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ABSTRACT

The analysis of supercircular entry is developed around a new
dimensionless parameter which combines certain conditions at the conic
perigee altitude with certain characteristics of the vehicle; this
parameter conveniently determines either deceleration-limited or heating-
limited corridor widths for elliptic, parabolic, or hyperbolic approach
trajectories. Illustrative calculations of corridor widths and the asso-
ciated guidance problems are presented for Venus, Earth, Mars, Jupiter,
and Titan. Generalized curves are presented for application to various
entry conditions.
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SUMMARY

An analysis is presented of supercircular entry into a planet's
atmosphere giving particular attention to the corridor through which
spacecraft must be guided in order to accomplish various maneuvers. A
dimensionless parameter based on conditions at the conic perigee altitude
is introduced for characterizing supercircular entries and conveniently
prescribing corridor widths associated with elliptic, parabolic, or
hyperbolic approach trajectories. The analysis applies to vehicles of
arbitrary weight, shape, and size. Illustrative calculations are made
for Venus, Earth, Mars, Jupiter, and Titan.

For nonlifting vehicles having fixed aerodynamic coefficients,
curves are presented of dimensionless parameters from which can be cal-
culated the maximum deceleration, maximum rate of laminar convective
heating, and total laminar heat absorbed during single-pass entry at
velocities up to twice circular veloecity. For lifting vehicles, curves
are presented of the maximum deceleration and overshoot boundary of an
entry corridor; equations are presented for estimating laminar aerody-
namic heating from the maximum deceleration. It is shown that the cor-
ridor width is independent of vehicle weight, dimensions, and drag coef-
ficient, provided these are the same at the overshoot boundary as at
undershoot. The corridors of certain planets can be broadened markedly
by the application of aerodynamic 1ift; for example, the 10-earth-g
corridor width for single-pass, nonlifting, parabolic entry is increased
from O miles for Jupiter, 7 for Earth, and 8 for Venus, to 52, 51, and
52 miles, respectively, by employing a lift-drag ratio of 1. The use of
aerodynamic 1ift does not increase appreciably the corridors of Mars and
Titan. All corridor widths decrease rapidly as the entry velocity is
increased.

Terminal guidance requirements on accuracy of velocity and flight
path angle for successfully entering various corridors are compared with
analogous requirements for putting a satellite into orbit, for hitting
the moon from the earth, and for achieving ICBM accuracy. Consideration
is given to the terminal guidance problem involved in using a planet's
atmosphere - rather than rocket fuel - to effect orbital transfers from
heliocentric to planetocentric motion, thereby converting a hyperbolic




approach trajectory to an elliptic orbit about the target planet. This
fuel saving maneuver appears technologically feasible for certain plane-
tary voyages, and implies the possibility of achieving a large reduction
in required Earth lift-off weight of chemical propulsion systems.

INTRODUCTION

The motion and heating during entry into an atmosphere at super-
circular velocity has been studied less extensively than that at circular
velocity. At present, entry at circular velocity is of more immediate
practical concern, since the first manned space capsules are to be
launched in near-circular orbits. In the hopefully near future, though,
supercircular entry at essentially parabolic velocity (V2 times circular
velocity) will be of practical concern upon return from the Moon. In
the more distant future, entry at hyperbolic velocity (greater than JE
times circular velocity) will undoubtedly also be of practical interest,
especially in connection with interplanetary flight. Hyperbolic entry
with atmosphere braking can effect an orbital transfer from heliocentric
to planetocentric motion without the expenditure of fuel, thereby making
possible large reductions in Earth lift-off weight for many interpianetary
missions.

An important problem for supercircular entries, which is relatively
unimportant for near-circular entries, is that of the guidance accuracy
required in order to accomplish a desired entry maneuver, such as com-
pleting entry on a single pass without encountering excessive decelera-
tion or heating conditions during entry. Terrestrial flight is tolerant
of guidance errors accompanying a landing approach, since an undershoot
is readily corrected by a brief application of power, and an overshoot by
a return approach. Space flight, in contradistinction, is unforgiving of
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outer two dashed trajectories, the vehicle will not encounter enough
atmosphere for slowing sufficiently either to complete entry in a single
pass, or to effect a particular orbital transfer. Hence the shaded por-
tions representing excessive overshoot and undershoot in the sketch are
excluded as not representing the intended entry maneuver. For some
planets, all that is left is a meagerly narrow corridor through which

the vehicle must be guided. The outer and inner boundaries of this entry
corridor are referred to herein as the overshoot and undershoot boundaries,
respectively.

The object of the present report is to make a general study of the
entry corridor and its boundaries, giving consideration to aerodynamic
heating problems for various lift-drag ratios, entry velocities, and
planets, and to the guidance problem which the corridor imposes. A
novel feature of the present analysis is the introduction of a dimension-
less perigee parameter combining certain characteristics of the vehicle
with certain quantities associated with the conic perigee altitude. By
conic perigee is meant that fictitious perigee point through which a
drag-free entry trajectory would pass (but the real trajectory may not).
This parameter provides a basis of characterizing supercircular entries
irrespective of the atmosphere or the vehicle weight, shape, or size.

After the present research was well under way, a recent publication
of Lees, Hartwig, and Cohen (ref. 1) became available in which they point
out the pronounced alleviation of guidance requirements made possible by
the application of aerodynamic 1ift and, in particular, by 1lift modulsated
in a certain fashion. They present results of numerical calculations for
a specific vehicle entering the earth's atmosphere at a supercircular
velocity of 35,000 feet per second which provide a basis for comparison
with the general results of the present analysis. Their discussion of
entry with modulated 1lift stimulated the discussions herein of this type
of entry.

NOTATION
a resultant deceleration
A reference area for drag and 1ift, sq ft
3 e 20

C drag coefficient, ———

D ; ? oVEA
Cq coefficient the order of unity appearing in equation (A1l5)
Cq coefficient the order of unity appearing in equation (Al6)
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local gravitational acceleration

perigee parameter dimensionless

earth sea-level gravitational acceleration, 32.2 ft see™@

- s a
deceleration in earth sea-level 8e'S, —

ge
dimensionless normalized deceleration (eq. (24))
characteristic length of vehiele & ff
TE3ECsforeel b
average L/D during modulated-l1ift entry
mass of vehicle, slugs
molecular weight of atmosphere
Prandtl number
convective heating rate per unit area, Btu/sq ft sec
oy e o)

dimensionless heating rate, T~ “Z for laminar flow

total convective heat absorbed, Btu

—3/2_-1/2
dimensionless heat absorbed,\/ruS/ g du for shallow entries
and laminar flow

radius from planet center
radius of planet
radius of curvature of wall, ft, or universal gas constant

Reynolds number, Egl

circumferential distance from conic perigee
surface area wetted by boundary layer, sq ft
time

local temperature of ambient atmosphere
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mean temperature of planet atmosphere
circumferential velocity component

: > : u
dimensionless ratio, ——

J&r

resultant velocity, Ea%—;

dimensionless ratio, J::
gr

altitude, ft
corridor width between conic perigee altitudes

altitude increment over which atmosphere density varies by factor
ot 16

dimensionless function of T determined from equation (3) and
appropriate boundary conditions

angle of attack of lifting surface relative to minimum-drag
attitude

atmospheric density decay parameter, ey

flight-path angle relative to local horizontal; positive for climb
angle from planet center between conic perigee and vehicle position
coefficient of viscosity, slug ft lsec™?

atmosphere density, slug ft™°

Subscripts

exit from atmosphere

final value

initial value

surface of planet, or where U =0

overshoot boundary



P conic perigee point
s stagnation point

un undershoot boundary
® relative to earth

Superscript
differentiation with respect - -to T

ANATYSTS

Outline of Approximate Analytical Method and
Formulas for Entry Motion and Heating

The approximate analytical method of reference 2 for studying entry
motion is employed throughout this report. Details of the method are
not described here; only an outline of the main equations is presented.
In essence, the method is based on a single, nonlinear, differential
equation (in dimensionless transformed varisbles) which represents the
'entry motion in an arbitrary planetary atmosphere. The full equation is
given in appendix A with a list of associated formulas for various
quantities relating to the motion and aerodynamic heating. Without
obtaining any solution to this equation, but merely by examining its
structure and its boundary conditions for the special case considered
herein of shallow entries, we can establish three dimensionless parameters
upon which entry motion and convective heating depend. One of the parame-
ters involves the initial entry angle 74 and arises because of mathe-
matical convenience in specifying initial conditions on the differential
equation. In characterizing shallow supercircular entries - and espe-
cially in describing the guidance requirements for such entries - this
initial-angle parameter is not as convenient as a different parameter
which is subsequently introduced to replace the initial-angle parameter.

Basic differential equation.- Proceeding now with the mathematical
outline, we select as an independent variable the dimensionless hori-
zontal velocity referred to local values of g and of distance r from
the planet center

u

-
:

(1)

and as a dependent variable the function




m/CDA) j— (2)

In this coordinate system the pair of motion equations for shallow entries
(cos y 21,V =T, sin y £ y) into a spherically symmetric planet reduced
to a single, second order, nonlinear equation for the dimensionless Z
function (ref. 2).

=THSY. az. - 7 1-102 r—
U — - — - = = e - r =
daas du ﬁ> Uz B (3)
A\ e 4 L\ i ]
—_—_ o N —
vertical vertical component gravity minus 1ift force
acceleration of drag force centrifugal force

The physical significance of the various terms is as indicated. It is to
be noted that the molecular weight M and the local temperature T of
the planet's atmosphere enter only in the parameter

B e (1)

representing the local density gradient in the atmosphere: in any real
atmosphere, B would vary moderately with altitude, and such variation is
admissible within the framework of equation (3); equation (3) for 2(T)
is not restricted to exponential atmospheres, as we will see shortly. In
the above form, though, it is restricted to small flight-path angles 7y
relative to the local horizontal (powers of cos y appear on the right
side of eq. (3) if y is large as noted in appendix A), and to the con-
dition | (L/D)tan y| << 1.

Inasmuch as the differential equation for Z(W) is of second order,
two initial conditions are required. The two conditions selected at the
initial entry velocity U3 will, for the time being, be written as

z(vi) = Z3 z(dg) = 2y (5)

The dimensionless initial velocity, Vi = TUji/cos 74 = Ui, is _employed to
characterize the approach trajectory as being circular if Vi =1,
elllptlc 2 DS Vl <:J§, parabolic if V1 Jﬁ, and hyperbolic if

Vi >'J§ An entry is termed supercircular if Vi > 1, and the local
velocity is similarly termed if V > 1. It is to be noted that the values
of m/CpA and the initial altitude yi are not needed in characterizing
an entry motion by means of the 2z function and its two initial condi-
tions. After a Z function has been calculated, a number of quantities
of engineering interest can readily be obtained from formulas listed in
appendix A. Simple formulas relating aerodynamic heating and decelera-
tion also are developed in this appendix and are shown to yield results
for heating rates and total heat absorbed in good agreement with certain
calculations for Earth entry presented by Lees, et al., in reference 1.
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The characteristics of the planet's atmosphere enter the above
equations mainly in the dimensionless parameter Nﬁ;—. Approximate
values of this parameter and other planetary constants used in numerical
examples presented later are as follows (the subscript e designates a
value relative to the earth):

Planetary Constants

i Gl =3 AT 4
ZI:'e ge Gases gml\//[éol gfé \[B_I' V(BI‘) ® Bft’ (for p2/p1=lO) 5

miles
Venus 0.9710.87|C0=,Nz| L0 |270] 30| 1.0 2x10% 9
Earth 1.00|1.00|N5,05 29 |240| 30| 1.00 |2.35%x10% 10
Mars .53| .38|N5,c0-| 28 |200] 14| .47 6x10* 26
Jupiter|11.0 [2.63|Hs,CHy 3 L1704 60% 2.0 6x10* 26
Titan .33| .22|CH, 16 L1gay 81727 10x10* 43

The last two entries, Jupiter and Titan, are included in numerical examples
presented later in order to illustrate the extreme variations encountered
when entry into various atmospheres of the solar system is considered.

Computation of Z functions.- Inasmuch as the basic differential
equation (3) for Z(UW) is nonlinear, it has been programed on an electronic
computing machine (IBM TOL) in order to obtain a large number of solutions
for various values of the dimensionless parameters which determine an
entry motion. Several hundred solutions were obtained for the results of
this report. In order to start each solution, the first step from Tuj
to Ui - 0.001, was taken analytically. Over this small interval y is
essentially constant, so that the equations given in reference 2 for
constant ¥ were applied to the first small step.

It may appear at first that little is gained over strictly numerical
trajectory calculations as long as Z functions must also be computed on
a machine. The gain, however, arises from increased generality of the
results. One Z function can be applied to any planetary atmosphere and
to a vehicle with any value of m/CDA, whereas a conventional trajectory
calculation would apply only to the specific atmosphere and specific
value of m/CpA employed.

Accuracy of Z function method.- The accuracy of the approximate
analytical method may be judged from a comparison of several Z func-
tions with more exact numerical calculations. If we first consider non-
lifting vehicles, we see that with L/D = O the basic differential equa-
tion (3) for Z would be independent of B and, hence, independent of
any variations in atmosphere temperature with altitude as well as inde-
pendent of m/CpA. Exact calculations for a specific atmosphere and
specific m/CDA of the quantity dﬁdr?B/E(m/CDA) provide a test of
accuracy since this quantity as a function of U would coincide with
Z(TW) if the approximate method were exact. Excellent agreement is




exhibited in figure 1 between each of the two solid curves (one entry at
Vi = 1.25, and one at Vi = 1.4) representing Z(U) as computed from equa-

tion (3), and the corresponding points representing piNr/B/2(m/CpA) as
computed from the pair of "exact" equations of motion with the same
initial conditions. As noted in the figure, Z(TW) corresponds to arbitrary

m/CpA and an arbitrary atmosphere, while pUGNr/B/2(m/CpA) corresponds to
m/CpA = 1 slug ft2, and to the ARDC (1956 model) atmosphere wherein the
temperature varies in a prescribed manner with altitude. The latter cal-
culations were obtained by use of the computing-machine program of
Nielsen, Goodwin, and Mersmen (ref. 3) applied to a spherically symmetric,
nonrotating atmosphere. This close agreement for both entries exemplifies
the accuracy of the approximate method and its applicability to nonexpo-
nential as well as exponential atmospheres.

If we now consider the case of a lifting vehicle, we see from the
differential equation (3) that, for a fixed L/D, the Z function would
not be independent of local variations in B with altitude, as is the
case for L/D = 0, since the parameter Br(L/D) would vary as «Br. An
illustration of this may be seen from the small differences evident in
figure 2 between the curve representing the Z function for constant
VBr(L/D) = 32.5 and the corresponding points representing the more exact
calculations of pWr/B/2(m/CpA) for constent L/D = 1, and Br(L/D)
fluctuating with altitude (between values of about 28 and 33) according
to the ARDC atmosphere. The small differences apparent in this particu-
lar case do not reflect an inaccuracy of the approximate Z function
method, but merely exhibit the importance of atmospheric altitude-
temperature variations for lifting vehicles. At the very lowest veloci- |
ties (@ < 0.03), though, the approximate theory breaks down because the ‘
approximation I(L/D)tan 7| << 1 is no longer a good one. |

Perigee Parameter for Specifying an Entry Trajectory
and Corridor Width

Development of perigee parameter.- With confidence now in the
accuracy of the approximate analytical method, we can examine the struc-
ture of the basic differential equation together with its boundary condi-
tions in order to show that the initial parameter Z'; can be replaced
by one more convenient for characterizing shallow supercircular entries.
From equation (A2) it follows that, for shallow entries starting at a
high altitude where the initial values of pj and hence Zj are negli-
gible compared to their corresponding values during entry, the second
initial condition may be written as

zZ'; = \/Bri 74 (6)

The initial flight-path angle 73 should be taken at the beginning of
the "sensible atmosphere." It is not a fully satisfactory parameter from
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a convenience standpoint because, for very shallow trajectories, such as
grazing supercircular entries which just pass through an edge of atmos-
phere, the initial-value of ) is cumbersome to define. Considersgble
supplementary information is required in order to state at Jjust what
altitude the sensible atmosphere begins for each particular vehicle; the

appropriate altitude depends on m/CDA, 7i, and Ui, as indicated in
appendix B of reference 2.

The conic perigee point is not complicated as is the initial point
for shallow entries; this may be illustrated with the help of figure 3.
Shown in the sketch is the hypothetical conic trajectory (short dashed
line) which the vehicle would have followed had there been no atmosphere
around the planet. This conic has a perigee of distance r from the
planet center, but the actual trajectory may continuously descend and
have no perigee. The entry trajectory could be specified equally well
either through conditions at point (1) by the values of r;, Vi, and 7.,
or at point (2) by an entirely different set of values rs, Vo, and 7o,
or at the initial entry point (i) by a still different set rs, Vi, 7i-
A1l of these points, however, correspond to common values of radius rp
and velocity Vp at the conic perigee point where o= 0%

The value of 1rp can be calculated readily from Newton's equations
for a two-body drag-free trajectory

rp 1 - (T - 1)2 + 73(2 - 72)siny
g — (7)
2 -V

where

v

1l

§||<
=

()

O

m

2

. (8)

Since we are considering only shallow entries for which the flight-path
angle is small, we employ an approximate form of equation (7), evaluated
at the initial point_(valid if sin2y; = 742 and :
712(2 - viz)sinzyi/(vig - 1)2 < 1)

Py s T Sl

T o = 1)

(9)

The limitations resulting from this approximation are discussed later.

5 The initial condition imposed on the differential equation for the
7 function can now be combined with the relationship (9) just derived to
show the equivalence between dBri 71 @and a certain perigee parameter
defined in terms of conditions at the conic perigee (subscript p). We
introduce a perigee parameter defined by
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Fp S o AN e (lO)
2(m/cpp)N P
For an atmosphere which is essentially exponential between the initial
point and the conic perigee point, we have pp/pi = eB i~/ From the
definition of Z (eq. (2)) we also have Z; = Ujpi~Nri/B/2(m/Cph), so
that
Zy 5 B rs=r.)
Fp=_—1/—pe e (11)
LENEY

For shallow entries, 7i2 can be disregarded compared to unity, yielding

u;® = vizcoszyi = Viz, while rp/ri in equation (11) can be set equal
to unity consistent with the approximation made in writing equation (9).

Thus, by combining (9) and (11),
V1°WBry 71)®
Zi Q(Viz—l) (12)

F,==— ¢
b Vi

We see from this latter equation that for the case of shallow entries,
\ﬁ;;Z 7i 1s a function only of Vi, Zi, and Fp. Consequently, the two
initial conditions, Zj and Z'; =+/Br; 7i, imposed at T; on the basic
differential équation can, if desired, be replaced by the equivalent
two, Zj and Fp, imposed at Vi (for shallow entries V= U); in effect,
then, Fy, replaces -JE;Z 71 @as one of the two initial conditions.
Throughout the rest of this report the perigee parameter F: is used as
the basic parameter describing shallow supercircular entries, rather
than ~f§;; 71. Its use conveniently characterizes such entries because
it is applicable to any planet, and to a vehicle of any m/CDA. Ehe
value of Fp 1is easily calculated from two-body trajectory equations
without concern for where the sensible atmosphere begins. It is noted
that in the earth's atmosphere an increase in the perigee parameter Fp
by a factor of 10, for example, means that the re-entry trajectory would
be "aiming" at a conic perigee altitude sbout 10 miles lower, since the
density changes by a factor of 10 in 10 miles (see table, p. 8, for
Ajoy of other planets).

Summarizing, we see that three dimensionless parameters determine
shallow entry motion: the entry velocity Vi, the 1ift parameter
JE;(L/D) which appears in the differential equation, and the perigee
parameter Fyp.
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For later use, it is noted here that the angular distance sy/r
from the conic perigee to the point of impact (W = O as illustrated in
fig. 4) can be shown to depend on only the same three parameters as Z
depends on, Vi, NBr(L/D), and Fy. To this end we start with the
defining equation,

Sy - S
ei__l___o_

= (13)

=2 =
=

where 64 dis the angle between the conic perigee and the initial point.
From equation (A5) for (s - s;)/r, and the 6 - 7 relationship for two-
body trajectories

e ot
ety N/=tata) 2')’ (lu)
Q[ﬁg(r/rp) 1
which, for small angles becomes
65 = :7%__2_ (15)
T
at the initial conditions, we obtain the equation
2
mso_ Vi WBry 75) 1O qg
Br T = — 5 ? ‘- (16)
Yy L s &

Since all members on the right side of this latter equation depend only
on Vi, VBr(L/D), and NBr 7 (or Fp), the quantity NBr(so/r) is

similarly dependent. This relationship is utilized later to specify the
landing point of nonlifting vehicles entering at supercircular velocity.

Some remarks are in order here about the assumptions made in demon-
strating the equivalence of FP and N/Bri 7i- The development is
restricted to entries which are shallow (sin 73 = 71) and to entry
velocities not too near circular in order that equation (9) be a good
approximation. An examination of the higher order terms omitted from
equation G» reveals that this equation is not a good approximation if

Vi© - 1 < yi, which corresponds to near-circular entries for which the
angle 65 between the Keplerian perigee and the initial point is greater
than about 90°. Since 7; is the order of 0.1 (or less) near V = 1 for

most manned entries that are deceleration-limited, the use of F as a
correlating parameter for similarity of entries into different planetary
atmospheres is restricted to about V1 > 14 o Vi = 1.05: For the
domain of planetary similarity in terms of Fp, namely, for shallow super-
circular entries at Vi > 1.05, it would make no appreciable difference
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whether the full or the approximate equations were employed. The full
equations are (7), (11), (14), the full differential equation (Al) for

Z, and the associated equations which include cos y <factors. The cor-
responding epproximate equations are (9), (12), (15), the approximate
differential equation (3) for Z, and associated equations which use

cos y =1, sin y = y. For Vi < 1.05, however, it would meke a difference
whether full or approximate equations were employed. In making all
numerical computations the full equations were used (with «Br = 30),
since these equations are only slightly more lengthy to program on an

IBM 704 than are the corresponding approximate equations, but in present-
ing all results, they are plotted in terms of the dimensionless parameters
appropriate for planetary similarity. Consequently, in the range

1 <Vj <1.05, the results plotted in subsequent figures, strictly speak-
ing, would apply only to Earth (JBr = 30), but in the range Vi > 1.05
they would apply to any planet.

It is noted also that, in the development of equation (11) for Fp,
the value of B tacitly has been assumed constant. Actually, B in
equation (6) would properly be B3 and in equation (11), some mean value
Bmean averaged between r, and r;. An improvement in accuracy can be
obtained by regarding «/Br in these equations as the "semilocal" value
(see ref. 2) averaged over a small strip of altitude just above the conic
perigee altitude, rather than by regarding it as equal to the average for
the entire atmosphere (JE? 2 30 for Earth).

Definition of corridor width.- If we have two trajectories bounding
an entry corridor, the difference Ayp = I~ b between their two
conic perigee altitudes is defined as the corridor width, as illustrated
in figure 5. By employing the exponential-atmosphere approximation
between yp,  and yp,, there results, from the defining equation (10)
for the perigee parameter,

B (Fbm/CDA)un

B =0 P et P (Fom/Coh) (17)

or, in terms of the altitude increment A,py over which atmospheric
density changes by a factor of 10,

> (Fpm/CpA) .y
10Y 08,4 (Fpm/CDA)ov

For the special case wherein m/CpA is the same along the two boundaries,

Ayp = A (18)

Ayp = AloY(1081onun < loglonov) (19)
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It is to be noted from equation (18) that, in a given exponential
atmosphere (constant B), the corridor width for any fixed m/CDA depends
only on Fpu_n/Fpov, and is independent of m/CpA. The altitude of a corri-
dor boundary, or of the corridor center, however, depends on m/CDA since
Pp ~ m/CpA (see eq. (10)). 1In the earth's atmosphere the corridor width
would vary a small amount (about +10 percent) because of the variation of
B with altitude, latitude, and season.

Determination of Guidance Requirements From Corridor Width

Since the width of the entry corridor between the conic perigee
altitudes of overshoot and undershoot is independent of m/CpA, it
provides a convenient basis for calculating and visualizing guidance
requirements. From a knowledge of the corridor width Ayp NS =
between conic perigees, the corresponding guidance requirements on

velocity and flight-path angle can be calculated from equation (7) repre-
senting a conie trajectory in terms of V and 7:

ypu_n

fg - £(T,) g S V(2 - ¥°)cos2y

i i 2_'\_]2

(20)

1]

VEcos2y

Lipall '~ RE(S 2 W) opaly

If the corridor width is relatively narrow, the errors AV, Ay, and Ar
at any given distance ''r from the plenet are related to the change in
conic perigee altitude Ayp = Arp which they produce through the
derivatives of the above function.

arp Of =  Of f
—_— = — A —_— - Ar 2
= = WV + 5 &y + = A (21)

These derivatives become especially simple for the case of parabolic
entry (V° = 2 and 2rp==rV2coszy).

Aﬁ) o N ip i[l-(r—p\la i
T oo = - = Y (22)

_ _ For narrow corridors rp = ry, so that the permissible velocity error
AV/V for zero error in 7y and r is simply Arp/2rp, independent of r.
TFhespermissible Ay ‘error for zero errors im reand V., however, would
decrease substantially as r increases. ©Some examples of the calculated
guidance requirements for entering the corridors of various planets are
presented later in terms of the plus-or-minus tolerances about the corridor

o)
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center-line trajectory (e.g., ¥y = Ay/E). It may suffice as a reference
point to note here that a 10-mile wide corridor in the earth's atmosphere
(Ayp/ro = 1/400) would require, at a distance of 10 earth radii, a flight-
path angle accuracy of about Ay = 0.01° if there were no errors in
velocity or position.

RESULTS AND DISCUSSION

In what follows the simplest case of nonlifting entry is discussed
first, with attention being given to the corridor boundaries, corridor
width, and aerodynamic heating problems. Lifting entry is then discussed
giving consideration to the interdependence of Cp and L/D, inasmuch as
such consideration is necessary in realistically evaluating the net
broadening of the entry corridor made possible through the use of 1ift,
as well as in evaluating the aerodynamic heating penalty associated with
1ifting vehicles. In the final section, a brief discussion is presented
of the guidance tolerances imposed by the corridor widths for super-
circular entry into various planets.

In the presentation of many results which follow a normalization

technique is used. Thus equation (AL) for the resultant deceleration in
earth g's for shallow entry

=
= é% = ge JE; azZ |1 + (%) (23)

is normalized with respect to the earth by a dimensionless function G
defined by

& =30 BZ J1 = ( (Br)g I];-T (2k)

where J(Br) E:JBr/3O. The normalized G function, like the Z func-
tion, depends only on the parameters dBr(L/D), Vi, andAFp, and is applica-

ble to any planet. For the earth, G is equal to 30 GZ~N1 + (L/D)2, the
deceleration in earth sea-level g's (see eq. (23)). For other planets,

the deceleration G 1in earth g's can readily be obtained from G and the
planetary constants by combining the above two equations.

J1+(L/D)Z

G = gg V(Br)g G (25)
e J(Br)e L/D]®

The normalized distance from the conic perigee to the landing point is
N(Br) (so/r), which is equal to ss/r for the earth, and which also
&\ "0 > (6]
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depends only on the same three parameters that Z depends upon. The
dimensionless quantities q and Q (defined in appendix A) pertaining to
convective heating in a planetary atmosphere are not normalized with
respect to Earth.

Single-Pass Entry of Nonlifting Vehicles

The simple case L/D = 0 will serve to illustrate the generality of
the perigee parameter, and its convenience in describing corridor bounda-
ries. A plot of the maximum value of the normalized deceleration (aﬁax)
versus F is presented in figure 6 for various supercircular entry
velocities. As indicated on the ordinate scale, Gy ig equal to

G/ged(ﬁr)e for nonlifting vehicles (see eq. (25)). The circle points

in this figure designate the overshoot boundary for single-pass entries.
Thus, in a parsbolic entry at essentially escape velocity (V; = 1.4), the
overshoot boundary occurs at a perigee parameter of 0.06. If a parsbolic
approach trajectory aims at Fp < 0.06 (at a higher perigee having lower
density and, hence, smaller FP) the vehicle will pass through the atmos-
phere, orbit, and then return for at least a second pass before entry is
completed; but, if the vehicle aims at Fp > 0.06, entry will be completed
on the first pass. It is to be noted that the overshoot boundaries in
terms of F, apply to any planet.

Undershoot boundaries and corridor widths can also be obtained
readily from the normalized deceleration curves in figure 6 having
logioFp as the abscissa. If m/CpA is the same at overshoot and under-
shoot, the corridor width on such a plot is simply proportional to the
spacing between the two abscissa points representing these boundaries
(see eq. (19)). We will consider first the case of entry into Earth.

If, for example, maximum deceleration is arbitrarily set at 10 G (ten
times the earth's sea~level acceleration), the undershoot boundary for
the earth would be at Gpgx = 10 in figure 6, and at Fpun =0.31 for

parabolic entry. The ratio Fp /Fpov = 0.31/0.06 = 5.1, corresponds

to 0.7 of a log,, cycle. ©Since one 1log,o cycle in F, represents a
corridor width equal to A;gy for a fixed m/CpA (see. eq. (19)), the
width of the entry corridor between conic perigees in the present example
is 0.7 Aoy, wvhich amounts to 7 miles for the earth. This corridor width
would be the same for any fixed value of m/CpA. If m/CpA were increased
by a factor of 100, however, both corridor boundaries (which correspond
to fixed values of FP) would be situated lower in altitude where the
density is 100 times greater (20 miles lower for the earth), but the cor-
ridor width between the two boundaries would still be 7 miles for single-
pass parabolic entries limited by 10 G deceleration. It is clear that
by specifying the corridor width in terms of the width between conic
perigees, it is a simple matter to compute the conventional plus-or-minus
guidance tolerances at any distance from a planet from the well-known
equations for two-body trajectories. Examples of this are presented
Lasers
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: Turning now to different objects in the solar system, the entry
corridor widths can be shown to vary over wide limits, as might be
anticipated. The example value Gpgx = 10 of normalized deceleration
would correspond in the case of Jupiter, for instance, to a deceleration
of 53 Earth g's, since ggV(Br)g is 5.3 for Jupiter (see eq. (25)).
Since one log,, cycle in Fp corresponds to 26 miles altitude on
Jupiter (see table, p. 8, of planetary constants), this 53 Gpax corri-
dor width for parabolic entry would be 0.7x26 = 18 miles. The 10 Gpgx
corridor width would be nonexistent, since the smallest possible maximum
deceleration for nonlifting vehicles entering any planet corresponds to
Gpax = 6.5 (this may be seen from fig. 6 or, more clearly, from a cross
plot presented later), which corresponds to 6.5%x5.3 = 34 G for Jupiter.
On the other extreme, this example value Gpax = 10 in the case of Titan

(ggN(Br)g = 0.06) would correspond to a maximum deceleration of only
0.6 G, and to a corridor width of 0.7x43 = 30 miles for this small value
of meximum deceleration. Since even normal entry at parabolic velocity
would result in only 5.2 G for Titan, the corridor width for 10 Gpgx
would actually be the full radius of Titan (1300 miles) plus the conic
perigee altitude for overshoot (between about 50 and 250 miles, depend-
ing on m/CDA and the surface-level atmosphere density on Titan).
Similar calculations yield the following table of corridor widths for
nonlifting vehicles entering at parabolic velocity (a value of O for the
corridor width designates nonexistence of a corridor in the sense that
the minimum possible Gy, 1is less than the value arbitrarily selected
for the undershoot boundary):

Corridor width in miles for L/D = 0, vi SRR

5 Gmax 10 Gmax 20 G:ma.x l(.O Gma.x
Venus 0 8 23 80
Earth 0 Vi 20 70
Mars 210 Loo 1250 2200
Jupiter 0 0 0 10
Titan 1300 1400 1Lk00 1Lo0

An approximate increment of 100 miles for the overshoot altitude has been
included in the estimates for Titan. For Mars an increment of 80 miles
has been included (corresponding to L/D = 0, m/CpA = 1 slug/sq ft, and
to a surface-level atmosphere density of 0.0002 slug/cu i

An interesting, and possibly unexpected, result for the entry of
nonlifting vehicles is exhibited by the curves for maximum deceleration
in figure 6, and also by the curves for maximum rate of laminar heating
in figure 7. The minimum values of Gpgx @nd Qpax do not occur at the
lowest supercircular entry velocity (circular velocity, vi = ALY A
might be expected on first thought. These minima occur for entry veloci-
ties that are substantially supercircular. This is apparent from a
cross plot of the various minima, as presented in figure 8. The least
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possible maximum deceleration would be experienced by entering a planet
at a hyperbollc velocity of V = 1.48 and aiming at a perlgee parameter
= 0.12, resulting in GmaX = 6.5 (as compared to Gp.x = 8.3 for
01rcu§ar orbital decay). The least possible maximum heatlng rate for
nonlifting vehicles occurs at Vl 1.12 and at Fy = 0.018, resulting
in Gpox =0.19 as compared to Tqp., = 0.22 for circular orbital decay.

The physical reason these minima occur at supercircular rather than
at circular entry velocity is that supercircular velocity is accompanied
by a greater centrifugal lifting force than circular velocity, and, hence,
results beneficially in slower rates of descent. If V; dis not too much
greater than unity, this beneficial effect of centrifugal 1ift dominates
over the detrimental effect of increased velocity, whereas for very large
Vi the latter effect dominates. The net result is a minimum at some
supercircular Vl > 1. In different terms, these minima arise at ¥ o1
rather than at Vi = 1 because, by the tlme the local velocity for entry
at V1 > 1 has been reduced to V = 15 thefvehicle s in essentialily
level flight (not necessarily in a sllght climb) at an altitude where the
deceleration is sizable; as a result, by the time the vehicle descends to
the relatively lower altitudes at which Gpgy Or gpsx Would be experienced
if Vi were unity, the velocity has been reduced relatively much more.
Thus in supercircular entry, the maximum conditions are experienced at
higher altitudes where they are less severe than in circular entry.

The normalized curves for the total heat absorbed during nonlifting
entry are presented in figure 9. They do not exhibit minima. For any
entry velocity the least possible total heat is absorbed by entering at
the largest possible value of Fy, corresponding to the steepest possible
descent and to the grestest possible deceleration. This result is to be
anticipated from the general inverse relationship between @ and deceler-
ation previously developed as equation (Al4), and would apply also for
1lifting vehicles. Near the overshoot boundary, where the decelerations
are the smallest, Q 1is the largest. For parabolic entry Q = 4.3 at the
overshoot boundary (FPov = 0.06), whereas at the Gmax = 10 undershoot

boundary (Fpun = 0.31) the corresponding value Q = 2.1 is half that at

overshoot. As will be seen later, the difference between Q at the two
boundaries for lifting vehicles can be considerably greater.

Normalized curves giving the landing point relative to the conic
perigee point are presented in figure 10. As would be expected, the
point of impact for vehicles aiming at a given Fp moves around the
planet in the direction of motion (from positive toward negative so) as
the entry veloeity is increased. Except for entries near the overshoot
boundaries, though, the landing point is surprisingly near the conic
perigee point and is not greatly affected by Vl Thus, in the range
1 = Fp < 10, a nonlifting vehicle would impact before the vehicle passes
under the conic perigee point, always landing within a distance of about
0:25r of the conie perigee for amy Vi between 1.05 and 2.0.
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The various charts presented for nonlifting vehicles cover only the
range of shallow entries for Fp.f 10. Beyond this value the entries
become so steep that the gravity and centrifugal forces are small compared
to the vertical components of drag and deceleration. Under such circum-
stances the solution of Allen and Eggers (ref. 4) for a constant flight-
path angle would apply. It is shown in reference 2 that this particular
solution corresponds to a function Z7 given by

Z1 = ABr sin 7; T In 1—_%— (26)

and to

gePr(-sin 7;)
Gmax = ki 5 = 7&2 (27)

/2
d1,,, = 0-247 §;%(- VBT sin 7y) (28)

R ek 1 e (29)
(Br sin 74)

These equations can be used for the steeper entries. The use of y; for
steep entries is not arbitrary, and is probably more convenient than the
use of Fp. The conic perigee radius of a steep entry, if desired, is
readily calculated from equation (7), the corridor width would be simply
Yo - Irp, and the landing point would be at an angle 6, from perigee,
where 8¢ is calculated from the full equation (14) for 6.

Overshoot Boundary for Lifting Vehicles

Before discussing the influence of aerodynamic 1ift on the corridor
boundaries it is desirable to note that such discussion considers the
interrelationship between L/D and Cp. Any coupling between L/D and Cp
takes on added significance when aerodynamic heating is considered, since
corridor width and aerodynamic heating each depends on both L/D and Cp,
and in conflicting ways. It is unfortunate that shapes cannot be designed
to have meximum L/D with simultaneously meximum Cp. Large Cp is
desirable in order to minimize aerodynamic heating (see ref. 4, or
eqs. (A13) and (Alk4)), and large L/D is desirable in order to maximize
the corridor width. High L/D values are obtained, however, only with
slender shapes having low Cp, whereas low L/D values can be obtained
either with large Cp (blunt shapes, or slender shapes at large angle of
attack a) or with small Cp (slender shapes at small a). The approximate
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dependence of L/D on Cp for lifting surfaces in hypersonic Newtonian
flow is developed in appendix B, and is illustrated by the four curves

in figure 11. As noted in this appendix, the Cp - L/D coupling repre-
sented by the top curve in figure 11 produces the largest Cp for a
given L/D of the several cases considered (as illustrated by the curves
in fig. 12), and, hence, is employed herein to evaluate the net broadening
in corridor width which can be realized by employing a lifting vehicle.
This particular coupling also is employed to help evaluate the trade-off
between guidance and heating problems.

Determination of overshoot boundary.- If a vehicle entered along the
overshoot boundary, it would pass through barely enough atmosphere to
Jjust reduce the veloeity to local circular as the vehicle is about to
exit from the atmosphere. The overshoot boundary has been determined by
plotting a curve of the exit velocity Vex for atmosphere braking passes
as a function of Fo, and then observing the intercept at Vex = 1. The
results are presented in figure 13 in terms of the parameter Q(Br)®(L/D)
(equal to L/D for Earth). Since each curve corresponds to Vex = 1,
the domain above and to the left of each curve represents multiple-pass
atmosphere braking, whereas the domain below and to the right represents
single-pass entry. These curves apply to any planet.

As might have been anticipated, the curves in figure 13 show that,
relative to the case of L1/D = 0, the overshoot boundary can be extended
upward (to lower Pp and lower Fp) if negative 1lift is employed, that
is, 1ift directed toward the planet center. When the interdependence of
L/D and Cp 1is considered, the actual extension in the conic perigee
altitude for overshoot (Aypov is proportional to A log FPOV/CD), would
be less than the apparent extension in Fp because Cp decreases as
L/D increases. Even the extension in F is not impressively large,
and is of diminishing magnitude as L/D gecreases, because the higher
the vehicle passes, the less mass of atmosphere there is to deflect the
trajectory toward the planet center. For Earth (V(Br)g = 1) the curves
plotted in figure 13 and the values tabulated in appendix B for the
Cp - L/D relationship yield the following results for the parabolic
(V4 = 1.L4) overshoot boundary expressed in terms of the increase AYpyy
in the conic perigee altitude at overshoot.

Extension upward of Extension upward of
e assuming L P considering
constant Cp, Cp- L/D dependence,
L/D miles miles
0 0 0
25 X 4.8
—ie 3 Tkt 6
= 10 >
2 12.5 2

_L 15 7
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It is seen that when Cp - L/D coupling is considered, the highest conic
perigee altitude for overshoot would be obtained with L/D = -0.5 and
would be only 6 miles higher than that for L/D = 0. The overshoot alti-
tude for L/D = -4 actually is substantially lower than for L/D = O,
illustrating that too much negative L/D at overshoot would result in a
narrower corridor then if L/D were O.

A more effective method of extending the overshoot boundary would
be to deploy a large, light, high-drag device. In this way it appears
practical to increase CpA by a factor of about 1000. The corresponding
conic perigee altitude at overshoot would be raised by an amount 3 Aoy
(see eq. (18)), which is equal to 30 miles for Earth. This is 5 times
the extension in overshoot attainable by the use of negative 1lift.

In addition to specifying the overshoot boundary (Veyx = 1), it also
is of interest for hyperbolic entries to specify the nonreturn boundary

(Vex = ~2). Both bounderies are illustrated in figure 14 for Vi = 1.6
ex o

and Vi = 2,0. It is evident from the less than pencil-line width between
solid and dashed curves that there is negligible difference between these

boundaries in the range of W~ (Br)g(L/D) less than about -0.5. Even for
L/D = O there is little difference, the overshoot boundary for Vi = 2.0
being at Fp = 0.17 and the nonreturn boundary at Fp =L OO Thaf s R
ference would amount to 0.2 A,yy, or to only 2 miles of altitude for the
earth's atmosphere. It may perhaps be surprising that the overshoot
boundary is so sharply delineated in the sense that an entry pass slightly
beyond it would result in a sizable supercircular exit velocity, rather
than in the completion of entry. This may be an important consideration
in prescribing the design boundaries for the guidance and control system
of a spacecraft.

The present calculations of the overshoot boundary for arbitrary
m/CDA and planetary atmospheres are in good agreement with some calcula-
tions made by Lees, Hartwig, and Cohen (ref. 1) for a vehicle having
m/CDA = 3.1 slug = and entering the earth's atmosphere at 35,000 feet
per second (Vj = 1.36). They presented their results in terms of the
flight-path angle at an arbitrary altitude of 400,000 feet. According
to the present method, the radius to conic perigee is determined by Fp,
m/CpA, and B from equation (10); the angle at y = 400,000 feet is
determined from equation (7) or (9). For their vehicle the following
results are obtained:

Present method, lees, et al.,
y at 400,000 ft, y at 400,000 ft,
L/D deg deg
0 P 5.4
=1 N .
-2 4.2 L.2

The agreement is quite satisfactory.
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Undershoot Boundary for Lifting Vehicles

A deceleration-limited undershoot boundary is affected not only by
the maximum value,of G selected, but also by the particular way in
which the L/D is monitored. By "constant IL/D" is meant an entry in
which L/D is eonstant at least until the flight path is essentially
horizontal (y £ 0, near where maximum horizontal deceleration is reached)
and is reduced thereafter in order to complete entry in a single pass.
By "modulated L/D," as introduced by Lees, Hartwig, and Cohen (ref. 1),
is meant an entry in which L/D is monitored well before ¥ = O is
reached in the particular manner which maintains constant resultant
deceleration.

The beneficial effects of modulated 1ift on deceleration and/or
guidance requirements have been discussed by Lees, Hartwig, and Cohen
under the assumption that m/CpA is maintained constant as L/D is
varied. They show that by modulating the L/D in a manner such that
large L/D values are employed in the first portion of the entry where
the longitudinal deceleration is small, the resultant deceleration can
build up to its maximum under conditions where the transverse component
(~ 1ift) is dominant. Then, by maintaining constant resultant G through

decreasing the transverse component (decreasing N1 + (L/D)2) and increas-
ing the longitudinal component, the entry with modulated 1ift can be com-
pleted without requiring large negative L/D‘s at any stage. In this
way the undershoot boundary for modulated L/D can be extended consider-
ably from the velue for constant L/D, provided the value of L/D at
entry is relatively high. Modulation, however, is not effective in
extending the overshoot boundary. Overshoot is extended the most, as
noted above, by setting a vehicle at L/D = -0.5 and then keeping this
value constant until Veyx = 1 is reached.

In the present research, a large number of calculations have been
made for the case of constant L/D. These calculations can be applied
also to the case of modulated L/D by employing a result of Lees,
Hartwig, and Cohen. They found that the ratio of Gpgx for modulated
1ift to Gpygx for constant 1ift was essentially independent of 74 and
Vi and dependent only on the value of L/D at entry. A curve showing
their result is presented in figure 15.- Since they found this curve to
be independent of %3, it would be independent of the parameter Nﬂgf 74
and hence presumably can be applied to any planetary atmosphere. It
should not be surprising that this curve varies almost as [1 + (L/D)2]'l/2
inasmuch as the benefits of modulation in alleviating the resultant
deceleration are obtained primarily by working with the transverse 1ift
component. The curve in figure 15 is used in this report for obtaining
undershoot boundaries for modulated L/D from curves calculated for
constant L/D. .

2

Curves are presented in figure 16 of the normaliged maximum’deceler-
ation Gpoyx @as a function of log,pF, for various V; and constant
L/D. The abscissa extends to much higher values of Fp (10%° for
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V4 = 1.05 and 1.1, corresponding to 400 miles altitude increment for the
earth) than previously considered. The circle points represent the over-
shoot boundary for single-pass entries. From these working curves a
deceleration-limited undershoot boundary can be determined for a given
Gmaxs L/D, and atmosphere. - A heating-rate-limited undershoot boundary
can be calculated approximately from the relationships developed in
appendix A between Gpax @and convective heating.

It is apparent from figure 16 that an increase in L/D up_to about
2 can extend considerably the undershoot boundary for a given Gpgx. The
magnitude of the extension in terms of log Fp would be proportional to
the extension in altitude only if Cp were independent of L/D (the
effect of Cp - L/D coupling is considered later). In the initial stages
of entry into the atmosphere, the transverse 1ift force deflects the tra-
jectory upward so that a 1ifting vehicle does not descend as rapidly into
the lower layers of dense air as does a nonlifting vehicle. Hence, for a
given F a lifting vehicle experiences less longitudinal deceleration
than a nonlifting one. This beneficial effeet of L/D increases only up
to sbout L/D = 2. Larger values of L/D (for the case of constant L/D
entry) do not further extend the undershoot boundary because the adverse
effect of the 1lift force in producing transverse deceleration dominates
the beneficial effect of the deflected trajectory in reducing longitudi-
nal deceleration. Over most of the range of L/D and F, considered, a
vehicle would exit from:-the atmosphere if the L/D were held constant
during the entire entry. The vehicle can easily avoid exiting by reduc-
ing L/D after Gpgx has been experienced near the point where 7 = 0.

The curves in figure 16 for lifting vehicles represent the domain
of shallow entries (y; < 10° in most cases for the earth) and of L/D < L.
Steeper entries, or those with L/D > 4, correspond to conditions under
which the gravity and centrifugal forces are small compared to the 1ift
and vertical deceleration. Under such circumstances the approximate
solution of Eggers, Allen, and Neice (ref. 5) for skip vehicles would
apply. As shown in reference 2, this particular solution corresponds to
a function Zypy given by

ZIIT = U WBr <7'i T s _1> (30)
uj 2D Uuq.
and to
= 2 271
o _ 8o VBT 71) g 3 L/D )
{58 g 2(1/D) L +(5) e (31
2
a8 1/ =
arpp = (Br)7° e (J%ﬁ (32)
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As in the case of steep nonlifting entries, the use of y; for steep
lifting entries is probably more convenient than the use of Fp.

The present calculations of the undershoot boundary, like those of
the overshoot boundary, can also be compared with calculations made by
Lees, Hartwig, and Cohen for their specific conditions (m/CDA =SSl Sline
ft™2, V; = 1.36, earth's atmosphere, and 7y defined as that at 400,000
ft). For this comparison the 10 Gpox boundary is selected, with the
following results:

Present method, Lees, Sensalir,
y at 400,000 ft, y at 100,000 £t,
L/D deg deg
0 5.8 5.8
.5 Tok T-T
2 8.2 E.5
2 modulated 9.8 10.6

The agreement is regarded as satisfactory.
Corridor Width for Lifting Vehicles

Single-pass entries.- In figure 17 curves are shown of both the
overshoot and undershoot boundaries for shallow entries into the earth
as a function of ' |L/D| for Gugx of 5, 10, and 20, and for various V.
These two boundaries determine the single-pass corridor width. For a
given value of |L/D|, the overshoot boundary would represent L/D <O,
and the undershoot L/D > 0. The solid curves identified as constant
L/D, as noted previously, correspond to L/D fixed during entry only
yabil & ="0, aad to L/D monitored in some unspecified way thereafter
in order to complete entry in a single pass; the dashed curves identified
as modulated L/D, represent a fixed L/D only for a much shorter por-
tion of the entry, and to L/D monitored well before the 7 = O point:
is reached. With a given Gpgx the undershoot boundaries are seen to
be sbout the same for constant L/D as for modulated L/D in the range
of |L/D| 1less than about 0.5. At L/D greater than about 1, the
undershoot boundaries with modulated L/D are considerably extended
beyond those for constant L/D.

For vehicles having a fixed Cp independent of L/D, the effect ol
L/D on corridor width can be visualized from the spacing between over-
shoot and undershoot boundaries, inasmuch as
Oyp = Aloy(loglOFpun - loglonov) for such wvehieles.: Tnspeection ofl the

spacing between the log Fp boundaries in figure 17 shows that the cor-
ridor width for the case of constant L/D attains a meximum at L/D
between sbout 2 and 3, but for the case of modulated L/D increases
indefinitely as L/D increases. The corridor width for modulated L/D




25

at (L/D) Sy = 2 (and Cp independent of L/D), for exeample, is
essentially double that for constant L/D over the entire range con-
sidered in figure 17 (5 < Gpgx <20 and 1.05 < V; <2.0). Some example
values corresponding to Cp independent of L/D are as follows:

Corridor width in miles for Vi = 1.k
5 Gpax 10 Gpax 20 Gpax
Tigas T s
D D modulated] D D modulated D modulated

Venus 0 o 36 8 o 70 2621 105 140
BEarth 0 2 34 7 S 65 20 100 130
Mars 210 300 370 Loo 550 T20 1250 {1240 1740
Jupiter 0 34 Lo 0 52 70 0 90 120

Corridor widths for Titan are not listed since they correspond to such
steep entries that aerodynamic 1ift is ineffective in broadening the cor-
ridor width beyond the values already tabulated for L/D = 0. Even in
the case of Mars, the parabolic entry angle for 20 Gpgx 1is sufficiently
steep (47°) that the reduction in longitudinal force brought about by the
deflected trajectory is overweighed by the transverse 1lift force produc-
ing the deflection, so that the net effect is a greater resultant deceler-
ation (and narrower corridor) for L/D = 1 than for L/D = 0. Modulated
L/D, though, still appears to provide a moderate broadening of the Mars
corridor, but this is based on the untested assumption that the curve of
figure 15 applies to steep as well as shallow entries. The figures for
Mars in the above table include a 100-mile increment for the conic peri-
gee altitude of overshoot. This particular increment corresponds to
(m/CpA) oy = 1 slug/sq ft, (L/D),, = -0.5, and to a surface-level atmos-

phere density on Mars of 0.0002 slug/cu ft.

Because of guidance errors, a spacecraft may unavoidably enter
either near overshoot or undershoot. A lifting vehicle could employ a
different L/D if entry occurred near overshoot than if it occurred near
undershoot, and could have greatly different Cp at these two boundaries.
It is of interest, then, to consider the interdependence of Cp and L/D
in order to evaluate the practical effectiveness of L/D in broadening
the entry corridor. We will assume that L/D = -0.5 at overshoot, since
this value produces the highest overshoot boundary when the Cp - L/D
coupling is considered. At undershoot we will assume that any constant
L/D equal to or less than 4 could be employed. From equation (18) for
the corridor width it follows that with m/A fixed,

Fp) Fp
Ly = Laoy [Zoglo (é%yun - logio ( C;%>L/D==—o SJ (33)
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The values of F, can be obtained from figure 17, and Cp from values

of CD/CDmax tabulated in appendix B (taking CDmax = 1.7, for example).
In making comparison with the case of Cp independent of L/D, we will
consider two entries: (1) entry with L/D at undershoot different from
that at overshoot, but with Cp independent of L/D, and (2) the same
entry, only with Cp dependent on L/D. For convenience, the invariant
Cp of case (1) will be taken as equal to the Cpy, of case (2). In the
case (2) with Cp - L/D coupling, the overshoot boundary would be higher
than in case (1) because L/D = -0.5 produces the highest overshoot alti-
tude when the Cp - L/D coupling is considered. In the range of (L/D)yn
between sbout 0.25 and 1, Cp is not greatly different than at L/D = -0.5;
for practical purposes, then, the corridor widths in this range of (L/D)yn
are essentially the same as those previously computed under the assump-
tion that Cp 1s independent of L/D. Because of two compensating
effects, the corridors tebulated above for L/D = 1 and Cp independent
of L/D are also closely representative of those for Cp - L/D coupling
with (L/D)yy = 1 and (L/D)s, = -0.5. Compensating effects occur because
at (L/D)g,y = -0.5, Cp is double that at (L/D)y, = 1, but log Fp, &Lso
is double. The corridors for higher (L/D)p, however, can be considerably
broader than if calculated under the assumption of Cp independent of
L/D. Calculations from equation (33) of the 10 Gpax corridor width for
parabolic entry into various planets, including the influence of Cp - L/D

coupling, and the assumption that L/D = -0.5 at overshoot, yield the
following values:

Corridor width in miles, Vi = 1.4
(L/ D)w’l Venus Earth Mars Jupiter
Constant| Modulated [Constant | Modulated|Constant]| Modulated|Constant|Modulated
L/D L/D L/D L/D L/D L/D L/D L/D
1 53 67 52 66 550 720 55 T0
) 63 99 62 97 520 920 7 110
L Al 1kg Tal 146 480 1300 93 160

The relatively broad corridors for (L/D),, = %4, unfortunately, are
associated with severe heating penalties, particularly in the case of
modulated L/D. This association is discussed later.

A pronounced trend of decreasing corridor width with increasing
entry velocity can be seen from comparison of the various portions of
figure 17, but it is more apparent from the cross plot in figure 18 where
Vi is employed as the ordinate: Each plot is for various values of

Gpax and for a different value of ~(Br)g(L/D), and can be applied to
any planet for Vi > 1.05 approximately. For Vi too near 1.0, the
planetary similarity in terms of Fp as the correlating parameter breaks
down, and the curves in the region 1.05 > Vi > 1.0 are, strictly speaking,

those for Earth only (or Venus with ~(Br)g = 1) as previously pointed
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out. The dashed curves representing modulated 1ift depend on the indi-
vidual values of both L/D and ~(Br)g(L/D) for all V;, and apply only

to NPBr = 30 (Earth, Venus). It is evident, for example, that the Earth
10 Gpgx corridor width for nonlifting vehicles decreases from about

180 miles at V; = 1 (circular entry) to 7 miles at V; =2 (parabolic
entry), to O miles at V; > 1.8. For constant L/D = 1, the correspond-
ing widths are about 560 miles at Vi =1, 50 at V; =2, and 20 at

Vi = 2.0. Clearly, any increase in entry velocity not only increases the
amount of heat to be absorbed, but also increases the severity of the
guidance requirements to be met by a manned spacecraft which is
deceleration-limited.

Multiple-pass entries.- Thus far consideration has been given only
to the corridor for single-pass entry. Multiple-pass atmosphere-braking
entries are of interest for several reasons, one of which is that they
provide a means of minimizing aerodynamic heating. For example, in an
entry which first makes a number of supercircular passes through the
outer edge of atmosphere until the velocity is reduced to circular
velocity, and then completes the subcircular portion of entry with a
sizable positive L/D, the decelerations experienced - and, hence, also
the rates of aerodynamic heating - can be kept relatively small through-
out the entry. It was shown in reference 2 that with L/D = O six super-
circular passes would be required to keep the maximum heating rates about
the same as that experienced during the terminal subcircular portion of
the entry. Since each pass is followed by a substantial period wherein
the structure may cool as the vehicle orbits in preparation for a subse-
quent pass, this provides an attractive possibility for utilizing the
combined heat-sink-radiation capacity of a structure.

At least two important problems would arise if multiple-pass atmos-
Phere brakings were attempted. First, they would require multiple passes
through the radiation belt around any planet, and second, they can require
a relatively accurate entry guidance system. The guidance accuracy
required may be deduced from the following results for parabolic entry
(approximate F, boundaries have been determined by interpolation from
a number of solutions of the entry-motion differential eq. (3)):

Number of passes Fp Dboundaries
to complete entry =10 = obi/= &
il = A %
:§: 0.006 0.06 1010
2
.005 .03 102
3 § .00k46 .02 1
b .00k .013 0.2
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It follows, for example, that the corridor width for completion of para-
bolic entry without 1ift on the third pass would be

Aoy 1og,5(0.03)/(0.02) = 0.18 Ay, which represents a 1.8 mile wide
corridor in the earth's atmosphere. For L/D = -1 the corresponding
3-pass Earth corridor width would be 0.4 mile, and for L/D = 1, 20 miles.
The corridor widths for 6-pass entries would be considerably smaller. If
one did not specify the number of passes, but only that the maximum heat-
ing rate in the first pass not significantly exceed the value for sub-
circular orbital decay, the resulting corridor widths also would be corre-
spondingly narrow. Thus, with L/D = 0, Quax is 0.22 in orbital decay
(see fig. 7), and for O'Qe.f'amax.f 0.24 the guidance requirement of a
parabolic approach would be 0.0056 < Fp < 0.0080; this corresponds to an
Earth corridor width of about 1.6 miles. When the narrow corridors are
considered together with the possible shielding weight penalty for pro-
tecting an occupant during repeated passes through the radiation belt, it
would appear that multiple-pass atmosphere-braking entries which require
a large number of passes are of restricted attraction, at least for para-
bolic entry into Earth. Two-pass atmosphere braking, however, corresponds

to a rather broad corridor (8 A 0y, as may be deduced from the above
table) and may be of considerable interest.

A second reason why multiple passes are of interest is that they
offer a possible means of achieving flexibility in selecting the time
and the area upon which a spacecraft lands. After a hyperbolic or para-
bolic approach has been converted to a slightly elliptic orbit of rela-
tively short period, a spacecraft could orbit until the earth's rotation
turns a desirable landing area into the proper position relative to the
plane of the orbit for meking a landing. The apogee altitude of the
slightly elliptical orbit around the earth would have to be less than
about 1000 miles, however, if the inner radiation belt were ta be avoided;
this restricts the exit velocity from the first supercircular pass to
Vex < 1.05 approximately. At the same time the exit velocity would have
to be supercircular in order to have at least one orbit before landing.
The resulting corridor, limited by 1.0 < Vex < 1.05 is narrow, but not
impossibly narrow if a 1lifting vehicle possesses the capability of pro-
graming L/D during entry in a number of different ways (depending on
the particular conic perigee of the approach trajectory) and if it also
possesses the trajectory-intelligence capability of knowing upon what
trajectory it is approaching after the terminal-guidance correction is
made so as to thus be able to select a proper mode of L/D modulation.
That this is so may be deduced from figure 19 showing dotted lines of
constant Vey and solid lines of constant Gpgx. All curves apply to a
fixed L/D during entry. The parabolic corridor undershoot boundary
producing 1.0 < Vex < 1.05, and also Gpgx = 10, is at log,Ffp = 2.1,
and at L/D Z 0.6. The corridor overshoot boundary limited only by
vex <1.05 is at log, Fp = -1.9 if L/D = -0.5 at overshoot. The result-
ing earth corridor width is 40 miles. If a spacecraft enters near under-

shoot with L/D = 2 end rapidly reduces L/D immediately after Gy, is

experienced in a sgecial program such that enough deceleration is encoun-
tered to produce: Vex < 1.05, then the undershoot boundary could be




29

extended to log,oFp = 3.2, which occurs at about_ll miles lower altitude
than for L/D = 0.6. The marked sensitivity of Vey to small changes in
Fp at negative L/D, as noted earlier, is also evident in figure 19.

At least two operational complications would arise if a vehicle
attempted to utilize these 40 or 51 mile corridor widths for the conver-
sion from parabolic approach to a tight elliptical orbit. First, a small
rocket thrust would have to be exerted when first reaching apogee after
the initial grazing pass in order that the spacecraft have a reasonable
lifetime as an orbiting satellite (otherwise any entry near undershoot
would be completed on the second pass). Second, each value of Fp within
the boundaries would require a different mode of L/D programing in order
to always exit in the desired range 1.0 < Vgy < 1.05. If an appropriate
L/D programing were not employed for the particular F of an approach
trajectory, the corridor would be much narrower. From gigure 19(a) we
see, for example, that if a fixed L/D were maintained, it could be no
greater than 0.45 for Eﬁax = 10, and the corresponding boundary would be
1.0 < logioFp < 1.7, representing an Earth corridor only T miles wide.

To utilize the L0 or 51 mile corridor, then, would require that the space-
craft know what trajectory it is approaching on after the last terminal-
guidance rocket is fired, and that it have the capability of variable

L/D programing to suit; the L/D program appropriate for loglon

near 2 (near undershoot) would be very different from that for

log,oFp = -2 (near overshoot).

A different - and perhaps the most important - reason for interest
in multiple supercircular passes is that they provide a possible method
of reducing markedly the required Earth lift-off weight for interplanetary
flights employing chemical propulsion. On a minimum-energy trip to Mars,
for example, the heliocentric velocity of Mars would exceed that of the
spaceship (when the spaceship arrived at Mars) by about 9000 feet per
second. Without having to expend any fuel (but perhaps having to ablate
a very small mass), this velocity increment could be achieved - disregard-
ing guidance problems for the moment - by letting an edge of the Mars
atmosphere "run into" the spacecraft in a certain manner. Relative to
Mars, the spacecraft would enter the atmosphere at a hyperbolic velocity
of about vi = 1.6, and, if the spacecraft were guided toward the proper
conic perigee so as to exit from the atmosphere somewhere in the elliptic
range 1.0 < Vex < 1.3, it would become a reasonable satellite of Mars.

A small rocket impulse upon first reaching the ellipse apogee could then
either induce entry if fired as a retrorocket, or greatly lengthen the
lifetime of the spaceship as a Mars satellite if fired as a thrust
rocket. Conversely, after a spacecraft returns to Earth from Mars the
excess heliocentric velocity as it overtakes the earth (in this case,
about 10,000 feet per second for a minimum energy trajectory) could be
eliminated by guiding the spaceship toward the proper conic perigee so
as either to land or to convert its hyperbolic entry velocity relative
to earth (V; = 1.46) to elliptic. By recalling that the Earth lift-off
weight for chemical propulsion varies essentially exponentially with the
over-all velocity increment which must be produced, it is not necessary
to meke numerical calculations to realize that an over-all round-trip
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saving of 19,000 feet per second in velocity increment would amount to

a marked reduction in Earth 1lift-off weight. This reduction is achieved
with only minor increases in the aerodynamic heating since Vi = 1.46 de
only slightly greater than for parabolic entry. Similar comments apply,
of course, to Earth-Venus and other Jjourneys.

For small celestial objects like Mars, the entry guidance require-
ments to effect this desired hyperbolic-elliptic orbital transfer are
much less severe than for Earth or Venus. Some numbers illustrating
this can be obtained from figure 19. By employing IL/DI.S 2 in Mars
(no more severe heating than for L/D = 1 in BEarth) a Gpgx of 10 would

correspond to Gmax = 44 for Mars (eq. (25) with N (Br), = 0.47,
g = 0.38). With /Brgy(L/D) = 0.9%4 the inner corridor boundary for
vi = 1.6 would be deceleration-limited at loglon = 12, producing

vex = 1.03. A reasonable outer boundary with this fixed L/D = 2 would
be at log,oFp = 2.5 producing Vex = 1.3. Hence Ayp = A,0y(9.5) = 250
miles in the Mars atmosphere. If the spaceship has the capability of
programing L/D in a fashion tailored to the particular F it happens
to be entering on, this corridor could be broadened about 100 miles more.
Relative to the radius of Mars, such corridors are much broader than the
parabolic-entry corridor into Earth from a return Moon journey (50 to

60 miles wide). Thus hyperbolic-elliptic orbital transfer by the atmos-
phere of Mars appears quite practical. Upon returning to Earth, though,
the 10 Gpgx corridor width with fixed L/D Z 0.4 for the analogous
hyperbolic-elliptic transfer would be only about 29 miles (at Vi = 1.46
as interpolated between curves for Vi = 1.4 in fig. 19(a) and for

Vi = 1.5 in fig. 19(b)), thereby imposing a guidance requirement about
one order of magnitude more severe than in the case of Mars. The corre-
sponding corridor width with variable L/D programing would be about

L6 miles. Such corridors, however, may not impose impractically severe
guidance requirements.

If a vehicle returns from a voyage to a distant point in the solar
system, the relative hyperbolic velocity of entry into the earth's atmos-
phere would correspond to sabout Vi = 2. As may be deduced from fig-
ure l9(d), and as would be anticipated from results previously presented,
the guidance requirements in this case for using the atmosphere to con-
vert the spaceship to an orbiting earth satellite in the range
1.0 < Vex < 1.3 would be quite severe. Even by assuming that the appro-
priate L/D programing could be achieved for any Fp, the 10 Gpgx cor-
ridor width would be only about 18 miles. The saving in Earth lift-off
welght would indeed be sizable, though, since the excess heliocentric
velocity, which need not be compensated for by expending rocket fuel,
is about 40,000 feet per second in this case.
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Aerodynamic Heating at Corridor Boundaries and Heating
Penalty Associated With Lifting Vehicles

Aerodynamic heating at overshoot boundary.- Inasmuch as deceleration
is at its minimum for single-pass entries along the overshoot boundary,
the heating rate is also at its minimum (but the total heat absorbed is
at its maximum). Considering that the maximum wall temperature varies
as Qmaxt/% for a radiation-cooled vehicle, the approximate relationship
(A13) between heating rate and deceleration should suffice for many
engineering purposes in calculating wall temperatures of such vehicles.
Curves of the dimensionless quantity (UZ)psx at the overshoot boundary
are presented in figure 20. This quantity is proportional to Gpygx. At
overshoot a good approximation for the constants developed in appendix A
would be Cq = 0.6 for positive lift, Cq = 0.7 for zero lift, and

= 0.8 0 0.9 for negative 1lift, as may be deduced from the table
following equation (A13). Actually, heating rates are not relatively
severe at overshoot, as may be judged from the fact that most of the
values of (UZ)pax in figure 20 are considerably smaller than the value
(UWZ)max = 0.28 representing orbital decay of a nonlifting satellite.

Near the overshoot boundary the total heat absorbed can become rather
large, especially if negative 1lift is employed. The severity of this
problem may be judged by comparison of relative values of the dimension-
less quantity @, since the total heat absorbed is proportional to Q
for a given planet and given vehicle (see eq. (Al0)). Some approximate
reference values are, @ = 0.29 for an ICBM entry (Vi = 0.9, 74 = Eh ) and
Q = 1.1 for nonlifting entry of a manned satellite (V; =1, 75 =2 AR
vehicle with L/D -1 entering at parabolic velocity along the overshoot
boundary would absorb during the supercircular portion of entry
(1 <V <Vji) an increment AQ; = 4.7. To this value must be added an
increment AQQ = 1.1 for the heat absorbed during the subcircular portion
of entry. By comparison it follows that, for the same values of m/CpA
and nose radius R, the total heat absorbed along an overshoot-boundary
entry (Q = 5.8) would be about 20 times that for an ICBM-type entry, and
about 5 times that for a manned satellite-capsule entry'.

Curves for various Vi and L/D are included in figure 20 represent-
ing the increment AQ, of laminar heat absorbed during the supercircular
portion of entry along the overshoot boundary. For entry between the over-
shoot and undershoot boundaries the approximation of equation (Al6),

5. e B Flis (R
lLCQAJGmax

is useful. This approximation would also apply to the subcircular portion
alone by setting T3 = 1.

(3%)
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Aerodynamic heating at undershoot boundary.- Although the use of
aerodynamic 1ift, particularly modulated L/D, can increase markedly the
single-pass corridor width by lowering the undershoot boundary, this
potential benefit is not obtained without a major penalty. Aerodynamic
heating becomes progressively more severe as L/D is increased because
of the low drag associated with high L/D. Both the rate of heating
(eq. (Al3)) and the total heat absorbed (eq. (Alk)) vary inversely with
Cp, the variation being as Cp °*> for laminar convection, and as
Cp ©-® for turbulent convection. Thus, for a given deceleration at
undershoot, an entry with L/D maintained constant at U4 and
CD/CDpgx = 0-0065 (see fig. 11) would experience laminar heating

(0.0065)7°°> = 12 times as severe as one with L/D = O and CD/CDmax = 1;

the relative turbulent heating would be (0.0065) °'® = 56 times as
severe.

If a constant L/D = (L/D)entry is employed near undershoot only
until ¥ = O, corresponding to a local minimum in altitude, and then
L/D is reduced to O (or to small negative values) as the altitude begins
to increase, entry can be completed and the net heat absorbed would not
be as great as if the initial (L/D)ent were employed throughout. For
parabolic entry, only about a third or less of the total heat would be
absorbed up to the point where ¥ = 0. Most of the heat would be
absorbed during the subsequent monitoring phase wherein L/D is generally
between O and (L/D)entry- In order to estimate the totsl heat sbsorbed
we will take for the average Cp during entry that corresponding to an
L/D of (2/3)(L/D)entry’ and will consider both the case of operation in
the high-drag portion’ of the drag polar (where C increases as L/D
decreases) and operation in the low-drag portion (where Cp decreases
as L/D decreases). Tsabular values which follow illustrate the relative
heating for various (L/D)entry-

High-drag portion of polar | Low-drag portion of polar
(L/D)entry Leminar Turbulent Laminar Turbulent
Q/(Q)CDmax Q/(Q)CDmax Q/(Q)CDmax Q/(Q)CDmax
0 LAl 1.0 i .0
i) e L3 1.8 2.6
it Tpge! i Bxd 2.9 2.3
2 8.2 3.6 6.9 2o,
5 3.4 .0 i3 50
L 5.0 13, 18. 100.

As would be expected, the net heating penalties for high-drag monitoring
with (L/D)entry = 4, for example, as represented by the factors of 5 for
laminar convection and 13 for turbulent, are undesirably large but still
much smaller than the corresponding factors mentioned previously of 12

and 56 applicable if L/D were equal to 4 throughout entry. These latter
two factors, in turn, are smaller than the corresponding factors of 18 and

100 applicable for low-drag monitoring with (L/D)entry =k,
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An entry in which L/D is constant until y = O and then is slowly
reduced after the altitude begins to increase can operate in the high
drag portion of the drag polar without further increasing the maximum
deceleration beyond that experienced at y = 0. It would be necessary,
though, to decrease L/D slowly enough during the monitoring phase so
that the accompanying increase in G due to increasing Cp dis no
greater than the aggregate effect of the decrease in G due to decreas-
ing L/D and decreasing pV2.

It is unfortunate that the technique of modulated 1ift, which is so
effective in broadening the entry corridor if a high (L/D)entry is
employed and if Cp were maintained constant during modulation (as in
curve D, fig. 12), would have its basic purpose defeated if the lifting
vehicle attempted the modulation by operating in the high-drag portion of
a polar (as in curve B, fig. 12). To see this, we note that the differ-

ential of the resultant deceleration G = CppVFAN1 + (L/D)3/2m is

a _ (L/D)a(r/p)  d(ev®)  &p

G 3o (L/D)2 pV2 Cp (35)

During the monitoring phase d(L/D) is negative, so that the first term
on the right side represents the alleviation in G due to the reduction
in transverse lifting force; the second term represents the change in G
due to changing dynamic pressure; the third term, which was not considered
in reference 1, represents the change in G due to changing Cp. For
lifting surfaces operating in the high drag portion of the polar (curve B
in figure 12), the increase in G due to increasing Cp is, unfortunately,
about 3 times the decrease in G due to the reduction in transverse 1ift,
so that modulation would result in a net loss, rather than a gain. This
may be illustrated by considering the change in G for a unit reduction
in L/D at L/D = 1. The change in G due to lift modulation alone, as
given by the first term on the right side of equation (35), would be

AG
4G 3 - %
<k} 1ift varistion 1 + (L/D) D 1+1

which represents a reduction in deceleration. The accompanying change in
G due to drag variation as given by the third term together with the top
curve in figure 11 would be

_en BT S G

<A_G
& drag variation CD 0.39

which represents an increase in deceleration due to drag variation amount-
ing to over three times the decrease due to 1lift variation. It follows
that drag modulation through o variation of a lifting wehicle would be
more effective than 1lift modulation through L/D variation in broadening
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the entry corridor. Drag modulation of this type is not investigated
herein; drag modulation of nonlifting vehicles has been studied recently
by Phillips and Cohen in reference 6.

If, rather than to change angle of attack of a lifting surface, the
aerodynamic technique of deploying a drag device were employed to reduce
L/D (such as represented by curve C in fig. 12), then the adverse effect
of increasing drag would still exceed the favorable effect of decreasing
L/D. The full benefits of modulated L/D can be realized, however, by
operating a lifting surface in the low drag portion of the polar (such
as represented by curve A, in fig. 12), but then very large heating
penalties would result, as exemplified by the numbers listed in the right
half of the above table. The use of any modulation technique which
requires that the vehicle operate along the low drag portion of its
polar will necessarily be penalized severely by aerodynamic heating in
comparison to the constant L/D technique which can be used with the
vehicle operating along the high drag portion of the polar.

The complicated trade-off between guidance benefits and aerodynamic
heating penalties is further slanted toward the use of only small or
moderate L/D, rather than higher L/D, by the role which boundary-layer
transition may play. That transition may play an important role can be
seen from a comparison of two cases: (1) constant L/D with
(L/D)entry = 1, and (2) modulated L/D with (L/D)entry = 4. The guidance
benefit associated with case (2) amounts to a parabolic entry corridor
about 3 times as broad as for case (l). In assessing the accompanying
heating penalty, let us first estimate the Reynolds number of a hypotheti-
cal manned spacecraft. For both cases we take 1 = 50 feet,

m/A = 1 slug per square foot, Gpsx = 10, and V = 1.2. From equation (AT)
we have, for the earth's atmosphere

Re _ 7700 G ([ m ¢
LoJI (/)2 V <CDA> o

Hence, for case (1) with (L/D)entry =1 and Cp, =1 (corresponding to
operation in the high-drag portion of the polar with

(L/D)av = (2/3)(L/D)entry), there results Re = 3x10° at which value
considerable laminar flow would be expected; from the above table the
heating penalty would be 1.3 times that for laminar flow with L/D =50
For case (2) with (L/D)entry = 4 and modulation at Cp = 0.011 (corre-

sponding to operation at a constant Cp equal to that at L/D = 1),
there results Re = 100x10° at which value mostly turbulent flow would
be expected; the heating penalty would be 100 times that for turbulent
flow with L/D = 0. Since the Stanton number for turbulent flow is at
least several times that for laminar, the net heating-penalty factor
would be at least several times 100/1.3, which would smount to well over
a factor of 100. This appears too great a heating penalty to pay for
the guidance benefits of a tripled Earth corridor width. For entry into
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Mars, though, a one-hundredfold increase in heating may be manageable,
but in this case the corridor already is relatively broad even for
nonlifting vehicles.

As L/D is increased from O, the increase in heating penalty is
slow at first for modes of entry which utilize the high drag portion of
a polar. Up to about L/D = 1 the associated heating penalty would not
appear to limit appreciably the usefulness of aerodynamic 1ift in broaden-
ing the entry corridor. For entry at parabolic velocity, the 10-G Earth
corridor for (L/D)entry = 1 is 7.6 times as wide as for L/D = O, whereas
the laminar heat absorbed need be increased only about 30 percent. The
trade-off between guidance benefit and heating penalty would appear to
favor the lifting vehicle at least up to about L/D = 1. In this range
of L/D, modulated L/D would not be much more effective in widening
the corridor than constant L/D, and would have somewhat greater heating.
When both guidance and heating problems are considered, a compromise
single-pass entry technique would be to enter with a value of L/D the
order of unity until maximum deceleration is experienced, then reduce
L/D in the high-drag attitude (increasing o) until intense heating is
over, and, finally, increase L/D again (decreasing a) to achieve
maximum maneuverability in the terminal glide phase. As previously
indicated, the technique (not studied) of drag modulation of a lifting
vehicle by reducing o before ¥ = 0 and alleviating G +through the
decrease in Cp with increasing L/D, could be more efficient in broaden-
ing the corridor than the technique of 1ift modulation; it is to be noted,
however, that this technique also would require operation in the low drag
portion of a polar with the accompanying heating penalty (although the
penalty would not be so severe as for lift modulation).

Different heating problems at undershoot and overshoot.- In relation
to the status of current technology, the rate of aerodynamic heating
along the undershoot boundary is quite high. For example, if U = 1.3,
JBr = 30, Gpex = 10, and L/D = 0.5, equation (A13) yields for the maximum
dimensionless heating rate aﬁax = 0.92, which is much higher than the
corresponding value Qpgx = 0.22 for a satellite in orbital decay, and
considerably higher even than the value Qpgx = 0.62 for a typical ICBM
entry. Since (Emax)l/4 is proportional to the maximum wall temperatures,
this temperature for a vehicle that 2s entirely radiation-cooled during
parabolic entery at undershoot would be about 10 percent higher than in
an ICBM entry. Surface temperatures sufficient for radiation cooling of
an ICBM nose cone currently are not considered to be practically feasible,
and similarly are not considered feasible currently for a spacecraft
entering near the undershoot boundary.

The total heat absorbed along the undershoot boundary, however, is
not excessively high. For example, if L/D is monitored so as to decel-
erate at an essentially constant value of 8 G, then equation (34) yields

(with W = 1.4, 4Br = 30, L/D = 0.5, and Cq = 3/4) the value Qy = 1.9.
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This is not discouragingly larger than the value @ = 1.1 representative
of a nonlifting manned satellite entering from a near circular orbit,
for which the technique of absorption by ablation appears eminently
practical at present. The value Qup = 1.9 is, however, only about 1/3

of the corresponding value Quy = 5.8 for entry along the overshoot
boundary.

In summary, then, we are faced with a situation wherein at the
deceleration-limited undershoot of the Earth corridor, the heating rate
is relatively large, and pure radiation cooling currently appears imprac-
tical, but the total heat absorbed is within practical bounds of present
heat-absorption techniques; at overshoot, however, the heating rate is
relatively small, pure radiation-cooling appears practical, but the total
heat absorbed is about 3 times that at undershoot. For an efficient
design, therefore, it 1s important to develop versatile protection shields
which can radiate efficiently if a spacecraft enters near overshoot,
ablate efficiently if it enters near undershoot, and blend these func-
tions efficiently if it enters anywhere in between.

Example Guidance Requirements for Entry Corridors
of Various Planets

In order to determine the desired trajectory which passes along the
center of an entry corridor it would be necessary to make precise three-
dimensional orbit calculations giving full consideration to a number of
perturbations such as those due to planetary oblateness, the sun, moon,
and perhaps other planets. In calculating the small deviations about
this desired center-line trajectory which are permissible from atmosphere
entry considerations, however, the secondary effects of the perturbations
on these small deviations will be disregarded, and the entry guidance
tolerances calculated as those of a two-body problem. This procedure
appears reasonable inasmuch as the terminal-guidance correction to an
entry approach would presumably be made relatively near the target planet
where the trajectory is mainly in one plane and is essentially a conic
trajectory. Results of such calculations should be useful, for example,
in making preliminary estimates of what distance from a target planet
would be optimum for correcting a trajectory, how much fuel would be
expended in so doing, and whether certain types of supercircular entry
maneuvers would be feasible from a viewpoint of the guidance accuracy
they impose.

By the use of equation (22) for narrow corridors (Earth, Venus,
Jupiter) and the full equation (20) for relatively broad corridors (Mars,
Titan), the guidance requirements on Ay (permissible deviation from the
flight-path angle of the trajectory which passes through the center of
the entry corridor) for zero errors in V and r have been determined for
the various 10 Gy, parabolic-entry corridors previously considered.
Values of *Ay are plotted in figure 21 as a function of the dimension-
less distance r/ro. It is evident that the =*Ay requirements vary by
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large amounts, from the order of 10° for Titan to less than 0.01° for
Jupiter. For comparison, three other technological requirements (also
computed for zero error in V) are indicated for reference immediately

to the right of the r/rO = 100 line. “Fhey are: +2° for injecting a
vehicle into orbit around the earth, +0.25° for hitting the moon from

the earth (ref. 7), and iO.OlMO for £1 mile ICBM accuracy at 5000 miles
range (this' is the azimuthal angle requirement; the corresponding flight-
path-angle requirements are less severe). At the far right of the fig-
ure are indicated three different approximate guidance requirements

which, though more mundane, nevertheless are fully as illuminating and
nearly as stringent as the three technological requirements. It is seen
that, starting at r/ro = 100, it would require no better angular guidance
control (l) to enter the corridor of Titan than to inject a satellite into
orbit or to pitch a baseball strike; (2) to enter the corridor of Mars
than to hit the moon from the earth or to hit an apple from 60 feet
(William Tell), or, (3) to enter the corridors of Venus and Earth than to
launch an ICBM within azimuthal accuracy of 1/5000 of the range, or to
fire a rifle within bull's-eye target accuracy (accomplished essentially
100 percent of the time by skilled individuals). To aline a trajectory
for entry into Jupiter, however, is another matter.

The corresponding requirements on velocity control iAV/V for zero
error in 7y and r also have been calculated, with the following results
(descending vertically in order of increasing severity).

Parabolic entry Comparative technological
10°G- corridor requirements
AT/ AT/
Titan 1%
Mars 0:03
Orbit injection 0.02
Venus .003
Earth .003
Moon shot .001
Jupiter .0003
ICBM . 0000k

The parabolic entry requirements on iAﬁVV' for Earth and Venus are less
severe than successful Moon-shot requirements, and two orders of magnitude
less than ICBM requirements. 1In fact, to put these requirements in
perspective, the velocity control required for Venus and Earth is not
much more severe than the velocity control with which a skilled man can
throw a ball. In the Italian game of boccie ball, for example, a skilled
player often throws a L_inch wooden ball about 30 feet to hit another
similar ball (without hitting nearly adjacent ones), and this requires
+AV/V 2 0.006, which is comparable to the value #0.003 for parabolic
entry into Venus or Earth. In general the entry requirements for velocity
control do not appear as severe, relatively speaking, as those for flight-
path-angle control.
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The permissible errors in distance from the planet =Ar/r for zero
errors in V and 7, are seen from equation (22) to be equal to *2AV/V.
Only in the extreme case of Jupiter (#Ar/r = 0.0006) would distance errors
appear to impose any really severe requirement or precise knowledge of
distance from the planet center.

RESUME OF RESULTS

A dimensionless, transformed, nonlinear differential equation pre-
viously developed for describing motion during entry into a planetary
atmosphere has been combined with equations for conic trajectories to
yield a parameter (Fp = pp'Vrp/B/E(m/CDA)) based on conditions at the
conic perigee altitude which is convenient for specifying the width and
altitude of an entry corridor. The width of a deceleration-limited cor-
ridor in an exponential atmosphere is independent of m/CDA, but the
density p at conic perigee is proportional to m/CDA.

The corridor width decreases markedly as the entry velocity increases.
For example, the 10 Gpgx corridor width for entry of nonlifting vehicles
into the earth's atmosphere decreases from about 180 miles for circular
entry (T = 1) o 7 miles for parabolic entry (V3 =2), to O miles for
hyperbolic entry at V; ;_1.8. As would be anticipated, the corridor
width for a given entry V3 1into various objects in the solar system
varies by large amounts, ranging from a minute fraction of the radius for
Jupiter, to the full radius for Titan.

The overshoot boundary of an entry corridor can be extended upward
by the use of negative 1lift, but only about one log,, cycle in TFp (or
in density). Deployment of a large, light, drag device appears to be a
much more effective way to raise the overshoot boundary.

The undershoot boundary of the entry corridor can be lowered markedly
by the use of aerodynamic 1ift, and lowered more by modulated L/D than
by constant L/D. This is in agreement with previous results of Lees,
Hartwig, and Cohen who did not consider any inherent Cp - L/D dependence.
The benefits of modulated 1ift in alleviating guidance requirements, how-
ever, are sizable only for relatively large L/D ratios (greater than
agbout 1) which inherently require low Cp and much more heat to be
absorbed than for smell L/D. When the strong Cp - L/D interdependence
for lifting surfaces is considered, the modulated L/D technique appears
restricted to operation in the low-drag portion of a drag polar (where
Cp decreases as L/D decreases), and thus penalized by much higher heat-
ing rates than the constant L/D technique which can utilize the high-
drag portion of a drag polar (where Cp increases as L/D decreases).
Because of the strong Cp - L/D coupling of a lifting surface, the
decrease in Cp with decreasing angle of attack can overshadow the
accompanying variation in resultant force with changing L/D, so that
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drag modulation by variation in angle of attack of a lifting vehicle
would appear to be more effective in lowering the undershoot boundary of
a deceleration-limited corridor than would be 1lift modulation.

A compromise technique for single-pass supercircular entry, consider-
ing both guidance and heating problems, is to employ initially a constant
L/D (of about 1 if entry is near undershoot, or less if the conic perigee
is higher) until slightly past meximum deceleration, then reduce L/D to
essentially O (or to small negative values if entry is near overshoot) by
increasing the angle of attack in the high-drag portion of the drag polar
until intense heating is over and single-pass entry is assured, and
finally to increase L/D again so that maximum maneuverability is
achieved during the terminal glide phase.

Because of the opposite nature of the aerodynamic heating problems
at overshoot (high total heat absorbed, low heating rates) and undershoot
(Low total heat absorbed, high heating rates), it is highly desirable to
develop versatile protection shields for spacecraft which can radiate
efficiently if entry happens to occur near overshoot, ablate efficiently
if near undershoot, and blend these characteristics if entry occurs in
between.

Compared to other technological guidance requirements, such as those
for successful Moon shots from the Earth, or for achieving an accuracy in
azimuthal angle for an ICBM of 1 part in 5000, the entry-corridor require-
ments imposed on flight path angle appear to be relatively more severe
than those imposed on velocity. For parabolic entry into the earth's
atmosphere, the limitations on flight path angle are about the same as
those of the comparison ICBM requirement.

As far as terminal entry guidance is concerned, it appears feasible
to employ the atmosphere of certain planets - rather than rocket fuel -
to effect orbital transfers wherein a spacecraft approaching a target
planet at hyperbolic velocity has its trajectory converted by atmosphere
drag to an elliptic orbit about that planet. The corridor width for such
maneuvers is not impractically narrow if the vehicle possesses the intel-
ligence capability of accurately knowing which trajectory within the
corridor it is approaching upon, together with the monitoring capability
of being able to program L/D (and Cp) in the variety of ways required
for different approaches within the corridor boundaries. The apparent
feasibility of atmosphere braking for effecting hyperbolic-elliptic orbital
transfers implies the possibility of very large reductions in Earth 1lift-
off weight for interplanetary voyages employing chemical propulsion.

Some typical 10 Gy., entry corridor widths, expressed as a fraction
Ayp/ro of the planet radius, are tabulated here for convenience. All
correspond to lifting vehicles with an L/D capability of about 1,
unless specifically noted otherwise.
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APPENDIX A

FORMULAS FOR MOTION AND HEATING QUANTITIES AND RELATTONSHIP

BETWEEN DECELERATION AND HEATING
Formulas for Motion and Heating Quantities Related to Z

The full form of the differential equation for Z developed in
reference 2 is:

= e
42 _(dz2 _Z) . 1-u™ cos?®y =i/ Br L cos3y (A1)
s AR 4z D

Here, and in the equations which follow, the appropriate form for shallow
entries is obtained by setting cos y = 1, sin ¥ = 7, and by disregarding
L/D tan ¥y and +tan®y compared to unity. Equations for various quanti-
ties of interest related to Z are (their derivation may be found in

et 2]

Flight-path angle JBr sin y = % -2 (42)
7.
Horizontal deceleration sdu  gXPr B2 (A3)
dt cos Y
Br 07
Resultant deceleration a4 = 1+ - tan ¥ (AL)
Tcos 7
5-54 % cos ¥ du
Range between {j and O JBr = (45)
: ! 2 : m B Z -
Density=velocity relationship p =2 & - = (A6)
DA * i

Reynolds number per unit length

Re_ 2eb >
2o ZNER (22 (A7)
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For either laminar or turbulent flow, a convenient reference rate
for convective heating into a surface of radius of curvature R can be
represented by the equation

o> (a8)

Approximate values joff . G- for alr, with p Iin slugs per cuble:foot,
R in feet, and V 1in feet per second are listed below together with
the values of n for laminar and turbulent flow.

For g in Btu ft™2gec™t

Reference heating rate 6 n

Laminar stagnation point (ref. 2) 2.OxlO'8 1/2
Turbulent sonic point (ref. 8) 9.0x107® L/5

By combining this equation with the density-velocity relationship (A6)
we have,

ong z =2 2
X Wt m = 2 Sl
heating rate = = <65K g= g d (A9)
where
3-n
=t z° (A9a))
total heat absorbed per unit area
n/0-1 3-n
5 = 7 \ A B v g)Q (A10)
where
Ui _s-2n_.
e f LS (A10a)
R Lyl
o (uz)

At a laminar stagnation point in air, these two equations become (with
m/CpAR in slug ft°3)
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= 590 m ' = Btu
% CpAR i ftZsec’ (A11)
with
g - I.i'_—s/azlle (Alla)
and
Ss _ 15,900 [_2_ g Bt (A12)
S CpAR 2
with
h: P _3/2d_
e f L (a128)
o JZ

The quantities § and § are referred to as the dimensionless heating
rate and the dimensionless total heat absorbed, respectively. In
atmospheres of planets other than Earth, additional factors gqg and Qg,
not considered herein, appear on the right sides of equations (All) and
(A12), respectively, representing the relative aerodynamic heating com-
pared to that in the earth's atmosphere. These factors for laminar
convection are estimated in reference 2 for Venus, Mars, and Jupiter.

Approximate Heating-Deceleration Relationships

Approximate relationships developed below between convective heating
and deceleration are employed later to assist in explaining certain
qualitative results, and in evaluating the aerodynamic heating problem
for different portions of the entry corridor. By combining equations
(A3) for deceleration and (A9) for rate of heating, there results a
general qualitative relationship applicable to a given planet (the con-
stant of proportionality depends on the planet).

n
q ~ Ri:n <ﬁ%§> ﬁ?-zn(deceleration)n (513)

Through the use of a mean value approximation for integrals, equations
(A10) and (AlOa) for total heat absorbed from u; to G = 0 yield

- 4=21

n
i P Alk)
A (mean deceleration)l 5
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Except for the case n = 1 (e.g., free-molecule flow) these relationships
show that the greater the deceleration the greater the heating rate, but
the smaller the total heat absorbed.

The qualitative heating-deceleration relationships can be put on a
quantitative basis. During the supercircular portion of an entry, maximum
heating rate and maximum deceleration occur reasonably close together.

If U at maximum heating rate is written as Ui, where Cq 1is a con-
stant somewhat less than unity, then equations % Alla), (A3), and (A4) yield
an approximate - though general - relationship for laminar convection.

Cqly) 2./
g0 (ani)z ,—_(ﬁz’)max . (Cql1) ™ o Cmax i

(8, NBT) ™ 2[14(1/D)21*

Values of Cqy for laminar heating fall in the range 0.6 < Cq <1, as indi-

cated by the following values determined from both analytical (when in
parentheses) and numerical results of reference 2:

Type of entry Cq
Orbital decay from V4 = 1 with L/D =0 0.64
4 .64

o0 .62 =,/2/3~f§)

Steep entry from any Vi with L/D = 0 .76 (= 371/ 4

Undershoot entry with L/D =0 .80
i .90
o 1.00
Overshoot-limit entry with| from Vi = 1.2 to Ve = 1 .64
L/D = 1.k 1 07
2.0 I .73
Overshoot-limit entry with| from Vi = 1.2 to Vp = 1 .78
L/D = - 1.k 1 .86
2,0 1 .92

For the extreme case of negligible, but constant horizontal deceleration
(UZ = const - 0), maximum heating will occur at the initial point, so
that Cq-a 1 in this limiting case.

An analogous approximation can be established for the dimensionless
laminar heat absorbed AQ during entry from Tj to up. By employing a
mean value approximation for integrals, we have from equations (AlEa),

(A3), and (AkL),
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i= ﬁ"zﬁ_- LAl 1/
AR <el+uf> uf) ( 1+0r) “(T0y-Tp) (genfﬁ;)l/z [l+(L/D)2} 5

LLCQ /Gmax _ (A16)

Values of Cg for laminar convection generally are in the range
0,32 < Cq < 1, as may be deduced from the following results:

Type of entry Cq
Orbital decay from Uj =1 to Tp = O with L/D = 0.32 (=1/x)
Steep entry from ©; to O with L/D =0 46 (=e/2N7)
Shallow skip from Ti to Gp, Ui with L/D = » b (=2/x)
Overshoot-1limit entry with | from ﬁi = 2.0 to Tp =1 <10
L/D = Lk 1 Ee
Overshoot-limit entry with| from T = 2.0 to Ur =1 «Th
L/D = -0.5 1.k 1 1T

{?onstant horizontal deceleration with arbitrary}_
« 15

L/D from Ty to O

for the limiting case of constant horizontal deceleration during a
negligible velocity decrement (the case when TUZ is a Dirac function
Of ﬁ), CQ=l.

The approximate heating-deceleration relationships for complicated
types of entry agree well with more precise calculations, and illustrate
that, in an entry wherein the deceleration is monitored to be essentially
constant, the aerodynamic heating with a fixed m/CpA does not depend
significantly on the lift-drag ratio. Lees, Hartwig, and Cohen (ref. 1)
have made machine calculations of an entry wherein L/D is varied con-
tinuously after reaching Gpgx in the particular manner which maintains
constant resultant deceleration and constant Cp. For this type of
modulated 1ift they used the numerical values m/CDA = 3.1 slugs per
square foot, Vi = 35,000 feet per second (Vi = 1.36), and Gpgyx = 1O.
Since this corresponds to an undershoot type of entry, we take Cgq
from the table preceding the one above, and since the deceleration is
constant for most of the entry, Q = 3/& from the above table. By sub-
stitution of these numerical values into equations (All) and (A1l5)
for q, and (Al12) and (A16) (using L/D = 1/2(L/D)entry) for Q, the
results obtained are found to be in approximate agreement with the more
accurate machine calculations of Lees, et al. The following table
illustrates this for laminar stagnation heating with R = 1 foot:

0.9
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Maximum heating rate, Total heat absorbed,
-2 -1 _ -2
L/D Btu £t~ =sec Btu £t
at entry USpax - Qg/S Qs/S

Egs. (All) and (A15)|Ref. 1|Eqs. (Al2) and (Al6)|Ref. 1
0.25 890 780 41,000 40,000
5 8Lo 800 41,000 39,000
it 760 810 43,000 39,000

It is noted here that the above tabular values, which indicate only
minor variations in heating with (L/D)entry for essentially the same

deceleration history, assume that m/CpA is constant for all values
of L/D; calculations presented elsewhere in this report consider a
variation of Cp with L/D and show a large dependence of heating
on L/D.

Relationship Between Deceleration and Reynolds Number

A useful equation relating Reynolds number per unit length to decel-
eration is obtained by combining equations (A4) and (A7)

Re 28¢ m G
—_—= (A17)
1 ure CDA) 2 1+(1/D)2

= {0 (A18)

s ) e

This equation enables the maximum Reynolds number to be calculated
approximately from Gpgx and an estimate of the value of T at
which Gp,, 1s experienced.
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APPENDIX B
INTERDEPENDENCE OF Cp AND L/D FOR LIFTING VEHICLES

The equations of Newtonian hypersonic flow for the case where 1lift
is obtained by varying o of a surface enable a simple picture to be
obtained of the L/D-CD relationship. Let us designate the minimum
drag coefficient at O° angle of attack as CDO, and that at 90° as CDpaxe
In accordance with Newtonian flow, pressures are assumed to vary as
sin®a, so that Cp = Cp, + (CDy, . ~CDy)sin®x; hence, this approximation
yields

;P sinZa cos a (31)
D b + sinSa

The quantity b = CDO/(CDmax'CDo) determines the maximum value of L/D
and the o at which it occurs. Even for a flat plate having zero leading-
edge radius, zero pressure drag at o = O, and laminar skin friction,

the (L/D)max in hypersonic Newtonian flow is only about 6 at a Reynolds
number of 1 million. In view of this, and the severe heating problems
associated with lifting surfaces having small leading-edge radii, we will
confine our attention to (L/D)max ©Of 4 and less. Four drag polars cor-
responding to values of b such that (L/D)pax = 1,2,3, and 4, as deter-
mined by the above equation, are shown in figure 11 with L/D plotted
versus Cp/CDp., (& value Cp .. = 1.7 would be reasonable for all of the
polars). In each case L/D increases from O at the minimum drag atti-
tude (o = 0), passes through a maximum, and then decreases to O again at
the maximum drag attitude (a = 900). The low Cp's associated with high
L/D are evident from this figure.

The interdependence of Cp and L/D can be varied widely by employing
different aerodynamic techniques, but we are most interested in the tech-
nique which gives maximum drag for a given L/D. A wide variation is
illustrated in figure 12 where four different curves are shown, all
starting from (L/D)max = 4, Curve A corresponds to varying the angle of
attack in the low-drag portion of the drag polar of a lifting surface,
while curve B corresponds to the high-drag portion of the polar. Curve C
corresponds to varying the drag at constant 1lift, such as could be done
by deploying a variable-area drag device while the lifting surface main-
tains a fixed Cf, (referred to the fixed area of the lifting surface).
Curve D corresponds to varying the 1lift at constant Cp (also referred
to the same area) such as could be done by simultaneously changing «
and deploying a variable-area drag device. Curve B, the high-drag por-
tion of the polar, yields the highest Cp for.a given L/D of the
various curves considered (including those in fig. 11), and, therefore,
would be best from the viewpoint of minimizing the aerodynamic heating.
The relationship between L/D and Cp for this curve is:
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This particular interdependence of L/D and Cp 1is used herein to
evaluate the net broadening of corridor width and the aerodynamic heat-
ing penalty associated with the use of lifting vehicles.
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Figure-5.- Definition of corridor width.
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Figure 14.- Nonreturn and overshoot boundaries for hyperbolic entries.
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Figure 19.- Concluded.
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