Understanding the Impacts of Soil Moisture Initial Conditions on NWP in the Context of Land-Atmosphere Coupling

Joseph A. Santanello, Jr.¹, Patricia Lawston^{2,1}, Sujay Kumar¹, and Eli Dennis^{2,3}

¹ NASA-GSFC Hydrological Sciences Laboratory, Greenbelt, MD

²Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD

³ Cooperative Institute for Climate and Satellites - Maryland, College Park, MD

Corresponding Author: Dr. Joseph A. Santanello, Jr.

NASA-GSFC, Code 617, Bldg. 33, Room G220, Greenbelt, MD 20771 USA

Joseph.A.Santanello@nasa.gov

Revised for Journal of Hydrometeorology

1

ABSTRACT

2 The role of soil moisture in NWP has gained more attention in recent years, as studies have demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales. 3 However, soil moisture initialization approaches in coupled models remain quite diverse in terms 4 5 of their complexity and observational roots, while assessment using bulk forecast statistics can be 6 simplistic and misleading. In this study, a suite of soil moisture initialization approaches is used to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA's Land 7 Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems. This includes 8 9 a wide range of currently used initialization approaches, including soil moisture derived from 'offthe-shelf' products such as atmospheric models and land data assimilation systems, high-resolution 10 11 land surface model spinups, and satellite-based soil moisture products from SMAP. Results indicate that the spread across initialization approaches can be quite large in terms of soil moisture 12 13 conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and 14 temporal dynamics when compared against high resolution land surface model and in-situ soil 15 moisture estimates. Case studies are analyzed using the local land-atmosphere coupling (LoCo) framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and 16 17 ambient weather, with results highlighting the critical role of inherent model background biases. In addition, simultaneous assessment of land vs. atmospheric initial conditions in an integrated, 18 19 process-level fashion can help address the question of whether improvements in traditional NWP verification statistics are achieved for the right reasons. 20

22

1. Introduction

The role of the land surface in numerical weather prediction (NWP) has been traditionally 23 overlooked by the atmospheric modeling community (Santanello et al. 2018), who often employ 24 primitive initialization approaches for soil moisture and temperature based on coarse atmospheric 25 model products. These surface conditions have been treated simply as lower boundary conditions, 26 27 with early LSM development driven by the atmospheric communities and little emphasis on the accuracy and observability of land surface states and processes (Dirmeyer and Halder 2016). 28 However, recent studies have demonstrated the critical role of the land surface, and in particular 29 soil moisture, in terms of impacts on precipitation (Welty and Zeng, 2018; Ford et al. 2015; Taylor 30 et al. 2012; Koster et al. 2004; Findell and Eltahir 2003), temperature and humidity (Kala et al. 31 32 2015; Seneviratne et al. 2013; Mueller and Seneviratne 2012), and L-A coupling as a whole including the planetary boundary layer (PBL) (Johnson and Hitchens 2018; Dirmeyer and Halder 33 34 2016; Santanello et al. 2007, 2005). In particular, the initial condition (IC) of soil moisture has 35 been shown to influence predictability on near-term (Dirmeyer and Halder 2016; Santanello et al. 2016, 2013a) and seasonal (Rajesh et al. 2018, Xiang et al. 2018; Hirsch et al. 2014; Koster et al. 36 2010) scales. Thus, quantification of the sensitivity of coupled models to the soil moisture 37 initialization approach is an often overlooked, but potentially high-impact, exercise that should be 38 performed by model evaluation and development communities. 39

40

41

42

From a process-level perspective, the connection of soil moisture to ambient weather and precipitation can be considered using the GEWEX local land-atmosphere coupling (LoCo; Santanello et al. 2018) paradigm and 'process chain', as follows:

$$\Delta SM \to \Delta EF \to \Delta PBL \to \Delta Ent \to \Delta T_{2m}, Q_{2m} \Rightarrow \Delta P, Cloud$$
(1)
(a)
(b)
(c)
(d)

where the links (a-d) represent the sensitivities of: (a) evaporative fraction (EF; i.e. surface fluxes) to soil moisture (SM), (b) PBL evolution to surface fluxes, (c) entrainment (Ent) fluxes to PBL evolution, (d) the collective feedback of the free atmosphere on ambient weather, and the cumulative support of these links on cloud and precipitation formation. By parsing out the stepwise impact of soil moisture on surface fluxes and, likewise, the vertical coupling impacts of surface fluxes on PBL development and entrainment feedbacks, an understanding of the interaction of the coupled model sensitivities to soil moisture can be ascertained.

To this end, the LoCo community has been developing metrics to quantify the links in the 51 chain of Eq. (1) that can also be used to better understand traditional 'bulk' statistics of ambient 52 weather (e.g. 2-meter temperature (T2m) and humidity (Q2m), RMSE and bias) commonly used 53 54 by operational centers as benchmarks, in the context of the influence of soil moisture on model accuracy and development. Such approaches have been previously employed to assess the 55 56 coupling behavior in modern global climate reanalysis products (Santanello et al. 2015), to 57 quantify the impact of LSM calibration and assimilation on short-term coupled forecasts (Santanello et al. 2013a, 2015b), and to intercompare the coupled behavior of different 58 parameterization combinations in regional NWP (Santanello et al. 2013b). 59

These studies assumed that the land surface IC was based on an offline, high-resolution, high-quality, long-term spinup of soil states from a land data assimilation system (LDAS) such as NASA's Land Information System (LIS; Kumar et al. 2008). However, despite their advantages, such spinup approaches are still not the norm outside of the land modeling community. In addition, with recent advances in satellite-based soil moisture retrievals such as those from SMOS and SMAP, and long-term in-situ networks such as those comprising the International Soil Moisture Network (Dorigo et al. 2011), there are now additional observationally-driven initialization

approaches that need to be considered (Dirmeyer et al. 2018, 2016). Overall, there is a wide array 67 of soil moisture IC approaches that are being used across the NWP and climate modeling 68 69 communities (both research and operational), ranging in complexity, resolution, quality, and 70 observability.

In this paper, we assess the impacts of soil moisture IC approaches in an NWP context 71 72 using the NASA Unified WRF model (NU-WRF; Peters-Lidard et al. 2015), focused on an integrative, process-level assessment of L-A coupling and ambient weather implications. 73 Specifically, we intercompare a suite of initializations of high resolution (1 km) short-term weather 74 75 forecasts using 'off-the-shelf' soil moisture products from large scale atmospheric and land surface reanalysis products, high-resolution LIS spinups, and SMAP satellite retrievals which range in 76 77 horizontal resolution from 1-33 km. Section 2 reviews the current suite of soil moisture IC approaches being used by the community. Section 3 describes the model and observation products 78 79 used for initialization, and the LIS and NU-WRF modeling systems, along with case study and site 80 descriptions for the coupled experiments. Section 4 presents an offline intercomparison of SMAP soil moisture with that of in-situ networks and LIS-based simulations over the domain of interest. 81 Section 5 then presents the full suite of coupled NU-WRF experiments with varying ICs, and 82 corresponding LoCo analysis and ambient weather evaluations. Discussion and conclusions then 83 follow in Section 6. 84

85

2. Review of Soil Moisture Initialization Approaches

Figure 1 shows the suite of soil moisture initialization approaches for NWP and regional 86 87 modeling commonly used by the operational and research communities. Despite their wide range in complexity, studies using each of these approaches have been published recently, and the typical 88 89 usage by the community tends to favor the lower complexity approaches.

90 Going from least to most complex (in Fig. 1), while a uniform (homogeneous) soil moisture IC may have been commonly employed decades ago during the early years of atmospheric and L-91 A coupled model development, this approach lacks an accurate representation of surface 92 heterogeneity and likely leads to poor NWP results in terms of surface flux partitioning and impact 93 on PBL and atmospheric processes. There remain a few regional modeling applications (including 94 95 operational) that employ homogeneous soil moisture ICs, such as those using RAMS (Gomez et al. 2016, 2015), where only recently has the sensitivity to varying ICs been evaluated in a 96 systematic manner (Gomez et al. 2018). These studies affirm that there are significant impacts of 97 98 soil moisture IC values on NWP, and point to the potential for satellite data to inform on improved, heterogeneous IC approaches. It should also be noted that homogeneous and idealized surface 99 100 conditions are still the norm for the LES and cloud resolving model communities (focused on $\sim 100 \text{m}$ scales). 101

102 Next, from an observational perspective, in-situ soil moisture measurements are direct 103 measurements at fixed depths while satellite measurements are indirect and only sensitive to a thin 104 layer near the surface typically less than a few centimeters. The in-situ measurements are typically considered truth in the development and parameterization of the soil models themselves. 105 106 Therefore, soil moisture ICs based on a dense in-situ network that covers the model domain would 107 be an ideal approach. Such networks are rarely dense enough to meet NWP application 108 requirements. One example is the DOE's ARM Southern Great Plains (ARM-SGP) observatory 109 covering OK and KS, where ~20 sites measuring soil moisture are available. Even in this dense network, 20 observations across a domain with 250,000 grid cells is hardly representative of land 110 surface and soil type heterogeneity, and interpolation procedures and assumptions do not readily 111 112 apply to obtain distributed estimates. Recent examples of utilizing a dense in-situ network in the

context of NWP ICs do exist (e.g. Massey et al. 2016), but remain limited due to the heterogeneous
nature of soil properties.

The next grouping of ICs in terms of complexity is what are deemed 'off-the-shelf' 115 products, where soil moisture is extracted from existing LDAS or atmospheric modeling systems. 116 117 Atmospheric-based products are simply the soil moisture fields derived from the land surface 118 component of the commonly used initial/boundary condition datasets for NWP. These atmospheric models include GFS, ECWMF, NARR, NAM, and others, and the advantage of using 119 these land ICs is that they are inherently consistent (spatially and temporally, as well as 120 climatologically) with the atmospheric ICs. The disadvantage is that these atmospheric models 121 are quite coarse spatially (~25-40 km) relative to the grid size of the NWP or WRF application 122 123 (e.g. 1–3 km in this case). Thus, initializing a domain with 1-km horizontal grid spacing with data that has 30-km resolution will miss some crucial heterogeneity and likely does not capture the true 124 125 nature of the local L-A coupling. Another caveat to this approach is when the LSM used in the 126 NWP application differs from that in the atmospheric product, as soil moisture climatologies differ 127 across LSMs and thus are not easily transferable. In addition, any inherent biases (e.g. precipitation) in the atmospheric model will be reflected in the land states (e.g. soil moisture) as 128 well. 129

From an LDAS perspective, the GLDAS (Rodell et al. 2004) and the NLDAS Version 2 (NLDAS-2; Xia et al. 2012) are examples of uncoupled environments, run routinely at 25 km and 12.5 km, respectively. Both are offline LSMs driven by high-quality, ground-observation based atmospheric forcing and parameters, though there is still a significant gap in resolution compared with the target model (1 km vs. 12.5–25 km). The land ICs from LDAS systems are likely to be more accurate and heterogeneous versus atmospheric model-based ICs described above, however

there may be inconsistency issues with the LSM used in the LDAS and that used in the NWP 136 application (e.g. soil or vegetation parameters). These 'canned' spinups have been largely 137 underutilized by the NWP community and represent a spinup shortcut that does not require a multi-138 year spinup or access to forcing data. A recent study from Dillon et al. (2016) compared the 139 impacts of using GLDAS versus GFS soil moisture ICs on short-term WRF forecasts, and neither 140 141 approach consistently outperformed the other over South America. Gomez et al. (2018) updated RAMS with spatially distributed soil ICs from GLDAS, and found significant improvement in 142 ambient weather forecasts. Jacobs et al. (2017) used an Australian LDAS (Australian Water 143 Availability Project (AWAP); <u>http://www.csiro.au/awap/</u>) to generate a 5-km gridded soil 144 moisture IC product for WRF heatwave simulations, and found that forecasts improved 145 146 significantly over those using ERA-I-based soil moisture ICs, as AWAP corrected for the cool, wet bias inherent in ERA-I. Lin and Cheng (2016) also compared the impacts of GLDAS versus 147 GFS-based ICs on WRF forecasts over Taiwan, and showed improvements over certain regions 148 149 where GFS was biased and where soil exerts more control over surface fluxes. Overall, these 150 studies demonstrate general improvement from LDAS-based ICs over those of coarser atmospheric-based products. 151

In terms of model-observation fusion, LSM spinup approaches, as described earlier, can generate high resolution, accurate ICs at the resolution of the target model using observed forcing and parameter data. LSM spinups are necessary to generate soil moisture and temperature profiles that have equilibrated over time, and thus are often on the order of a few years to decades in length leading up to the time of coupled model initialization (Rodell et al. 2005). Spinups are facilitated by systems such as LIS and the High Resolution LDAS (HRLDAS; Chen et al. 2017), and require multi-year offline simulations driven by high quality forcing data. As a result, the advantages are

in resolution, representativeness and quality (including consistency of LSM states with observed 159 160 meteorology), but can be limited by the availability of accurate forcing data and computational demand. As compared to LDAS systems, LSM spinups can further resolve spatial heterogeneity 161 down to 1km or less, and in coupled systems such as LIS/NU-WRF, will ensure identical LSM 162 163 settings in both the offline spinup and coupled simulations. To date, LSM spinups have been 164 employed in numerous regional (WRF) modeling studies, but are typically only employed by those in the land (LIS and HRLDAS) communities (Santanello et al. 2013ab, Case et al. 2011, 2008, 165 Kumar et al. 2008, Rajesh et al. 2017, Hirsch et al. 2014), while atmospheric modelers have been 166 167 much less inclined to invest in this approach.

Recent advances in satellite retrieval of land surface states now allow for soil moisture ICs 168 to be fully or partly derived from satellite data. Satellites such as SMAP can provide gridded 169 products comparable in spatial resolution to that of the off-the-shelf products described above (e.g. 170 SMAP 9- and 36-km products). However, using satellite products directly as ICs is not currently 171 172 advisable, due to differing climatologies and biases inherent in satellite versus LSM-based soil 173 moisture. As satellite soil moisture becomes more accurate (as is the case with SMAP), and LSM soil moisture becomes more 'observable', opportunities to directly employ satellite products as 174 ICs will become apparent. The traditional method to incorporate satellite-based soil moisture into 175 ICs has been through data assimilation after utilizing bias correction techniques such as CDF 176 177 matching to account for the satellite versus LSM biases (Reichle and Koster 2004). Assimilation incorporates some of the satellite signal that the LSM may miss, but impacts are typically muted 178 due to the low random error present in satellite and LSM products, and high accuracy of 179 atmospheric (i.e. precipitation) forcing of the LSM. Recent efforts at NCEP and Environment 180 Canada have employed SMAP data assimilation during LSM spinup to improve soil moisture ICs 181

for NWP, with results showing inconsistent improvements across large continental domains.
These approaches and results will be discussed in more detail in Sections 5 and 6 in the context of
the results presented in this study.

An additional IC approach that does not fall neatly into the categories in Fig. 1 is that of 185 'self-spinup', as described by Angevine et al. (2014) and performed by Dy and Fung (2016). In 186 187 self-spinup, the NWP or regional model of interest can be initialized with coarse atmosphericbased soil moisture ICs, then cycled over months or years at a time (resources permitting), which 188 improves the spatial resolution as it responds to precipitation and other forcing at the finer target 189 190 model resolution. A disadvantage is that the accuracy of resulting soil moisture is entirely dependent on the free running model performance and precipitation accuracy, which likely is less 191 192 than that of the observationally-constrained atmospheric models. As with other IC approaches, there are tradeoffs, and in this case that is gaining spatial heterogeneity but perhaps losing the 193 194 spatial accuracy of soil moisture anomalies.

Also not considered in the suite of ICs in Fig. 1 are basic sensitivity studies that vary the soil moisture IC, often uniformly, in 'brute force' fashion in order to assess impacts on NWP (e.g. Kalverla et al. 2016, Ament et al. 2006, Daniels et al. 2016, Collow et al. 2014). There have been a host of studies in this regard, each emphasizing a different aspect of coupled impacts, typically focusing on singular impacts on temperature or precipitation. Overall, these sensitivity studies highlight the importance of soil moisture ICs, and underscore the need for high-quality and highresolution ICs (preferably from satellite or LSM spinup).

202

3. Experimental Design

203

The suite of soil moisture IC approaches in Fig. 1 will be intercompared in this study using

SMAP for satellite observations, LIS for LSM spinup, NU-WRF as the coupled forecast model, along with the standard off-the-shelf products from NARR, GFS, and NLDAS-2 and in-situ evaluation data from the ARM-SGP network.

207

a. SMAP Soil Moisture

NASA's SMAP mission was launched in January 2015, and has been providing passive 208 209 microwave retrievals of soil moisture from April 2015 to present. SMAP soil moisture has performed well to date, reaching the mission target of +/- 0.04 m3 m-3 accuracy over most regions 210 (Chan et al. 2018), and with higher temporal consistency (i.e. less noise) and overall information 211 212 content than other passive microwave-based soil moisture products from missions such as SMOS, AMSR-E, and ASCAT (Kumar et al. 2017). SMAP soil moisture also exhibits wetting and 213 214 drydown responses that are consistent with those modeled by LSMs (Shellito et al. 2017), and has been useful in detecting the timing and spatial extent of irrigation (Lawston et al. 2017). In 215 216 addition, SMAP has been used successfully in data assimilation studies by operational and research 217 centers (e.g. Fang et al. 2018, Carerra et al. 2018). In this study, we use the SMAP L3 enhanced 218 soil moisture retrieval, based on the 33-km retrieval algorithm but posted at 9-km spatial resolution 219 after utilizing the oversampling of the SMAP footprint. Section 4 presents a comparison of SMAP 220 products against in-situ and modeled soil moisture in order to assess any relative biases or observability issues amongst these products before they are infused into offline or coupled 221 222 modeling applications.

223

b. LIS and NU-WRF Modeling Systems

As mentioned in Section 1, we now have the ability to generate high resolution, highquality, long-term integrations in offline land data assimilation systems such as LIS, which incorporate high resolution, observed forcing and satellite parameter and state datasets. LIS, with

its choice of LSMs, parameter and forcing data, and assimilation and calibration modules, can be
run in offline (uncoupled) mode for multiyear spinups that can then be used to initialize coupled
models such as NU-WRF.

NU-WRF is NASA-GSFC's version of the community WRF-ARW model, and is 230 essentially a superset of the ARW model that includes unique NASA assets and physics 231 232 capabilities including radiation, microphysics, chemistry, and land surface (via LIS). In addition to providing the soil ICs via LSM spinup, LIS is also coupled to NU-WRF and can be used as the 233 LSM during fully coupled simulations. This is advantageous in terms of utilizing the identical 234 model, grid, and configuration in the offline spinup as during the coupled experiment. The 235 LIS/NU-WRF coupling (Kumar et al. 2008) has been used extensively in research focused on 236 quantifying forecast impacts of different land cover (Case et al. 2011, 2008), irrigation (Lawston 237 et al. 2015), soil condition (Zaitchik et al. 2013), atmospheric forcing (Santanello et al. 2016), 238 239 LSM calibration (Santanello et al. 2013a), and land data assimilation formulation (Santanello et 240 al. 2016, Feng et al. 2018, Carrera et al. 2018), and serves as an ideal testbed to examine the sensitivity to soil moisture initialization approaches. For this study, LIS version 7 (LISv7.0; 241 lis.gsfc.nasa.gov) is employed with the Noah LSM, version 3.3 LSM (Ek et al. 2003) and coupled 242 to NU-WRF, version 8 patch 4 (https://nuwrf.gsfc.nasa.gov/). 243

244

c. Off-the-Shelf Products

The Global Forecast System (GFS; Environmental Modeling Center 2003) is an operational, global spectral model driven by the Global Data Assimilation System (GDAS), which incorporates satellite, surface, aircraft, and other observations from across the globe into a gridded, model space. The land component of GFS was upgraded to the Noah LSM version 2.7.1 in the mid-2000's, reducing prominent biases in snow pack, evaporation, and precipitation. The GFS

250 analyses are generated at 6-hourly intervals and gridded at 0.25° spatial resolution (available via rda.ucar.edu/datasets/ds084.1). The North American Regional Reanalysis (NARR; Mesinger et al. 251 2006) uses the Eta model, the Noah LSM, and advances in data assimilation to create long term, 252 consistent weather data at 32-km spatial resolution and 3-hourly intervals (available via 253 rda.ucar.edu/datasets/ds608.0). NARR was the first reanalysis to include precipitation assimilation 254 255 and shows considerable improvement over the previous NCEP reanalysis system (Kennedy et al. 2011). Finally, NLDAS-2 provides near-real time, 1/8° (~12-km) resolution, quality-controlled 256 datasets of atmospheric forcing needed to run LSMs, as well as LSM output from four different 257 258 models driven by these data. We use both the NLDAS-2 meteorological forcing (to drive LIS offline simulations) and the NLDAS-2 model output from the Noah LSM (version 2.8) for land 259 260 initial conditions, discussed further in the experimental design.

261

d. Experimental Design

262 An extensive survey of potential coupled case study dates was performed over a regional 263 modeling domain over the U.S. SGP region (NE, KS, OK, and TX). The initial time of the case 264 studies was limited to those that had full coverage from SMAP at 6am local time, and due to the geographical location and SMAP orbital pattern, this occurred every ~6 days. A relatively clear-265 sky morning, with weak synoptic flow and potential locally-induced convection in the afternoon 266 was desirable. This would allow local land effects due to surface and soil moisture heterogeneity 267 268 to be maximized. In addition, contrasts in soil moisture across the domain were deemed as advantageous to the goals of this study in terms of highlighting differences in ICs captured by 269 approaches in Fig. 1. Lastly, the Enhanced Soundings for Local Coupling Studies (ESLCS; 270 Ferguson et al. 2016) campaign took place in Summer 2015, which was comprised of 12 IOP days 271 272 with hourly radiosondes launches during the daytime that were deemed useful for model validation. Taking all of these factors into account, 11 July 2015 was chosen as the primary
coupled case study for this study, with 10 June 2015 as a secondary case to support any conclusions
made from the July case.

Thus, LIS and NU-WRF are run on a single 750-km x 1100-km domain over the SGP at 1-km spatial resolution (Fig. 2) using a 3-s time step, GSFC microphysics, GSFC long- and shortwave radiation, Mellor–Yamada–Nakanishi–Niino (MYNN) PBL scheme, and Monin– Obukhov surface layer scheme. NARR and GFS data were used for atmospheric initialization for different simulations that will be discussed below, with 3-hourly lateral boundary condition nudging, and 61 vertical levels. Simulations were initialized at 12 UTC on the morning of 11 July, and run for 24 hours.

283 Each of the soil moisture IC approaches were implemented as in Table 1 for a total of eight coupled simulations. The 'off-the-shelf ICs from NLDAS-2, NARR, and GFS were performed by 284 285 using the soil moisture (and temperature) profile ICs from those atmospheric model products. 286 Three LIS spinups were performed beginning on 1 January 2010 through 31 December 2016, the domain of which along with input land cover and soil type data as well as ARM-SGP site locations 287 are shown in Fig. 2. The LIS-Control run used NLDAS-2 atmospheric forcing along with default 288 climatological greenness vegetation fraction (GVF) data from NCEP. Two permutations of LIS 289 spinup were also performed, one using GDAS atmospheric forcing data (LIS-GDAS) instead of 290 291 NLDAS-2, and the other with real-time GVF data from the VIIRS satellite (LIS-VIIRS) instead of climatological GVF. The goal of the LIS suite of runs was to create a mini-ensemble of the range 292 of IC spread that would be generated from different LSM spinup approaches and forcing/parameter 293 data quality. Atmospheric forcing was varied to provide spread based on uncertainty in 294 precipitation forcing, while GVF was varied to account for uncertainty in soil moisture due to 295

vegetation amount and evaporation. For the three spinup runs, NU-WRF was then run coupled to LIS throughout the 24h simulation, thus ensuring consistency from spinup through coupled forecast in terms of the LSM configuration. The off-the-shelf ICs were taken as described above from the NLDAS-2, GFS, and NARR products which provided the 4 layers of soil moisture and temperature data to the Noah LSM in NU-WRF. Each of these runs employed climatological GVF during the coupled NU-WRF.

302 The model-data fusion approaches to ICs were performed using SMAP data and direct insertion. The SMAP overpass provided nearly complete spatial coverage of the domain, but 303 304 where necessary, a nearest-neighbor approach was used to interpolate for missing values. For these runs, SMAP was used as the top 5-cm soil moisture data on top of existing NARR and 305 306 NLDAS-2 soil moisture profiles (identical to those taken off-the-shelf above), which were used for the remaining 3 soil layers (see Table 1 for layer specifications). While direct insertion is 307 308 certainly not an advisable practice for operational purposes due to the relative biases of SMAP and 309 LSM soil moisture climatologies, it serves a distinct purpose here to provide an upper bounds on 310 what could be expected from data assimilation (where increments would ultimately be much smaller than what is seen here), as well as to see if the biases and noise of SMAP are indeed small 311 enough to begin to consider such approaches as direct insertion. It is possible that introduction of 312 SMAP on top of modeled profiles will result in a shock to the system and cause issues with 313 314 equilibrium of the soil profile and associated fluxes and states, which also can be examined here. It should be noted that assimilation of SMAP into LIS spinups is an area of active research, and 315 316 one that deserves independent treatment in future studies. Nonetheless, based on prior soil moisture assimilation experiments we would expect that such a spinup would fall somewhere near 317 318 or within the spread of the three existing LIS spinups produced here.

319

e. In-Situ/Evaluation Data

320 For the offline evaluation of LoCo metric application over the SGP domain, data is acquired from the ARM-SGP network of sites and instruments at the Central Facility (CF) in 321 Lamont, OK, the Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) site at Ellis, 322 KS, and 16 ARM Extended Facilities (EFs) across OK and KS (see Fig. 2ab) These include high-323 324 quality, nearly continuous meteorological, surface flux, and atmospheric profile measurements going back to the mid-1990's. Specifically, soil moisture from the recently installed Soil 325 Temperature and Moisture Profile (STAMP) in-situ probes at the CF and 16 EFs are used, and 326 represent a major improvement in ARM-SGP measurements of soil moisture quality and ancillary 327 data (Cook 2018). Surface sensible and latent heat flux data from the Eddy Correlation Flux 328 329 Measurement System (ECOR) towers at the CF and 7 EFs are also used. Temperature and humidity data at 2-meters is taken from the meteorological sites at CF and EFs. Vertical profiles 330 331 of temperature and humidity are acquired at the CF and Ellis, KS sites. CF typically provides 332 4x/daily (2 daytime) launches, but as a result of the ESLCS campaign, 11 July produced hourly profiles from radiosonde that could be utilized in the LoCo analysis. Likewise, the Ellis, KS site 333 was a supersite of the PECAN field campaign in Summer 2015 which took additional 334 measurements from ground-based lidar (Weckwerth et al. 2016) to produce temperature and 335 moisture profiles almost continuously during the daytime of 11 July. The radiosondes at CF and 336 DIAL at Ellis were then used to characterize the diurnal structure and evolution of the PBL, derive 337 PBL height estimates, and compare with NU-WRF simulations using LoCo metrics. 338

339

340

f. LoCo Metrics

The integrative nature and application of LoCo metrics to NWP and NU-WRF studies

has been described in detail in Santanello et al. (2009, 2011, 2013, 2015). This includes the mixing
diagram approach and evaporative fraction versus PBL height metrics that are employed in this
study to better understand the impacts of soil moisture ICs on the coupled system, including the
PBL response and the relative influence of atmospheric ICs as well. The reader is referred to
Santanello et al. (2018) for an overview of LoCo metrics, and resources for the community.

346

4. Offline Soil Moisture Intercomparison

We first assess the behavior of near-surface soil moisture derived from SMAP, LIS, and in-situ measurements during the offline spinup period, followed by an intercomparison of the suite of soil moisture ICs and the coupled case study impacts.

Timeseries of near-surface soil moisture from the SMAP retrieval, LIS simulations, and 350 351 in-situ STAMP probes are shown in Fig. 3 for three ARM-SGP extended facilities during Summer 352 2016. Overall, SMAP shows a comparable dynamic range to in-situ measurements, responding to precipitation events and drydown periods with little evidence of noise or spurious (outlier) values. 353 354 To this end, the temporal consistency and absolute value of SMAP soil moisture appear realistic, and comparable to the STAMP measurements. Note that none of these sites were used as part of 355 SMAP calibration/validation activities, and this is a true independent test of SMAP performance 356 across sites with varying vegetation and soil characteristics. 357

The LIS simulations, on the other hand, have a distinct timeseries at E33 (Newkirk, OK) and E38 (Omega, OK) that shows a much narrower dynamic range and values on the wetter end of the soil moisture spectrum (relative to SMAP and STAMP). The spread across the three LIS simulations is rather small overall, but there are brief periods where the quality of atmospheric forcing (GDAS vs. Control; particularly in July and August) and, to a lesser extent, vegetation greenness (VIIRS vs. Control) do impact the soil moisture values. Regardless, the envelope of

soil moisture across these simulations is one that is narrow, and it is bounded by a maximum (during precipitation spikes), and a minimum (during dry periods). The timescale of the drying events is controlled by the Noah LSM soil type and hydraulic parameters as specified by the lookup table at each site. At E33 and E38 (and the remaining 17 sites (not shown)), it is apparent that these parameters do not permit the model to dry down at a steep enough rate to reach the drier soil moisture levels observed by SMAP and STAMP.

Site E31 (Anthony, KS; Fig. 3c) is shown as an outlier, where LIS soil moisture tracks very close to that observed in terms of absolute range and drydown behavior. Interestingly, this is a site where the prescribed soil type in LIS is sand, but the observed type is silt loam. The hydraulic parameters corresponding to sand are the most extreme in terms of allowing for rapid drying and overall drier wilting point and minimum soil moisture values. So in a sense, at E31 the model obtains a better result for the wrong reasons by designating the site as sand in order for it to exhibit behavior like that of silt loam.

Figure 4 presents scatterplots of the timeseries data in Fig. 3, and compares the in-situ STAMP data directly with that of LIS and SMAP. The higher range of soil moisture values in LIS is apparent at E33 and E38, as are the comparable SMAP and STAMP values. The higher peaks during precipitation events in SMAP are also evident, and not unexpected as L-band sensing depths are much shallower during wet conditions (Liu et al. 2012; Escorihuela et al. 2010) and retrievals characterize a wetter and more dynamic quantity of soil moisture immediately after rainfall than at other times (Schneeberger et al. 2004; Rondinelli et al. 2015).

The linear slopes that can be seen in the data (e.g. Fig. 4a) actually reflect the inherent drying rates in each product. For example, at E33 LIS has a much lower drying rate (as seen in Figs. 3ab) compared with STAMP, which is reflected in the lesser slope of Fig. 4a (less than 1:1)

as compared to that seen in Fig. 4b (nearly 1:1). The greater scatter seen at E38 in Fig. 4c is the
result of mismatches in the number of modeled precipitation events vs. those observed locally at
this site (as in Fig. 3b). At E31 (Fig. 4e), the tighter relationship and slope approaching 1:1 is the
result of the unrealistic sandy soil parameters, as discussed above.

A summary of the performance of LIS and SMAP versus that of STAMP at all 17 ARM-391 392 SGP sites is presented in Table 2 in terms of bias, unbiased RMSE, and RMSE statistics over the JJA 2016 period. At 13 of the sites, SMAP bias is within +/- 0.04 m³m³ and unbiased RMSE is 393 within 0.06 m³m³, not far from the mission target of +/- 0.04 m³m³ at the SMAP 394 395 calibration/validation sites, which is impressive given these sites are independent (uncalibrated) and varied in terms of soil type and land cover characteristics. The performance of LIS is largely 396 397 inconsistent, with quite large bias and RMSE values (> $0.10 \text{ m}^3\text{m}^3$) at a number of sites possibly due to mismatches in soil type versus those observed and the rigid parameter values that determine 398 the overall soil moisture climatology in the Noah LSM. Other potential influences are the rooting 399 400 depth, litter, and GVF in the LSM not matching what is observed at these sites. The unbiased RMSE statistics for LIS are much better, further indicating the importance of reducing the 401 systematic error in the LIS results and the potential benefit of LSM calibration and parameter 402 estimation approaches. 403

As discussed in Section 1, the ultimate impact of soil moisture on coupled NWP is felt through the surface flux connections of latent and sensible heat. Thus, it is not only important to intercompare the different soil moisture products as above, but also to assess what the implications of those soil moisture characteristics (and climatologies) are in terms of the surface energy balance and transfer of heat and moisture to the atmosphere. In Fig. 5, fluxes from the LIS simulations (averaged across the Control, GDAS, and VIIRS runs) at the three sites in Figs. 3–4 are shown

versus those observed by the ARM ECOR stations. Averaged daytime diurnal cycles (hourly data) 410 are calculated for the JJA 2016 period, and they show that at E33 and E38 there is a distinct 411 overestimation of latent heat flux by LIS-Noah. Sensible heat fluxes are generally comparable 412 between the model and flux towers. 413

When looking at all six ECOR sites (Fig. 5d), the overestimation of latent heat flux is more 414 415 apparent, with differences approaching 200 Wm². However, there is not the typical Bowen ratio compensation of lower sensible heat flux, which indicates (and is confirmed in Fig. 5e) that there 416 is a significant overestimation of available energy in LIS at these sites. The tendency for LIS to 417 have ample soil moisture then leads to the partitioning of excess available energy into latent, rather 418 than sensible, heat flux. A detailed radiation analysis at these sites indicates that the extra available 419 420 energy in LIS is a result of slight phase differences in downward shortwave radiation from LIS (NLDAS-2 forcing) vs. observed, in combination with a lower albedo in LIS vs. observed over 421 422 this region. Overall, these higher evaporation rates into the atmosphere should have coupled L-A 423 implications, which may lead to reduced PBL growth, more humidity and lower temperatures near the surface and in the PBL, and could impact moist processes and feedbacks that support clouds 424 and precipitation. 425

426

427

a. Intercomparison of Soil Moisture ICs

5. Coupled Case Study Results

428 Near-surface soil moisture from the suite of IC approaches discussed in Section 2 are shown in Fig. 6, valid on 12 UTC on 9 June, 11 July, and 28 August 2015. Although the coupled 429 430 case study focuses on 11 July, the June and August dates are shown to compare soil moisture conditions earlier and later in the summer season, both before and after the typical seasonal 431 drydown in the SGP region. The spatial heterogeneity of SMAP across the domain is comparable 432

433 to that of the other products in terms of overall variability and range of soil moisture (from dry to wet). The LIS simulations have the highest spatial resolution (1km) and therefore depict more 434 local-scale features, many of which reflect the soil type dataset. The 'off-the-shelf' products show 435 only coarser features, limited by the model resolution in each (ranging from 12.5-33 km). SMAP 436 also shows regions of higher soil moisture (compared to other products) just after precipitation 437 438 events (e.g. 11 July in Eastern Kansas), which is consistent with the behavior seen in Fig. 3 regarding the precipitation peaks in SMAP being larger than observed or modeled using thicker 439 soil layers. 440

Generally, over dry regions SMAP tends to be drier than the other products, while GFS 441 and NARR tend to be wetter. SMAP is known to dry down faster than the Noah LSM (Shellito et 442 443 al. 2016), and likely has a true retrieval depth that is shallower than the published '5 cm', as nearsurface soil layers (top 2–3 cm) dry down much faster than the 5–10 cm layer. The true SMAP 444 retrieval depth is further complicated by vegetation effects and the soil moisture itself, and likely 445 446 varies both in time and space as a result. The coarse model products (using Noah LSM and the 0-10cm layer) are wetter. This is likely due to a combination of a deeper top soil layer (0-10-cm 447 depth), inaccuracy of the soil hydraulic parameters, and the coarse horizontal model resolution, 448 which all contribute to restricting the model's response to higher resolution land surface data. LIS, 449 on the other hand, shows regions of very dry soil (consistent with the SMAP patterns) as a result 450 451 of retaining the 1 km soils information as well as local vegetation and precipitation patterns that allow for more extensive dry downs (particularly in late August). 452

It should be noted that it is not possible to objectively evaluate which is the most accurate soil moisture IC. Each IC approach provides a representation of soil moisture that is reliant on (physical or retrieval) model assumptions, and in-situ data is too sparse to convincingly validate

456 each across a large 1 km resolution domain. However, understanding the differences and what causes them (e.g. resolution, SMAP retrieval, layer depth, input parameters, etc.) is key to 457 understanding the potential coupled impacts of each IC. To better parse out these differences, Fig. 458 7 presents PDFs of the soil moisture ICs in Fig. 6 on each of the three dates. SMAP is skewed 459 towards drier values, as discussed above, and the coarser products are much wetter (GFS, NLDAS) 460 461 with the LIS runs in between. On 11 July, there is a bimodal distribution in SMAP and the LIS runs, as a result of each capturing the spatial heterogeneity generated by recent localized 462 precipitation over part of the domain creating distinct wet and dry regimes. Notably, the coarser 463 464 products (GFS) do not capture this bimodal distribution nearly as well. Another striking difference can be seen on 28 August, where GFS is much wetter and more narrowly distributed as compared 465 466 to LIS, SMAP, and NLDAS-2.

467 Overall, there are three important takeaways from Figs. 6–7, in that 1) the climatologies of 468 soil moisture differ significantly based on the source of the IC (i.e. SMAP, high-resolution LSM 469 spinup, or off-the-shelf products), 2) ICs based solely on SMAP tend to be drier overall, but capture 470 the spatial variability of the region, and 3) stark differences in spatial distributions suggest that the 471 choice of IC is likely to have significant downstream coupled impacts across the domain.

472

b. Coupled Case Study – 11 July 2015

473 I. LOCO ANALYSIS

Coupled NU-WRF simulations, initialized by the suite of soil moisture conditions in Fig. 6b, were performed for 24h beginning at 12 UTC on 11 July, 2015. As described in Section 3, SMAP soil moisture values were directly inserted as the top layer soil moisture in the NLDAS-2 and NARR profiles and are referred to as SMAP+NARR and SMAP+NLDAS. The impact of each IC is reflected in the process chain (Eq. 1) variables that connect soil moisture to evaporation

479 (sensible and latent heat flux), PBL evolution (mixed-layer temperature, humidity), PBL height, ambient weather (2-meter temperature and humidity), and clouds and precipitation. Seven hours 480 into the simulation (19 UTC), there are large differences across the runs in each of these variables, 481 reflecting the relative impact of wetter soil moisture conditions on increased evaporation, 482 decreased PBL growth, lower temperature, higher humidity, and modification of precipitation 483 484 intensity and location. An example is shown in Fig. 8 in terms of soil moisture IC differences between NARR and LIS-GDAS at 12 UTC, and the downstream impacts on latent and sensible 485 heat flux (~200-300 Wm-2), PBL height (~800-1000 meters), and 2-meter temperature and 486 humidity (~2-3K; ~3-4 g kg-1, respectively) in midafternoon (19 UTC). The impact of the soil 487 moisture IC differences and drier (wetter) regions can clearly be seen carried through towards 488 489 higher (lower) sensible (latent) heat fluxes, larger (reduced) PBL growth, warmer (cooler) temperatures, and lower (higher) humidity at 2-meters. The relatively drier LIS-GDAS conditions 490 491 overall support higher sensible heat flux, PBL heights, and temperatures later in the day throughout 492 much of the domain, illustrating the coupled impacts of soil moisture ICs.

While Fig. 8 presents a standard single variable assessment, the integrated metrics of LoCo 493 can be used for a more qualitative and comprehensive assessment of the fully coupled impacts of 494 495 soil moisture ICs. Figure 9 presents the mixing diagram analyses at the ARM CF and Ellis, KS sites for each simulation, along with the derived Bowen and entrainment ratios (as in Santanello 496 497 et al. 2009). As shown in Fig. 6b and based on SMAP, the CF site is located in a wet region having just received precipitation and Ellis is in the western much drier part of the domain, so there is a 498 natural contrast in conditions at these two sites. At the CF site, the mixing diagram signatures are 499 500 vertically oriented with little change in humidity throughout the day, as a result of only moderate PBL growth and entrainment and little spread across simulations (Fig. 10a, 11a), as might be 501

502 expected for a wet site. There is only small divergence in the co-evolution of 2-meter temperature 503 and humidity across the runs, with the exception of the GFS simulation, which employs GFS 504 atmospheric IC/BCs, whereas the remainder of the simulations use NARR. Thus, soil moisture 505 does not seem to impact the results nearly as much as the choice of GFS or NARR atmospheric 506 data at this location.

507 At the Ellis site, there is much larger diurnal variability in temperature and humidity, and larger entrainment fluxes of dry and warm air into the PBL, as would be expected at a dry site. 508 Bowen ratios also vary from 0.73 to 2.55 depending on the choice of soil moisture IC. Once again, 509 510 GFS is the outlier and evolves differently over time. Overall, the soil moisture ICs are directly reflected in the surface Bowen ratio and EFs (Fig. 9b) with the SMAP-based runs (driest soil 511 512 moisture) having the lowest EF (high sensible heat flux) and the wetter off-the-shelf products (GFS, NLDAS-2) producing the highest values (high latent heat flux). These differences in surface 513 514 energy balance are amplified at Ellis (vs. that seen at CF) by the much larger PBL growth and 515 spread across simulations (Fig. 10b, 11b). At this site, the wetter ICs of GFS and NLDAS tend to 516 limit PBL growth while the SMAP and LIS-GDAS runs easily reach over 3 km. It should also be noted that all runs tend to overestimate PBL height at both sites throughout the daytime period, so 517 those with wetter ICs overall that limit PBL growth are closer to observed. 518

519 Overall, these two contrasting sites demonstrate that soil moisture ICs can impact PBL and 520 L-A coupling, but the magnitude depends on the relative range and spread of soil moisture (and 521 atmosphere vs. soil limited regime) across the ICs, and whether the PBL is sensitive to the surface 522 flux partitioning. A look at the four Noah LSM soil layers for each of the simulations provides 523 further insight as to the potential role of soil moisture ICs. At the CF site (Fig. 12a), the second 524 layer of soil moisture is generally similar across all IC products and greater than 0.25 m3 m-3.

This second layer (10-40 cm) represents more of the root zone, and thus controls the majority of evapotranspiration. These soil moisture values are all in the atmosphere-limited regime, and there is little difference across simulations with each producing high evaporative fraction that limits PBL growth.

On the other hand, at the Ellis site (Fig. 12b) conditions are much drier, particularly in the 529 530 root zone, for the LIS and NARR ICs, but wetter in the second layer in NLDAS and GFS. This creates a disparity in EF (Fig. 10b) across ICs. Furthermore, the SMAP direct insertion into 531 NLDAS-2 versus NARR produces different surface flux and resultant PBL growth as a result of 532 the wet (NLDAS-2) vs. dry (NARR) root zone of each. At this site, it is not the dry SMAP near-533 surface soil moisture that controls the surface energy balance, rather the deeper soil layers which 534 535 in this case are derived from NLDAS-2 and NARR. This is an important result in that it highlights the potential limited role of SMAP on L-A coupling if combined with other products that are not 536 537 consistent (and why a direct insertion approach is not recommended), even when SMAP is much 538 drier than the layers below.

539 II.

. LAND VS. ATMOSPHERIC IC IMPACTS

Having parsed out the soil moisture IC impacts, it is worthwhile isolating and examining 540 the impact of the atmospheric ICs as well, given the outlier behavior of the GFS simulation seen 541 in Fig. 9. Fig. 13 shows mixing diagrams and evaporative fraction versus PBL height analyses, 542 543 for only the GFS and NARR simulations, at the CF and Ellis sites in addition to two other sites (36.0 N, 100.0 W; 39.0 N, 97.0 W) across the domain that represent different surface and 544 atmospheric conditions. Mixing diagrams can be used to show the diurnal behavior of humidity 545 (x-axis) and temperature (y-axis) simultaneously with the surface latent and sensible heat flux 546 vectors and atmospheric response (PBL entrainment and advection) vectors. In Fig. 13, the mixing 547

diagram plots show an initial dry bias in GFS 2-meter humidity at 12 UTC (7am local time) relative 548 to that of NARR and that observed at CF and Ellis. The ensuing daytime evolution of temperature 549 and humidity then differs considerably across the sites. At the CF site, GFS and NARR remain 550 parallel to each other, with the initial dry GFS bias persisting throughout the day (with comparable 551 temperature evolution in each). Fig. 13b shows that the EF (i.e. land ICs) and PBL height (i.e. 552 553 initial atmospheric profiles) are similar in GFS and NARR, and hence there was no coupled mechanism to impact the GFS humidity bias during the day. In addition, low-level winds were 554 weak and variable, thus limiting any potential impact of horizontal advection. 555

In contrast, at Ellis the initial dry bias in GFS is overcome by NARR by the end of the day, 556 with NARR drying out significantly. This can be explained by the drier soil moisture IC at this 557 558 site in NARR, which promotes lower EF, combined with significant PBL growth and dry air entrainment, and generates a PBL with lower humidity. NARR humidity ends up further from the 559 560 observations at this site, likely due to a dry IC of soil moisture. As NARR atmospheric IC/BCs 561 were used to drive all the soil moisture IC permutations except for GFS, this is an important result 562 particularly as the LIS and SMAP ICs tend to be even drier than the default NARR ICs (and thus even further from observed 2-m humidity). 563

At the third site (Fig. 13ef), the GFS initial dry bias is apparent, but then eroded over time with GFS approaching similar humidity values of NARR (which does not dry out during the day). Each has similar soil moisture ICs at this site, so the land influence is eliminated. However, a closer look at the vertical profiles of temperature and humidity (not shown) indicate that in GFS the PBL grows more slowly and into a more humid layer than NARR, which tends to increase and cap the overall humidity in the PBL including at 2 meters. At the final site (Fig. 13gh), the GFS dry bias is also reduced over time as a combination of afternoon moistening in GFS and drying in 571 NARR, despite having similar soil moisture ICs and evaporative fraction. This can be attributed to a combination of deeper PBL growth and dry air entrainment in NARR, along with GFS 572 eventually reaching a phase of PBL growth into a more humid layer in the afternoon (not shown). 573 Overall, these results demonstrate that land, atmospheric and PBL ICs and processes can 574 575 have varying relative impacts on L-A coupling and ambient weather prediction. They also suggest 576 that it is unlikely that changes in a single component of initialization (e.g. soil moisture) will have uniform or spatially/temporally consistent impacts on NWP across the domain of interest, and will 577 still be modulated by the land or atmospheric conditions (and inherent biases) being introduced 578 579 elsewhere in the coupled system.

580

III. AMBIENT WEATHER STATISTICS

Following this approach, typical NWP benchmarking statistics can now be examined under the context of LoCo and land versus atmospheric ICs. The LoCo analysis in Figs. 9–12 focused on two well-instrumented sites with contrasting soil moisture conditions. However, as shown in Fig. 8, there are widespread and larger impacts seen across the full domain particularly with respect to 2-meter temperature (\sim 2–6 K) and humidity (\sim 2–6 g kg⁴). It is these ambient weather impacts that are particularly important to NWP operational centers in terms of forecast performance and improvement, as well as public perception.

Figure 14 shows the 2-m RMSE and bias statistics timeseries for temperature and humidity from each of the coupled NU-WRF simulations, for the 24h period beginning at 12 UTC on 1 July 2015. These statistics were calculated hourly based on the NCEP ADP Global Upper Air Surface Weather Observations (<u>https://rda.ucar.edu/datasets/ds337.0/</u>) dataset that includes 153 sites sampled across the SGP domain. This is a typical NWP center approach, focused on sensible weather impacts that are readily observable, when assessing the impacts of new datasets,

594 parameters, physics, ICs, and data assimilation. A bird's eye assessment of Fig. 14 in this context may be that soil moisture ICs do not have large or systematic impacts on temperature and humidity 595 forecasts, and in effect it would be difficult to conclude which is the 'best' IC. For the daytime 596 period (7am-7pm), it could be argued that NLDAS-2 and GFS have the lowest RMSE values and 597 biases, and that SMAP and the LIS runs have the largest. This would be counterintuitive to the 598 599 idea that NLDAS-2 and GFS are coarse, default and off-the-shelf products whereas LIS and SMAP 600 are higher-resolution and observationally-driven. This may lead to conclusions that improved land ICs do not improve NWP. 601

602 However, based on the knowledge gleaned in the prior sections using integrated LoCo metrics, we can better understand these results in the context of the role of land versus atmospheric 603 604 ICs, in particular that of soil moisture and SMAP. The lowest daytime temperature errors (Fig. 14ab) are seen in GFS and NLDAS-2, and the highest are in the SMAP+NARR simulation. As 605 606 GFS and NLDAS are the wettest ICs in terms of soil moisture, these act to reduce the overall warm 607 bias across the domain, while the SMAP and NARR runs are the driest, which tends to amplify 608 the warm bias over the domain. In terms of temperature bias overall, there is a slight warm bias 609 at initialization that is then amplified throughout the day, which is likely a result of a net radiation 610 (driven by downward shortwave and underestimation of localized cloud cover) overestimation at the surface driven by the NU-WRF (GSFC) radiation and microphysics schemes in combination 611 612 with lower than observed surface albedo in LIS (as in the offline case). However, while the temperature biases (Fig. 14b) appear to remain relatively constant over the daytime in each of the 613 runs, the actual locations of these biases shift significantly over time from the northern to southern 614 part of the domain (Fig. 15bcde). 615

The humidity statistics (Fig. 14d) also indicate that NLDAS-2 tends to have the lowest 616 617 bias, and that all the NARR-driven runs tend to dry out rapidly during the daytime despite higher quality atmospheric ICs, with the driest (SMAP+NARR) runs performing worst. The GFS run 618 619 and the IC dry bias can be clearly seen here, even across all 153 sites in this analysis, and overall remains constant during the daytime. Once again, the wetter soil moisture ICs tend to perform 620 621 best, as they are countering an inherent warm, dry bias in the coupled system. The envelope of 622 RMSE and biases in these plots is generally narrow, but these are averages across many points and a large domain. 623

624 The inflection point seen in the temperature bias at 7–9pm is a notable feature as well in these results, and is due to late afternoon precipitation in the northern part of the domain which is 625 626 overestimated compared to observations, and tends to cool down the region overall (compensating for the warm biases in the south). What follows in the SMAP direct insertion runs is a linear 627 628 decrease in temperature bias, and a significant cooling that takes place during the entire nighttime 629 period (unrelated to precipitation) particularly in the western part of the domain. This is, in fact, 630 due to the direct insertion of much drier SMAP values on top of NARR and NLDAS-2 profiles. As discussed earlier, this approach is not recommended as it disrupts the soil moisture and 631 632 temperature equilibrium from the top layer vs. three deeper layers in the Noah LSM. This direct insertion did not show negative impacts during the daytime, and as mentioned it was often the root 633 634 zone soil moisture of NARR and NLDAS that dominated the surface energy balance. At nighttime, however, the very low SMAP soil moisture and 5-cm upper soil layer led to changes in the thermal 635 properties of the near-surface soil that promote rapid cooling at night. The thermal impacts of the 636 daytime were overcome by the dominance of evaporation, but it is evident that a more robust 637

approach to merging SMAP with existing soil profiles from other products should be performed ifusing as ICs for NWP.

Fig. 15 shows an example of how these 2-meter statistics vary in space and time, and in 640 response to the initial SM differences in GFS and NARR. These results indicate that there is much 641 642 more divergence across runs regionally and at specific sites than is evident in the lumped timeseries 643 statistics, often ranging in magnitude to near 6 K and 6 g kg⁻¹ in temperature and humidity, respectively. The initial dry bias in GFS is evident across much of the central and southern SGP 644 (Fig. 15g), while NARR shows a slight wet bias. Because NARR soil moisture is drier than GFS 645 646 (Fig. 15a) especially over the central part of the domain, NARR ends up with a strong dry humidity bias by the end of the day, whereas GFS improves its initial dry atmospheric bias where the soil 647 648 tends to be wetter. The location of the warm bias and shift from north to south over the course of the day mentioned above is also apparent in Figs. 15bd. These plots show the components that 649 650 must be simultaneously considered when interpreting NWP statistics and assessing new 651 parameterization or initialization approaches, including the background atmospheric IC biases, the 652 change in land surface ICs, and the evolution of each as dictated by the LSM and PBL schemes throughout the day. 653

Overall, this analysis demonstrates that the aggregated statistics commonly employed by NWP centers are often not systematic in space or time, and can miss the important nuances and drivers behind them thus confounding the conclusions made. In essence, each point in Fig. 15 has its own 'coupling story' that is dependent on many factors, and thus a change to the land IC (or LSM physics) is unlikely to produce uniform impacts or improvements. At the same time, any perceived improvement could be compensating for errors elsewhere in the system. Although it takes a bit more work using integrated analyses to understand these impacts, it becomes necessary

for a true assessment of the impact of soil moisture (or any other IC, physics package, or parameterdataset) in coupled prediction.

663

6. Discussion and Conclusions

This study provides a review of current soil moisture initialization approaches used in 664 NWP, and in particular those employed by the regional weather and climate (i.e. WRF) research 665 666 and operational communities. Land ICs are often overlooked by atmospheric scientists, and as a result there have been a wide range of approaches employed using vastly different datasets in terms 667 of quality and resolution. Soil moisture tends to get most of the focus (vs. soil temperature) due 668 to its strong control on surface energy balance and surface fluxes which are the only true LSM 669 variables that the atmospheric model is sensitive (and coupled) to. Here, we isolate the impacts of 670 671 these varied soil moisture initialization approaches on coupled forecasts using a very pragmatic, yet integrative (in the L-A sense) approach using NASA's LIS, SMAP, and NU-WRF assets. 672

673 Results and their implications for NWP modeling communities are as follows:

674 1) Offline analysis of satellite, in-situ, and LSM products confirms that SMAP soil
675 moisture performs quite well in terms in spatial and temporal consistency (i.e. low noise),
676 capturing heterogeneity, precipitation and drydown events, and overall looks like a 'real'
677 observable soil moisture field.

678 2) There remains an observability issue due to differing LSM and observed (satellite and
679 in-situ) soil moisture climatologies that are largely due to differences between LSM
680 physics and the actual soil hydraulic properties and vegetation characteristics which affect
681 the satellite and in-situ measurements.

682 3) There is a wide variation in the spatial distribution of soil moisture across commonly
683 used NWP initialization approaches, including those from satellite-infused, high-resolution
684 LSM spinup, and 'off-the-shelf' atmospheric model based products.

4) The sensitivity of coupled impacts is not limited to the near-surface soil layer as the root
zone may still play a dominant role in governing surface fluxes and L-A coupling, thus
limiting the potential impact of near-surface layer observations in isolation.

688 5) Coupled impacts of land ICs are clearly visible downstream in the NWP forecasts
689 (including surface fluxes, PBL evolution and entrainment, and ambient weather), and can
690 be better understood and quantified using integrated LoCo metrics.

6) By simultaneously assessing land vs. atmospheric ICs in a LoCo framework, the question of whether improvements in traditional NWP statistics are achieved for the right reasons can better be addressed, and in turn shed light on the true potential impact of improved soil moisture ICs.

695 It should be noted that additional case study simulations were performed in June 2015, 696 (Fig. 4a), and the results were largely consistent with those from 11 July. Specifically, a warm atmospheric IC bias dominated the region, and as a result the wettest soil moisture ICs (once again 697 698 the coarse GFS and NLDAS-2 products) produced the best 2-meter statistics. As for the July case, in isolation this would suggest that the coarse soil moisture products are better than the high-699 700 resolution or observed products, when actually the coarse products are only best for this particular modeling system and atmospheric forcing where they are correcting inherent biases. Studies that 701 show uniform impacts (e.g. drying) after satellite assimilation across a wide domain are likely to 702 703 see some improvements in sub-regions simply as a matter of luck, correcting for inherent model 704 biases (and vice-versa for degradation).

705 This underscores the importance of understanding inherent coupled model behavior before 706 introducing new datasets or ICs, so that their impacts can be more accurately assessed. As satellite 707 data continues to improve in quality and resolution, there can be greater incorporation of more 708 accurate observations into coupled models. Understanding their impacts requires quantification of process-chain impacts in order to avoid compensating errors. It will be difficult for highly-709 710 tuned systems to incorporate new datasets and see direct improvements as a result, but the approaches here will help aid in identifying what remaining model biases and deficiencies exist in 711 order to further fully integrated model development and improvement. 712

713 While the statistical significance of the limited number of deterministic simulations performed here is clearly lacking, the methodology remains valid as an approach that can be 714 715 adopted by operational and cycled modeling centers. It is clear from this work that biases and forecast errors can be best understood and improved via integrated (LoCo-type) assessment of 716 717 relative impacts of land surface and atmospheric (specifically in PBL vertical profiles) ICs that are 718 used to drive the coupled simulations. One example where this can be applied is in the work of 719 Fang et al. (2018), where novel approaches to assimilating satellite-based land surface temperature were performed, and the regional and temporal impacts on 2-meter statistics could be better 720 721 understood with more integrated process-level understanding. This approach also reduces the potential for mischaracterizing forecast impacts and improvements that may result from 722 723 compensating errors or misattribution.

In terms of the offline soil moisture analysis, it is clear that the governing soil and vegetation physics and parameters in the Noah LSM do not allow for soil drying behavior that is observed from satellite or in-situ. While likely due primarily to soil texture and rigid lookup tables of soil hydraulic properties (setting the maximum and minimum range of soil moisture), there are

728 also potential impacts on soil moisture dynamics from improper rooting depth specification, lack 729 of leaf litter, and inconsistencies in GVF in the LSM versus what is observed. Incidentally, the wetter LIS runs (compared with SMAP) were actually advantageous in the coupled runs due to the 730 warm, dry bias of NARR and GFS. Even when modifying the upper 10cm of soil layering to 731 create a 2, 3, or 5cm top layer, the soil drying dynamics were only marginally impacted indicating 732 733 there are structural limitations in the LSM that prohibit it from having the observability necessary for unbiased data assimilation or direct comparison of soil moisture with satellite or in-situ 734 observations. Clearly, the structural deficiencies in the LSM and systematic errors need to be 735 736 addressed via calibration and parameter estimation approaches in order to better match the soil moisture dynamics with those observed. However, avoiding so-called 'effective' parameters that 737 absorb additional unrelated model errors and estimating physically meaningful soil characteristics 738 remains a challenge. 739

740 These results highlight the critical nature of soil type information, parameter lookup tables, 741 and the difficulty in modeling soil moisture dynamics at the local scale using only coarse soils 742 information. It also highlights the relative inflexibility of LSM parameters and soil physics, 743 whereby soil moisture results can only be improved to a limited degree when introducing 744 improved, high-resolution inputs such as atmospheric forcing and vegetation characteristics. To address this, there are community efforts underway in GEWEX focused on reexamination of 745 746 pedotransfer functions and soils in LSMs, and also to improve the collaboration between the soils 747 and LSM communities themselves.

Another interesting result (not shown) is that the soil moisture IC differences at 12 UTC tend to diminish over time throughout the domain (e.g. by 19 UTC). When examining timeseries at specific sites, it is apparent that when comparing two simulations with different ICs, the wetter

751 of the simulations tends to dry down over time and at a more rapid rate than the drier simulations. 752 This can be traced once again to the Noah LSM soil physics and hydraulic parameters that determine the levels of atmosphere and soil limited evaporation. In the case of NLDAS-2 vs. 753 SMAP, for example, SMAP is already very dry and soil-limited such that it doesn't change much 754 or dry out further while at the same time the wetter NLDAS-2 is in a very active evaporative stage 755 756 and dries out rapidly, thus converging towards the SMAP values. As a result, it is common for IC differences to be dampened over time due to evaporative physics, as opposed to an initial 757 perturbation that is amplified. Exceptions to this occur when wetter soil moisture promotes 758 759 precipitation, and vice-versa, over a more extended period of time.

A related variant of soil moisture ICs can be generated by performing data assimilation 760 761 during an offline spinup (e.g. Santanello et al. 2016). Based on the largely incremental soil moisture DA impacts in studies to date combined with the results here in terms of the narrow 762 763 envelope of LIS simulations with different parameters and forcing, it is likely that SMAP 764 assimilation will not lead to vastly different results or ICs. The CDF matching approach to bias 765 correction makes large impacts even less likely, as discussed in Kumar et al. 2015 and Navari et al. 2018. The SMAP direct insertion approach taken here, while not advisable (but still 766 767 used/published in the community), was chosen as a brute force approach to see what the maximum impact of satellite soil moisture might be on the IC, while acknowledging that any proper EnKF 768 769 assimilation is likely to impact the ICs to a much lesser degree and be just another permutation of 770 a LIS run. Only via model calibration (discussed above, specifically targeting hydraulic 771 properties) that addresses systematic errors would we expect more distinct ICs and impacts on the LSM climatology and drydown behavior. 772

773 Ongoing and future work on this topic includes performing formal EnKF data assimilation 774 with SMAP and LIS, as well as LIS calibration using in-situ networks in an effort to improve LSM observability, and reduce the negative impacts of typical satellite bias correction approaches. In 775 776 addition, the capabilities of SMAP to detect agricultural and irrigation practices (largely missing or mischaracterized in LSMs) are being evaluated in an effort to improve model-data-fusion efforts 777 778 and aid in offline and coupled model development. It is clear that the community is now demonstrating that the land states and strength of land-atmosphere coupling can play a significant 779 role in the accuracy of ambient weather forecasts. Improving the initial conditions of soil moisture, 780 781 temperature, and vegetation using NASA satellite observations and assimilation systems therefore becomes even more critical, and the combination of NASA's SMAP, LIS and NU-WRF resources 782 783 will continue to be used to develop and test these approaches and coupled impacts. As a result, the continuity of missions (beyond SMAP) to provide accurate, global data records of near-surface 784 785 soil moisture remains important to consider going forward at NASA and other space agencies.

786

Acknowledgements. This work was supported by the NASA Science Utilization of SMAP
 (SUSMAP) program and Jared Entin. The authors would like to thank David Cook for extensive
 consultation on the ARM-SGP flux and soil moisture measurements, and Rajat Bindlish for
 guidance on interpretation of the SMAP retrievals.

References

- Ament, F., and C. Simmer, 2006: Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model. *Bouldary-Layer Meteorol.*, **121**, 153-174.
- Angevine, W. M., E. Bazile, D. Legain, and D. Pino, 2014: Land surface spinup for episodic modeling. *Atmos. Chem. Phys.*, **14**, 8165-8172.
- Carrera, M. L., B. Bilodeau, S. Belair, M. Abrahamowicz, A. Russell, and X. Wang, 2018: Assimilation of passive L-band microwave brightness temperatures in the Canadian Land Data Assimilation System: Impacts on short-range Numerical Weather Prediction. J. Hydrometeorol., under review
- Case, J. L., W. L. Crosson, S. V. Kumar, W. M. Lapenta, C. D. Peters-Lidard, 2008: Impacts of High-Resolution Land Surface Initialization on Regional Sensible Weather Forecasts from the WRF Model. J. Hydrometeor, 9, 1249–1266.
- Case, J. L., S. V. Kumar, J. Srikishen, G. J. Jedlovec, 2011: Improving Numerical Weather Predictions of Summertime Precipitation over the Southeastern United States through a High-Resolution Initialization of the Surface State. *Wea. Forecasting*, 26, 785–807.
- Chan, S. K., R. Bindlish, P. O'Neill, T. Jackson, E. Njoku, S. Dunbar, J. Chaubell, J. Piepmeier,
 S. Yueh, D. Entekhabi, A. Colliander, F. Chen, M.H. Cosh, T. Caldwell, J. Walker, A. Berg,
 H. McNairn, M. Thibeault, J. Martínez-Fernández, F. Uldall, M. Seyfried, D. Bosch, P.
 Starks, C. Holifield Collins, J. Prueger, R. van der Velde, J. Asanuma, M. Palecki, E.E. Small,
 M. Zreda, J. Calvet, W.T. Crow, Y. Kerr, 2018: Development and assessment of the SMAP
 enhanced passive soil moisture product. *Rem. Sens. Environ.*, 204, 931-941.
- Chen, F., K. W. Manning, M. A. LeMone, S. B. Trier, J. G. Alfieri, R. Roberts, M. Tewari, D. Niyogi, T. W. Horst, S. P. Oncley, J. B. Basara, and P. D. Blanken, 2007: Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System. J. Appl. Meteor. Climatol., 46, 694–713. doi: <u>http://dx.doi.org/10.1175/JAM2463.1</u>
- Collow, T. W., A. Robock, and W. Wu, 2014: Influences of soil moisture and vegetation on convective precipitation forecasts over the United States Great Plains. J. Geophys. Res. Atmos., 119, 9338-9358.
- Cook, D. R., 2018. Soil Temperature and Moisture Profile (STAMP) System Instrument Handbook. Ed. by Robert Stafford, DOE ARM Climate Research Facility. DOE/SC-ARM-TR-186.
- Daniels, E. E., R. W. A. Hutjes, G. Lenderink, R. J. Ronda, and A. A. M. Holtslag, 2014: Land Surface Feedbacks on Spring Precipitation in the Netherlands. *J. Hydrometeorol.*, **16**, 232-243.

- Dillon, M. E., E. A. Collini, and L. J. Ferreira, 2016: Sensitivity of WRF short-term forecasts to different soil moisture initializations from the GLDAS database over South America in March 2009. *Atmospheric Research*, 167, 196-207.
- Dirmeyer, P.A., L. Chen, J. Wu, C. Shin, B. Huang, B.A. Cash, M.G. Bosilovich, S. Mahanama, R.D. Koster, J.A. Santanello, M.B. Ek, G. Balsamo, E. Dutra, and D.M. Lawrence, 2018: Verification of Land–Atmosphere Coupling in Forecast Models, Reanalyses, and Land Surface Models Using Flux Site Observations. J. Hydrometeor., 19, 375–392, https://doi.org/10.1175/JHM-D-17-0152.1
- Dirmeyer, P. A., and Co-authors, 2016: Confronting weather and climate models with observational data from soil moisture networks over the United States. *J. Hydrometeor.*, **17**, 1049–1067.
- — —, and S. Halder, 2016: Sensitivity of surface fluxes and atmospheric boundary layer properties to initial soil moisture variations in CFSv2. Wea. Fcst., **31**, 1973-1983, doi: 10.1175/WAF-D-16-0049.1.
- Dy, C. Y., and J. C. H. Fung, 2016: Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model. *J. Geophys. Res. Atmos.*, **121**, 8777-8800.
- Environmental Modeling Center, 2003: The GFS atmospheric model. NCEP Office Note 442, 14 pp. [Available online at http://www.emc.ncep.noaa.gov/officenotes/newernotes/on442.pdf.]
- Escorihuela, M. J., A. Chanzy, J. P. Wigneron, and Y. J. Kerr, 2010: Effective soil moisture sampling depth of L-band radiometry: A case study. *Remote Sens. Env.*, 7 pp.
- Fang, L., X. Zhan, C. R. Hain, J. Yin, J. Liu, and M. A. Schull, 2018: An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches. *Remote Sens.*, 10, 625.
- Ferguson CR, JA Santanello, and P Gentine. 2016. Enhanced Soundings for Local Coupling Studies Field Campaign Report. Ed. by Robert Stafford, DOE ARM Climate Research Facility. DOE/SC-ARM-16-023.
- Findell, K. L. and E. A. B. Eltahir, 2003a. Atmospheric controls on soil moisture-boundary layer interactions: Part I: Framework development. J. Hydrometeor., 4, 552-69.
- Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015: Does Afternoon Precipitation Occur Preferentially over Dry or Wet Soils in Oklahoma? *J Hydrometeorol*, **16**, 874-888.
- Geerts, B., D. Parsons, C.L. Ziegler, T.M. Weckwerth, M.I. Biggerstaff, R.D. Clark, M.C.
 Coniglio, B.B. Demoz, R.A. Ferrare, W.A. Gallus, K. Haghi, J.M. Hanesiak, P.M. Klein, K.R.
 Knupp, K. Kosiba, G.M. McFarquhar, J.A. Moore, A.R. Nehrir, M.D. Parker, J.O. Pinto,
 R.M. Rauber, R.S. Schumacher, D.D. Turner, Q. Wang, X. Wang, Z. Wang, and J. Wurman,

2017: The 2015 Plains Elevated Convection at Night Field Project. *Bull. Amer. Meteor. Soc.*, **98**, 767–786, https://doi.org/10.1175/BAMS-D-15-00257.1

- Gomez, I., V. Caselles, M. J. Estrela, J. M. Sanchez, E. Rubio, 2018: Simulation of surface energy fluxes and meteorological variables using the Regional Atmospheric Modeling System (RAMS): Evaluating the impact of land-atmosphere coupling on short-term forecasts. Ag. Forest Meteorol., 249, 319-334.
- Gomez, I., R. J. Ronda, V. Caselles, M. J. Estrela, 2016: Implementation of non-local boundary layer schemes in the Regional Atmospheric Modeling System and its impact on simulated mesoscale circulations. *Atmospheric Research*, **180**, 24-41.
- Gomez, I., V. Caselles, and M. J. Estrela, 2015: Impacts of soil moisture content on simulated mesoscale circulations during the summer over eastern Spain. *Atmospheric Research*, 164-165, 9-26.
- Hirsch, A.L., J. Kala, A.J. Pitman, C. Carouge, J.P. Evans, V. Haverd, and D.
 Mocko, 2014: Impact of Land Surface Initialization Approach on Subseasonal Forecast Skill: A Regional Analysis in the Southern Hemisphere. *J. Hydrometeor.*, 15, 300–319, <u>https://doi.org/10.1175/JHM-D-13-05.1</u>
- Jacobs, S. J., A. J. E. Gallant, and N. J. Tapper, 2017: The Sensitivity of Urban Meteorology to Soil Moisture Boundary Conditions: A Case Study in Melbourne, Australia. J. Applied Met. Clim., 56, 2155-2172.
- Johnson, Z.F. and N.M. Hitchens, 2018: Effects of Soil Moisture on the Longitudinal Dryline Position in the Southern Great Plains. J. Hydrometeor., **19**, 273–287, https://doi.org/10.1175/JHM-D-17-0091.1
- Kala, J., Evans, J. P. and Pitman, A. J., 2015: Influence of antecedent soil moisture conditions on the synoptic meteorology of the Black Saturday bushfire event in southeast Australia. *Q.J.R. Meteorol. Soc.*, **141**, 3118-3129. doi:10.1002/qj.2596
- Kalverla, P. C., G.-J., Duine, G.-J. Steeneveld, T. Hedde, 2016: Evaluation of the Weather Research and Forecasting Model in the Durance Valley Complex Terrain during the KASCADE Field Campaign. J. Appl. Meteor. Clim., **55**, 861-882.
- Kennedy, A.D., X. Dong, B. Xi, S. Xie, Y. Zhang, and J. Chen, 2011: A Comparison of MERRA and NARR Reanalyses with the DOE ARM SGP Data. *J. Climate*, **24**, 4541–4557, https://doi.org/10.1175/2011JCLI3978.1
- Koster, R. D., and Co-authors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment, *Geophys. Res. Lett.*, **37**, L02402, doi:10.1029/2009GL041677.

— — —, and Coauthors, 2004: Regions of strong coupling between soil moisture and precipitation. *Science*, **306**, 1138–1140.

Kumar, S. V., P. A. Dirmeyer, C. D. Peters-Lidard, R. Bindlish, and J. Bolten. 2017: Information theoretic evaluation of satellite soil moisture retrievals. Remote Sensing of Environment, 204, 392-400 [10.1016/j.rse.2017.10.016]

———, Peters-Lidard, C. D., Santanello, J. A., Reichle, R. H., Draper, C. S., Koster, R. D., Nearing, G., and Jasinski, M. F., 2015: Evaluating the utility of satellite soil moisture retrievals over irrigated areas and the ability of land data assimilation methods to correct for unmodeled processes. Hydrol. Earth Syst. Sci., 19, 4463-4478, https://doi.org/10.5194/hess-19-4463-2015.

- ———, R.H. Reichle, C.D. Peters-Lidard, R.D. Koster, X. Zhan, W.T. Crow, J.B. Eylander, and P. R. Houser, 2008: A Land Surface Data Assimilation Framework using the Land Information System: Description and Applications. *Advances in Water Resources*, **31**, 1419-1432, <u>DOI:10.1016/j.advwatres.2008.01.013</u>
- Lawston, P. L., J. A. Santanello, S. V. Kumar, 2017: Irrigation signals detected from SMAP soil moisture retrievals. *Geophys. Res. Letters*, **44**, 11,693-12,036.
- Lawston, P.M., J.A. Santanello, B.F. Zaitchik, and M. Rodell, 2015: Impact of Irrigation Methods on Land Surface Model Spinup and Initialization of WRF Forecasts. J. Hydrometeor., 16, 1135–1154, <u>https://doi.org/10.1175/JHM-D-14-0203.1</u>
- Lin, T.-S., and F.-Y. Cheng, 2016: Impact of Soil Moisture Initialization and Soil Texture on Simulated Land–Atmosphere Interaction in Taiwan. *J. Hydrometeorol.*, **17**, 1337-1355.
- Liu, Y.Y., Dorigo, W.A., Parinussa, R.M., de Jeu, R.A.M., Wagner, W., McCabe, M.F., Evans, J.P., van Dijk, A.I.J.M., 2012: Trend-preserving blending of passive and active microwave soil moisture retrievals, *Remote Sensing of Environment*, **123**, 280-297, doi: 10.1016/j.rse.2012.03.014.
- Massey, J. D., W. J. Steenburgh, J. C. Knievel, and W. Y. Y. Cheng, 2016: Regional Soil Moisture Biases and Their Influence on WRF Model Temperature Forecasts over the Intermountain West. *Wea. Forecasting*, **31**, 197-216.
- Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. *Bull. Amer. Meteor. Soc.*, **87**, 343–360.
- Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. *Proc. Nat. Acad. Sci.*, **109**, 12398–12403.
- Peters-Lidard, C.D., E. M. Kemp, T. Matsui, J. A. Santanello, Jr., S. V., Kumar, J. P. Jacob, T. Clune, W.-K. Tao, M. Chin, A. Hou, J. L. Case, D. Kim, K.-M. Kim, W. Lau, Y. Liu, J.-J. Shi, D. Starr, Q. Tan, Z. Tao, B. F. Zaitchik, B. Zavodsky, S. Q. Zhang, M. Zupanski, 2015:

Integrated modeling of aerosol, cloud, precipitation and land processes at satellite-resolved scales. *Environmental Modelling & Software*, **67**, 149–159.

- Rajesh, P. V., S. Pattnaik, U. C. Mohanty, D. Rai, H. Baisya, P. C. Pandey, 2017: Land urface sensitivity of monsoon depressions formed over Bay of Bengal using improved high-resolution land state. *Dyn. Of Atmosphere and Oceans*, 80, 155-172.
- Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture, *Geophys. Res. Lett.*, **31**, L19501, doi: 10.1029/2004GL020938.
- Rodell, M., P.R. Houser, A.A. Berg, and J.S. Famiglietti, 2005: Evaluation of 10 Methods for Initializing a Land Surface Model. J. Hydrometeor., 6, 146–155, https://doi.org/10.1175/JHM414.1
- Rodell, M., P.R. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C.-J. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J.K. Entin, J.P. Walker, D. Lohmann, and D. Toll, 2004: The Global Land Data Assimilation System. *Bull. Amer. Meteor. Soc.*, 85(3), 381-394, 2004.
- Rondinelli, W. J., B. K. Hornbuckle, J. C. Patton, M. H. Cosh, V. A. Walker, and B. D. Carr, 2015: Different Rates of Soil Drying after Rainfall Are Observed by the SMOS Satellite and the South Fork in situ Soil Moisture Network. *J. Hydrometeorol.*, 16, 889-903.
- Santanello, J.A., P.A. Dirmeyer, C.R. Ferguson, K.L. Findell, A.B. Tawfik, A. Berg, M. Ek, P. Gentine, B.P. Guillod, C. van Heerwaarden, J. Roundy, and V. Wulfmeyer, 2018: Land-Atmosphere Interactions: The LoCo Perspective. *Bull. Amer. Meteor. Soc.*, 99, 1253–1272, https://doi.org/10.1175/BAMS-D-17-0001.1
- — —, S. V. Kumar, C. D. Peters-Lidard, and P. M. Lawston, 2016: Impact of Soil Moisture Assimilation on Land Surface Model Spinup and Coupled Land-Atmosphere Prediction. J. Hydrometeorol., 17, 517-540.
- ---, J. Roundy, and P. A. Dirmeyer, 2015: Quantifying the Land-Atmosphere Coupling Behavior in Modern Reanalysis Products over the U.S. Southern Great Plains. J. Climate, 28(14), 5813-5829.
- ———, S. V. Kumar, C. D. Peters-Lidard, K. Harrison, and S. Zhou, 2013a: Impact of Land Model Calibration on Coupled Land-Atmosphere Prediction. *J. Hydromet.*, **14**, 1373-1400.
- — , C. D. Peters-Lidard, A. Kennedy, and S. V. Kumar, 2013b: Diagnosing the Nature of Land–Atmosphere Coupling: A Case Study of Dry/Wet Extremes in the U.S. Southern Great Plains. J. Hydrometeor, 14, 3–24.
- — , M. Friedl, and M. Ek. 2007: Convective Planetary Boundary Layer Interactions with the Land Surface at Diurnal Time Scales: Diagnostics and Feedbacks. J Hydrometeorol. 8, 1082-1097.

- ———, M. Friedl, and W. Kustas. 2005: Empirical Investigation of Convective Planetary Boundary Layer Evolution and its Relationship with the Land Surface. *J Appl Meteorol.*, 44, 917-932.
- Schneeberger, K., M. Schwank, C. Stamm, P. de Rosnay, C. Matzler, and H. Fluhler, 2004: Topsoil structure influencing soil water retrieval by microwave radiometery. *Vadose Zone*, 3, 1169-1179.
- Seneviratne, S. I., and Coauthors, 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. *Geophys Res Lett*, **40**, 5212-5217.
- Shellito, P. J., and E. E. Small, 2017: Controls on surface soil drying rates observed by SMAP and simulated by the Noah land surface model. *Hydrol., Earth Syst. Sci.*, **22**, 1649-1663.

--, and co-authors, 2016: SMAP soil moisture drying more rapid than observed in situ following rainfall events. *Geophys. Res. Letters*, **43**.

- Taylor, Christopher M., de Jeu, Richard A. M., Guichard, Francoise, Harris, Phil P. and Dorigo, Wouter A., 2012: Afternoon rain more likely over drier soils. *Nature*, 489, 423-426. 10.1038/nature11377.
- Weckwerth, T.M., K. Weber, D.D. Turner, and S.M. Spuler, 2016: Validation of a new water vapor micropulse differential absorption lidar (DIAL). J. Atmos. Oceanic Technol., 33, 2353-2372, DOI:10.1175/JTECH-D-16-0119.1.
- Welty, J. and X. Zeng, 2018: Does soil moisture affect warm season precipitation over the Southern Great Plains? Geophysical Research Letters. https://doi.org/10.1029/2018GL078598
- Xia, Y., Ek, M., Wei, H. and Meng, J., 2012: Comparative analysis of relationships between NLDAS-2 forcings and model outputs. *Hydrol. Processes*, **26**, 467–474.
- Xiang, T., E. R. Vivoni, and D. J. Gochis, 2017: Influence of initial soil moisture and vegetation conditions on monsoon precipitation events in northwest Mexico. *Atmosfera*, **31**, 25-45.
- Zaitchik, B.F., J.A. Santanello, S.V. Kumar, and C.D. Peters-Lidard, 2013: Representation of Soil Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF). J. Hydrometeor., 14, 360–367, <u>https://doi.org/10.1175/JHM-D-12-069.1</u>

LIST OF TABLES

Table 1: Suite of offline LIS simulations with input datasets, along with suite of coupled NU

 WRF simulations with atmospheric forcing and soil layering configurations.

Table 2: Bias, unbiased-RMSE, and RMSE statistics for the average soil moisture of the three LIS simulations and the 9km enhanced SMAP-based soil moisture versus those observed at the ARM-SGP STAMP sites during JJA 2016 as grouped by soil type as reported at the STAMP sites and taken from in-situ soil samples.

LIST OF FIGURES

Figure 1: Suite of soil moisture and temperature initialization approaches used by the weather and climate communities, including example applications and models, and representative resolutions for regional models.

Figure 2: a) MODIS-based land cover and b) STATSGO-based soil type datasets used in the 1km LIS and NU-WRF simulations, along with the ARM-SGP ECOR flux (X), STAMP soil moisture (o), and Ellis, KS and Lamont, OK (star) profiling sites across the Great Plains domain.

Figure 3: Timeseries of near-surface (0-5cm) soil moisture during JJA 2016 from the suite of LIS simulations, in-situ STAMP data, and SMAP 9km enhanced retrievals at the ARM-SGP a) E33, b) E38, and c) E31 sites.

Figure 4: Scatterplots of LIS vs. STAMP and SMAP vs. STAMP near-surface (0-5cm) soil moisture from Fig. 3 during JJA 2016 at the ARM-SGP a-b) E33, c-d) E38, and e-f) E31 sites.

Figure 5: Scatterplots of hourly mean diurnal cycle sensible and latent heat fluxes over JJA 2016 from the LIS (averaged across all three LIS simulations) vs. ECOR measurements at the ARM-SGP a) E33, b) E38, c) E31 sites, d) all 6 sites, and e) the available energy (sensible + latent heat flux) at all 6 sites.

Figure 6: Near-surface soil moisture from SMAP, the three LIS permutations, and 'off the shelf' products from NLDAS-2, GFS, and NARR valid at 12Z on a) 9 June, b) 11 July, and c) 28 August 2015. Stars indicate the locations of the ARM CF (Lamont, OK) and Ellis, KS sites.

Figure 7: Spatial PDFs of near-surface soil moisture at 12Z on a) 9 June, b) 11 July, and c) 28 August 2015 from the suite of products and across the full domains shown in Fig. 6.

Figure 8: Difference in a) soil moisture ICs (LIS-GDAS – NARR) at 12 UTC, and corresponding differences at 19 UTC in NU-WRF simulated b) sensible heat flux, c) latent heat flux, d) PBL height, e) 2-meter temperature, and f) 2-meter humidity.

Figure 9: Mixing diagrams and associated Bowen and entrainment ratios (as in Santanello et al. 2009) at a) the ARM-SGP CF and b) Ellis, KS sites derived from each of the NU-WRF simulations valid from 12Z on 11 July to 00Z on 12 July 2015.

Figure 10: Mean daytime evaporative fraction vs. PBL height derived from the simulations in Fig. 9 at the a) ARM-SGP CF and b) Ellis, KS sites.

Figure 11: Diurnal cycle of PBL height at for each of the simulations in Fig. 9 and observed at the a) ARM-SGP CF and b) Ellis, KS sites.

Figure 12: Initial near-surface soil moisture values at each of the 4 Noah LSM soil layers for each of the simulations in Fig. 9 at the a) ARM-SGP CF and b) Ellis, KS sites.

Figure 13: Mixing diagrams and evaporative fraction (-) vs. PBL height (m) analyses for the NU-WRF simulations with GFS and NARR initialization on 11 July 2015 at the ab) ARM-SGP CF, cd) Ellis, KS, ef) (36.0, -100), and gh) (39.0, -97.0) sites.

Figure 14: Time series of 2-meter temperature (T2) and specific humidity (Q2) RMSE and bias statistics from the suite of NU-WRF simulations versus observations at the 153 pairs of MET sites across the SGP domain.

Figure 15: a) Difference in GFS – NARR soil moisture ICs, along with bias statistics for temperature and humidity for the NARR and GFS simulations valid at the initial (12 UTC) and evening (00 UTC) times on 11 July 2015.