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Abstract. Future changes in Earth system state will impact
agricultural yields and, through these changed yields, can
have profound impacts on the global economy. Global grid-
ded crop models estimate the influence of these Earth sys-
tem changes on future crop yields but are often too computa-
tionally intensive to dynamically couple into global multi-
sector economic models, such as the Global Change As-
sessment Model (GCAM) and other similar-in-scale mod-
els. Yet, generalizing a faster site-specific crop model’s re-
sults to be used globally will introduce inaccuracies, and the
question of which model to use is unclear given the wide
variation in yield response across crop models. To exam-
ine the feedback loop among socioeconomics, Earth system
changes, and crop yield changes, rapidly generated yield re-
sponses with some quantification of crop response uncer-
tainty are desirable. The Persephone v1.0 response functions
presented in this work are based on the Agricultural Model
Intercomparison and Improvement Project (AgMIP) Coor-
dinated Climate-Crop Modeling Project (C3MP) sensitivity
test data set and are focused on providing GCAM and similar
models with a tractable number of rapid to evaluate dynamic
yield response functions corresponding to a range of the yield
response sensitivities seen in the C3MP data set. With the
Persephone response functions, a new variety of agricultural
impact experiments will be open to GCAM and other eco-
nomic models: for example, examining the economic im-
pacts of a multi-year drought in a key agricultural region and
how economic changes in response to the drought can, in
turn, impact the drought.

1 Introduction

Agricultural yields are susceptible to changes in temperature,
precipitation, growing season length, CO, concentrations,
and other Earth system factors. While both the nature of the
future climate and its impact on agricultural yields are uncer-
tain (Rosenzweig et al., 2014; Pirttioja et al., 2015; Fronzek
et al., 2018; Asseng et al., 2013, 2015; Martre et al., 2015;
Lobell, 2013), it is clear that there is potential for identify-
ing the important effects on agriculture and, in turn, the eco-
nomic state of the world at large. The global multi-sector eco-
nomic Global Change Assessment Model (GCAM)! (Kyle
et al., 2011; Wise et al., 2014; Calvin et al., 2019; Hartin
et al., 2015) and other similar-in-scale models (Nelson et al.,
2014) are ideal for understanding the far-reaching impacts of
this climate—agriculture—economic cycle but rely on exter-
nal projections of agricultural yields to quantify these effects
(Fig. 1a). This asynchronous process results in inconsisten-
cies between the economic and biophysical world, and over-
looks feedbacks and unintended consequences as the future
shifts (Ruane et al., 2017).

Several modeling groups, including the GCAM model de-
velopment team, are interested in explicitly modeling and un-
derstanding bidirectional feedbacks between the Earth and
the human systems (e.g., Fig. 1c). Agriculture is one impor-
tant pathway (of many) through which these systems directly
interact. A prime example would be to study the impacts of a
multi-year drought in a key agricultural region. The drought

IModel and documentation are available at https://github.com/
JGCRI/gcam-core, http://jgcri.github.io/gcam-doc/toc.html (last
access: 13 March 2019).
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would affect yields, which would affect the agricultural sup-
ply to the global economic market. In a model like GCAM,
this would lead to price changes and shifting land to more
profitable crops. The new spatial distribution of agricultural
land would change land-related emissions, which will in turn
affect climate and therefore yields moving forward. Being
able to model each component of this process and the interac-
tions among them is key to considering important questions
like this one.

Currently, GCAM operates on a 5-year time step and
is coupled with a physical Earth system emulator, Hector
(Hartin et al., 2015) (as in Fig. la, b), to explore global
change questions in rapid enough evaluation times to al-
low for large numbers of simulations to be analyzed as part
of a wide range of experiments. GCAM is a recursive dy-
namic partial equilibrium model that is calibrated to a his-
torical base year of 2010 and used to simulate forward in
time by incorporating changes in quantities such as pop-
ulation, GDP, and technology to produce outputs that in-
clude land, water, and energy use as well as emissions and
commodity prices. For agricultural production in GCAM,
yield change trends representing generally positive change
assumptions over time due to non-climate factors (changes
in management, new seed genetics, new technologies, use of
chemicals/fertilizers, adaptation, etc.) are used to calculate
the profitability of a crop—irrigation—fertilizer combination
in each of 384 GCAM land units at each time step based on
the global crop price. This profitability determines land allo-
cated to each crop, and the combination of exogenous yields
and land allocation gives production of each crop—irrigation—
fertilizer combination such that global supply and global de-
mand are met on each time step. The details of this allocation
are provided in Kyle et al. (2011), Wise et al. (2014), and
Calvin et al. (2019). Shifting land allocation among different
crop—irrigation—fertilizer combinations leads to a degree of
endogenous yield intensification within GCAM.

Past agricultural impact studies using GCAM (Calvin
and Fisher-Vanden, 2017) have focused on using outputs of
global gridded crop model (GGCM) studies (e.g., Rosen-
zweig et al., 2014; Elliott et al., 2015; Miiller et al., 2017)
in a strictly feed-forward way (Fig. 1a). Direct coupling of
a GGCM to GCAM would result in a computationally ex-
pensive modeling framework, limiting the number of sim-
ulations that could be performed. Yet, large ensembles of
simulations are necessary to explore and understand future
response options, so there is great need for a computation-
ally efficient model that could explore the uncertainty space.
While GCAM is already coupled to a simple climate model,
Hector (Hartin et al., 2015), this coupling is one way: emis-
sions are passed to the climate model, but to date dynamic
feedbacks between climate and humans at each time step are
missing. In this paper, we describe the first version of Perse-
phone (v1.0), a simple representation of mean agricultural
response and uncertainty to future climate that can be incor-
porated into GCAM and similar models. Further details of

Geosci. Model Dev., 12, 1319-1350, 2019

A. Snyder et al.: Persephone v1.0

the desired studies this yield change emulator would be used
for are given in Sect. 2.1 and discussed at length in Ruane
etal. (2017).

An ideal solution to the computational expense of coupling
a GGCM to GCAM is a yield response emulator, which uses
past crop yield model runs to predict what the model would
have done under different conditions, had it been run. How-
ever, previous work in this area has been restricted to either
emulating crop model results under fixed [CO; ]-temperature
pathways such as the various Representative Concentration
Pathways (RCPs) (Oyebamiji et al., 2015; Blanc, 2017; Ost-
berg et al., 2018) or building statistical models from empiri-
cal and historical data (Lobell, 2013; Moore et al., 2017; Mis-
try, 2017; Mistry et al., 2017). While an emulator trained on
RCP-driven scenarios can be used to estimate yield change in
any future climate, the RCPs only span a subset of possible
future climates. In particular, should one want to consider the
impacts of [CO;]-temperature pathways that substantially
differ from the RCPs, these emulators would face the diffi-
cult task of predicting yield changes outside of the conditions
of the training data. Statistical models of empirical and his-
torical data also must predict yield changes in response to
future climate outside of the conditions of the training data,
especially in response to large [CO;] increases. Substantial
departure from the RCPs and historical values of [CO3] is
very possible in the bidirectional coupled human—Earth sys-
tem applications outlined above and an emulator equipped
to handle that is desirable. Finally, many of these past stud-
ies have lacked a way to capture aspects of uncertainty that
would be useful for the GCAM bidirectional feedback exper-
iments described in Sect. 2.1.

The Agricultural Model Intercomparison and Improve-
ment Project (AgMIP) (Rosenzweig et al., 2013) took
steps to begin addressing these issues with the Coordinated
Climate-Crop Modeling Project (C3MP), a modeling study
specifically designed to, among other things, provide the data
necessary to develop a flexible and dynamic crop yield em-
ulator (Ruane et al., 2014; McDermid et al., 2015). C3MP
invited point-based crop modelers from across the AgMIP
community to simulate their calibrated agricultural system’s
response to 99 sensitivity tests in which 1980-2009 base-
line climate data were modified to synthesize changes in
mean carbon dioxide concentration ([CO;]), temperature,
and precipitation. The 99 carbon—temperature—precipitation
(denoted CTW, W for “water” rather than P for “precip-
itation”) tests that make up the C3MP protocol were se-
lected using a Latin hypercube to ensure that future scenar-
ios through the end of the 21st century, including all RCPs,
fall within the training model simulation data over the vast
majority of agricultural lands (Ruane et al., 2014). The full
space of CTW changes that these 99 tests represent is 330—
900 ppm global [CO;], —1 to 4-8 °C from local baseline tem-
perature, and —50 % to +50 % from local baseline precipita-
tion (applied as a multiplicative factor). A particular CTW
perturbation could be associated with a specific time slice;
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(a) Local yield changes in response to RCP
specific CTW changes from a global
gridded crop model — global circulation
model combination run (or multi-
model ensemble)
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Figure 1. The current method for incorporating agricultural impacts into GCAM and two experimental designs for using Persephone v1.0
with GCAM. (a) The current method for incorporating yield changes from a global gridded crop model into GCAM. (b) A partially coupled
feed-forward study incorporating yield changes from a predetermined climate scenario into GCAM. (c) A fully coupled feedback loop that

iteratively updates agricultural yield impacts.

for example, the 2050s climate changes from a given Earth
system model (ESM) RCP4.5 projection or from a climate
condition generated within GCAM as a result of interactions
between socioeconomic development and the natural envi-
ronment. Finally, the C3MP study featured broad spatial cov-
erage (albeit not uniform) of a wider variety of crop models,
crops, and management practices than has been incorporated
into past GGCM or emulator work. More than 50 participat-
ing crop modelers helped C3MP record yield response simu-
lation results from a total of 1135 sites, differing by location,
crop species, cultivars, crop model, farm management, etc.

www.geosci-model-dev.net/12/1319/2019/

The Persephone framework presented in this work is de-
signed to develop yield response functions to CTW changes
from a given data set. The Persephone v1.0 response func-
tions, based on the C3MP data set, provide a computation-
ally inexpensive estimate of the change in agricultural yield
due to a change in the Earth system and make use of the
promising data relating yield changes to CTW changes col-
lected in C3MP. Specifically, we present biologically reason-
able response functions that are rapid to evaluate and more
dynamic than past options for incorporating crop responses
into models like GCAM. We strictly considered responses to
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long-term Earth system changes. The C3MP results or other
appropriate data sets could be further used to examine the
effect of interannual variability on yields in Persephone v2.0
and beyond, although this would require additional complex-
ities in seasonal yield variations that are largely averaged
out in long-term trends. The response functions also repre-
sent the uncertainty in yield response across crop models in
the C3MP data set to a given change in local Earth system
state, for use in three types of agricultural impact studies with
GCAM:

1. The first is a partially coupled feed-forward study
(Fig. 1b) similar to methodology in Ruane et al.
(2018). A future climate time series of interest (a non-
traditional RCP, climate stabilization level, or hypo-
thetical drought, for instance) is input to the yield re-
sponse functions, returning yield changes. These yield
changes are applied as multipliers to GCAM input files
and GCAM is run forward for the entire time period of
interest in order to trace the broad impacts on energy,
water, and land use of the future climate time series. In
this type of study, we only capture the implications of
climate for human systems.

2. The second type of study is a fully coupled feedback
loop that updates on every model time step to under-
stand how societal pressures drive environmental im-
pacts which in turn create or reduce societal pressures
(Fig. 1c). In this case, the yield changes must be cal-
culated very quickly in order to evaluate on each step
and interact with GCAM. In this type of study, we can
capture the effects of humans on climate and climate on
humans, simultaneously.

3. The third type of study is joint climate—crop uncertainty
studies of the above two experiments. For tractability,
the GCAM development team specifically seeks a mean
response function as well as two additional response
functions that represent a range of yield response un-
certainty. Persephone also stores the full predictive dis-
tributions of yield changes for any given CTW change
that these three response functions span. If a user desires
a different representation of uncertainty, the distribution
may be sampled.

2 Methods
2.1 C3MP data set

Full details of the C3MP protocols, design, and the loca-
tion output archive can be found in Ruane et al. (2014)
andMcDermid et al. (2015). Here, we highlight some of the
key features of the data set and outline our processing of
C3MP data for using the Persephone framework to train v1.0
response functions with the Persephone framework.

Geosci. Model Dev., 12, 1319-1350, 2019

A. Snyder et al.: Persephone v1.0

C3MP recorded yield response simulation results from a
total of 1135 sites (differing by location, crops, crop model,
management, etc.) for each of 99 CTW sensitivity tests de-
signed to cover a range of CTW changes that most future
climates would fall into. For each site, each CTW test is ap-
plied to change a local time series of weather data from 1980
to 2009 and then the crop model is run to produce 30 years of
impacted yields for the CTW test, which are then averaged.

The C3MP design resulted in a wider range of crops than
had been previously sampled in a coordinated agricultural
modeling study. We separate the C3MP data into 25 differ-
ent production groups for training in the Persephone frame-
work to create v1.0 response functions. A total of 24 of the 25
groups for this paper are collections of sites corresponding to
different crop—irrigation—latitude combinations: irrigated and
rain-fed versions of six key crops (maize, rice, wheat, soy-
beans, a C3-photosynthesis average, and a C4-photosynthesis
average [CO;]), based on sites at the extended tropics (30° S
to 30°N) and the midlatitudes (30-70°S, 30-70° N) (see
Sect. 2.1.1 for more details on spatial scales). It is also note-
worthy that the majority of C3MP sites had high rates of fer-
tilizer application, even in the extended tropics. These six
crop groups were chosen because most integrated assessment
models (IAMs) already have experience incorporating such
impacts from previous AgMIP exercises (e.g., Ruane et al.,
2017; Calvin and Fisher-Vanden, 2017; Nelson et al., 2014;
Wiebe et al., 2015; Ruane et al., 2018), they cover the major
agricultural commodities globally, and they offer additional
benchmarks for evaluating emulator success. In particular,
the Csz-photosynthesis production groups represent an aver-
age response of a very wide range of Cs crops, including
wheat, rice, and soybeans. The C4-photosynthesis average is
similarly defined, with sugarcane considered separately. The
25th production group is rain-fed sugarcane in the extended
tropics: no sugarcane sites outside of 30°S to 30° N were
submitted to C3MP and only one irrigated sugarcane site was
submitted.

We cull the 1135 contributed C3MP output data sets ac-
cording to a range of criteria:

1. Sites simulated with notably older versions of crop
models are eliminated. We thus eliminated uses of the
Decision Support System for Agrotechnology Transfer
(DSSAT) crop model v3 (and prior), given that impor-
tant updates in crop physiology were added in version 4
(Jones et al., 2003).

2. Site simulations that exclude CO, fertilization re-
sponses, a fundamental variable examined here, were
eliminated. We thus eliminated the SarraH-Hv32 crop
model (primarily millet and sorghum sites in west
Africa).

3. When C3MP modelers provided simulation sets that
were identical other than the use of local weather data
or the NASA Modern-Era Retrospective Analysis for

www.geosci-model-dev.net/12/1319/2019/
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Research and Applications (MERRA) for AgMIP (Ag-
MERRA) climate forcing data (Ruane et al., 2015), we
used only the local data set to avoid double counting.
AgMERRA was provided for all data sets given fre-
quent data gaps and governmental restrictions (Ruane
et al., 2014).

These steps together eliminate more than 550 of the C3MP
sites. Finally, for each production group, outliers are statis-
tically identified and eliminated (Davies and Gather, 1993;
Bond-Lamberty et al., 2014), in addition to those previously
identified by the C3MP steering team. A total of 575 unique
sites remain after culling, maps of which are included in
Fig. 2. These remaining sites cover 43 countries, 85 mod-
els, and 17 crop species. More than half of the C3MP sites
have been eliminated, but this still results in a larger number
of diverse sites, models, and crop species performing coor-
dinated sensitivity tests than in any previous study (Asseng
et al., 2013; Pirttioja et al., 2015; Fronzek et al., 2018). Since
C3MP, the AgMIP-Wheat team has conducted an extensive
analysis of temperature response at 30 wheat sites with 30
models (Asseng et al., 2015), but this only captures one of
the CTW dimensions.

2.1.1 Known caveats of the C3MP data set

Additional discussion of the C3MP data set in the con-
text of other AgMIP modeling efforts is presented in Ruane
et al. (2017). One relevant point to this work is that, while
C3MP spatial coverage is not spatially uniform or produc-
tion weighted for any of the crops under consideration, sites
for many of the major production regions are represented for
each crop (Fig. 2). A major advantage of using site-specific
crop models run voluntarily by experts is that the individual
baseline runs at each site have been configured against local
information in the historical period. However, the application
of crop yield response from these sites to estimate response
in any given grid cell with temperature and precipitation data
is imperfect by its methodological nature. Yet, this extension
is necessary for use with GCAM: gridded yield changes for
a subset of crops must be aggregated and converted to yield
impact multipliers for each GCAM commodity in each land
unit, defined as water basins in GCAM (Calvin et al., 2019).

Given the size and details of the C3MP data set, produc-
tion groups were formed based on two latitude zones as a
way to account for baseline local temperature (which is im-
portant in addition to the change from local temperature)
without having to eliminate the many valid C3MP sites that
could not report local weather data due to data gaps or local
government restrictions. As this breakdown already results in
some production groups with small sample sizes (see Table 1
and Sect. 3.1.1), further spatial disaggregation of production
group is unjustified in this data set. While this means there
will be limited spatial granularity in yield response func-
tions, there can still be appreciable spatial granularity in yield
changes due to variation in the gridded fields of temperature
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and precipitation changes. Future data sets with more com-
prehensive spatial coverage than the C3MP data may be used
rather to create v2.0 response functions.

The site-specific percent change in yield from the 1980-
2009 baseline yield is the dependent variable used to train our
emulator (see Sect. 2.2). Baseline yields differ widely across
the C3MP archive due to regional and system differences;
however, the percent change in yield from baseline is more
consistent across sites for each CTW. Further, by training on
change in yield rather than yield, we are able to introduce ad-
ditional, scientifically grounded constraints to the functional
forms we fit (Egs. 4-6). However, no baseline simulation was
requested under the C3MP protocols. Therefore, for each in-
dividual set of output yields corresponding to each of the
575 simulation sites, we perform ordinary least squares re-
gression for eight different functional forms relating the site-
specific output yield to the input CTW values and select the
best-performing regression to estimate baseline yield (details
in Appendix B, Eqgs. B1-B8).

It is also worth noting that the C3MP experimental proto-
cols (Ruane et al., 2014; McDermid et al., 2015) do not ac-
count for changing growing seasons, either through changes
of within-season distribution of temperature and rainfall or
in the possible autonomous adaptation of farmers to shift
planting and harvest dates. Ruane et al. (2014) showed that
within-season distribution changes had a small effect and the
possible shift in planting and harvest dates are a topic of
adaptation. Modeling autonomous adaptation behaviors is a
challenging area for coordinated agricultural efforts and is
only beginning to be addressed in coordinated sensitivity in-
tercomparison studies as a scenario option, with no publicly
available data sets at this time.

2.2 Emulation

The majority of past agricultural yield emulator work has
used ordinary least squares regression to estimate coeffi-
cients of functional forms. Given a set of predictors, x, and
given a particular value of the predictors x; with correspond-
ing training data y;, an emulator would be some linear-
in-parameter function f(x) that returns an emulated value
f(x;) for comparison with y;. Ordinary least squares regres-
sion requires that residuals r; = y; — f (x;) ~ N (0, o2) for all
i (e.g., Williams and Rasmussen, 2006, Sect. 2.1.1). A key
requirement is that o is a constant value across all i.

Figure 3 displays the spread of yield responses across sites
for each CTW test for one production group, rain-fed soy-
beans between 30-70° S and 30-70° N (the midlatitudes). A
successful emulator will produce the mean response (Fig. 3,
black dots) across sites for each CTW. Therefore, examining
the spread of the individual site yield changes about the mean
yield gives some sense of the behavior of residuals in the
most successful emulation case.The spread of yield change
across sites relative to the mean response is different for each
CTW test and appears to change in a systematic way — larger

Geosci. Model Dev., 12, 1319-1350, 2019
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Figure 2. Maps of the C3MP data set culled sites. Each site represents a site-specific model of a single crop, with differing management
practices. The sites are overlaid on Monfreda et al. (2008) harvested area data, except for the C3 and C4 averages.

magnitude changes in yield are correlated with greater spread
across sites. In light of this, a classic, ordinary least squares
regression is not an appropriate approach for this emulator.
We also desire more than just the mean response: we desire a
measure of how this variation of site responses changes with
CTW. With these considerations in mind, we take a slightly
different approach to creating the Persephone v1.0 response
functions, working from texts such as Gelman et al. (2013),
Sivia and Skilling (2006), and McElreath (2016).

We create the Persephone v1.0 response functions to em-
ulate the mean yield response and two additional yield re-
sponse scenarios spanning a range of individual site re-
sponses. For a given production group (crop-—irrigation—
latitude zone combination), we collect the data for the 99
CTW tests for each of K C3MP simulation sets drawn from
the culled-down archive. In other words, for each of 99 CTW
combinations, there exist K 30-year average yield percent

Geosci. Model Dev., 12, 1319-1350, 2019

changes from the baseline (no changes in CTW) for a group.
This ensemble of 99K yield changes is used to calculate the
posterior densities for every parameter of uctw and octw in
the model defined by Eqs. (1)—(7) according to Bayes’ theo-
rem (posterior  likelihood X prior). From the posteriors, the
maximum a posteriori (MAP) estimates of parameters, the
most plausible value for each parameter given both the model
being used and the training data, is returned.

We define our likelihood as a normal distribution with
mean pctw and variance oéTW:

AYERaed N (nerw, oérw)- (1)

For a production group with site-specific yield responses that
are normally distributed for each CTW value, pctw is the
mean response across sites for that CTW value (the black
points in Fig. 3), and aéTw is a measure of agreement (or dis-
agreement) of responses across sites for that CTW value. We

www.geosci-model-dev.net/12/1319/2019/
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Rain-fed soybeans in the midlatitudes

CTW test
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Percent change in yield from baseline

Figure 3. A plot of the percent yield change at each rain-fed soy-
beans in the midlatitudes site (blue points) for each CTW test (each
horizontal line of points is a different test). The black dot for each
test represents the mean response across the sites for that test.

present results for our most broadly optimal mean and vari-
ance functional form combination in this paper, and present
the details of our selection criteria among the different func-
tional forms in the Appendix A.

To have unitless coefficients in our emulator, all predic-
tor variables are standardized. Defining the collection of 99T
changes sampled by C3MP as Tc3mp, the collection of pre-
cipitation changes as Wcamp, and the collection of CO; con-
centrations as Cc3mp, we have

. T — Toaseline

AT =
SD(Tc3mp)

AW = W - Wbascline (2)
SD(Wcamp)

AC = C— Cbase]ine .
SD(Cc3mp)

Toaseline 1S a change of 0°C from baseline, Wyaseline 1S a
0% change in precipitation from baseline, and Cpaseline 1S
360 ppm. Plugging these baseline values into Eq. (2) returns
ATpaseline = A Whaseline = A Chaseline = 0, as one would ex-
pect.

We exploit the fact that we are emulating change in yield
(and not yield) and the fact that ATpaseline = A Whaseline =
AChaseline = 0 in constructing Eqs. (4)—(7), which relate the
mean and standard deviation of the likelihood in Eq. (1) to
our unitless predictor values AC, AT, AW. By definition,

www.geosci-model-dev.net/12/1319/2019/
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percentage change in yield in response to no change in CTW
is 0 % at baseline for every individual C3MP site. This im-
plies that both mean and variance at baseline are 0 for all
production groups, and we must construct the Persephone re-
sponse functions to reflect this, independent of the estimated
baseline yield at each site:

Mbaseline = 0
=0. 3

Obaseline

Implementing this constraint for the mean is straightfor-
ward. Any functional form representation of pctw that does
not include a constant parameter ag will force ppaseline = 0 %
yield change precisely because ATpaseline = AWhaseline =
AChaseline = 0.

puerw = a1 AT + ar(AT)? + a3 AW + as(AW)?
+asAC +ag(AC)? + a7 ATAW +ag AT AC
+agAWAC 4+ ajoATAWAC +aj1 (AT)2 AW (4)
+a(AT)?AC + a3 AT(AW)? +aia AT (AC)?
+a15(AW)?*AC + aisAW(AC)* + a17(AT)?
+aig(AW)? +ap(AC)?

Constraining the variance to be O at baseline as in Eq. (3)
should be equally easy by simply not considering any func-
tional form that includes a constant parameter. However, this
approach leads to numerical stability issues when estimat-
ing parameters. Therefore, we estimate the variance using the
following functional form:

o2rw = (bo+BIAT +b2(AT)? + by AW + by (AW)?

4+ bsAC +bg(AC): + b7 ATAW +bgATAC — (5)
2
+b9AWAC) .

This results in the following functional form representa-
tion for the standard deviation:

ocTw = +/ 081w
= |bo+ b1 AT + by(AT)* + b3 AW + by(AW)?
+bsAC +bs(AC)> +b7ATAW +bsATAC  (6)
+bgAWAC].

This functional form estimates parameters that may indi-
vidually be negative but which together result in a non-
negative standard deviation for any CTW value being con-
sidered. At baseline, this functional form representation has
standard deviation opggeline = |bo| as opposed to the required
Opaseline = 0 in Eq. (3). This is done for numerical reasons
and is addressed with the prior for by ~ N (0, 0.01%). This
constrains the value of bg to be between —0.02 % and 0.02 %
with 95.45 % probability, reflecting that by should be as close
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to 0 as possible without causing numerical solver issues. This
results in opaseline Values between 0 % and 0.02 %, and there-
fore 0% < AYgg“:‘llfI‘fgd < 0.02 %, which we judge acceptable
for incorporating into GCAM as a multiplier. All other pa-

rameters have very broad priors:

bo ~ N(0,0.01%)
aj, bi ~ Uniform (=300, 300) Va;, b;,i # 0. (7

The functional form for wcTw is equivalent to estimating
the coefficients of a third-order Taylor polynomial, which can
approximate a wide variety of functions fairly well. Simi-
larly, the functional form for ocTw is conceptually related to
estimating the coefficients of a second-order Taylor polyno-
mial. Because of the C3MP experimental design, emulating
yield changes throughout the 21st century using Egs. (1)—-(7)
does not require extending beyond the range of mean grow-
ing season CTW values used to train the Persephone v1.0
response functions. These functional forms are an evolution
from C3MP’s hybrid polynomial (Ruane et al., 2014). An ex-
ploration of other functional forms to address potential over-
fitting is included in Appendix A. Ruane et al. (2014) also re-
views previous emulator forms across the literature, includ-
ing discussion of the potential to look at non-linear terms
such as killing degree days used in Schlenker and Roberts
(2009).

From the model defined by Egs. (1)—(7), we construct the
three Persephone v1.0 response functions for each produc-
tion group:

Yemulated

Mean response:AYorw' = UCTW;

AYgggllﬁgd = Ibaseline = 0%
High response: AYEPW"*! = jucw + loctwl; ®)
AYEmulated ¢ (_0.02%,0.02%) with 95.45 % probability

Low response: A YERulated — )y rw — |octw|

Aygmulated ¢ 0.02%, 0.02 %) with 95.45 % probability.

The default high and low responses are at 1 standard de-
viation of the production group yield responses (as opposed
to 2 or 3) because we are interested in scenarios that cap-
ture a range of the simulated site responses but not the most
extreme simulated site response. This does not affect how p
and o are fit in Persephone v1.0, only how they are used.
The Persephone v1.0 code is written flexibly enough that a
user more interested in capturing the most extreme simulated
site response could certainly add a multiplicative factor (e.g.,
U+ 2|o|) when using p and o without having to spend the
computational time refitting.

3 Evaluation

We primarily present figures and analysis using the model
and response functions defined by Egs. (1)—(8) because we
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found these functional forms to be the most broadly opti-
mal of those considered. To investigate overfitting, we also
examined nine other possible functional form combinations
of ucrtw and ocrw for each production group, defined in
Egs. (A1)—(A7). Details of the cross-validation experiments
used as a method of functional form selection are in the Ap-
pendix A. Briefly, because we are interested in the ability
of any given response function to accurately predict yield
changes in response to CTW values not used for training,
we perform leave-one (CTW test)-out cross-validation exper-
iments for each production group. The best-performing func-
tional form at the cross-validation experiments is then the
selected functional form. This can be done to find the most
broadly optimal functional form (using the same functional
form for all production groups; Fig. Al) or to find the best
functional form for each production group (if a user wishes
to vary the functional form for each production group; Ta-
ble A10). This choice does not introduce additional fitting or
computational time. It is changed only by the calls to each
function in the Persephone R package by the user.

Here, we quantitatively evaluate the performance of the
Persephone v1.0 response functions (Eq. 8) trained on the
full span of CTW values that the 99 tests represent for each
production group (Sect. 3.1). We also present heuristic eval-
uations of mean response function performance (Sect. 3.2).

Files with the point estimate, as well as the stan-
dard deviation of the posterior distribution, for each co-
efficient in & and o for all 10 functional form combi-
nations for all production groups are available (archived
at https://doi.org/10.5281/zenodo.1414423; Snyder et al.,
2018) and as part of the Persephone v1.0 R package (https:
//github.com/JGCRI/persephone).

3.1 Quantitative

We categorize the performance of the Persephone v1.0 re-
sponse functions trained on the full span of CTW values
(mean, high, and low response; Eq. 8) for each production
group based on comparing the 99 emulated yields output
from the response functions to the 99 corresponding values
from the C3MP simulation data: the in-sample measurement
of error. These are the actual response functions an end user
would have and it is important to have a performance mea-
sure for them, although this is not the performance measure
used to select functional forms.

The categorization is based on the normalized root mean
square error (NRMS) and the comparison for each response
function is as follows:

— The 99 emulated yields returned by the mean response
function are compared to the mean yield response across
the production group C3MP sites for each of the 99 sen-
sitivity tests (what we call the simulated mean yields).

— The 99 emulated yields returned by the high response
function are compared to the 84.135th percentile of
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yield responses across C3MP sites for each of the 99
sensitivity tests (what we call the simulated high yields).
This corresponds to matching C3MP site responses at
the mean plus 1 standard deviation level for each of the
99 sensitivity tests when the production group C3MP
site responses were normally distributed for each sensi-
tivity test.

— The 99 emulated yields returned by the low response
function are compared to the 15.865th percentile of
yield responses across C3MP sites for each of the 99
sensitivity tests (what we call the simulated low yields).
This corresponds to matching C3MP site responses at
the mean minus 1 standard deviation level for each
of the 99 sensitivity tests when the production group
C3MP site responses were normally distributed for each
sensitivity test.

As noted in Willmott (1984), Legates and McCabe (1999),
and Snyder et al. (2017), NRMS < 1 is one benchmark
for adequate model performance, NRMS < 0.5 is a bench-
mark for good model performance, and NRMS = RMSE = 0
is perfect model performance. We further subdivide these
categories and define excellent in-sample performance as
NRMS < 0.25 for all three response functions; good per-
formance is 0.25 < NRMS < 0.5 for at least one response
function and NRMS < 0.25 for at least one response func-
tion; adequate performance to be all three response functions
having NRMS < 1 but at least one response function with
0.5 < NRMS < 1; and finally poor performance occurs when
any one of the three response functions has NRMS > 1.

The mean response function performs excellently for all of
our production groups, although the performance of the high
and low response functions differs. These measures are pre-
sented in Table 1 for the response functions defined using cu-
bic uctw (Eq. 4) and quadratic octw (Eq. 6) for all produc-
tion groups. The excellent performance of the mean response
function holds across all functional form combinations ex-
plored (Tables A1-A9). In the event that a user is only con-
cerned with a mean response scenario, a shared functional
form for all production groups is acceptable. A user inter-
ested in the high and low response functions may wish to
use the production-group-specific functional form combina-
tions listed in Table A10, which includes the in-sample per-
formance metric for the optimal functional form for each pro-
duction group. The majority of production groups (17/25)
feature excellent in-sample performance, while the remain-
ing eight production groups feature good overall perfor-
mance. For more details than the summary tables presented
here, files of results for the leave-one-out cross-validation ex-
ercises for all functional form combinations for all produc-
tion groups are available in the paper analysis archive.

We also present a dashboard of quantitative evaluation
plots for 4 of our 25 production groups in Figs. 5 and 4 to
provide a visual interpretation of the four in-sample perfor-
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mance categories. Each dashboard is organized to address the
following questions:

— (a) For a given group, do the three representative re-
sponses span the range of sites? In this plot, individual
site yield changes for each test (blue dots) are overlaid
with the emulated mean, high, and low response func-
tions evaluated for each test (black dots). Each horizon-
tal line of points represents one of the 99 CTW sensitiv-
ity tests.

— (b) For a given group, how does the emulated mean for
each of the 99 tests compare to the simulated mean for
each test?

— (c) For a given group, how does the emulated high re-
sponse for each of the 99 tests compare to the simulated
high yield for each test?

— (d) For a given group, how does the emulated low re-
sponse for each of the 99 tests compare to the simulated
low yield for each test?

Figure 4 displays one performance dashboard from each
in-sample performance category for the broadly optimal,
shared functional form cubic pucrtw and quadratic octw
(Egs. 4-6), to aid interpretation of Table 1 (and Tables Al—
A9).

As indicated in Table A10, any production group can be
fit to result in response functions with an in-sample perfor-
mance of good or excellent, if a user is willing to vary the
functional forms used for each production group. Figure 5a
presents the dashboard for one of the production groups
that featured poor performance when the common functional
form cubic pcTw and quadratic octw (Egs. 4-6) were used
for all production groups: rain-fed sugarcane in the extended
tropics. Figure 5b presents the dashboard when the response
functions are based on the production-group-specific func-
tional forms selected by cross-validation (Table A10): C3MP
uctw (Eq. A2) and cubic octw (Eq. A7). The high and low
response functions perform better in the latter case, though it
is at the cost of a slightly worse (but still excellent) mean re-
sponse function performance. Examination of the sugarcane
entry in Tables 1, A1-A9 indicates that a cubic description of
octw (Eq. A7) leads to better high and low response func-
tion performance than a quadratic representation (Eq. A6),
regardless of functional form used for uctw (Egs. A1-AS).
In other words, the uncertainty across C3MP site responses
for each CTW test requires a more detailed Taylor series ap-
proximation to describe. This is also generally the case for
the other production groups that rated adequate or poor in-
sample performance in Table 1: sometimes, the C3MP indi-
vidual site yield responses are distributed in such a way for
each CTW test that a more flexible fit for octw is necessary.
Perhaps unsurprisingly, this usually occurs for either very
broad production groups (such as those based on C3 photo-
synthesis) or for production groups with very few C3MP site
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Table 1. Persephone v1.0 response function performance for all production groups for cubic uctw (Eq. 4), quadratic octw (Eq. 6).

Production group? No.C3MP NRMS NRMS NRMS In-sample
sites  mean® high low performance

C4 IRR mid 47  0.010 0.148 0.112  Excellent
Maize IRR mid 45  0.010 0.164 0.116  Excellent
Rice RFD mid 4 0.044 0.150 0.195  Excellent
Rice RFD tropic 41  0.020 0.199 0.146  Excellent
Soybeans IRR mid 32 0.017 0.230 0.176  Excellent
Soybeans IRR tropic 2 0.039 0.150 0.170  Excellent
Soybeans RFD mid 35  0.016 0.151 0.145  Excellent
Soybeans RFD tropic 9 0.043 0.198 0.160  Excellent
C3 RFD mid 165  0.010 0.316 0.270  Good

C4 RFD mid 74 0.016 0.319 0.241  Good

C4 RFD tropic 25 0.019 0.365 0.177  Good
Maize IRR tropic 7 0.012 0.345 0.118  Good
Maize RFD mid 66 0.018 0.293 0.230  Good
Maize RFD tropic 20 0.022 0.407 0.170  Good
Rice IRR tropic 53 0.088 0.339 0.261  Good
Wheat IRR mid 61  0.024 0.372 0.380  Good
Wheat IRR tropic 8§ 0.076 0.382 0.329  Good
Wheat RFD mid 103 0.021 0.302 0.280  Good
Wheat RFD tropic 4 0.093 0.364 0.311  Good

C3 RFD tropic 63  0.024 0.757 0.546  Adequate
Cy4 IRR tropic 14 0.012 0.998 0.214  Adequate
Rice RR mid 6 0.029 0.656 0.427  Adequate
C3 IRR mid 103 0.012 1.038 0.701  Poor

C;3 IRR tropic 67 0.072 1.662 0.790  Poor
Sugarcane RFD tropic 12 0.047 1.382 1.162  Poor

a “IRR” indicates irrigated, “RFD” indicates rain-fed, “mid” indicates midlatitudes (30-70° S, 30-70° N),
“tropic” indicates 30° S to 30° N. b Note that the mean response function has “excellent” performance for all

production groups.

outputs (irrigated rice in the midlatitudes) rather than due to
a discernible biophysical trend or requirement.

3.1.1 Production groups with small sample size

It is worth noting that 7 of the 25 production groups con-
sidered here are characterized by fewer than 10 C3MP sites
(Table 1). For all of these groups, it is possible to fit high and
low response functions that capture the spread of the group’s
C3MP site responses well (Figs. 6 and 7). For many of these
groups, the spread in response is relatively small. The Perse-
phone framework does not fail; rather, the data upon which
the v1.0 response functions are trained are imperfect and
would be improved by greater density in spatial sampling.
Had the spatial disaggregation used in forming production
groups resulted in small sample size groups with more sig-
nificant spread in site response, the Persephone framework is
unlikely to represent the full spread of the sample. As this is
not the case, it is left to an eventual user to judge whether
such responses serve their purpose.

Figure 6 highlights this fact for the production group with
smallest sample size: irrigated soybeans in the extended trop-
ics. The spread of C3MP sites as well as the performance
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dashboards for the shared optimal functional form (as from
Table 1) and for the group-specific optimal functional form
(Table A10) are available in the paper analysis data set
(Snyder et al., 2018). While the shared optimal functional
form (Fig. 6b) overestimates the small spread between the
two C3MP sites, the group-specific optimal functional form
(Fig. 6¢c) captures the spread well.

Figure 7 repeats this analysis for the next three smallest
sample size groups: rain-fed wheat in the extended tropics
(top), rain-fed rice in the midlatitudes (middle), and irrigated
rice in the midlatitudes (bottom). In all three cases, the group-
specific optimal functional form represents the spread of the
data well. This is also the case for the two remaining produc-
tion groups with fewer than 10 C3MP training sites: irrigated
wheat in the extended tropics and rain-fed soybeans in the
extended tropics (not shown).

3.2 Qualitative
One motivation for the 25 production groups based on com-
binations of crops (maize, wheat, rice, soybeans, C3, C4 (mi-

nus sugarcane), and sugarcane), irrigation technology (irri-
gated or rain-fed), and latitude band (extended tropics or
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(a) Excellent in-sample performance
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(b) Good in-sample performance
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A A
= /
EES ﬂ
8 W
i<} ’,,?*
%o
<
S (‘
§ o
5 e i
=
<
g
"‘E’ o
s
2
s
2 2 rmse = 0.321
. w 4 nrms = 0.024
-50 50 100 -10 0 10 20 30 40
% change in yield Simulated mean % change in yield for each test
Simulated high vs. emulated high Simulated low vs. emulated low
o]
R
‘ )
&
3
L
1 -
8
3
1 8
2g
1 =
2
s
1 2
o
Yy
e |
rmse = 5.868 rmse = 5.949
nrms = 0.372 3 nrms = 0.380
ot T v T T T R S S e e
10 20 30 40 50 60 -40 -30 -20 <10 O 10 20 30

Simulated high for each test

Simulated low for each test

(c) Adequate in-sample performance
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(d) Poor in-sample performance
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Figure 4. (a) Rain-fed soybeans in the midlatitudes, an example of the excellent in-sample performance category. (b) Irrigated wheat in
the midlatitudes, an example of the good in-sample performance category. (¢) Irrigated rice in the midlatitudes, an example of the adequate
in-sample performance category. (d) Rain-fed sugarcane in the extended tropics, an example of the poor in-sample performance category
(also seen in Fig. 5a). Vertical error bars indicate the 95 % credible interval for each of mean, high, and low emulated responses.

midlatitudes) is to evaluate emulator performance beyond the
quantitative. Given that some GCAM users will only be in-
terested in the mean response functions, it is particularly im-
portant to validate that these functions capture key biological
features of each crop, beyond the quantitative agreement for
the 99 C3MP tests measured by the in-sample performance
metric in Sect. 3.1. In particular, these are features motivated

www.geosci-model-dev.net/12/1319/2019/

by biophysical intuition and present in most of the C3MP
sites. Therefore, we verify that these features are retained in
the emulator.

We use impact response surfaces to visualize these fea-
tures, examples of which are given in Figs. 8 and 9. The
three-dimensional CTW space is most easily examined by
looking at cross sections where one of the CTW dimensions
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Broadly optimal response function: cubic iy, quadratic oo
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Production Group response function: c3mp /.oy, cubic oo
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Figure 5. Rain-fed sugarcane in the extended tropics. (a) The performance dashboard for the most broadly optimal functional form repre-

sentations (i.e., if we want to use the same functional form combination
functions poorly reproduce the simulated high and low yields for each

for all production groups), and for which the high and low response
of the 99 tests. (b) The performance dashboard for the production-

group-specific functional forms (i.e., if we want the functional form to vary by production group). Vertical error bars indicate the 95 %

credible interval for each of mean, high, and low emulated responses.
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Figure 6. (a) The spread of yield responses for the two C3MP sites making forming the irrigated soybeans in the extended tropics production
group. (b) The performance dashboard of the shared optimal functional form (Table 1) for this production group. (¢) The performance
dashboard of the group-specific optimal functional form (Table A10) for this production group.

is kept constant while the other two vary. The brown to blue
color bar in each of these figures depicts contours for the
value of the mean yield response («cTw), while the overlaid
labeled black lines depict contours representing uncertainty
(ocTw, used to create the high and low response functions).
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We first identify three important relationships we would
expect a successful emulation of C3MP mean responses
(brown to blue color bar) to obey:

— C3 crops respond strongly and positively to increases
in global CO; concentrations; C4 crops have noticeably
less benefit from [CO;] increases.
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Wheat RFD tropics — raw C3MP sites and
arithmetic mean
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Figure 7. The same arrangement of figures as in Fig. 6, for the rain-fed wheat in the extended tropics (top row), rain-fed rice in the mid-
latitudes (second row), irrigated rice in the midlatitudes (third row), and irrigated maize in the extended tropics (bottom row) production

groups.

www.geosci-model-dev.net/12/1319/2019/

Geosci. Model Dev., 12, 1319-1350, 2019



1332

— Agriculture in the tropics tends to respond more neg-
atively/less positively to changes in temperature than
agriculture in the higher latitudes as the extended trop-
ics correspond to a higher baseline temperature.

— Irrigated crops have almost no response to changes in
precipitation, whereas rain-fed crops do.

These benchmarks are met: Fig. 8 features impact re-
sponse surfaces that highlight the C3-photosynthesis and C4-
photosynthesis difference, the rain-fed and irrigated differ-
ence, and the latitude difference. The full collection of im-
pact response surfaces for all production groups is included
in the paper analysis archive. These benchmarks for the mean
response are met in those as well. When there are exceptions,
we have investigated to find that the mean response function
is faithfully representing the underlying C3MP data and that
it is the sampling of C3MP sites making up the production
group responsible for the discrepancy. Note that, in Fig. 8,
uncertainty is greatest in the [CO; ]—precipitation and [CO,]—
temperature slices, and it increases with larger changes from
the baseline condition. This follows with current practices for
the process-based crop models forming the C3MP data set:
[CO,] is clearly related to yields but the details of this re-
lationship are highly uncertain and implemented differently
across process-based, site-specific crop models.

The pattern of yield response to CTW changes appears
to be more qualitatively consistent across C3MP sites than
the quantitative differences across sites (for example, Fig. 3).
Figure 9 displays this pattern for one cross section of CTW
space for 12 of 66 rain-fed maize sites in the midlatitudes
and for the emulated mean response. While the actual nu-
merical values of the response surfaces differ at each site, the
pattern of response seen at most sites (increasing yield with
high [CO;] and low temperature changes in the upper left,
decreasing yields elsewhere) is consistent and shared by the
emulated mean response. The high and low response func-
tions are able to capture much of the quantitative spread in
site responses, though, as noted in Sect. 2.3, not the most ex-
treme sites. We specifically included the sites in Ames, lowa,
USA; Naousa, Greece; and Lublin, Poland, because they fea-
ture the most qualitatively different patterns. The patterns at
the 54 sites not displayed closely resemble those of the other
nine sites in Fig. 9. This pattern is seen in the broader im-
pact response surfaces literature (Ruane et al., 2014; Pirttioja
et al., 2015; Fronzek et al., 2018) as well, further improving
confidence in the emulated mean response. All individual site
impact response surfaces are included in the paper analysis
archive.

4 Applications

Figure 10 demonstrates the basic procedure followed in using
Persephone within GCAM (using the average of 2071-2100
HadGEM2-ES RCPS8.5 projections as an example). The first
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requirement is a global gridded file of local precipitation and
local temperature drawn from climate projections, along with
a global CO; concentration level. Temperature and precipita-
tion changes are calculated only for the relevant local grow-
ing season months in comparison to a 1980-2009 baseline
value. The different maps of local temperature and precipita-
tion changes on the left side of Fig. 10 reflect that there are
differences in the dates of the local growing season for rain-
fed maize and wheat. Note that this includes a global CO;
concentration of 812 ppm, compared to the baseline level of
360 ppm. The [CO;] change alone leads to increased yields
for rain-fed wheat in the midlatitudes even in the absence of
changes in temperature and precipitation. Indeed, the higher
[CO,] elevates yields (compared to the baseline) across all
but the most extreme hot and dry conditions. Conversely, the
yield response for rain-fed tropical maize is barely helped by
elevated [CO3].

In a typical RCP8.5 scenario, there are sometimes a few
grid cells with local precipitation changes that are out of sam-
ple. We convert these out-of-sample points to the extreme of
our sample so that we avoid extrapolation (e.g., a 74 % local
increase in precipitation gets the response of 50 % increase
in precipitation — the maximum response to increased pre-
cipitation). Note that many of these large percentage changes
in precipitation are actually the symptoms of ESM biases or
small precipitation changes in arid regions that are unlikely to
have agriculture. Holding to 50 % precipitation change likely
improves the fidelity of these estimates (Ruane et al., 2014).

The second step in using Persephone for GCAM is that
CTW changes for each grid cell with climate data are passed
into the Persephone v1.0 response functions (depending
on species/management/latitude zone) to create the desired
global gridded map of yield changes that would represent the
likely agricultural response. The abrupt changes in behavior
across 30° N and 30° S (particularly noticeable for wheat in
southern Asia) are due to our division of training data into
midlatitudes and extended tropics production groups. Those
abrupt changes will soften as these impacts are aggregated to
the larger GCAM land region level before being applied as
multipliers in the experiments outlined in Fig. 1.

Figure 11 presents the rain-fed maize impact response sur-
faces and yield change maps for the bias-corrected Inter-
Sectoral Impact Model Intercomparison Project (ISIMIP)
entry of HadGEM2-ES RCPS8.5 (Warszawski et al., 2014)
2071-2100 average CTW changes (displayed in Fig. 10) for
the low (left), mean (center), and high (right) response func-
tions. The high and low response surfaces result from adding
or subtracting the gray uncertainty contours to or from the
brown-blue mean yield response contours in the mean re-
sponse surfaces (Eq. 8). Note that, under the high response
function, there are a few regions that experience increased
yields due to large increases in precipitation offsetting tem-
perature increases. The differences in these three response
functions will allow the boundaries of crop response uncer-
tainty to be run through GCAM, resulting in a spread of so-
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Figure 8. Select impact response surfaces — a collection of two-parameter slices of our three-parameter space (not a visualization of the full
space). The color represents the yield change for a given local CTW perturbation as a percentage of baseline yields (1980-2009 planting
year average; positions shown as red squares). Labeled black contours are uncertainty across the submitted site-specific crop models.
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Figure 9. Yield responses to changes in temperature and precipitation with fixed [CO,] = 360 ppm for 12 (of 66 total) rain-fed maize sites
located in the midlatitudes, as well as the emulated mean response for use in GCAM.
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Figure 10. Tracing the path from gridded local growing season temperature and precipitation changes and global CO, = 812 ppm concentra-
tion under HadGEM2-