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ABSTRACT

The analysis includes nonconstant spin rates and inertias and con-
siders the effects of time-varying thrust misalinements, mass unbalance,
and jet damping. The method was developed for bodies having small trans-
verse angular velocities. Results are presented in the form of equations
for space-referenced Euler angles, flight-path angles, body-referenced
attitude rates, and earth-referenced vehicle-trajectory coordinates. Also,
equations for maximum wobble have been derived for certain input condi-
tions. Comparisons with numerical solutions are included for two sample
problems.
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SUMMARY

A method for approximating the vacuum motions of spinning rigid
symmetrical bodies with varying spin rates and inertias has been com-
pleted. The analysis includes the effects of time varying thrust mis-
alinements, mass unbalance, and jet damping. Results are given in the
form of equations for space-referenced Euler angles, flight-path angles,
body-referenced attitude rates, and earth-referenced vehicle-trajectory
coordinates. The method consists of dividing the problem into intervals
during which the time-dependent variables are assumed constant at their
mean interval value. In order to check this procedure, solutions for
various interval sizes are compared with solutions obtained with numeri-
cal methods. Although the method is somewhat lengthy for accurate hand
computation in most cases, it is readily programed for machine solutions.
Probably more important, the general solutions give insight into the
separate effects of the variables and, in many cases, can be quickly
used to determine the approximate ranges of the variables required for
the desired solution to a given problem. In this respect, equations for
determining maximum wobble have been derived for certain input conditions.

The method has been shown to compare closely with the numerical
solutions of two sample problems. The sample problems also illustrated
the relatively large effect of pitch and yaw Jjet damping on body motions.

INTRODUCTION

Vacuum motions of rotating bodies are becoming more important with
the fairly recent ability to place objects in motion beyond the atmos-
phere. Machine computer programs for calculating these type motions
have been completed and used successfully for some time. However, not
everyone has a computer machine available for this work. Also, those
with machines are using the trial-and-error process in most instances
when locating the proper range of variables with the result that much
machine time could be saved if some insight were available as to the
individual effects of the different variables on the motions. This




insight is best provided by analytical solutions to the equations of
motions. There have been many papers published concerning this problem.
(See, for example, refs. 1, 2, and 3.) However, one thing common to
these papers has been the constant spin rate requirement. Other require-
ments sometimes include constant mass and inertia parameters or constant
moment inputs. Solutions are sometimes limited to angular rates referred
to a body-axis system requiring transformation and numerical integration
to obtain space-referenced attitude angles.

The present paper presents an approximation method for determining
the vacuum motion of spinning symmetrical rigid bodies with changing
spin rates and inertias including the effects of time varying thrust
misalinement, mass unbalance, and Jjet damping. Results are presented
in the form of equations for space-referenced Euler angles and flight-
path angles, and earth-referenced vehicle-trajectory coordinates. An

expression for body-referenced attitude rates is included for convenience.

The method consists of dividing the problem into intervals during which

the time-dependent variables are assumed constant at their mean interval
value. In order to check this procedure, solutions for various interval
sizes are compared with solutions obtained with numerical methods. The

method was developed under the limitations that body pitch and yaw atti-
tudes are restricted to "small angle" oscillations and that body moments
of inertia about the pitch and yaw axes are equal.

SYMBOLS
a arbitrary fitting constant
ASB,C complex input coefficients defined in equation (13)
An, By fitting constants for moment inputs
Ay, As constants defined by equations (18)

By,Bs,Bg,B;  constants defined by equations (18)

C1,C2,C3,C)  constants defined by equations (18)

F magnitude of total asymmetrical force on vehicle
Fri56n input coefficients defined in equation (13)
F mean value of F/(mV) within an interval
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X, Y, 7
X,¥,2
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constant of gravitational acceleration

moments of inertia about X-, Y-, and Z-axes, respectively

products of inertia due to unbalance

Jjet damping coefficient, K/I

mean value of j over the interval

pitch and yaw jet damping factor, T ﬁle
roll jet damping factor

distance from body center of gravity to motor nozzle exit
measured along X-axis

mass of body

asymmetrical moments about X-, Y-, and Z-axes, respectively

angular velocity about X-, Y-, and Z-axes, respectively
mean value of p within an interval

vector magnitudes defined in equations (9)

thrust

mean value of T/(mV) within the interval

time from beginning of interval

velocity of body along flight path

orthogonal body-axis system (origin at body center of gravity)
orthogonal space-axis system (origin arbitrary)

X-, y-, and z-axis system rotated about y-axis to meke

ze-axis vertical




a body angle of attack referred to a rolling body-axis system

Qg body angle of attack referred to a nonrolling body-axis
system

B body angle of sideslip referred to a rolling body-axis
system

Bs body angle of sideslip referred to a nonrolling body-axis
system

B=J+ilp-a)

76 angle between x-, y-, and z-axis system and xg, Yo, and

Ze System in xz-plane

Y =79 + 17y

75 flight-path angle in pitch plane

Yy flight-path angle in yaw plane

A vehicle total yaw angle, 6 + iy, radians

Nys Ny angle between body principal X-axis and X (body reference)

axis measured about Y- and Z-axes, respectively (see
figs. 3 and 4)

By = k/ﬁp dt at t4

w,e,¢ yaw, pitch, and roll orientation angles of body X-, Y-, and
Z-axes with respect to x, y, and z space-axis system
(Euler angles)

¢' angle between the total asymmetrical force vector (always
in the YZ-plane) and the -Z direction (see fig. 1(b))

® mean value of pIy/T within the interval
Subscripts:
o value of quantity at beginning of interval

f value of quantity at end of interval




max maximum value of quantity
n integer 1; 2, >

A dot over a symbol indicates the first derivative with respect to
time; a double dot indicates the second derivative with respect to time.

ANALYSIS

The modified Eulerian dynamic equations governing the rotational
motions of a body about its principal axes are: (See refs. 4 and 5.)

My = Ixp - rq(Iy - Iz) + K'p (1)
My = Iy - rp(Iz - Ix) + Kq (2)
My = I - pq(Iy - Iy) +Kr (3)

Figure 1 illustrates the axis system used.

If the body is assumed to have rotational mass symmetry, IZ will

be equal to Iy and the rolling motion will not be affected by the

pitching and yawing motions. This allows equations (2) and (3) to be
solved independently of (1) for preselected p histories.

By multiplying equation (3) by i and adding the result to equa-
tion (2) with the rotational symmetry assumption, the equation becomes

My + iMy = I(q + ir) + ip(T - Iy Xa + ir) + K(q + ir) (%)

This equation can be referred from a rolling body-axis system to
a space-axis system with the transformation equations (ref. 6)

® =qcos @ -r sin @
V= (Z5)(astng+rcos §) (5)

@=p+Vsineg

Now, for small values of 6 when cos 6 = 1 and & sin 8 < p (zero
reference for 6 can be changed wher necessary), equations (5) result in




N=6 +1iVy = (q + ir)ei¢ (6)

¢=fotpdt+¢o

Combining equations (4) and (6) yields

t

i at+@
e I My + iM l<b/\ : ‘9
>\+x<J - ip —IX> =(__Y 12‘>e 0

L

where

where -
_I-ml
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o

Equation (7) then governs the pitching and yawing motions of rotation-
ally symmetric bodies referred to a space-axis system.

The general form
of solution for this equation is

A =06+ iy
€ t t
t i
¥ _
; F'f (j'ipTX)dt My + iM f [J+1P<I'TX>]dt
_el¢o . Yo Y . 2% MO at

0o 0
5

. —i¢

+ Aye Oidt + N (8)

The problem now is to find time functions for the variables <j, D,
I M iM;

j%, _X__E__Z> which not only permit equation (8) to be evaluated but
which also adequately approximate the time histories of these variables

as they would exist in any practical problem.
Specific Solutions

Solution with variables constant.- The solution of equation (7)
T M M
when J, ' D, X 4 Z

T I and T are constants is




A =606 + iy
= Ry + Roe + R5e1p (9)
where
i My + iM ei¢°
oy o gt 4. MR W) e (92)
BE L eI Ig) = ) S
- I  ip
S . ig, -3t
N 1 o
X _y PPE-Ig-ammilx 4
I I 1ip

(9¢)

- (My + iMZ)ei¢0
R =
2 p2(I - Ix) - 1iIp]

This A solution can be thought of as the sum of three vectors: a
pL
nonrotating trim vector R;, a vector R, rotating at the rate —I—X-,

and a vector R5 rotating at the rate p. This type of motion is

referred to as "tricyclic" in reference 1 and illustrated in figure 2.
The low-frequency vector is called the precession vector, and the high-
frequency vector is called the nutation vector. Note that jet damping
attenuates only the R, vector. Equation (9) may be more familiar with
J = O and with the real parts separated from the imaginary parts as
follows:

8 s TR It
8 =0, + = sinpi+ o(cosp—)—(—- >

T o T = I
e Rr
My cos @, - M, sin @, - Bt
l-cospt+—cospT-l
p2(I - Ix) Ix
cos @, + My sin tI
- % < - o [—sin pt + —I—(sin D J)] (10a)
pg(I & IX) Ix il




b Iyt Vo It
e - Ede 0 Jat sin p =
Yo IX<COS o > e E
D =7 Y Sk
My cos @, - M, sin ¢o ) (. Iyh
+ > -sin pt + Io sin p -
po[X - Ix) L 5
cos @, + M, sin @ Tk
+MZ 20 o Ol—cospt+-II—<cosp—)I(——l> (10p)
p°(T - Ix) L *

Exact solution with nonconstant spin rates.- Of the many attempts
to satisfy equation (8) by substitution of various time functions for
the variables, the one which permitted an exact solution with nonconstant
spin rates used the substitutions

_ Py )
ErETio
=0 ? (11)
I
—§ = Constant
I >,

The assumed straight line dependence of l/p is quite practical
especially if the problem is divided into time intervals. Although the
constant-inertia-ratio requirement can be circumvented (by the method
of the next section), the zero jet damping limitation is considered
serious except, of course, for the case of nonthrusting vehicles.

Because a more general solution (presented in the next section)
was found for equation (8) and in order to reduce confusion, the exact
solution referred to in the present section is presented in appendix A
along with all further discussion of this solution.

Mean value solution.- In the application of this solution, the
problem is first divided into time intervals. The number and duration
of these intervals depends upon the accuracy desired and will be dis-
cussed in the section entitled "Results and Discussion.” Within each
of the time intervals, the variables p, pIX/I, and j are approxi-

mated by their mean value over that interval.

For example, consider the damping term in the exponentials of
t
equation (8), namely, k/j j dt. This integral is approximated by jt
0



where 3 is the mean value of J over the interval. By definition,
this is an exact approximation when the integration extends over the

t
£ 3
complete interval (i.e., Jf J dt = jt%). For times less than one
o

complete interval, however, the result is approximate. The accuracy of
this approximation can be increased to any desired level by using shorter
time intervals. Thus, with the substitutions

P =D

T

S
p-I——u.) (12)
=13

a straightforward integration of the exponentials of equation (8) can
be accomplished.

Concerning the moment inputs of equations (7) and (8), My and Mg

should be approximated by functions which can adequately describe the
variations of known time-dependent moment asymmetries such as thrust
asymmetries, tip-off asymmetries, and dynamic unbalance effects. Remem-
bering inertia must also be allowed to vary with time, the following
input forms are assumed for each interval:

2
M_Y;_mz < Z[(Fn +16n) (1 + Ant + Bntg)] = A+ Bt+Ct?  (13)
n=1

When thrust or tip-off asymmetries are considered, My and My

are the actual pitching- and yawing-moment asymmetries applied to the
vehicle.

When dynamic unbalance effects are considered, the moments My
and M, are related to the pertinent variables as follows (ref. 4):

My + 1 = Tgp(r2 - 97) + Tgy(p + ra) + 1[Tgg(b - ar) + gy(e® - )]

(1k4a)

which, for the present purposes, reduces to

My + 1My = P (-Ixy + 1Tyy) ~ pg(I - g ) (ny + iny ) (14b)
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since the products of inertia are related to angular deviations of the
principal axes as follows:

elyz
LR P = e
T -1
and
21
tan 2-nZ = __X_Y_.
Iy - Ix

Now, if a combination of asymmetries and unbalance exist during
the same interval, it may be easier to fit each asymmetry or unbalance
to a separate complex input term. For example, the unbalance input

p2(X - 1 (ny + 1 be fi 2)

2 y + inz) may be fitted to the term (Fl 3 iGl)(l $ilabot BAE)
If the input moments have large or rapid changes in direction during an
interval, however, it is more satisfactory to combine the real components
of the various inputs separately from their imaginary components. Then,

the total complex input is fitted to a combination of two or more input
terms as

(My + ), = (Fp + OL)(1 + At + Byt2) + (0 + 1G5 )(1 + Ast + Byt?)

Now, when equations (8), (12), and (13) are combined, equation (8)
becomes

g t T .- 17 i A i
5 ~reifo b/‘ {E('J+iw)t L/\ (lme vl D S WolVat + 2
0 0

(15)
By integration,

s s e1¢o(A £ gg_) J(18-3)t
P, 48

+—A-§+-2—q- +t(B-§>+tgc (16a)
Bk B
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and
(iw-3)t ipt
A=A + ei¢° o i¢° - % A-24 %% e L — {2 2%
B B B ) ipB D
ipt
%-%—)( _él_) SRR [t20+t(B-—+§E—q>} (16b)
P B B ipB P
where

B=J+i(P - o)

Equations (16) predict the approximate rotational motions (space ref-
erenced) of spinning symmetrical bodies with changing spin rates and
inertias including the effects of time varying thrust misalinements,
mass unbalance, and jet damping. As in equation (9), the A solution
5173 tricyclic with a nonrotating trim vector, a vector rotatlng at the
rate ®, and a vector rotating at the mean spin rate p. By separating
the real and imaginary parts of equation (16b), the solution may be more
readily evaluated in the following form:

(-C13 + Cgi)(e'ﬁtcos ot - l) (Cri + 023)(e-jtsin 5t)
3 2+ P R PR
5
+ (60 - CB)cos pt - (wo - Cu)sin pt + Cs + }: Pm_cos(ﬁt + ¢o)
n=1
+ Ag sin(ﬁt 4 ¢oj At + Bnt g 2B, Jjt e [Ah sin(ﬁt + ¢o)
2 2+ (5 - ®)2

[ 2B, (P - @)t 2Bt
- A= cos(pt + ¢ . (17a)
s FrG-9° - P




a2

(-3 + cgcl)(e'jtsin o) (643 + 025)(e

“Iteos ot - l>

2 a? + 32 : m? + 32
3
+ (eo - CB)sin Pt + (Wo - Cu)cos pt + Cy + }: {Au cos(ﬁt + ¢o)
n=1
¢ 1[ 28, (3 - @)t 2Bt v
# o plalps g ) FrG-@mE © } : [A“ Gelige s
B[ 2B Jt
- A5 cos(fat + ¢O) At + Bnt <og2 (17v)
i I+ (-8
where

-F,(p - ®) + G,J
fra e SN (182)

5[+ 6 - 07

FJ + G,(p - @)
g (18b)
v 5[ + (5 - ®?

3

Cy = 6o + Z BuB6 + 13537 (18e)
)

Co = Vg + Z (-135136 - BLLB.-() (184a)
n=1

i i 1_37[3 . 2(p - ) W ¥|;5+__ 2B,J
Pl 5P +5(p-a)%) P P 3R+ -0)°

(18e)
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> (. 23 2B. (p - @
SO £-T UM W /O W L | Yo
e P 53+ p(p -) P p- pi +p(p-a)
b = e
A j 2B |J - (P - @)
By =1- - + n[ = J (18g)

A(p - o) LiB (P - @)
- — g e = g = (18n)
J o Rpe= i [j -(p-a)| + [2J(P 'CDﬂ
Bg = p(A5 cos §_ - A sin ¢o) (181)
By = ﬁ(A5 sin @, + Ay cos ¢o) (183)

Because body motions referred to a body-axis system are sometimes
desired, equations (16a) and (6) are combined to obtain for reference

FAl o o
q + ir = [(qo + irg) - %(A g g i Z_g)JeLl( p) J]t

+%[A-§+2—C +t(B--27)+t2C} (19a)
B B 52 B
or
: .. -i(pt
q + ir = (8 + iV)e i o) (19b)

Flight-Path Attitude

Up to this point, all effort has been toward determining the atti-
tude of the body expressed by the Euler angles 6 and V. Of greater
importance to many investigations is the knowledge of how the external
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forces and moments on the body affect its velocity vector and space
location. The author's interest in an analytical solution to this phase
of the general problem was stimulated by the analytical results of ref-
erence 3. The method of reference 3 will now be used to extend the
attitude solution of the present paper to expressions defining the veloc-
ity vector.

The force equation normal to the flight path in the pitch plane

(fig. 3) is
£

pdt + @, + ¢>

(20a)

mV&e =T sin ag - mg cos(ye + 75) +1 F cos o cos<J[
0

and in the yaw plane (fig. 4) is

t

mV&W =T sin .+ Fieosi B sin(u/\ p dt + ¢o + ¢'> (20p)
0

By restricting the results to angular changes in velocity vector
due to external disturbances other than gravity, the weight term of
equation (20a) can be dropped. Multiplying equation (20b) by i,
adding the result to equation (20a), and considering only small angles

yields the following: 3
: 4 Jf pdt+@ +¢’
F - 0

(’79 + i&w) + (79 % iyw)r% = f—v-(e + V) + = (21)
where

8 = ag + 7,
and

V= By * 7y

The form of solution for equation (21) is

t r t t ; to
. [ —dt 1([ pdt+@,+# f —dt
Jo T F 0 Bk

mV
79+17¢'=e J W)\+—T-e dt + 2
0]
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Again, the mean value substitutions within the intervals are used. Let

e T (23)
F -—
=F = F (24)

Substituting equations (16), (23), and (24) into equation (22) and
integrating gives

g ipB(T + ip)

™i| g
o

-TC ___Q_%____J;__-_ +'t<B—-2_—C+2i'C—_2C_+t2C
B P/\p T+1ip p p T+ip

i
[ 1¢0 sl

b T o
-J T -3+ 0
+ F i‘¢o+¢')(eiﬁt A e'ag + (1 -e T ) o - ei?o[ - 2C
T + 1D ipf 5°

-4 %)

Equation (25) predicts the direction of the velocity vector for
vehicles having the angular motions described by equations (16). Note
the similarity of these two solutions (eqs. (16b) and (25)). Both
consist of a fixed vector, a vector rotating at the mean roll rate, and
pI
a vector rotating at the mean value of _T§°

Again, it should be remembered that these solutions are for small
values of 6 and that flight-path curvature due to gravity is dis-
regarded. An approximate change in flight-path angle due to gravity
is ‘
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gt cos 7! —
A(’)’e + 17‘1’) = - —Vo_o (—:'-Tt

The results of equations (16) and (25) can be combined to yield
time histories of angle of attack and angle of sideslip as follows:

g = 0 - 79
(26)
BS = =y + 7‘1’
and because of the relationship B + ia = (BS + ias)e—1¢
a = -Bg sin(ﬁt + ¢o) + ag cos(ﬁt + ¢o)
. L (27)
B = Bg cos(pt + ¢o) + ag sin(pt + ¢o)
Now, going on to the space-position solution, it can be shown from
figure 1 that
Zg = =V sin(ye + 75)
=¥ cos(ye + 7é)cos 7y (28)
&e =V cos(ye + 7é)sin 7y
The force equation along the flight path for small disturbances is
T cos a cos B - mg sin(ye + 76) = mV (29)

By considering small angles for a and B and removing gravity effects
equation (29) becomes

7T (30)

Integrating this equation and combining with equation (23) results in

V = Vgelt (31)

Now, this velocity expression can be substituted into equations (28)
with the assumption that 7 and Yy are small angles, and the equa-

tions can be expanded. Since equations (28) and (31) were obtained by
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neglecting the force of gravity, the term gt is added to the equation
for Zze to get the earth-referenced velocity equations with gravity
effects included.

zZe = -VoeTt(ye cos 7! + sin 75) + gt

s VoeTt(cos 7, = 7 sin 76) (32)

bee
Il

Vo = VoeTtyw(cos'yé - 7g sin 76)

Equations (32) are integrable and yield the space location equa-
tions with gravity effects included. The result is given here as
functions of 7 and Yy which are available from equation (25).

V, sin 76( Tt ) Tt il ;ﬁ
2 e ————Er———~e - 1) = ¥, cos 76 768 at + = gt
Vo cos v [ m ) T
Xe = Xg,0 t LT_O(‘?TLt ® l) ~ Vo 8o 75 f 796Ttdt (33)
Tt : Tt
Ye = ye,o + Vo cos 75 \jﬁ 7We dt - Vg, sin 76 b/1 767¢e dt ,J

RESULTS AND DISCUSSION

The results of this paper are primarily the attitude solutions
expressed by equations (16), the flight-path direction expressed by
equation (25), and the space-location solution of equations (33). All
these solutions are complicated by the large number of variables which
affect the end results. In order to show some of the more important
interrelationships of these variables, others must be held constant.

Attitude Solution

With the attitude solution of equations (16), the separate motion
effects of the initial attitude A, and the initial attitude rate Ay
can readily be demonstrated by making A =B =C =0 and 3 =0 with
the result that
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AN=7, + i%(ei&t - l)
im

This solution is shown in figure 5(a) to be the sum of a fixed vector
and a rotating vector. Until Ao and Xo are specified, however, it
is not possible to say whether a higher or lower spin rate or inertis
ratio will increase or decrease xmax, the common performance standard

of spin stabilization.

Now, if the model is thrusting but with no disturbance moments, Jjet
damping normally attenuates the motion and the plot of 6 against v
turns into a logarithmic spiral as shown in figure 5(b).

Moment asymmetries.- For the effects of moment asymmetries the
solution for A may be simplified by assuming no residual motion
(XO =N = O) and constant inputs (B = C = 0). Then for ¢o = 0, the

solution becomes

My + iM r-- _ J(dm-3)t
N = = ’Y 3 _Z = :elpt -1+ li L = =
in[J +1i(p - w)] i iB -

Expressions for maximum wobble can be obtained from this equation under
the following conditions:

When o < p, Oor, more accurately, when

= =2
: B
P AT (p-@) | > »
=2 © B
SBIRRNE A
then
2 2
+ M
L_Z_ i =12 ‘[_2 =0
el 12 1.9 +<Q) o I g
s (@ + 32)[32 + (D - 03)2} _ D D D

- =2
e
s o &  o(p-@)

and, for normally small j values (i.e., /P << 1l and j/@ << 1),
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When ® > p, or, more precisely, when

[y, G5

-2 =2
as= o

then

and, for normally small J values,

2 2
2|My2 + My

In(w - D)

Mnax ™

Note that both %max expressions show that maximum wobble due to asym-

metrical moments is proportional to the size of the moment and, for nor-
mally small 3 values, is effectively inversely proportional to the
product of the mean roll inertia and the square of the mean spin rate
over the interval. It follows, therefore, that spin-rate magnitudes
increasing with time (as well as larger spin rates) will reduce wobble
because of the resulting larger value of mean spin rate over the

interval.

Lastly, for p = ®, an expression for maximum wobble can be obtained

under the reasonable conditicns that (J/p) << 1 and that (p - w)t is
a "small angle." This expression is

)(l - e-jt)2 i [e_jt(é - ﬁ)t]e
P elp-a)P

This solution indicates the divergent nature of A, 10T pP~w at

e 2 2
Pmax = 5 (MY + M,

small 5t values. The divergence is more apparent for J = O with the

result
Ly 2 2
Muax = T+ Mg
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Although the quantity (§ - @) is never exactly equal to zero in a
practical problem, the theoretical possibility of I = Iy also results
in the simple divergence equation just given (for normally small values
of 3). These divergence solutions reveal that wobble buildup is
proportional to the input moment disturbances and to the time required
for passing through the resonant condition (§ =~ ®) and inversely propor-
tional to pitch or yaw inertia and mean spin rate.

Unbalance.- It is difficult to show clearly the effects of unbal-
ance on the motion of a body having a nonconstant spin rate because the
input moments (eq. (14b)) are variable. Thus, the quantities B and C
or Ap and Bp must take on values other than zero which precludes a
simplified vers%on of the general solution. However, by considering

X

fixed p and ~ values temporarily, equations (9) and (14b) can be

combined (still retaining the conditions A, = io =0, B=C =0, and
@o = 0) with the result

(. Ix .)t
: 1Pp=-J
Ny + in : o i
A = .S < LS ip il =
; JiE X :
f ———— -1 ip =2 - J
p(I - Ix) I
I
When ==X < I
i
-jnI
W2 +ﬂza pix

Mnax = 5 i e Tt
A ) )
pI - pIx = P
and, for normally small values of s

L
Nnax = Ix ang + ng?
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When X =)
I

7\nax=21+—L2
p(I-IX)]

and, for normally small values of J,
~ 2 2
Nnax = 2v L S

Max = 0
I

These results are for constant values of p and j? with no residual

motions. Note that wobble due to unbalance is independent of spin rate
except through the jet damping terms which normally have only a very
small effect. Thus, wobble due to unbalance cannot be controlled by
spinning as can, for example, the wobble resulting from initial attitude
rates or thrust misalinement.

Ix

When =1,

Application

The analytical expressions for A and 7 given in the present
paper have been programed for use with an IBM 7090 electronic data
processing machine. Sample problems were composed and this program
used to generate their solutions. The numerical solutions to these
problems were also obtained with the numerical integration method
reported in reference 3 for the purpose of comparison with approximate
solutions.

It should be mentioned that the values for §, ®, T, and F
used in the approximate solutions were based on assumed exponential

histories of the variables within the interval |[i.e., for example,

P - D
P= £ 9} Almost identical results (not shown) were obtained with

loge D,
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the approximate method by assuming linear histories of the variables

A e
within each interval |(i.e., p = = F

The first application was to simulate the motions of a rocket
model which was the last stage of a multistage rocket system. The model

can be thought of as a cylinder about lﬁ feet in diameter and 53 feet

in length having a ratio of fuel weight to total weight of 1/2. An
angular thrust asymmetry of 0.001 radian in both the pitch and yaw planes
provided a continuous disturbance to the motion. A separate spin motor
was assumed to increase model spin rate during the problem from 5 to

9 radians per second. The approximate solution was computed with two
intervals and with ten intervals, each with and without Jjet damping.
Problem constants and initial conditions are listed in appendix B.
Results are shown in figures 6 to 8.

Figure 6(a) shows the approximate 6 and V¥ histories obtained
with the two-interval solution (no jet damping) and their comparison
with the numerical solution. In general, this comparison indicates a
good approximation of the numerical solution except for the first nega-
tive peaks of each curve where the approximate solution underestimates
the actual values. The phase difference between the approximate and
numerical solutions is to be expected and is usually of little impor-
tance. In this respect, both ends of all intervals are exactly in phase,
the greatest difference occurring halfway through each interval. The
two-interval solution for flight-path direction is shown in figure 6(a)
along with the numerical solution. Here, the comparison appears not
quite so good as the attitude solution, but satisfactory for most
puUrposes.

In order to illustrate the accuracy obtained with many intervals,
the ten-interval solution of figure 6(b) was computed. Note the improve-
ment in the A and 7 solutions as compared with the two-interval
results.

Thus far, problem cases have been restricted to zero jet damping
because the program used to obtain the numerical solutions does not
include jet-damping effects. However, jet-damping effects can be quite
large as illustrated in figure 7. This figure presents the ten-interval
solution with and without Jjet damping. Note the large attenuation
effect of jet damping on the low-frequency (precession) mode and the
near absence of this effect on the high-frequency mode. This large
damping effect is not unusual and can even be called typical. Its
presence is fortunate since no other forces are naturally available to
damp the motion.

It is well documented that bodies having Iy = Iy = I, cannot be
spin stabilized. However, the motions of axisymmetric bodies passing
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through this condition are not well known. For this reason, the second
type of problem for simulation was selected to reveal the effects of

1K
passing through inertial resonance (ﬁ? = l). This problem assumed a vari-

able Iy, a constant I, and no roll inputs. Only the A solution was
computed for purposes of simplicity. The problem was computed with one
interval, two intervals, and three intervals, in all cases with no Jjet
damping. The necessary constants and initial conditions are presented

in appendix B. Results are presented in figure 8 which also shows the
numerical solution for comparison purposes. Figure 8 illustrates the
one-interval solution of this problem to be inadequate. The two-interval
solution is much improved and reveals the trends of the numerical solu-
tion. However, for an accurate amplitude comparison, the three-interval
solution is indicated.

Intervals.- Solutions have been previously described as one interval,
two interval, and so forth, with no explanation of why or how the number
of intervals was selected. As previously mentioned, a two-interval solu-
tion (for example) means that the problem is computed in two intervals,
usually so as to result in about the same percentage changes of the
variables within each interval. Then, closed solutions for the first
interval are obtained with equations (16) and (25) along with the initial
conditions of the problem. In order to compute the solutions at any time
of the second interval, however, the final values of interval one must
be calculated and used as initial conditions for the second interwval.

While the number of computations increases with the number of inter-
vals used, the accuracy of the results increases thereby. The optimum
number of intervals, then, depends upon the computing facilities avail-
able, the degree of accuracy desired, and the total percentage change of
variables throughout the problem. In this respect, the author has ten-
tatively settled on using intervals in which the values of p or p %%
do not vary more than about 15 percent for "accurate" results or more
than about 30 percent for approximate results. These percentages are
based on a limited amount of experience. Percentages for the sample
problems are given in appendix B.

Computing time.- Computing times for sample problem number one of
appendix B were obtained for both the approximate and the numerical or
step-by-step solutions. These solutions were generated by an IBM
T090 electronic data processing machine and required certain compatability
changes since both programs were originally set up for the IBM 704 elec-
tronic data processing machine.

Both programs required about 26 seconds read-in time. Excluding
read-in time, the approximate method (10-interval solution) had a ratio
of machine time to problem time of about 0.93 and the numerical method
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a ratio of about 4.8. Reducing the number of intervals used in the
approximate solution would decrease its ratio only a small amount.

Other factors involved in a computing time comparison are as fol-
lows: First, the numerical method is programed to yield output quanti-
ties not included in the output of the approximate method. It is esti-
mated that the elimination of this part of the program would amount to
about 1/5 reduction in computing time for the numerical method. Second,
the above ratios are for defining the output every 0.1 second and could
be reduced proportionally for the approximate method by using fewer out-
put times. The numerical method would not benefit in this respect.

CONCLUDING REMARKS

A method for approximating the vacuum motions of symmetrical rigid
bodies with nonconstant spin rates and inertias has been developed. The
analysis includes the effects of time varying thrust misalinements, mass
unbalance, and jet damping. The method was derived for bodies having
equal moments of inertia about their pitch and yaw axes and is based on
body pitch and yaw attitudes being limited to "small angle" oscillations.

Results have been presented in the form of equations for space-
referenced Euler angles, flight-path angles, and earth-referenced vehicle-
trajectory coordinates. Equations for determining maximum wobble have
been developed for certain input conditions. Also, equations for body-
referenced attitude rates, angle of attack, and angle of sideslip are
included for convenience.

The general solutions give insight into the individual effects of
the variables and, in many cases, offer a quick means for obtaining
approximate solutions. Although the method is somewhat lengthy for
accurate hand computation in most cases, it is readily programed for
automatic computer solutions.

The method has been shown to compare closely with numerical solu-
tions of two sample problems. The sample problems also illustrated the
relatively large effect of pitch and yaw jet damping on body motions.

Langley Research Center;
National Aeronautics and Space Administration,
Langley Air Force Base, Va., April 24, 1961.




APPENDIX A
EXACT SOLUTION WITH NONCONSTANT SPIN RATES

Combining equations (8), (11), and (13) results in the solution

Po(*x
i i —(I—) log_(1+at)
+ e P A'(1 + at)e &\l 3

N =2 -A' -B' -C' - D
'p°1 (1+at)
— +
+ [B'(l rat)? 40 (1 +at) +D(1+ at)L‘] g e
where
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This result displays the spiral nature of the

9,¥ motion for
nonconstant spin rates.

Spin rates decreasing with time result in spiral

motions of increasing magnitude and spin rates increasing with time act
to reduce the magnitude of the 6,y motion.




APPENDIX B
SAMPLE PROBLEM INF

Problem 1

Problem length, sec .
Mass, slugs .

Thrust, 1b . :
Pitch and yaw inertia, slug 12 |
Roll inertia, slug-ft .

Roll input moment, ft-1b

Pitch input moment, ft-1b .

Yaw input moment, ft-1b .

27

ORMATION

: 20
20 - 23 e e

9 1,800
5,000 - 50t
25.6 - 0.53t
3.93 - 0.0965t
0.2

o 001(5,000 - 50t)(2 + 0.025t)
0. 001(5,000 - 50t)(2 + 0.025t)

Thrust arm, £t . . 2 + 0.025t
Initial flight-path velocity, ft/sec 5,000
Initial roll angle, radians . 2 . 0
Initial pitch angle, radians 0. 05
Initial yaw angle, radians : 0.0k
Initial roll rate, radians/sec 5
Initial pitch rate, radians/sec . . 0.015
Initial yaw rate, radians/sec . 0.02
Initial flight-path angle in vertical plane,
radians . DE e 0.02
Initial fllght-path angle in horizontal
plane, radians W o e . 0. 01
Two-interval solution:
Intervals . o TR S OS& 219, 125 4590
Maximum change of p within the interval,
percent . el S 41
Maximum change of p EK within the interval,
percent . 55

Ten-interval solution:
Intervals . .
Maximum change of p
percent . R
Ix
Maximum change of p

percent .

2-sec intervals successively
from O to 20 sec

6

within the interval,

T within the interval,

L.6
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Problem 2
Problem length, sec . . . . e e R
Pitch and yaw inertia, slug-ft2 SRR o R o R
Roll inertis, slug-ft2 T e T R R e
RotlSneme nksinpube SsEE—lhe® o r, o Woagh o e,

Pitch moment input, FE-1D . . « « o o « + &

Nawemoment dnputs  BE=IBs vo oc ¢ i e . i e e Be ee
InidGialsrotidsandlon radFgns s o n s e st s e s e
InitiglispitenNangle, wadians . & o w o s o e s e e

Indtialsyaw angle, radians & o o uihe o a4 e o W s e
Initial roll rate, radiansfsec . . . . « « + o = o o &
Initial pitch rate, radians/sec . . . . . . . . . -
Initial yaw rate, radians/sec . . . . S S e
Initial flight-path angle, vertical plane d Lo cal e
Initial flight-path angle, horizontal plane . . . . .

One-interval solution:
Maximum change of p within the interval, percent .

T
Maximum change of p-é% within the interval, percent .

Two-interval solution:
Intervals . . . . . . 0SSt =

20
25

31 25 - 0.6973t
e 0
-1

: 2
8 0
2 0
0
: 0
. 5

e 0
. 0
b gt 0
3 0
g2 0
. 36

12, Aoia £ B

Maximum change of p w1thin the interval, percent - : 0

Maximum change of p ?§ within the interval, percent . . 20
Three-interval solution:

TOEEFVRE . ' v st w i e e e w0 O SE6T, BT E B ST,

15. 5 5% =20

Maximum change of p ¥ithin the interval, percent . . o 0
X

14

Maximum change of p T within the interval, percent .
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Horizontal plane

Il
&

(a) Pitch and yaw orientation of axes systems. ¢

Figure 1.- Axes systems employed in analysis.
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(b) Roll orientation of axes systems. 6 = ¥ = O.

Figure 1.- Concluded.




Figure 2.- Tricyclic motion (after ref. 1).
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Figure 3.- Pitch plane forces and angles.
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Figure k4.- Yaw-plane forces and angles. 6 = T 0.
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Figure 5.- Sample attitude solution with no moment inputs (Fn + iGy = 0).
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Two interval
Numerical

0 2 4 6 8 0 12 14 16 18 20
Time, sec

(a) Two-interval approximation.

Figure 6.- Approximate and numerical solutions of first sample problem.
J = 0.




Ten interval
Numerical

4 6 8 10 12 14
Time, sec

(b) Ten-interval approximation.

Figure 6.- Concluded.
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Without jet damping

With jet damping

Time, sec

Figure 7.- Effects of Jjet damping in first sample problem.
solutions.

Ten-interval
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(a) One-interval approximation.

Figure 8.- Comparison of approximate and numerical solutions of second
sample problem showing motions of a body passing through inertial

1t
resonance -TX = T et & =100 =] = Q.
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(b) Two-interval approximation.
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(c) Three-interval approximation.

Figure 8.- Concluded.
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