesser extent, Th/U is 

particularly effective at differentiating metamorphic from neo- or recrystallized igneous 

titanite. When used in conjunction with Zr-in-titanite temperatures or Al/(Al+Fe) indices, the 

three titanite types are effectively discriminated from each other, although some overlap 

between neo- and recrystallized igneous titanite still exists (Fig. 7f). 

Concentrations and gradients in REE, and Eu anomalies, provide another chemical index to 

differentiating igneous, recrystallized and metamorphic titanite (Fig. 7g–i). Total abundances 

of REE (Fig. 7g), the slope of chondrite-normalized (Sun and McDonough, 1989) light to 

middle rare earth elements (LREE/MREE, [La/Sm]N, Fig. 7h), light to heavy rare earth 
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elements (LREE/MREE, [La/Yb]n) and Eu anomaly ([Eu/Eu*]N, where Eu* = √[Sm × Gd]; 

Fig. 7i) vary by several orders of magnitude between samples but rarely vary less than an 

order of magnitude within an individual sample (see supplemental Table B). 

There are exceptions where there may be several orders of magnitude difference in REE 

concentrations and gradients, particularly where two titanite populations are identified in a 

single sample (e.g., Fig. 4d). Titanite REE gradients display characteristically negatively 

sloping for neocrystallized igneous titanite (median [La/Sm]N = 25.5, Fig. 7h, Fig. 8b), 

whereas recrystallized rims and neocrystallized metamorphic grains have flat to positively 

sloping REE gradients with median (La/Sm)N of 1.24 and 0.43, respectively (Fig. 7h, Fig. 

8e). Eu anomalies show negative (Eu/Eu*)N for both neocrystallized and recrystallized 

igneous titanite grains (median [Eu/Eu*]N = 0.74 and 0.63, respectively, Fig. 8c, f) but 

positive Eu anomalies for neocrystallized metamorphic grains (median [Eu/Eu*]N = 1.37, Fig. 

8f). 

Chemical zonation patterns are also indicative of titanite origin. Magmatic titanite that exhibit 

oscillatory or sector zoning (Fig. 3) also has corresponding intragrain chemical variations in 

response to evolving magma compositions. For example, a grain from the 1830–1780 Ma 

Moorarie Supersuite shows variations in La/Sm and Eu/Eu* from core to rim (Fig. 9). The 

variance of REE is only loosely correlated with discordance, implying that Pb is more mobile 

than REE (Cherniak, 2006). Recrystallized titanite grains show consistently low La/Sm ratios 

at grain rims but slightly variable Eu/Eu* that correlates with discordance (Fig. 9). 

4.3.3 Spatial and temporal variation in trace elements 
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There are only subtle differences in titanite trace element abundance and ratios between the 

five different formations (Fig. 8, Fig. 10b, supplemental Table B). Igneous titanite from the 

Pilbara Craton, Moorarie Supersuite and Durlacher Supersuite have decreasing 

concentrations of Th and LREE (supplementary Table B) but these variations may also 

reflect undersampling of the Pilbara Craton. REE gradients and Eu anomalies are very similar 

for the Moorarie and Durlacher Supersuites (Fig. 8). Neocrystallized igneous grains have 

(La/Sm)N of 23.6 and 30.9 (Fig. 8b) and (Eu/Eu*)N of 0.78 and 0.50 for the Moorarie and 

Durlacher Supersuite, respectively (Fig. 8c). Neocrystallized metamorphic grains have 

(La/Sm)N of 0.72 and 0.85 (Fig. 8e) and (Eu/Eu*)N of 1.02 and 1.48 for the two supersuites, 

respectively (Fig. 8f). Thus, the variation in trace elements between geological units is not 

nearly as evident as the difference between igneous and metamorphic titanite (Fig. 7–9). 

4.3.4 Multivariate statistical analysis 

A principal component analysis of the titanite trace elements shows that principal 

components 1 and 2 account for over 83% of the statistical variation (Fig. 10). As a 

consequence of the high statistical variance captured by just the first two PCs, PC3 and below 

are not reported. PC1 (69% of the variance) shows that the primary discriminating trace 

elements are the light to middle REE, Th, Y, Nb, Ta, Al and Mn. PC2 (14% of the variance) 

is strongly controlled by the middle to heavy REE, Pb, Y, Zr, Fe, V, Mn and Al. Uranium, Eu 

and Hf have little control on both PC1 and PC2. 

PC1 is highly effective at discriminating between igneous and metamorphic titanite, with 

minimal overlap (Fig. 10a). Igneous titanite consistently have negative PC1 scores and, 
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conversely, neocrystallized titanite have positive PC2 scores. Recrystallized titanite straddle 

the middle ground, although with notably low PC2 scores. 

The combination of PC1 and PC2 is partly useful at highlighting the Pilbara Craton (low PC1 

scores) from the other suites (Fig. 10b). Score differences between the other suites is less 

clear. 

There is no noticeable spatial or geographic control on the PCs for igneous samples from 

across the Capricorn Orogen. However, we note that most samples were collected from a 

single tectonic zone (see Fig. 2), so spatial variance may not be fully captured in this study. 

 

5 DISCUSSION 

5.1 Interpretation of titanite dates and conversion to geologically-meaningful ages 

Titanite dates in a single sample can yield a variety of patterns in U–Pb concordia space, each 

of which requires a different approach to reveal meaningful geological information (Fig. 11). 

Here, we discuss the approaches to provide a focussed method to interpreting increasingly 

complex U–Pb systematics. This approach need not apply only to titanite. Any mineral in an 

igneous or metamorphic rock that has suitable U–Pb and trace element constituents to allow 

for petrochronologic analyses can utilize this method. 

The majority of samples in this study yield a linear array of U/Pb and Pb/Pb ratios between a 

207Pb/206Pb ordinate intercept and a lower concordia intercept (Fig. 4, ‘igneous titanite’ in Fig. 

11). Such trends are relatively simple to interpret as a product of common-Pb incorporation 

into an otherwise uniform ratio of parent U to daughter radiogenic Pb products (Garber et al., 
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2017; Kirkland et al., 2016; Kohn, 2017; Tera and Wasserburg, 1972). It is then 

straightforward to calculate an age for the sample using the lower concordia intercept (Anand 

et al., 2014). Where a discordia line cannot be reliably fitted, a weighted mean of uncorrected 

concordant data can yield an age if all analyses overlap at 2σ uncertainty (e.g., sample 88412, 

supplementary material; Simonetti et al., 2006; Spencer et al., 2016). Alternatively, if 

samples still reveal a linear trend towards a 207Pb/206Pb intercept but are not statistically-valid 

for a single population, the estimated 207Pb/206Pb intercept can be used to calculate which 

concordant analyses have a negligible proportion of common-Pb (f207 < 1%, Fig. 4c, d). 

Given that concordant data are significantly away from the 207Pb/206Pb intercept (y-axis), an 

estimate of the 207Pb/206Pb intercept is sufficient to calculate a reliable age because the choice 

of common-Pb ratio has negligible impact on data with negligible common-Pb.  

It becomes increasingly difficult to determine robust ages when multiple events are recorded 

in a single sample (Fig. 5). For a sample purported to have two events, U–Pb data will usually 

define a triangular array (blue region in Fig. 11) where the three endmembers are (i) a 

207Pb/206Pb ordinate common-Pb intercept, (ii) an upper concordia intercept that records the 

first event (red circle in Fig. 11), and (iii) a lower concordia intercept that records the second 

event (blue circle in Fig. 11). Establishing the validity of two events requires textural and/or 

chemical information. For example, sample 84599 shows systematic variation of Th/U with 

discordia slope (207Pb/238U; Fig. 5b). The highest Th/U is associated with the igneous event at 

2937 ± 67 Ma, whereas the subsequent Mesoproterozoic event has lower Th/U ratios. 

Assigning an accurate age to the second event is not possible as the discordia is not well 

defined. In another example, sample 120644 yields accurate igneous and metamorphic ages 

that are possible using clear groupings of Pb compositions (Fig. 5a, Fig. 11). Here, igneous 
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dates are associated with low Pb (< 40 ppm), recrystallized grains have very low Pb (<10 

ppm), and grains with significant common-Pb and older apparent dates have high Pb (>60 

ppm). In a final example, sample 195826 partially mimics sample 120644 in that it has clear 

upper and lower discordia intercepts (Fig. 5c, Fig. 11). However, sample 195826 also yielded 

a significant number of discordant U–Pb data that have lost Zr and Pb with respect to their 

concordant equivalents. Because of the lack of distinct clustering at both upper and lower 

intercepts, the oldest (~1.6 Ga) and youngest (~1.2 Ga) concordant spots are minimum and 

maximum ages for the first and second event, respectively. Nevertheless, these three 

examples show that it is possible to extract valuable geological information from titanite 

grains despite the issues of Pb mobility and incorporation of common Pb. 

It should be noted that three or more events are very unlikely to be readily decipherable in 

any titanite samples unless they can be clearly linked to textural information (e.g., grain core 

with multiple rims).  

5.2 Application of chemical indices to differentiation of igneous, recrystallized and 

neocrystallized metamorphic phases 

Regional geochronological data from the Capricorn Orogen allow titanite dates to be tied to 

well-constrained tectonothermal events (Fig. 6). Distinction of igneous vs. metamorphic 

origin for titanite have also been made in other regions that have experienced multiple 

tectonothermal events, such as the Western Gneiss Region in Norway (Garber et al., 2017), 

East Greenland (Kirkland et al., 2017) and the Glastonbury Complex, USA (Aleinikoff et al., 

2002). Our results demonstrate that Zr-in-titanite thermometry, REE slope and Eu anomalies, 

Al/(Al+Fe), Th/U and Th/Pb are the primary chemical indices to effectively discriminate 
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between neocrystallized igneous, recrystallized igneous, and neocrystallized metamorphic 

titanite grains from the Capricorn Orogen (Fig. 7, Fig. 10). Each of these indices are 

discussed in turn. 

Zirconium and Ti are important elements that can substitute for each to other to a limited 

extent in titanite, rutile and zircon (Ferry and Watson, 2007; Hayden et al., 2008; Tomkins et 

al., 2007; Zack et al., 2004). The amount of substitution is primarily controlled by 

temperature and pressure but is also sensitive to co-crystallization of other Si-, Ti- and Zr-

bearing phases, and deformation (Hayden et al., 2008; Timms et al., 2011; Watson et al., 

2006). Igneous grains are consistently between 680–820 °C, compatible with the titanite Pb 

closure temperature of 750–800 °C (Kohn, 2017; Spencer et al., 2013). Lower values of Zr-

in-titanite temperatures from ~580 to 740 °C for igneous grains are associated predominantly 

with grains from the Yilgarn Craton and Moorarie Supersuite (Fig. 7a). This may be a result 

of (a) misidentification of igneous titanite, (b) incorrect calculation of temperature, 

particularly if there is no rutile buffer in the sample or the used pressure of 0.5 GPa is too low 

for Yilgarn Craton and Moorarie Supersuite (Hayden et al., 2008), (c) closure temperature 

has been affected, or (d) recrystallization of titanite and redistribution of trace elements due 

to subsequent events. Recrystallized igneous titanite grains consistently record lower 

crystallization temperatures than igneous grains, but not as low as neocrystallized 

metamorphic grains, implying partial mobility of Zr during the same event(s) that resulted in 

near to complete Pb-loss (Cherniak, 1993, 2006). Zr-in-titanite temperatures of 560–640 °C 

in neocrystallized metamorphic grains are compatible with lower to upper amphibolite facies, 

which are compatible with temperatures that have been independently constrained for the 

1690–1660 Ma Mangaroon Orogeny, 1320–1170 Ma Mutherbukin Tectonic Event and 1030–
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990 Ma Edmundian Orogeny (Korhonen et al., 2015; Korhonen et al., 2017; Piechocka et al., 

2017; Sheppard et al., 2005; Sheppard et al., 2007). 

Both Al3+ and Fe3+ can substitute for Ti4+ in the octahedral (Ti) site, together with a 

replacement of O2- with F- or OH- to accommodate the charge balance (Franz and Spear, 

1985; Higgins and Ribbe, 1976; Oberti et al., 1991). Although Al varies considerably 

regardless of the type of titanite, the amount of Fe is significantly lower for neocrystallized 

metamorphic titanite (Fe = 2000–7200 ppm) than neocrystallized and recrystallized igneous 

titanite (Fe = 7000–18000 ppm; Fig. b, c). The incorporation of Al and Fe is facilitated by the 

similar ionic radii of Ti4+ (0.605 Å), Al3+ (0.535 Å) and Fe3+ (0.645 Å) at the octahedral site 

(Shannon, 1976). The larger ionic radius of Fe3+ means that it is able to readily substitute for 

Ti4+ at higher temperatures (i.e., igneous) but struggles to do so at lower temperatures (i.e., 

metamorphic conditions). During neocrystallization of metamorphic titanite, the smaller 

radius of Al3+ is preferentially favoured over Fe3+ in the octahedral site, which explains the 

higher Al/(Al+Fe) index for metamorphic titanite (Fig. 7). Recrystallized igneous grains 

express intermediate Al/(Al+Fe) index values between igneous and neocrystallized 

metamorphic grains, which probably reflects some added incorporation of Al during 

recrystallization. 

The ratios of Th/U and Th/Pb are primarily controlled by the partition coefficients of Th and 

U in different co-crystallizing minerals in magmatic and metamorphic systems and, to a 

lesser extent, temperature (Fig. 7d, e; Prowatke and Klemme, 2005; Tiepolo et al., 2002). The 

co-crystallization of monazite in particular can act as a Th (and REE) sink, causing lower 

Th/U and Th/Pb ratios. From nearby samples within the same units, monazite is commonly 
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observed and dated coeval with titanite in the 1320–1170 Ma Mutherbukin Tectonic Event 

where most metamorphic titanite ages from this study are recorded (Korhonen et al., 2015; 

Korhonen et al., 2017). Another important control on the Th/Pb ratio is the higher diffusivity 

of Pb relative to Th (Cherniak, 1993, 2010). Neocrystallized and recrystallized igneous 

titanite has comparable Th compositions as a function of melt chemistry but Pb 

concentrations are significantly lower for recrystallization titanite. Radiation damage from 

the decay of Th or U to Pb is annealed readily at high temperatures but damage is less rapidly 

repaired at lower temperatures associated with greenschist and amphibolite facies 

metamorphism such as is observed in the Capricorn Orogen (Cherniak, 1993). Thus, 

recrystallization is able to diffuse out Pb more effectively than Th, yielding high Th/Pb ratios 

for recrystallized titanite and progressively lower Th/Pb ratios for higher-temperature igneous 

titanite (Fig. 7e). A final complication in the interpretation of Th/U and Th/Pb ratios is the 

incorporation of common-Pb during crystallization. As a function of ionic radius, Pb is more 

readily incorporated during higher temperature than lower temperature crystallization 

(Tiepolo et al., 2002), which explains the anomalously high Pb concentrations in some 

igneous grains (up to 30000 ppm) and low to negligible Pb concentrations from metamorphic 

titanite in this study and others (e.g., Garber et al., 2017). This is another mechanism to 

explain the low Th/Pb ratios of some high-temperature igneous grains that have not 

experienced recrystallization. The relative incorporation of Th and U, higher diffusivity of Pb 

than Th and higher incorporation of Pb in higher temperatures together explain the observed 

convex-upwards relationship between Th/Pb and Zr-in-titanite temperatures in the Capricorn 

Orogen (Fig. 7d, e). However, we stress that the mechanisms governing the Th/U and Th/Pb 

ratios are relatively complex. Because of this complexity, it may be that the use of Th/U and 
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Th/Pb indices for differentiating igneous, recrystallized and metamorphic titanite may not be 

as effective in other terranes as it is in the Capricorn Orogen. 

The incorporation of REE in the 7-fold coordinate Ca site is a product of similar ionic radii of 

REE3+ (La3+ = 1.10 Å to Lu3+ = 0.93 Å) and Ca2+ (1.06 Å; Shannon, 1976). The incorporation 

of total REE contents is primarily controlled by the fluid or melt composition during 

crystallization and the ability for trace elements to substitute for mineral-forming elements at 

different temperatures and pressures (Fig. 7g; Tiepolo et al., 2002). Igneous titanite can show 

concentric zoning in trace elements – particularly REE – resulting in up to an order of 

magnitude intragrain variability that increases or decreases relatively linearly from core to 

rim (Fig. 9a). However, neocrystallised metamorphic titanite appears relatively homogenous 

presumably (Fig. 9b). The reason for REE homogeneity is that the fluid chemistry during 

subsequent metamorphic reactions is more homogenous than magma, which experiences 

fractional crystallization and mixing from replenishing magma or wall rock assimilation. The 

ratio of trivalent lighter to heavier REE is controlled by temperature, specifically by the 

preferential uptake of REE with ionic radii that are at or smaller than Ca2+ (Garber et al., 

2017; Tiepolo et al., 2002). At higher temperatures, LREE to MREE are preferentially 

incorporated over HREE, whereas at lower temperatures MREE to HREE are more dominant, 

an interpretation that is corroborated by positive correlation between Zr-in-titanite 

temperature and (La/Sm)N (Fig. 7h). Another important observation is the significant 

difference of (La/Sm)N ratios between neocrystallized igneous grains and recrystallized 

igneous grains (Fig. 8b,e), implying that LREE are more readily transferred to the formation 

fluids during metamorphism, whereas MREE and HREE are relatively immobile. 
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The use of Eu anomalies also deserve mention, as Eu/Eu* is systematically positive at lower 

temperatures and negative at higher temperatures (Fig. 7i, Fig. 8c,f). Chondrite-normalized 

Ce anomalies are negligible regardless of crystallization temperature (see supplementary 

Table B), implying that changes in redox conditions cannot explain the Eu anomaly 

phenomenon. Rather, igneous titanite has negative Eu/Eu* because of plagioclase 

fractionation incorporating Eu2+ from the melt. The generation of metamorphic titanite is 

probably accommodated by the breakdown of this Eu2+-bearing plagioclase (Fig. 3f) that then 

generates positive Eu anomalies. There is no noticeable difference in negative Eu anomalies 

between neocrystallized and recrystallized igneous grains, implying that Eu is relatively 

immobile during partial Pb loss.  

The use of chemical indices as discussed above in differentiating neocrystallized igneous, 

recrystallized igneous and neocrystallized metamorphic titanite is exemplified in sample 

81867. The zircon age for this sample (3187 ± 50 Ma) overlaps within uncertainty of the 

titanite age (3202 ± 58 Ma; Table 2). Although both these estimates are imprecise, the 

simplest interpretation is that the titanite is magmatic. However, titanite from this sample has 

average Zr-in-titanite temperatures of 662 ± 13 °C, Al/(Al+Fe) ratios of 0.7, (La/Yb)N ratios 

of 1 and Th/Pb ratios of 0.13; all of these characteristics are more compatible with a 

recrystallized igneous origin. While the geochronological information suggests that the 

titanite and zircon ages are likely coeval, the trace elements indicates that the titanite grains 

have been recrystallized shortly after the crystallization of the protolith, which would be 

unresolvable with traditional geochronology. 

5.3 Common-Pb reservoir in the Capricorn Orogen 
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Titanite is particularly susceptible to the incorporation of common-Pb during crystallization. 

In particular, Pb will exchange with the 7-fold coordinated Ca cations during titanite 

crystallization (Kirkland et al., 2016). The ordinate intercept of the U–Pb data on a Tera-

Wasserburg concordia plot allows the determination of the initial 207Pb/206Pb ratio of the 

common-Pb component (Kirkland et al., 2018; Kirkland et al., 2017; Tera and Wasserburg, 

1972). 

The 207Pb/206Pb ratio of common-Pb in titanite grains from the Capricorn Orogen is, at times, 

significantly more radiogenic than expected from a terrestrial common-Pb model (Kirkland et 

al., 2017; Stacey and Kramers, 1975). Precise 207Pb/206Pb intercepts from the ca. 1830–1780 

Ma Moorarie Supersuite consistently exhibit ratios of ~0.8 that are more radiogenic than 

would be predicted in Stacey and Kramers (1975) model of ~0.98 (Table 1). The implication 

is that a uniform radiogenic reservoir, or homogenously mixed radiogenic–terrestrial 

reservoir, was tapped to form titanite in the Moorarie Supersuite. Similarly, the ca. 1690–

1660 Ma Durlacher Supersuite reveals 207Pb/206Pb intercepts of 0.57–0.69, far more 

radiogenic than predicted terrestrial common-Pb values of 0.96–0.97 (Stacey and Kramers, 

1975). In fact, only in a handful of samples are the 207Pb/206Pb intercepts similar to the 

terrestrial common-Pb reservoir, indicative of an orogen-scale process that has introduced 

radiogenic inherited common-Pb into neo- or recrystallized titanite grains. 

Another notable observation is the incorporation of at least two common-Pb reservoirs into a 

single sample. Sample 84577 highlights this well, showing with 207Pb/206Pb intercepts of <0.4 

and >0.7 (Fig. 4d). Note that these 207Pb/206Pb intercepts are maximum and minimum 
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estimates only; the true common-Pb reservoirs may have 207Pb/206Pb ratios below 0.4 and 

above 0.7. 

5.4 Implications for the geological history the Capricorn Orogen 

New, statistically-reliable data for titanite and published geochronological data for zircon 

from the same samples in the Sylvania Inlier, Moorarie Supersuite and Durlacher Supersuite 

predominantly overlap in age within 2σ uncertainty (Fig. 6, Table 2). However, several 

titanite ages from samples related to the 1830–1780 Ma Capricorn Orogeny are several tens 

of Myr younger than their zircon counterparts, with no apparent spatial control on age 

distribution (Fig. 6, Fig. 12). Moreover, these ages are also younger (ca. 1750 Ma) than the 

previously published temporal range of the Capricorn Orogeny (Sheppard et al., 2010a). The 

variation of Eu/Eu* and LREE/HREE from the centre to outside of titanite grains (e.g., Fig. 

9a) indicates that these grains are igneous, with the variation attributed to changing magma 

chemistry during crystallization (Piccoli et al., 2000). The trace element chemical indices also 

strongly indicate a neocrystallized igneous origin. Moreover, the titanite growth temperature 

of titanite (~750–800 °C) is consistently higher than the amphibolite facies conditions that 

occurred during the Capricorn Orogeny, precluding a metamorphic origin for the zircon–

titanite age divergence (Sheppard et al., 2010a). The most plausible explanation is that the 

Moorarie Supersuite experienced a prolonged (i.e., slow) cooling history from the 

crystallization of the granitoids as indicated by the closure temperature of zircon (>1000 °C) 

and the closure of titanite (~750 °C). At least some regions in the Capricorn Orogen 

experienced a prolonged cooling history elevated until ca. 1750 Ma, which is ~30 Myr longer 
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than previously recognised for the 1830–1780 Ma Capricorn Orogeny (Sheppard et al., 

2010a). 

Nine samples yielded titanite ages that are several hundred of Myr younger than their zircon 

counterparts, probably reflecting that zircon records the igneous crystallization and titanite 

subsequent metamorphic reworking (Fig. 6, Table 2). One additional sample from the Goodin 

Inlier (120644) also yielded metamorphic ages of 1850 ± 120 Ma in addition to 2644 ± 17 

Ma, the latter of which is expected for the igneous crystallization of this part of the Yilgarn 

Craton (Mole et al., 2013). The ten samples that record younger titanite ages than zircon ages 

are found in all rock suites across the Capricorn Orogen, illustrating the ubiquity of post-

crystallization metamorphism (Fig. 12). 

The majority of titanite ages that are hundreds of Myr younger than zircon ages broadly fall 

into three groups, each of which is associated with a previously recognized tectonothermal 

event in the Capricorn Orogen. One sample from the Goodin Inlier (120644) records an age 

of 1850 ± 120 Ma, which is most likely associated with the 1830–1780 Ma Capricorn 

Orogeny (Sheppard et al., 2010a). One sample from the Moorarie Supersuite (135433) 

probably records a latest Paleoproterozoic age (supplemental data) that is most likely 

associated with the 1690–1660 Ma Mangaroon Orogeny (Piechocka et al., 2017; Sheppard et 

al., 2005). 

Most other samples record ages spanning between ca. 1250 and 1110 Ma (Fig. 6, Table 2), 

overlapping within 2σ of zircon, monazite and xenotime ages that record the final stages of 

the 1320–1170 Ma Mutherbukin Tectonic Event (Johnson et al., 2011a; Korhonen et al., 

2015; Korhonen et al., 2017). The second stage of the Mutherbukin Tectonic Event, dated 
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using zircon at ca. 1210–1170 Ma, is interpreted as reaching peak temperature conditions of 

>650 °C in the south and <550 °C in the northern part of the Mutherbukin Zone (see Fig. 2 

for location; Korhonen et al., 2015; Korhonen et al., 2017). Given that most of these samples 

that record a metamorphic age were from the Limejuice Zone (north of the Mutherbukin 

Zone; Fig. 12), the calculated Zr-in-titanite temperatures of 560–640 °C in neocrystallized 

grains are compatible with amphibolite facies metamorphism during the Mutherbukin 

Tectonic Event. Thus, titanite, together with some monazite and xenotime, probably grew 

during retrogressive metamorphic stages at ca. 1170 Ma (Korhonen et al., 2017). 

Interestingly, several of the samples that record a Mutherbukin-aged event are situated in the 

Limejuice Zone and along the southern margin of the Capricorn Orogen (Fig. 2). The 

Mutherbukin Tectonic Event was so named because it was thought to be restricted to the 

Mutherbukin Zone (Johnson et al., 2011a). Our dates further north and south suggest that the 

Mutherbukin Tectonic Event was not as restricted as previously thought (Korhonen et al., 

2015; Korhonen et al., 2017). 

Two other samples yielded ages of 959 ± 88 and 863 ± 65 Ma from the Durlacher and 

Moorarie Supersuites, respectively. Both events may be associated with the ca. 955–830 Ma 

Kuparr Tectonic Event (Olierook et al., in review). Given their relatively imprecise erros, the 

former age may instead record the ca. 1030–990 Ma Edmundian Orogeny (Sheppard et al., 

2007). 
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6 CONCLUSIONS 

Geochronology and trace element geochemistry of 43 titanite samples across the western 

Capricorn Orogen have revealed complex U–Pb arrays that can be interpreted by discerning 

proportions of common-Pb and Pb-loss (Fig. 11). Of these 43 samples, 23 samples yielded 

data that could be used to calculate statistically-valid ages. In interpreting titanite, it is 

important to recognize components of common-Pb and multiple (re)crystallization events to 

effectively convert U–Pb dates to geologically meaningful ages: 

(1) Samples that have experienced single igneous or metamorphic events are 

characterized by concordant dates and a linear trend of discordant data with variable 

incorporation of common-Pb of a single composition. 

(2) Samples with two events show a more complex U–Pb triangular envelope that can be 

differentiated into two distinct events on the basis of titanite textures, U–Pb spectra 

and chemical compositions. The recognition of incorporated radiogenic common-Pb 

is important, particularly in geochronological applications to accurately account and 

correct for minerals that tend to incorporate significant amounts of common-Pb.  

Trace element chemistry in titanite is effective at differentiating between neocrystallized 

igneous, recrystallized igneous and neocrystallized metamorphic titanite. The most effective 

indices are Zr-in-titanite temperature, Al/(Al+Fe), Th/U and Th/Pb ratios, REE gradients and 

Eu anomalies. Given the complex conditions that govern Th/U and Th/Pb ratios, these two 

indices may not be effective chemical indices for other terranes. 

For the Capricorn Orogen, the comparison of titanite ages with published zircon ages reveal 

coeval to several hundreds of Myr of age difference between the two minerals. Titanite 
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geochronology and trace element geochemistry reveals previously unrecognized prolonged 

cooling to ca. 1750 Ma of the 1830–1780 Capricorn Orogeny. The 1320–1170 Ma 

Mutherbukin Tectonic Event is also shown to occur into the Limejuice Zone to the north of 

the Mutherbukin Zone and along the southern margin of the Capricorn Orogen, expanding the 

previously known spatial extent of this Mesoproterozoic tectonothermal event. 

Ultimately, titanite geochronology and geochemistry can be valuable tools for understanding 

the full geologic history of complex orogenic belts. 
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Figure Captions 

Fig. 1: Geological map of the main tectonic units in the Capricorn Orogen, Western 

Australia, showing titanite and zircon samples used in this paper, and major mineral deposits 

from Geoview (https://geoview.dmp.wa.gov.au). Note that iron and manganese ore deposits 

are not shown. 

 

Fig. 2: Detailed geological map of the western Capricorn Orogen (Gascoyne Province), 

modified from Plavsa et al. (2018). 

 

Fig. 3: Representative BSE images of titanite morphology, zoning patterns, inclusions and 

adjacent minerals. For representative BSE images from each sample, see supplementary 

material. ttn = titanite 

 

Fig. 4: Examples of Tera-Wasserburg inverse concordia plot for titanite samples that record a 

single age. (a) Partially concordant data from porphyritic monzogranite sample 88414, 

calculated using lower concordia intercept. (b) Wholly discordant data from felsic intrusion 

sample 190661, calculated using lower discordia intercept. (c) Proterozoic granodiorite 

sample 195821 with more Pb associated with higher discordance, interpreted as more 

common Pb incorporation. Age calculated using weighted mean of uncorrected 206Pb/238U 

dates with f207 < 1%. (d) Archean granitic sample 84557 with possible multiple common-Pb 

reservoirs but converging to single concordant age, calculated using weighted mean of 
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uncorrected 206Pb/238U dates with f207 < 1%. Analysis colors correspond to the two groups 

defined by different REE gradients in the inset, showing no systematic different in age 

between the two chemical groups. 

 

Fig. 5: Examples of Tera-Wasserburg inverse concordia plot for titanite samples that record 

two ages. (a) Granite sample 120644 showing high Zr- and Pb-bearing titanite for grains 

older than ca. 2700 Ma with variable incorporation of common Pb and low Zr- and Pb-

bearing titanite spread between ca. 2700 Ma and 1800 Ma, indicative of metamorphic 

recrystallization, Zr-loss and Pb-loss of originally igneous grains. (b) Monzogranite sample 

84599 show a triangular wedge of U–Pb data between a single 207Pb/206Pb and two points on 

the concordia curve with systematic differences in Th/U ratios; (c) Granite sample 195826 

showing U–Pb data spread along the concordia as well as up and right into discordia space.  

 

Fig. 6: Comparison of statistically reliable weighted zircon and titanite ages (Table 2). (a) 

Archean terranes. (b) Coeval to slight temporal differences form the Moorarie and Durlacher 

Supersuites. (c) Significant temporal differences between zircon and titanite related to known 

tectonothermal events. U–Pb ages are uncorrected 207Pb/206Pb > 1.5 Ga and 206Pb/238U for 

zircon, and 206Pb/238U < 2.0 Ga for titanite. Zircon U–Pb data is publicly available (Bodorkos 

et al., 2006a, b, c; Bodorkos et al., 2006d, e, f, g; Jahn, in review; Nelson, 2004, 2005; 

Wingate et al., 2009a; Wingate et al., 2009b; Wingate et al., 2013a, b, c; Wingate et al., 2012; 

Wingate et al., 2014). 
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Fig. 7: Titanite trace element discrimination indices. Data are color-coded by neocrystallized 

igneous grains (igneous), recrystallized igneous grains (recryst.) or neocrystallized 

metamorphic grains (meta./metamorphic). 

 

Fig. 8: Trace element ratios (a) (La/Sm)N, and (b) (Eu/Eu*)N vs. apparent U–Pb ages from the 

Moorarie and Durlacher Supersuites. The symbol shape (circle, square, rectangle) defined in 

panels (a) and (d) also applies to panels (c), (d) and (e), (f), respectively. 

 

Fig. 9: Kriging plots of single neocrystallized igneous and recrystallized igneous titanite 

grains. (a) neocrystallized igneous titanite from sample 88414 of the Moorarie Supersuite and 

exhibiting an apparent 206Pb/238U age increase from core to rim, color-coded by apparent 

206Pb/238U date. However, this reflects an increase in common-Pb during crystallisation, as 

revealed by the Tera-Wasserburg concordia diagram, and the color-coded discordance plot. 

There is close agreement between the zonation patterns of La/Sm and Eu/Eu* ratios, showing 

concentric zonation consistent with the original igneous crystallisation. (b) recrystallized 

igneous titanite from sample 195826 of the Durlacher Supersuite, exhibiting Mesoproterozoic 

Pb-loss increasing from the grains interior towards exterior, color-coded by apparent 

206Pb/238U date. The apparent 206Pb/238U ages for eight analyses across the grain and the Tera-

Wasserburg concordia diagram highlight the intra-grain Pb-loss trajectory towards 1200 Ma, 

consistent with metamorphic zircon ages (1200 ± 3 Ma; Wingate et al., 2013c). The more 

discordant analyses correlate with regions of the grain that either contained inherited 

common-Pb or where recrystallization has resulted in increased incorporation of common-Pb. 
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The behaviour of the trace elements was variable during recrystallization. La/Sm exhibits a 

concentric zonation pattern, while Eu/Eu* appears to more closely correlate with domains of 

recrystallization. 

 

Fig. 10: Principal component (PC) analysis summary showing PC scores for individual spot 

analyses and PC loadings for individual element variables. Plotted data are differentiated by 

(a) igneous, recrystallized and neocrystallized titanite, and (b) tectonic suite. Compositional 

biplots showing principal component scores for individual titanite spot analyses and PC 

loadings for the different trace element variables. For both (a) and (b), left and bottom axes 

correspond to colored dots, whereas right and top axes correspond to gray circles with 

various element labels. 

 

Fig. 11: Schematic Tera-Wasserburg diagram for interpreting common-Pb, crystallization and 

recrystallization mixing lines from titanite data. While U–Pb data from common-Pb bearing 

phases may appear complex, especially in scenarios that involve recrystallization, the spread 

of data simply shows an array/mixing line between a common-Pb, and a radiogenic Pb 

components (red arrow). During recrystallization, this pattern is further complicated by 

moving any previous U–Pb/Pb–Pb ratios towards a new mixing line between common-Pb and 

the new radiogenic age (pale, dashed blue line). Depending on the incorporation of common-

Pb at this time a variety of data trends may be seen (bold blue lines). The result may require 

careful interpretation with little concordant data. 
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Fig. 12: Inverse distance weighted surface of U–Pb ages from titanite across the Capricorn 

Orogen (grey dots) with major tectonic lineaments demarked. Interpolation is stretched at a 

2:1 ratio at a strike of 110° based on the general structural trend of the orogen, smoothed at 

0.4, and each individual point weighted by the reciprocal of their uncertainty. If igneous and 

metamorphic events are recorded in a single sample, the youngest titanite age is used. 

 

Table 1: Summary of sample location, titanite ages and zircon ages. Coordinates are in WGS 

1984. 

 

Table 2: Titanite and zircon ages for the same samples. Zircon U–Pb data is publicly 

available (Bodorkos et al., 2006a, b, c; Bodorkos et al., 2006d, e, f, g; Jahn, in review; 

Nelson, 2004, 2005; Wingate et al., 2009a; Wingate et al., 2009b; Wingate et al., 2013a, b, c; 

Wingate et al., 2012; Wingate et al., 2014). 

 

 

Supplementary Table A: Trace element data for the Khan titanite reference material. 

 

Supplementary Table B: Compendium of all analytical data for titanite data. 
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Table 1 

 

Sample Lithology Suite * Formation Lat. Long. 
Age                 

(Ma ± 2σ) 
n MSWD p 

207Pb/206Pb 

intercept 

81867 Monzogranite 1 Sylvania Inlier  -23.72 119.77 **I: 3170 ± 58 5 of 23 1.90 0.10 0.95 ± 0.36 

84557 Granite 1 Sylvania Inlier  -23.49 119.50 **I: 2938 ± 14 15 of 51 1.5 0.10 0.49 ± 0.03 

84599 Monzogranite 1 Sylvania Inlier  -23.38 119.97 ***I: 2937 ± 67 13 of 98 1.40 0.15 0.83 ± 0.01 

81886 Recrystallized Granite 1 Sylvania Inlier  -23.72 119.92 Insufficient data 

80434 Granodiorite 2 Narryer Terr. -25.77 117.48 No reliable age (~Mesoarchean) 

152855 Granite 2 Kalgoorlie Terr. -25.91 120.43 **I: 2672 ± 22 8 of 37 1.07 0.38 0.63 ± 0.03 

135469 Foliated Amphibolite 2 Yarlarweelor -25.36 117.56 No reliable age (~Mesoproterozoic) 

80491 Biotite Monzogranite 2 Yarlarweelor -25.48 118.26 Insufficient data 

120700 Granodiorite 2 Marymia Inlier -25.57 119.01 ***I: 2666 ± 22 5 of 46 0.7 0.57 1.07 ± 0.11 

JCO15/1 Granite 2 Marymia Inlier -25.48 119.47 Insufficient data 

120644 Granite 2 Goodin Inlier -25.97 119.20 
**I: 2644 ± 17 12 of 40 1.2 0.28 0.55 ± 0.03 

M: 1850 ± 120 6 of 6 1.30 0.31 0.31 ± 0.05 

120649 Granite 2 Goodin Inlier -25.99 119.16 No reliable age (~Paleoproterozoic) 

120678 Granite 2 Goodin Inlier -25.79 119.43 Insufficient data 

142925 Biotite Monzogranite 3 Dalgaringa SS -25.31 116.41 No reliable age 
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142926 Foliated Biotite Tonalite 3 Dalgaringa SS -25.32 116.44 No reliable age 

142928 Biotite Tonalite 3 Nardoo Granite -25.44 116.45 No reliable age 

135501 Granodiorite 3 Bertibubba SS -25.33 117.56 No reliable age (~Mesoproterozoic) 

135497 Foliated Granite 3 Bertibubba SS -25.36 117.56 Insufficient data 

195821 Granodiorite 4 Moorarie SS -23.88 115.31 **I: 1808 ± 11 16 of 50 0.30 1.00 0.78 ± 0.04 

88411 Biotite Monzogranite 4 Minnie Creek -24.12 115.94 I: 1801 ± 14 38 of 43 0.90 0.65 0.87 ± 0.18 

JCO14/ 4-09 Biotite Granite 4 Moorarie SS -24.08 115.87 **I: 1789 ± 10 16 of 39 0.82 0.65 1.05 ± 0.26 

178024 Biotite Granodiorite 4 Minnie Creek -23.95 115.53 I: 1786 ± 17 30 of 30 1.03 0.42 0.71 ± 0.11 

88407 Porphyritic Monzogranite 4 Minnie Creek -24.16 116.15 I: 1785 ± 7 58 of 58 1.3 0.07 1.19 ± 0.27 

169885 Biotite Granodiorite 4 Moorarie SS -24.07 115.67 I: 1780 ± 14 12 of 12 1.6 0.10 0.81 ± 0.10 

88405 Biotite Granodiorite 4 Minnie Creek -24.22 116.19 **I: 1776 ± 11 24 of 45 0.87 0.64 0.40 ± 0.04 

88415 Porphyritic Granodiorite Dyke 4 Minnie Creek -24.07 115.67 I: 1763 ± 15 45 of 45 0.75 0.89 0.82 ± 0.15 

88414 Porphyritic Monzogranite 4 Minnie Creek -24.07 115.67 I: 1757 ± 11 46 of 46 0.96 0.55 0.79 ± 0.12 

88412 
Foliated Porphyritic 

Monzogranite 
4 Minnie Creek -24.12 115.92 †I: 1753 ± 12 36 of 41 0.49 1.00 - 

135433 Granitic Gneiss 4 Moorarie SS -25.39 117.88 No reliable age (~Paleo/Mesoproterozoic) 

190661 Porphyritic Granite 4 Moorarie SS -24.59 116.65 M: 1248 ± 67 43 of 44 1.20 0.19 1.04 ± 0.13 

190660 Biotite Monzogranite 4 Moorarie SS -24.59 116.65 No reliable age (~Mesoproterozoic) 

88420 Biotite Granodiorite 4 Minnie Creek -24.24 115.82 M: 1170 ± 15 48 of 48 0.91 0.65 0.79 ± 0.11 

142924 Biotite-Muscovite Granodiorite 4 Moorarie SS -25.27 116.44 M: 863 ± 65 36 of 36 0.98 0.51 0.79 ± 0.02 
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180938 Monzogranite 4 Moorarie SS -24.44 116.57 No reliable age 

195825 Biotite Granodiorite 4 Moorarie SS -24.18 115.38 Insufficient data 

JCO14/ 4-04 Leucocratic Granite 4 Moorarie SS -23.86 115.75 Insufficient data 

143546 Porphyritic Granite 4 Moorarie SS -25.62 117.75 Insufficient data 

183215 Porphyritic Monzogranite 5 Durlacher SS -24.39 115.90 **I: 1646 ± 12 24 of 46 0.94 0.54 0.61 ± 0.29 

195826 Granite 5 Davey Well -24.56 115.74 
***I: 1698 ± 130 13 of 46 

1.7 0.07 0.15 ± 0.01 
***M: 1033 ± 90 13 of 46 

195819 Monzogranite 5 Durlacher SS -23.83 115.33 M: 1110 ± 54 7 of 9 0.85 0.51 0.59 ± 0.02 

169090 
Porphyritic Biotite 

Monzogranite 
5 Durlacher SS -23.39 115.53 M: 959 ± 88 32 of 34 1.4 0.06 0.69 ± 0.03 

DW14/ 7-07 Gneiss 5 
Davey Well 

Batholith 
-24.77 116.01 No reliable age 

169092 
Biotite-Muscovite 

Monzogranite 
5 Durlacher SS -23.42 115.64 Insufficient data 

* 1: Pilbara Craton; 2: Yilgarn Craton; 3: Glenburgh Orogeny; 4: Capricorn Orogeny; 5: Mangaroon Orogeny.   

** Statistically-inconsistent 207Pb/206Pb intercept; age calculated via f207 < 1% only.  

*** Age calculated based on data that are differentiated on chemical criteria 

† No 207Pb-correction, >85% data concordant; uncorrected concordant dates used for age calculation. 

Note: Latitude and longitude are in WGS 84. 
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Table 2 

 

Sample Suite * Formation Titanite Age Zircon 207Pb/206Pb Age 

81867 1 Sylvania Inlier  I: 3170 ± 58 I: 3187 ± 50 3 of 3 1.4 0.25 Jahn (in review) 

84599 1 Sylvania Inlier  I: 2937 ± 67 I: 2924 ± 14 3 of 3 0.53 0.59 Jahn (in review) 

152855 2 Kalgoorlie Terr. I: 2672 ± 22 No reliable age (ca. 2.65 Ma) Jahn (in review) 

120644 2 Goodin Inlier 
I: 2644 ± 17 

I: 2641 ± 15 5 of 5 0.94 0.44 Jahn (in review) 
M: 50 ± 120 

195821 4 Moorarie SS I: 1808 ± 11 I: 1793 ± 6 15 of 15 0.94 0.52 Wingate et al. (2013b) 

88411 4 Minnie Creek I: 1801 ± 14 I: 1791 ± 9 21 of 21 0.85 0.65 Bodorkos et al. (2006a) 

JCO14/       4-

09 
4 Moorarie SS I: 1789 ± 10 I: 1813 ± 5 17 of 17 0.74 0.76 Jahn (in review) 

178024 4 Minnie Creek I: 1786 ± 17 I: 1783 ± 5 26 of 26 0.88 0.64 Nelson (2005) 

88407 4 Minnie Creek I: 1785 ± 7 I: 1795 ± 7 30 of 30 1.5 0.05 Bodorkos et al. (2006e) 

169885 4 Moorarie SS I: 1780 ± 14 I: 1796 ± 9 20 of 20 0.41 0.99 Wingate et al. (2014) 

88405 4 Minnie Creek I: 1776 ± 11 I: 1792 ± 5 41 of 41 1.4 0.05 Bodorkos et al. (2006d) 

88415 4 Minnie Creek I: 1763 ± 15 I: 1777 ± 8 13 of 13 1.13 0.33 Bodorkos et al. (2006c) 

88414 4 Minnie Creek I: 1757 ± 11 I: 1783 ± 5 19 of 19 1.0 0.46 Bodorkos et al. (2006b) 

88412 4 Minnie Creek I: 1753 ± 12 I: 1798 ± 5 28 of 28 1.2 0.19 Bodorkos et al. (2006f) 
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190661 4 Moorarie SS M: 1248 ± 67 I: 1800 ± 5 8 of 8 1.10 0.36 Wingate et al. (2012) 

88420 4 Minnie Creek M: 1170 ± 15 I: 1787 ± 5 35 of 35 2.1 0.00 Bodorkos et al. (2006g) 

142924 4 Moorarie SS M: 863 ± 65 I: 1783 ± 5 21 of 21 1.3 0.15 Wingate et al. (2009a) 

183215 5 Durlacher SS I: 1646 ± 12 I: 1664 ± 5 25 of 25 0.54 0.97 Wingate et al. (2009b) 

195826 5 Davey Well 
I: 1698 ± 130 I: 1664 ± 6 12 of 12 1.4 0.17 

Wingate et al. (2013c) 
M: 1033 ± 90 M: 1195 ± 14 5 of 5 0.23 0.92 

195819 5 Durlacher SS M: 1110 ± 54 I: 1666 ± 9 12 of 12 0.50 0.91 Wingate et al. (2013a) 

169090 5 Durlacher SS M: 959 ± 88 I: 1691 ± 13 4 of 4 2.0 0.11 Nelson (2004) 

         * 1: Pilbara Craton; 2: Yilgarn Craton; 3: Glenburgh Orogeny; 4: Capricorn Orogeny; 5: Mangaroon Orogeny 
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Highlights 

Workflow presented for robust interpretation of titanite U–Pb and trace element data 

Trace element data effective at differentiating igneous, recrystallized and metamorphic titanite 

Differentiation indices include Zr-in-titanite T, Th/U, Th/Pb, Al/(Al+Fe), REE ratios and Eu/Eu* 

Titanite provides better understanding of late-stage tectonothermal events complex terranes 
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