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ABSTRACT 1 

The role of soil moisture in NWP has gained more attention in recent years, as studies have 2 

demonstrated impacts of land surface states on ambient weather from diurnal to seasonal scales.  3 

However, soil moisture initialization approaches in coupled models remain quite diverse in terms 4 

of their complexity and observational roots, while assessment using bulk forecast statistics can be 5 

simplistic and misleading.  In this study, a suite of soil moisture initialization approaches is used 6 

to generate short-term coupled forecasts over the U.S. Southern Great Plains using NASA’s Land 7 

Information System (LIS) and NASA Unified WRF (NU-WRF) modeling systems.  This includes 8 

a wide range of currently used initialization approaches, including soil moisture derived from ‘off-9 

the-shelf’ products such as atmospheric models and land data assimilation systems, high-resolution 10 

land surface model spinups, and satellite-based soil moisture products from SMAP.  Results 11 

indicate that the spread across initialization approaches can be quite large in terms of soil moisture 12 

conditions and spatial resolution, and that SMAP performs well in terms of heterogeneity and 13 

temporal dynamics when compared against high resolution land surface model and in-situ soil 14 

moisture estimates.  Case studies are analyzed using the local land-atmosphere coupling (LoCo) 15 

framework that relies on integrated assessment of soil moisture, surface flux, boundary layer, and 16 

ambient weather, with results highlighting the critical role of inherent model background biases.  17 

In addition, simultaneous assessment of land vs. atmospheric initial conditions in an integrated, 18 

process-level fashion can help address the question of whether improvements in traditional NWP 19 

verification statistics are achieved for the right reasons. 20 

21 
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1. Introduction 22 

The role of the land surface in numerical weather prediction (NWP) has been traditionally 23 

overlooked by the atmospheric modeling community (Santanello et al. 2018), who often employ 24 

primitive initialization approaches for soil moisture and temperature based on coarse atmospheric 25 

model products.  These surface conditions have been treated simply as lower boundary conditions, 26 

with early LSM development driven by the atmospheric communities and little emphasis on the 27 

accuracy and observability of land surface states and processes (Dirmeyer and Halder 2016).  28 

However, recent studies have demonstrated the critical role of the land surface, and in particular 29 

soil moisture, in terms of impacts on precipitation (Welty and Zeng, 2018; Ford et al. 2015; Taylor 30 

et al. 2012; Koster et al. 2004; Findell and Eltahir 2003), temperature and humidity (Kala et al. 31 

2015; Seneviratne et al. 2013; Mueller and Seneviratne 2012), and L-A coupling as a whole 32 

including the planetary boundary layer (PBL) (Johnson and Hitchens 2018; Dirmeyer and Halder 33 

2016; Santanello et al. 2007, 2005).  In particular, the initial condition (IC) of soil moisture has 34 

been shown to influence predictability on near-term (Dirmeyer and Halder 2016; Santanello et al. 35 

2016, 2013a) and seasonal (Rajesh et al. 2018, Xiang et al. 2018; Hirsch et al. 2014; Koster et al. 36 

2010) scales.  Thus, quantification of the sensitivity of coupled models to the soil moisture 37 

initialization approach is an often overlooked, but potentially high-impact, exercise that should be 38 

performed by model evaluation and development communities. 39 

From a process-level perspective, the connection of soil moisture to ambient weather and 40 

precipitation can be considered using the GEWEX local land-atmosphere coupling (LoCo; 41 

Santanello et al. 2018) paradigm and ‘process chain’, as follows: 42 

Δ𝑆𝑀 ⟶ Δ𝐸𝐹 ⟶ Δ𝑃𝐵𝐿 ⟶ Δ𝐸𝑛𝑡 ⟶ Δ𝑇-.,𝑄-. ⇒ Δ𝑃, 𝐶𝑙𝑜𝑢𝑑
(𝐚)										(𝐛)												(𝐜)												(𝐝)																																				   (1) 43 
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where the links (a-d) represent the sensitivities of: (a) evaporative fraction (EF; i.e. surface fluxes) 44 

to soil moisture (SM), (b) PBL evolution to surface fluxes, (c) entrainment (Ent) fluxes to PBL 45 

evolution, (d) the collective feedback of the free atmosphere on ambient weather, and the 46 

cumulative support of these links on cloud and precipitation formation.  By parsing out the 47 

stepwise impact of soil moisture on surface fluxes and, likewise, the vertical coupling impacts of 48 

surface fluxes on PBL development and entrainment feedbacks, an understanding of the interaction 49 

of the coupled model sensitivities to soil moisture can be ascertained.   50 

To this end, the LoCo community has been developing metrics to quantify the links in the 51 

chain of Eq. (1) that can also be used to better understand traditional ‘bulk’ statistics of ambient 52 

weather (e.g. 2-meter temperature (T2m) and humidity (Q2m), RMSE and bias) commonly used 53 

by operational centers as benchmarks, in the context of the influence of soil moisture on model 54 

accuracy and development.  Such approaches have been previously employed to assess the 55 

coupling behavior in modern global climate reanalysis products (Santanello et al. 2015), to 56 

quantify the impact of LSM calibration and assimilation on short-term coupled forecasts 57 

(Santanello et al. 2013a, 2015b), and to intercompare the coupled behavior of different 58 

parameterization combinations in regional NWP (Santanello et al. 2013b).   59 

These studies assumed that the land surface IC was based on an offline, high-resolution, 60 

high-quality, long-term spinup of soil states from a land data assimilation system (LDAS) such as 61 

NASA’s Land Information System (LIS; Kumar et al. 2008).  However, despite their advantages, 62 

such spinup approaches are still not the norm outside of the land modeling community.  In addition, 63 

with recent advances in satellite-based soil moisture retrievals such as those from SMOS and 64 

SMAP, and long-term in-situ networks such as those comprising the International Soil Moisture 65 

Network (Dorigo et al. 2011), there are now additional observationally-driven initialization 66 
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approaches that need to be considered (Dirmeyer et al. 2018, 2016).  Overall, there is a wide array 67 

of soil moisture IC approaches that are being used across the NWP and climate modeling 68 

communities (both research and operational), ranging in complexity, resolution, quality, and 69 

observability. 70 

In this paper, we assess the impacts of soil moisture IC approaches in an NWP context 71 

using the NASA Unified WRF model (NU-WRF; Peters-Lidard et al. 2015), focused on an 72 

integrative, process-level assessment of L-A coupling and ambient weather implications.  73 

Specifically, we intercompare a suite of initializations of high resolution (1 km) short-term weather 74 

forecasts using ‘off-the-shelf’ soil moisture products from large scale atmospheric and land surface 75 

reanalysis products, high-resolution LIS spinups, and SMAP satellite retrievals which range in 76 

horizontal resolution from 1-33 km.  Section 2 reviews the current suite of soil moisture IC 77 

approaches being used by the community.  Section 3 describes the model and observation products 78 

used for initialization, and the LIS and NU-WRF modeling systems, along with case study and site 79 

descriptions for the coupled experiments.  Section 4 presents an offline intercomparison of SMAP 80 

soil moisture with that of in-situ networks and LIS-based simulations over the domain of interest.  81 

Section 5 then presents the full suite of coupled NU-WRF experiments with varying ICs, and 82 

corresponding LoCo analysis and ambient weather evaluations.  Discussion and conclusions then 83 

follow in Section 6.  84 

2.  Review of Soil Moisture Initialization Approaches 85 

Figure 1 shows the suite of soil moisture initialization approaches for NWP and regional  86 

modeling commonly used by the operational and research communities.  Despite their wide range 87 

in complexity, studies using each of these approaches have been published recently, and the typical 88 

usage by the community tends to favor the lower complexity approaches. 89 
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 Going from least to most complex (in Fig. 1), while a uniform (homogeneous) soil moisture 90 

IC may have been commonly employed decades ago during the early years of atmospheric and L-91 

A coupled model development, this approach lacks an accurate representation of surface 92 

heterogeneity and likely leads to poor NWP results in terms of surface flux partitioning and impact 93 

on PBL and atmospheric processes.  There remain a few regional modeling applications (including 94 

operational) that employ homogeneous soil moisture ICs, such as those using RAMS (Gomez et 95 

al. 2016, 2015), where only recently has the sensitivity to varying ICs been evaluated in a 96 

systematic manner (Gomez et al. 2018).  These studies affirm that there are significant impacts of 97 

soil moisture IC values on NWP, and point to the potential for satellite data to inform on improved, 98 

heterogeneous IC approaches.  It should also be noted that homogeneous and idealized surface 99 

conditions are still the norm for the LES and cloud resolving model communities (focused on 100 

~100m scales). 101 

 Next, from an observational perspective, in-situ soil moisture measurements are direct 102 

measurements at fixed depths while satellite measurements are indirect and only sensitive to a thin 103 

layer near the surface typically less than a few centimeters.  The in-situ measurements are typically 104 

considered truth in the development and parameterization of the soil models themselves.  105 

Therefore, soil moisture ICs based on a dense in-situ network that covers the model domain would 106 

be an ideal approach.  Such networks are rarely dense enough to meet NWP application 107 

requirements.  One example is the DOE’s ARM Southern Great Plains (ARM-SGP) observatory 108 

covering OK and KS, where ~20 sites measuring soil moisture are available.  Even in this dense 109 

network, 20 observations across a domain with 250,000 grid cells is hardly representative of land 110 

surface and soil type heterogeneity, and interpolation procedures and assumptions do not readily 111 

apply to obtain distributed estimates.  Recent examples of utilizing a dense in-situ network in the 112 
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context of NWP ICs do exist (e.g. Massey et al. 2016), but remain limited due to the heterogeneous 113 

nature of soil properties.  114 

 The next grouping of ICs in terms of complexity is what are deemed ‘off-the-shelf’ 115 

products, where soil moisture is extracted from existing LDAS or atmospheric modeling systems.  116 

Atmospheric-based products are simply the soil moisture fields derived from the land surface 117 

component of the commonly used initial/boundary condition datasets for NWP.  These 118 

atmospheric models include GFS, ECWMF, NARR, NAM, and others, and the advantage of using 119 

these land ICs is that they are inherently consistent (spatially and temporally, as well as 120 

climatologically) with the atmospheric ICs.  The disadvantage is that these atmospheric models 121 

are quite coarse spatially (~25–40 km) relative to the grid size of the NWP or WRF application 122 

(e.g. 1–3 km in this case).  Thus, initializing a domain with 1-km horizontal grid spacing with data 123 

that has 30-km resolution will miss some crucial heterogeneity and likely does not capture the true 124 

nature of the local L-A coupling.  Another caveat to this approach is when the LSM used in the 125 

NWP application differs from that in the atmospheric product, as soil moisture climatologies differ 126 

across LSMs and thus are not easily transferable.  In addition, any inherent biases (e.g. 127 

precipitation) in the atmospheric model will be reflected in the land states (e.g. soil moisture) as 128 

well. 129 

 From an LDAS perspective, the GLDAS (Rodell et al. 2004) and the NLDAS Version 2 130 

(NLDAS-2; Xia et al. 2012) are examples of uncoupled environments, run routinely at 25 km and 131 

12.5 km, respectively.  Both are offline LSMs driven by high-quality, ground-observation based 132 

atmospheric forcing and parameters, though there is still a significant gap in resolution compared 133 

with the target model (1 km vs. 12.5–25 km).  The land ICs from LDAS systems are likely to be 134 

more accurate and heterogeneous versus atmospheric model-based ICs described above, however 135 
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there may be inconsistency issues with the LSM used in the LDAS and that used in the NWP 136 

application (e.g. soil or vegetation parameters).  These ‘canned’ spinups have been largely 137 

underutilized by the NWP community and represent a spinup shortcut that does not require a multi-138 

year spinup or access to forcing data.  A recent study from Dillon et al. (2016) compared the 139 

impacts of using GLDAS versus GFS soil moisture ICs on short-term WRF forecasts, and neither 140 

approach consistently outperformed the other over South America.  Gomez et al. (2018) updated 141 

RAMS with spatially distributed soil ICs from GLDAS, and found significant improvement in 142 

ambient weather forecasts.  Jacobs et al. (2017) used an Australian LDAS (Australian Water 143 

Availability Project (AWAP); http://www.csiro.au/awap/) to generate a 5–km gridded soil 144 

moisture IC product for WRF heatwave simulations, and found that forecasts improved 145 

significantly over those using ERA-I-based soil moisture ICs, as AWAP corrected for the cool, 146 

wet bias inherent in ERA-I.  Lin and Cheng (2016) also compared the impacts of GLDAS versus 147 

GFS-based ICs on WRF forecasts over Taiwan, and showed improvements over certain regions 148 

where GFS was biased and where soil exerts more control over surface fluxes.  Overall, these 149 

studies demonstrate general improvement from LDAS-based ICs over those of coarser 150 

atmospheric-based products. 151 

 In terms of model-observation fusion, LSM spinup approaches, as described earlier, can 152 

generate high resolution, accurate ICs at the resolution of the target model using observed forcing 153 

and parameter data.  LSM spinups are necessary to generate soil moisture and temperature profiles 154 

that have equilibrated over time, and thus are often on the order of a few years to decades in length 155 

leading up to the time of coupled model initialization (Rodell et al. 2005).  Spinups are facilitated 156 

by systems such as LIS and the High Resolution LDAS (HRLDAS; Chen et al. 2017), and require 157 

multi-year offline simulations driven by high quality forcing data.  As a result, the advantages are 158 
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in resolution, representativeness and quality (including consistency of LSM states with observed 159 

meteorology), but can be limited by the availability of accurate forcing data and computational 160 

demand.  As compared to LDAS systems, LSM spinups can further resolve spatial heterogeneity 161 

down to 1km or less, and in coupled systems such as LIS/NU-WRF, will ensure identical LSM 162 

settings in both the offline spinup and coupled simulations.  To date, LSM spinups have been 163 

employed in numerous regional (WRF) modeling studies, but are typically only employed by those 164 

in the land (LIS and HRLDAS) communities (Santanello et al. 2013ab, Case et al. 2011, 2008, 165 

Kumar et al. 2008, Rajesh et al. 2017, Hirsch et al. 2014), while atmospheric modelers have been 166 

much less inclined to invest in this approach. 167 

 Recent advances in satellite retrieval of land surface states now allow for soil moisture ICs 168 

to be fully or partly derived from satellite data.  Satellites such as SMAP can provide gridded 169 

products comparable in spatial resolution to that of the off-the-shelf products described above (e.g. 170 

SMAP 9- and 36-km products).  However, using satellite products directly as ICs is not currently 171 

advisable, due to differing climatologies and biases inherent in satellite versus LSM-based soil 172 

moisture.  As satellite soil moisture becomes more accurate (as is the case with SMAP), and LSM 173 

soil moisture becomes more ‘observable’, opportunities to directly employ satellite products as 174 

ICs will become apparent.  The traditional method to incorporate satellite-based soil moisture into 175 

ICs has been through data assimilation after utilizing bias correction techniques such as CDF 176 

matching to account for the satellite versus LSM biases (Reichle and Koster 2004).  Assimilation 177 

incorporates some of the satellite signal that the LSM may miss, but impacts are typically muted 178 

due to the low random error present in satellite and LSM products, and high accuracy of 179 

atmospheric (i.e. precipitation) forcing of the LSM.  Recent efforts at NCEP and Environment 180 

Canada have employed SMAP data assimilation during LSM spinup to improve soil moisture ICs 181 
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for NWP, with results showing inconsistent improvements across large continental domains.  182 

These approaches and results will be discussed in more detail in Sections 5 and 6 in the context of 183 

the results presented in this study.   184 

 An additional IC approach that does not fall neatly into the categories in Fig. 1 is that of 185 

‘self-spinup’, as described by Angevine et al. (2014) and performed by Dy and Fung (2016).  In 186 

self-spinup, the NWP or regional model of interest can be initialized with coarse atmospheric-187 

based soil moisture ICs, then cycled over months or years at a time (resources permitting), which 188 

improves the spatial resolution as it responds to precipitation and other forcing at the finer target 189 

model resolution.  A disadvantage is that the accuracy of resulting soil moisture is entirely 190 

dependent on the free running model performance and precipitation accuracy, which likely is less 191 

than that of the observationally-constrained atmospheric models.  As with other IC approaches, 192 

there are tradeoffs, and in this case that is gaining spatial heterogeneity but perhaps losing the 193 

spatial accuracy of soil moisture anomalies. 194 

 Also not considered in the suite of ICs in Fig. 1 are basic sensitivity studies that vary the 195 

soil moisture IC, often uniformly, in ‘brute force’ fashion in order to assess impacts on NWP (e.g. 196 

Kalverla et al. 2016, Ament et al. 2006, Daniels et al. 2016, Collow et al. 2014).  There have been 197 

a host of studies in this regard, each emphasizing a different aspect of coupled impacts, typically 198 

focusing on singular impacts on temperature or precipitation.  Overall, these sensitivity studies 199 

highlight the importance of soil moisture ICs, and underscore the need for high-quality and high-200 

resolution ICs (preferably from satellite or LSM spinup). 201 

3. Experimental Design 202 

The suite of soil moisture IC approaches in Fig. 1 will be intercompared in this study using 203 
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SMAP for satellite observations, LIS for LSM spinup, NU-WRF as the coupled forecast model, 204 

along with the standard off-the-shelf products from NARR, GFS, and NLDAS-2 and in-situ 205 

evaluation data from the ARM-SGP network. 206 

a.  SMAP Soil Moisture 207 

NASA’s SMAP mission was launched in January 2015, and has been providing passive 208 

microwave retrievals of soil moisture from April 2015 to present.  SMAP soil moisture has 209 

performed well to date, reaching the mission target of +/- 0.04 m3 m-3 accuracy over most regions 210 

(Chan et al. 2018), and with higher temporal consistency (i.e. less noise) and overall information 211 

content than other passive microwave-based soil moisture products from missions such as SMOS, 212 

AMSR-E, and ASCAT (Kumar et al. 2017).  SMAP soil moisture also exhibits wetting and 213 

drydown responses that are consistent with those modeled by LSMs (Shellito et al. 2017), and has 214 

been useful in detecting the timing and spatial extent of irrigation (Lawston et al. 2017).  In 215 

addition, SMAP has been used successfully in data assimilation studies by operational and research 216 

centers (e.g. Fang et al. 2018, Carerra et al. 2018).  In this study, we use the SMAP L3 enhanced 217 

soil moisture retrieval, based on the 33-km retrieval algorithm but posted at 9-km spatial resolution 218 

after utilizing the oversampling of the SMAP footprint.  Section 4 presents a comparison of SMAP 219 

products against in-situ and modeled soil moisture in order to assess any relative biases or 220 

observability issues amongst these products before they are infused into offline or coupled 221 

modeling applications. 222 

b. LIS and NU-WRF Modeling Systems 223 

As mentioned in Section 1, we now have the ability to generate high resolution, high- 224 

quality, long-term integrations in offline land data assimilation systems such as LIS, which 225 

incorporate high resolution, observed forcing and satellite parameter and state datasets.  LIS, with 226 
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its choice of LSMs, parameter and forcing data, and assimilation and calibration modules, can be 227 

run in offline (uncoupled) mode for multiyear spinups that can then be used to initialize coupled 228 

models such as NU-WRF.   229 

NU-WRF is NASA-GSFC’s version of the community WRF-ARW model, and is 230 

essentially a superset of the ARW model that includes unique NASA assets and physics 231 

capabilities including radiation, microphysics, chemistry, and land surface (via LIS).  In addition 232 

to providing the soil ICs via LSM spinup, LIS is also coupled to NU-WRF and can be used as the 233 

LSM during fully coupled simulations.  This is advantageous in terms of utilizing the identical 234 

model, grid, and configuration in the offline spinup as during the coupled experiment.  The 235 

LIS/NU-WRF coupling (Kumar et al. 2008) has been used extensively in research focused on 236 

quantifying forecast impacts of different land cover (Case et al. 2011, 2008), irrigation (Lawston 237 

et al. 2015), soil condition (Zaitchik et al. 2013), atmospheric forcing (Santanello et al. 2016), 238 

LSM calibration (Santanello et al. 2013a), and land data assimilation formulation (Santanello et 239 

al. 2016, Feng et al. 2018, Carrera et al. 2018), and serves as an ideal testbed to examine the 240 

sensitivity to soil moisture initialization approaches.  For this study, LIS version 7 (LISv7.0; 241 

lis.gsfc.nasa.gov) is employed with the Noah LSM, version 3.3 LSM (Ek et al. 2003) and coupled 242 

to NU-WRF, version 8 patch 4 (https://nuwrf.gsfc.nasa.gov/).   243 

c. Off-the-Shelf Products 244 

The Global Forecast System (GFS; Environmental Modeling Center 2003) is an 245 

operational, global spectral model driven by the Global Data Assimilation System (GDAS), which 246 

incorporates satellite, surface, aircraft, and other observations from across the globe into a gridded, 247 

model space. The land component of GFS was upgraded to the Noah LSM version 2.7.1 in the 248 

mid-2000’s, reducing prominent biases in snow pack, evaporation, and precipitation. The GFS 249 
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analyses are generated at 6-hourly intervals and gridded at 0.25° spatial resolution (available via 250 

rda.ucar.edu/datasets/ds084.1). The North American Regional Reanalysis (NARR; Mesinger et al. 251 

2006) uses the Eta model, the Noah LSM, and advances in data assimilation to create long term, 252 

consistent weather data at 32-km spatial resolution and 3-hourly intervals (available via 253 

rda.ucar.edu/datasets/ds608.0). NARR was the first reanalysis to include precipitation assimilation 254 

and shows considerable improvement over the previous NCEP reanalysis system (Kennedy et al. 255 

2011).  Finally, NLDAS-2 provides near-real time, 1/8° (~12-km) resolution, quality-controlled 256 

datasets of atmospheric forcing needed to run LSMs, as well as LSM output from four different 257 

models driven by these data. We use both the NLDAS-2 meteorological forcing (to drive LIS 258 

offline simulations) and the NLDAS-2 model output from the Noah LSM (version 2.8) for land 259 

initial conditions, discussed further in the experimental design. 260 

d. Experimental Design 261 

An extensive survey of potential coupled case study dates was performed over a regional 262 

modeling domain over the U.S. SGP region (NE, KS, OK, and TX).  The initial time of the case 263 

studies was limited to those that had full coverage from SMAP at 6am local time, and due to the 264 

geographical location and SMAP orbital pattern, this occurred every ~6 days.  A relatively clear-265 

sky morning, with weak synoptic flow and potential locally-induced convection in the afternoon 266 

was desirable.  This would allow local land effects due to surface and soil moisture heterogeneity 267 

to be maximized.  In addition, contrasts in soil moisture across the domain were deemed as 268 

advantageous to the goals of this study in terms of highlighting differences in ICs captured by 269 

approaches in Fig. 1.  Lastly, the Enhanced Soundings for Local Coupling Studies (ESLCS; 270 

Ferguson et al. 2016) campaign took place in Summer 2015, which was comprised of 12 IOP days 271 

with hourly radiosondes launches during the daytime that were deemed useful for model 272 
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validation.  Taking all of these factors into account, 11 July 2015 was chosen as the primary 273 

coupled case study for this study, with 10 June 2015 as a secondary case to support any conclusions 274 

made from the July case.   275 

Thus, LIS and NU-WRF are run on a single 750-km x 1100-km domain over the SGP at 276 

1-km spatial resolution (Fig. 2) using a 3-s time step, GSFC microphysics, GSFC long- and 277 

shortwave radiation, Mellor–Yamada–Nakanishi–Niino (MYNN) PBL scheme, and Monin–278 

Obukhov surface layer scheme.  NARR and GFS data were used for atmospheric initialization for 279 

different simulations that will be discussed below, with 3-hourly lateral boundary condition 280 

nudging, and 61 vertical levels.  Simulations were initialized at 12 UTC on the morning of 11 July, 281 

and run for 24 hours.   282 

Each of the soil moisture IC approaches were implemented as in Table 1 for a total of eight 283 

coupled simulations.  The ‘off-the-shelf ICs from NLDAS-2, NARR, and GFS were performed by 284 

using the soil moisture (and temperature) profile ICs from those atmospheric model products.  285 

Three LIS spinups were performed beginning on 1 January 2010 through 31 December 2016, the 286 

domain of which along with input land cover and soil type data as well as ARM-SGP site locations 287 

are shown in Fig. 2.  The LIS-Control run used NLDAS-2 atmospheric forcing along with default 288 

climatological greenness vegetation fraction (GVF) data from NCEP.  Two permutations of LIS 289 

spinup were also performed, one using GDAS atmospheric forcing data (LIS-GDAS) instead of 290 

NLDAS-2, and the other with real-time GVF data from the VIIRS satellite (LIS-VIIRS) instead of 291 

climatological GVF.  The goal of the LIS suite of runs was to create a mini-ensemble of the range 292 

of IC spread that would be generated from different LSM spinup approaches and forcing/parameter 293 

data quality.  Atmospheric forcing was varied to provide spread based on uncertainty in 294 

precipitation forcing, while GVF was varied to account for uncertainty in soil moisture due to 295 
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vegetation amount and evaporation.  For the three spinup runs, NU-WRF was then run coupled to 296 

LIS throughout the 24h simulation, thus ensuring consistency from spinup through coupled 297 

forecast in terms of the LSM configuration.  The off-the-shelf ICs were taken as described above 298 

from the NLDAS-2, GFS, and NARR products which provided the 4 layers of soil moisture and 299 

temperature data to the Noah LSM in NU-WRF.  Each of these runs employed climatological GVF 300 

during the coupled NU-WRF.   301 

The model-data fusion approaches to ICs were performed using SMAP data and direct 302 

insertion.  The SMAP overpass provided nearly complete spatial coverage of the domain, but 303 

where necessary, a nearest-neighbor approach was used to interpolate for missing values.  For 304 

these runs, SMAP was used as the top 5-cm soil moisture data on top of existing NARR and 305 

NLDAS-2 soil moisture profiles (identical to those taken off-the-shelf above), which were used 306 

for the remaining 3 soil layers (see Table 1 for layer specifications).  While direct insertion is 307 

certainly not an advisable practice for operational purposes due to the relative biases of SMAP and 308 

LSM soil moisture climatologies, it serves a distinct purpose here to provide an upper bounds on 309 

what could be expected from data assimilation (where increments would ultimately be much 310 

smaller than what is seen here), as well as to see if the biases and noise of SMAP are indeed small 311 

enough to begin to consider such approaches as direct insertion.  It is possible that introduction of 312 

SMAP on top of modeled profiles will result in a shock to the system and cause issues with 313 

equilibrium of the soil profile and associated fluxes and states, which also can be examined here.  314 

It should be noted that assimilation of SMAP into LIS spinups is an area of active research, and 315 

one that deserves independent treatment in future studies.  Nonetheless, based on prior soil 316 

moisture assimilation experiments we would expect that such a spinup would fall somewhere near 317 

or within the spread of the three existing LIS spinups produced here.   318 
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e. In-Situ/Evaluation Data 319 

For the offline evaluation of LoCo metric application over the SGP domain, data is 320 

acquired from the ARM-SGP network of sites and instruments at the Central Facility (CF) in 321 

Lamont, OK, the Plains Elevated Convection at Night (PECAN; Geerts et al. 2017) site at Ellis, 322 

KS, and 16 ARM Extended Facilities (EFs) across OK and KS (see Fig. 2ab)  These include high-323 

quality, nearly continuous meteorological, surface flux, and atmospheric profile measurements 324 

going back to the mid-1990’s.  Specifically, soil moisture from the recently installed Soil 325 

Temperature and Moisture Profile (STAMP) in-situ probes at the CF and 16 EFs are used, and 326 

represent a major improvement in ARM-SGP measurements of soil moisture quality and ancillary 327 

data (Cook 2018).  Surface sensible and latent heat flux data from the Eddy Correlation Flux 328 

Measurement System (ECOR) towers at the CF and 7 EFs are also used.  Temperature and 329 

humidity data at 2-meters is taken from the meteorological sites at CF and EFs.  Vertical profiles 330 

of temperature and humidity are acquired at the CF and Ellis, KS sites.  CF typically provides 331 

4x/daily (2 daytime) launches, but as a result of the ESLCS campaign, 11 July produced hourly 332 

profiles from radiosonde that could be utilized in the LoCo analysis.  Likewise, the Ellis, KS site 333 

was a supersite of the PECAN field campaign in Summer 2015 which took additional 334 

measurements from ground-based lidar (Weckwerth et al. 2016) to produce temperature and 335 

moisture profiles almost continuously during the daytime of 11 July.  The radiosondes at CF and 336 

DIAL at Ellis were then used to characterize the diurnal structure and evolution of the PBL, derive 337 

PBL height estimates, and compare with NU-WRF simulations using LoCo metrics.  338 

 f.  LoCo Metrics 339 

 The integrative nature and application of LoCo metrics to NWP and NU-WRF studies  340 
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has been described in detail in Santanello et al. (2009, 2011, 2013, 2015).  This includes the mixing 341 

diagram approach and evaporative fraction versus PBL height metrics that are employed in this 342 

study to better understand the impacts of soil moisture ICs on the coupled system, including the 343 

PBL response and the relative influence of atmospheric ICs as well.  The reader is referred to 344 

Santanello et al. (2018) for an overview of LoCo metrics, and resources for the community. 345 

4. Offline Soil Moisture Intercomparison 346 

We first assess the behavior of near-surface soil moisture derived from SMAP, LIS, and  347 

in-situ measurements during the offline spinup period, followed by an intercomparison of the suite 348 

of soil moisture ICs and the coupled case study impacts. 349 

Timeseries of near-surface soil moisture from the SMAP retrieval, LIS simulations, and 350 

in-situ STAMP probes are shown in Fig. 3 for three ARM-SGP extended facilities during Summer 351 

2016.  Overall, SMAP shows a comparable dynamic range to in-situ measurements, responding to 352 

precipitation events and drydown periods with little evidence of noise or spurious (outlier) values.  353 

To this end, the temporal consistency and absolute value of SMAP soil moisture appear realistic, 354 

and comparable to the STAMP measurements.  Note that none of these sites were used as part of 355 

SMAP calibration/validation activities, and this is a true independent test of SMAP performance 356 

across sites with varying vegetation and soil characteristics. 357 

 The LIS simulations, on the other hand, have a distinct timeseries at E33 (Newkirk, OK) 358 

and E38 (Omega, OK) that shows a much narrower dynamic range and values on the wetter end 359 

of the soil moisture spectrum (relative to SMAP and STAMP).  The spread across the three LIS 360 

simulations is rather small overall, but there are brief periods where the quality of atmospheric 361 

forcing (GDAS vs. Control; particularly in July and August) and, to a lesser extent, vegetation 362 

greenness (VIIRS vs. Control) do impact the soil moisture values.  Regardless, the envelope of 363 
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soil moisture across these simulations is one that is narrow, and it is bounded by a maximum 364 

(during precipitation spikes), and a minimum (during dry periods).  The timescale of the drying 365 

events is controlled by the Noah LSM soil type and hydraulic parameters as specified by the lookup 366 

table at each site.  At E33 and E38 (and the remaining 17 sites (not shown)), it is apparent that 367 

these parameters do not permit the model to dry down at a steep enough rate to reach the drier soil 368 

moisture levels observed by SMAP and STAMP.   369 

Site E31 (Anthony, KS; Fig. 3c) is shown as an outlier, where LIS soil moisture tracks very 370 

close to that observed in terms of absolute range and drydown behavior.  Interestingly, this is a 371 

site where the prescribed soil type in LIS is sand, but the observed type is silt loam.  The hydraulic 372 

parameters corresponding to sand are the most extreme in terms of allowing for rapid drying and 373 

overall drier wilting point and minimum soil moisture values.  So in a sense, at E31 the model 374 

obtains a better result for the wrong reasons by designating the site as sand in order for it to exhibit 375 

behavior like that of silt loam.   376 

Figure 4 presents scatterplots of the timeseries data in Fig. 3, and compares the in-situ 377 

STAMP data directly with that of LIS and SMAP.  The higher range of soil moisture values in LIS 378 

is apparent at E33 and E38, as are the comparable SMAP and STAMP values.  The higher peaks 379 

during precipitation events in SMAP are also evident, and not unexpected as L-band sensing depths 380 

are much shallower during wet conditions (Liu et al. 2012; Escorihuela et al. 2010) and retrievals 381 

characterize a wetter and more dynamic quantity of soil moisture immediately after rainfall than 382 

at other times (Schneeberger et al. 2004; Rondinelli et al. 2015).   383 

The linear slopes that can be seen in the data (e.g. Fig. 4a) actually reflect the inherent 384 

drying rates in each product.  For example, at E33 LIS has a much lower drying rate (as seen in 385 

Figs. 3ab) compared with STAMP, which is reflected in the lesser slope of Fig. 4a (less than 1:1) 386 
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as compared to that seen in Fig. 4b (nearly 1:1).  The greater scatter seen at E38 in Fig. 4c is the 387 

result of mismatches in the number of modeled precipitation events vs. those observed locally at 388 

this site (as in Fig. 3b).  At E31 (Fig. 4e), the tighter relationship and slope approaching 1:1 is the 389 

result of the unrealistic sandy soil parameters, as discussed above. 390 

A summary of the performance of LIS and SMAP versus that of STAMP at all 17 ARM-391 

SGP sites is presented in Table 2 in terms of bias, unbiased RMSE, and RMSE statistics over the 392 

JJA 2016 period.  At 13 of the sites, SMAP bias is within +/- 0.04 m3m-3 and unbiased RMSE is 393 

within 0.06 m3m-3, not far from the mission target of +/- 0.04 m3m-3 at the SMAP 394 

calibration/validation sites, which is impressive given these sites are independent (uncalibrated) 395 

and varied in terms of soil type and land cover characteristics.  The performance of LIS is largely 396 

inconsistent, with quite large bias and RMSE values (> 0.10 m3m-3) at a number of sites possibly 397 

due to mismatches in soil type versus those observed and the rigid parameter values that determine 398 

the overall soil moisture climatology in the Noah LSM.  Other potential influences are the rooting 399 

depth, litter, and GVF in the LSM not matching what is observed at these sites.  The unbiased 400 

RMSE statistics for LIS are much better, further indicating the importance of reducing the 401 

systematic error in the LIS results and the potential benefit of LSM calibration and parameter 402 

estimation approaches.   403 

As discussed in Section 1, the ultimate impact of soil moisture on coupled NWP is felt 404 

through the surface flux connections of latent and sensible heat.  Thus, it is not only important to 405 

intercompare the different soil moisture products as above, but also to assess what the implications 406 

of those soil moisture characteristics (and climatologies) are in terms of the surface energy balance 407 

and transfer of heat and moisture to the atmosphere.  In Fig. 5, fluxes from the LIS simulations 408 

(averaged across the Control, GDAS, and VIIRS runs) at the three sites in Figs. 3–4 are shown 409 



20 

 

versus those observed by the ARM ECOR stations.  Averaged daytime diurnal cycles (hourly data) 410 

are calculated for the JJA 2016 period, and they show that at E33 and E38 there is a distinct 411 

overestimation of latent heat flux by LIS-Noah.  Sensible heat fluxes are generally comparable 412 

between the model and flux towers.   413 

When looking at all six ECOR sites (Fig. 5d), the overestimation of latent heat flux is more 414 

apparent, with differences approaching 200 Wm-2.  However, there is not the typical Bowen ratio 415 

compensation of lower sensible heat flux, which indicates (and is confirmed in Fig. 5e) that there 416 

is a significant overestimation of available energy in LIS at these sites.  The tendency for LIS to 417 

have ample soil moisture then leads to the partitioning of excess available energy into latent, rather 418 

than sensible, heat flux.  A detailed radiation analysis at these sites indicates that the extra available 419 

energy in LIS is a result of slight phase differences in downward shortwave radiation from LIS 420 

(NLDAS-2 forcing) vs. observed, in combination with a lower albedo in LIS vs. observed over 421 

this region.  Overall, these higher evaporation rates into the atmosphere should have coupled L-A 422 

implications, which may lead to reduced PBL growth, more humidity and lower temperatures near 423 

the surface and in the PBL, and could impact moist processes and feedbacks that support clouds 424 

and precipitation. 425 

5. Coupled Case Study Results 426 

a. Intercomparison of Soil Moisture ICs 427 

Near-surface soil moisture from the suite of IC approaches discussed in Section 2 are 428 

shown in Fig. 6, valid on 12 UTC on 9 June, 11 July, and 28 August 2015.  Although the coupled 429 

case study focuses on 11 July, the June and August dates are shown to compare soil moisture 430 

conditions earlier and later in the summer season, both before and after the typical seasonal 431 

drydown in the SGP region.  The spatial heterogeneity of SMAP across the domain is comparable 432 
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to that of the other products in terms of overall variability and range of soil moisture (from dry to 433 

wet).  The LIS simulations have the highest spatial resolution (1km) and therefore depict more 434 

local-scale features, many of which reflect the soil type dataset.  The ‘off-the-shelf’ products show 435 

only coarser features, limited by the model resolution in each (ranging from 12.5–33 km).  SMAP 436 

also shows regions of higher soil moisture (compared to other products) just after precipitation 437 

events (e.g. 11 July in Eastern Kansas), which is consistent with the behavior seen in Fig. 3 438 

regarding the precipitation peaks in SMAP being larger than observed or modeled using thicker 439 

soil layers. 440 

Generally, over dry regions SMAP tends to be drier than the other products, while GFS 441 

and NARR tend to be wetter.  SMAP is known to dry down faster than the Noah LSM (Shellito et 442 

al. 2016), and likely has a true retrieval depth that is shallower than the published ‘5 cm’, as near-443 

surface soil layers (top 2–3 cm) dry down much faster than the 5–10 cm layer.  The true SMAP 444 

retrieval depth is further complicated by vegetation effects and the soil moisture itself, and likely 445 

varies both in time and space as a result.  The coarse model products (using Noah LSM and the 0-446 

10cm layer) are wetter.  This is likely due to a combination of a deeper top soil layer (0–10-cm 447 

depth), inaccuracy of the soil hydraulic parameters, and the coarse horizontal model resolution, 448 

which all contribute to restricting the model’s response to higher resolution land surface data.  LIS, 449 

on the other hand, shows regions of very dry soil (consistent with the SMAP patterns) as a result 450 

of retaining the 1 km soils information as well as local vegetation and precipitation patterns that 451 

allow for more extensive dry downs (particularly in late August). 452 

It should be noted that it is not possible to objectively evaluate which is the most accurate 453 

soil moisture IC.  Each IC approach provides a representation of soil moisture that is reliant on 454 

(physical or retrieval) model assumptions, and in-situ data is too sparse to convincingly validate 455 
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each across a large 1 km resolution domain.  However, understanding the differences and what 456 

causes them (e.g. resolution, SMAP retrieval, layer depth, input parameters, etc.) is key to 457 

understanding the potential coupled impacts of each IC.  To better parse out these differences, Fig. 458 

7 presents PDFs of the soil moisture ICs in Fig. 6 on each of the three dates.  SMAP is skewed 459 

towards drier values, as discussed above, and the coarser products are much wetter (GFS, NLDAS) 460 

with the LIS runs in between.  On 11 July, there is a bimodal distribution in SMAP and the LIS 461 

runs, as a result of each capturing the spatial heterogeneity generated by recent localized 462 

precipitation over part of the domain creating distinct wet and dry regimes.  Notably, the coarser 463 

products (GFS) do not capture this bimodal distribution nearly as well.  Another striking difference 464 

can be seen on 28 August, where GFS is much wetter and more narrowly distributed as compared 465 

to LIS, SMAP, and NLDAS-2. 466 

Overall, there are three important takeaways from Figs. 6–7, in that 1) the climatologies of 467 

soil moisture differ significantly based on the source of the IC (i.e. SMAP, high-resolution LSM 468 

spinup, or off-the-shelf products), 2) ICs based solely on SMAP tend to be drier overall, but capture 469 

the spatial variability of the region, and 3) stark differences in spatial distributions suggest that the 470 

choice of IC is likely to have significant downstream coupled impacts across the domain. 471 

b. Coupled Case Study – 11 July 2015 472 

I. LOCO ANALYSIS 473 

Coupled NU-WRF simulations, initialized by the suite of soil moisture conditions in Fig.  474 

6b, were performed for 24h beginning at 12 UTC on 11 July, 2015.  As described in Section 3, 475 

SMAP soil moisture values were directly inserted as the top layer soil moisture in the NLDAS-2 476 

and NARR profiles and are referred to as SMAP+NARR and SMAP+NLDAS.  The impact of 477 

each IC is reflected in the process chain (Eq. 1) variables that connect soil moisture to evaporation 478 
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(sensible and latent heat flux), PBL evolution (mixed-layer temperature, humidity), PBL height, 479 

ambient weather (2-meter temperature and humidity), and clouds and precipitation.  Seven hours 480 

into the simulation (19 UTC), there are large differences across the runs in each of these variables, 481 

reflecting the relative impact of wetter soil moisture conditions on increased evaporation, 482 

decreased PBL growth, lower temperature, higher humidity, and modification of precipitation 483 

intensity and location.  An example is shown in Fig. 8 in terms of soil moisture IC differences 484 

between NARR and LIS-GDAS at 12 UTC, and the downstream impacts on latent and sensible 485 

heat flux (~200-300 Wm-2), PBL height (~800-1000 meters), and 2-meter temperature and 486 

humidity (~2-3K; ~3-4 g kg-1, respectively) in midafternoon (19 UTC).  The impact of the soil 487 

moisture IC differences and drier (wetter) regions can clearly be seen carried through towards 488 

higher (lower) sensible (latent) heat fluxes, larger (reduced) PBL growth, warmer (cooler) 489 

temperatures, and lower (higher) humidity at 2-meters.  The relatively drier LIS-GDAS conditions 490 

overall support higher sensible heat flux, PBL heights, and temperatures later in the day throughout 491 

much of the domain, illustrating the coupled impacts of soil moisture ICs. 492 

While Fig. 8 presents a standard single variable assessment, the integrated metrics of LoCo 493 

can be used for a more qualitative and comprehensive assessment of the fully coupled impacts of 494 

soil moisture ICs.  Figure 9 presents the mixing diagram analyses at the ARM CF and Ellis, KS 495 

sites for each simulation, along with the derived Bowen and entrainment ratios (as in Santanello 496 

et al. 2009).  As shown in Fig. 6b and based on SMAP, the CF site is located in a wet region having 497 

just received precipitation and Ellis is in the western much drier part of the domain, so there is a 498 

natural contrast in conditions at these two sites.  At the CF site, the mixing diagram signatures are 499 

vertically oriented with little change in humidity throughout the day, as a result of only moderate 500 

PBL growth and entrainment and little spread across simulations (Fig. 10a, 11a), as might be 501 
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expected for a wet site.  There is only small divergence in the co-evolution of 2-meter temperature 502 

and humidity across the runs, with the exception of the GFS simulation, which employs GFS 503 

atmospheric IC/BCs, whereas the remainder of the simulations use NARR.  Thus, soil moisture 504 

does not seem to impact the results nearly as much as the choice of GFS or NARR atmospheric 505 

data at this location. 506 

At the Ellis site,  there is much larger diurnal variability in temperature and humidity, and 507 

larger entrainment fluxes of dry and warm air into the PBL, as would be expected at a dry site.  508 

Bowen ratios also vary from 0.73 to 2.55 depending on the choice of soil moisture IC.  Once again, 509 

GFS is the outlier and evolves differently over time.  Overall, the soil moisture ICs are directly 510 

reflected in the surface Bowen ratio and EFs (Fig. 9b) with the SMAP-based runs (driest soil 511 

moisture) having the lowest EF (high sensible heat flux) and the wetter off-the-shelf products 512 

(GFS, NLDAS-2) producing the highest values (high latent heat flux).  These differences in surface 513 

energy balance are amplified at Ellis (vs. that seen at CF) by the much larger PBL growth and 514 

spread across simulations (Fig. 10b, 11b).  At this site, the wetter ICs of GFS and NLDAS tend to 515 

limit PBL growth while the SMAP and LIS-GDAS runs easily reach over 3 km.  It should also be 516 

noted that all runs tend to overestimate PBL height at both sites throughout the daytime period, so 517 

those with wetter ICs overall that limit PBL growth are closer to observed. 518 

Overall, these two contrasting sites demonstrate that soil moisture ICs can impact PBL and 519 

L-A coupling, but the magnitude depends on the relative range and spread of soil moisture (and 520 

atmosphere vs. soil limited regime) across the ICs, and whether the PBL is sensitive to the surface 521 

flux partitioning.  A look at the four Noah LSM soil layers for each of the simulations provides 522 

further insight as to the potential role of soil moisture ICs.  At the CF site (Fig. 12a), the second 523 

layer of soil moisture is generally similar across all IC products and greater than 0.25 m3 m-3.  524 
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This second layer (10-40 cm) represents more of the root zone, and thus controls the majority of 525 

evapotranspiration.  These soil moisture values are all in the atmosphere-limited regime, and there 526 

is little difference across simulations with each producing high evaporative fraction that limits 527 

PBL growth.   528 

On the other hand, at the Ellis site (Fig. 12b) conditions are much drier, particularly in the 529 

root zone, for the LIS and NARR ICs, but wetter in the second layer in NLDAS and GFS.  This 530 

creates a disparity in EF (Fig. 10b) across ICs.  Furthermore, the SMAP direct insertion into 531 

NLDAS-2 versus NARR produces different surface flux and resultant PBL growth as a result of 532 

the wet (NLDAS-2) vs. dry (NARR) root zone of each.  At this site, it is not the dry SMAP near-533 

surface soil moisture that controls the surface energy balance, rather the deeper soil layers which 534 

in this case are derived from NLDAS-2 and NARR.  This is an important result in that it highlights 535 

the potential limited role of SMAP on L-A coupling if combined with other products that are not 536 

consistent (and why a direct insertion approach is not recommended), even when SMAP is much 537 

drier than the layers below. 538 

II. LAND VS. ATMOSPHERIC IC IMPACTS 539 

Having parsed out the soil moisture IC impacts, it is worthwhile isolating and examining  540 

the impact of the atmospheric ICs as well, given the outlier behavior of the GFS simulation seen 541 

in Fig. 9.  Fig. 13 shows mixing diagrams and evaporative fraction versus PBL height analyses, 542 

for only the GFS and NARR simulations, at the CF and Ellis sites in addition to two other sites 543 

(36.0 N, 100.0 W; 39.0 N, 97.0 W) across the domain that represent different surface and 544 

atmospheric conditions.  Mixing diagrams can be used to show the diurnal behavior of humidity 545 

(x-axis) and temperature (y-axis) simultaneously with the surface latent and sensible heat flux 546 

vectors and atmospheric response (PBL entrainment and advection) vectors.  In Fig. 13, the mixing 547 
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diagram plots show an initial dry bias in GFS 2-meter humidity at 12 UTC (7am local time) relative 548 

to that of NARR and that observed at CF and Ellis.  The ensuing daytime evolution of temperature 549 

and humidity then differs considerably across the sites.  At the CF site, GFS and NARR remain 550 

parallel to each other, with the initial dry GFS bias persisting throughout the day (with comparable 551 

temperature evolution in each).  Fig. 13b shows that the EF (i.e. land ICs) and PBL height (i.e. 552 

initial atmospheric profiles) are similar in GFS and NARR, and hence there was no coupled 553 

mechanism to impact the GFS humidity bias during the day.  In addition, low-level winds were 554 

weak and variable, thus limiting any potential impact of horizontal advection. 555 

 In contrast, at Ellis the initial dry bias in GFS is overcome by NARR by the end of the day, 556 

with NARR drying out significantly.  This can be explained by the drier soil moisture IC at this 557 

site in NARR, which promotes lower EF, combined with significant PBL growth and dry air 558 

entrainment, and generates a PBL with lower humidity.  NARR humidity ends up further from the 559 

observations at this site, likely due to a dry IC of soil moisture.  As NARR atmospheric IC/BCs 560 

were used to drive all the soil moisture IC permutations except for GFS, this is an important result 561 

particularly as the LIS and SMAP ICs tend to be even drier than the default NARR ICs (and thus 562 

even further from observed 2-m humidity). 563 

 At the third site (Fig. 13ef), the GFS initial dry bias is apparent, but then eroded over time 564 

with GFS approaching similar humidity values of NARR (which does not dry out during the day).  565 

Each has similar soil moisture ICs at this site, so the land influence is eliminated.  However, a 566 

closer look at the vertical profiles of temperature and humidity (not shown) indicate that in GFS 567 

the PBL grows more slowly and into a more humid layer than NARR, which tends to increase and 568 

cap the overall humidity in the PBL including at 2 meters.  At the final site (Fig. 13gh), the GFS 569 

dry bias is also reduced over time as a combination of afternoon moistening in GFS and drying in 570 
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NARR, despite having similar soil moisture ICs and evaporative fraction.  This can be attributed 571 

to a combination of deeper PBL growth and dry air entrainment in NARR, along with GFS 572 

eventually reaching a phase of PBL growth into a more humid layer in the afternoon (not shown). 573 

 Overall, these results demonstrate that land, atmospheric and PBL ICs and processes can 574 

have varying relative impacts on L-A coupling and ambient weather prediction.  They also suggest 575 

that it is unlikely that changes in a single component of initialization (e.g. soil moisture) will have 576 

uniform or spatially/temporally consistent impacts on NWP across the domain of interest, and will 577 

still be modulated by the land or atmospheric conditions (and inherent biases) being introduced 578 

elsewhere in the coupled system.   579 

III. AMBIENT WEATHER STATISTICS 580 

Following this approach, typical NWP benchmarking statistics can now be examined under 581 

the context of LoCo and land versus atmospheric ICs.  The LoCo analysis in Figs. 9–12 focused 582 

on two well-instrumented sites with contrasting soil moisture conditions.  However, as shown in 583 

Fig. 8, there are widespread and larger impacts seen across the full domain particularly with respect 584 

to 2-meter temperature (~2–6 K) and humidity (~2–6 g kg-1).  It is these ambient weather impacts 585 

that are particularly important to NWP operational centers in terms of forecast performance and 586 

improvement, as well as public perception. 587 

Figure 14 shows the 2-m RMSE and bias statistics timeseries for temperature and humidity 588 

from each of the coupled NU-WRF simulations, for the 24h period beginning at 12 UTC on 1 July 589 

2015.  These statistics were calculated hourly based on the NCEP ADP Global Upper Air Surface 590 

Weather Observations (https://rda.ucar.edu/datasets/ds337.0/) dataset that includes 153 sites 591 

sampled across the SGP domain.  This is a typical NWP center approach, focused on sensible 592 

weather impacts that are readily observable, when assessing the impacts of new datasets, 593 
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parameters, physics, ICs, and data assimilation.  A bird’s eye assessment of Fig. 14 in this context 594 

may be that soil moisture ICs do not have large or systematic impacts on temperature and humidity 595 

forecasts, and in effect it would be difficult to conclude which is the ‘best’ IC.  For the daytime 596 

period (7am–7pm), it could be argued that NLDAS-2 and GFS have the lowest RMSE values and 597 

biases, and that SMAP and the LIS runs have the largest.  This would be counterintuitive to the 598 

idea that NLDAS-2 and GFS are coarse, default and off-the-shelf products whereas LIS and SMAP 599 

are higher-resolution and observationally-driven.  This may lead to conclusions that improved land 600 

ICs do not improve NWP.  601 

However, based on the knowledge gleaned in the prior sections using integrated LoCo 602 

metrics, we can better understand these results in the context of the role of land versus atmospheric 603 

ICs, in particular that of soil moisture and SMAP.  The lowest daytime temperature errors (Fig. 604 

14ab) are seen in GFS and NLDAS-2, and the highest are in the SMAP+NARR simulation.  As 605 

GFS and NLDAS are the wettest ICs in terms of soil moisture, these act to reduce the overall warm 606 

bias across the domain, while the SMAP and NARR runs are the driest, which tends to amplify 607 

the warm bias over the domain.  In terms of temperature bias overall, there is a slight warm bias 608 

at initialization that is then amplified throughout the day, which is likely a result of a net radiation 609 

(driven by downward shortwave	and underestimation of localized cloud cover) overestimation at 610 

the surface driven by the NU-WRF (GSFC) radiation and microphysics schemes in combination 611 

with lower than observed surface albedo in LIS (as in the offline case).  However, while the 612 

temperature biases (Fig. 14b) appear to remain relatively constant over the daytime in each of the 613 

runs, the actual locations of these biases shift significantly over time from the northern to southern 614 

part of the domain (Fig. 15bcde). 615 
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The humidity statistics (Fig. 14d) also indicate that NLDAS-2 tends to have the lowest 616 

bias, and that all the NARR-driven runs tend to dry out rapidly during the daytime despite higher 617 

quality atmospheric ICs, with the driest (SMAP+NARR) runs performing worst.  The GFS run 618 

and the IC dry bias can be clearly seen here, even across all 153 sites in this analysis, and overall 619 

remains constant during the daytime.  Once again, the wetter soil moisture ICs tend to perform 620 

best, as they are countering an inherent warm, dry bias in the coupled system.  The envelope of 621 

RMSE and biases in these plots is generally narrow, but these are averages across many points and 622 

a large domain.   623 

The inflection point seen in the temperature bias at 7–9pm is a notable feature as well in 624 

these results, and is due to late afternoon precipitation in the northern part of the domain which is 625 

overestimated compared to observations, and tends to cool down the region overall (compensating 626 

for the warm biases in the south).  What follows in the SMAP direct insertion runs is a linear 627 

decrease in temperature bias, and a significant cooling that takes place during the entire nighttime 628 

period (unrelated to precipitation) particularly in the western part of the domain.  This is, in fact, 629 

due to the direct insertion of much drier SMAP values on top of NARR and NLDAS-2 profiles.  630 

As discussed earlier, this approach is not recommended as it disrupts the soil moisture and 631 

temperature equilibrium from the top layer vs. three deeper layers in the Noah LSM.  This direct 632 

insertion did not show negative impacts during the daytime, and as mentioned it was often the root 633 

zone soil moisture of NARR and NLDAS that dominated the surface energy balance.  At nighttime, 634 

however, the very low SMAP soil moisture and 5-cm upper soil layer led to changes in the thermal 635 

properties of the near-surface soil that promote rapid cooling at night.  The thermal impacts of the 636 

daytime were overcome by the dominance of evaporation, but it is evident that a more robust 637 
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approach to merging SMAP with existing soil profiles from other products should be performed if 638 

using as ICs for NWP.  639 

Fig. 15 shows an example of how these 2-meter statistics vary in space and time, and in 640 

response to the initial SM differences in GFS and NARR.  These results indicate that there is much 641 

more divergence across runs regionally and at specific sites than is evident in the lumped timeseries 642 

statistics, often ranging in magnitude to near 6 K and 6 g kg-1 in temperature and humidity, 643 

respectively.  The initial dry bias in GFS is evident across much of the central and southern SGP 644 

(Fig. 15g), while NARR shows a slight wet bias.  Because NARR soil moisture is drier than GFS 645 

(Fig. 15a) especially over the central part of the domain, NARR ends up with a strong dry humidity 646 

bias by the end of the day, whereas GFS improves its initial dry atmospheric bias where the soil 647 

tends to be wetter.  The location of the warm bias and shift from north to south over the course of 648 

the day mentioned above is also apparent in Figs. 15bd.  These plots show the components that 649 

must be simultaneously considered when interpreting NWP statistics and assessing new 650 

parameterization or initialization approaches, including the background atmospheric IC biases, the 651 

change in land surface ICs, and the evolution of each as dictated by the LSM and PBL schemes 652 

throughout the day.   653 

Overall, this analysis demonstrates that the aggregated statistics commonly employed by 654 

NWP centers are often not systematic in space or time, and can miss the important nuances and 655 

drivers behind them thus confounding the conclusions made.  In essence, each point in Fig. 15 has 656 

its own ‘coupling story’ that is dependent on many factors, and thus a change to the land IC (or 657 

LSM physics) is unlikely to produce uniform impacts or improvements.  At the same time, any 658 

perceived improvement could be compensating for errors elsewhere in the system.  Although it 659 

takes a bit more work using integrated analyses to understand these impacts, it becomes necessary 660 
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for a true assessment of the impact of soil moisture (or any other IC, physics package, or parameter 661 

dataset) in coupled prediction.   662 

6. Discussion and Conclusions 663 

This study provides a review of current soil moisture initialization approaches used in 664 

NWP, and in particular those employed by the regional weather and climate  (i.e. WRF) research 665 

and operational communities.  Land ICs are often overlooked by atmospheric scientists, and as a 666 

result there have been a wide range of approaches employed using vastly different datasets in terms 667 

of quality and resolution.  Soil moisture tends to get most of the focus (vs. soil temperature) due 668 

to its strong control on surface energy balance and surface fluxes which are the only true LSM 669 

variables that the atmospheric model is sensitive (and coupled) to.  Here, we isolate the impacts of 670 

these varied soil moisture initialization approaches on coupled forecasts using a very pragmatic, 671 

yet integrative (in the L-A sense) approach using NASA’s LIS, SMAP, and NU-WRF assets. 672 

Results and their implications for NWP modeling communities are as follows: 673 

1) Offline analysis of satellite, in-situ, and LSM products confirms that SMAP soil 674 

moisture performs quite well in terms in spatial and temporal consistency (i.e. low noise), 675 

capturing heterogeneity, precipitation and drydown events, and overall looks like a ‘real’ 676 

observable soil moisture field. 677 

2) There remains an observability issue due to differing LSM and observed (satellite and 678 

in-situ) soil moisture climatologies that are largely due to differences between LSM 679 

physics and the actual soil hydraulic properties and vegetation characteristics which affect 680 

the satellite and in-situ measurements. 681 
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3) There is a wide variation in the spatial distribution of soil moisture across commonly 682 

used NWP initialization approaches, including those from satellite-infused, high-resolution 683 

LSM spinup, and ‘off-the-shelf’ atmospheric model based products. 684 

4) The sensitivity of coupled impacts is not limited to the near-surface soil layer as the root 685 

zone may still play a dominant role in governing surface fluxes and L-A coupling, thus 686 

limiting the potential impact of near-surface layer observations in isolation.  687 

5) Coupled impacts of land ICs are clearly visible downstream in the NWP forecasts 688 

(including surface fluxes, PBL evolution and entrainment, and ambient weather), and can 689 

be better understood and quantified using integrated LoCo metrics. 690 

6) By simultaneously assessing land vs. atmospheric ICs in a LoCo framework, the 691 

question of whether improvements in traditional NWP statistics are achieved for the right 692 

reasons can better be addressed, and in turn shed light on the true potential impact of 693 

improved soil moisture ICs. 694 

It should be noted that additional case study simulations were performed in June 2015, 695 

(Fig. 4a), and the results were largely consistent with those from 11 July.  Specifically, a warm 696 

atmospheric IC bias dominated the region, and as a result the wettest soil moisture ICs (once again 697 

the coarse GFS and NLDAS-2 products) produced the best 2-meter statistics.  As for the July case, 698 

in isolation this would suggest that the coarse soil moisture products are better than the high-699 

resolution or observed products, when actually the coarse products are only best for this particular 700 

modeling system and atmospheric forcing where they are correcting inherent biases.  Studies that 701 

show uniform impacts (e.g. drying) after satellite assimilation across a wide domain are likely to 702 

see some improvements in sub-regions simply as a matter of luck,  correcting for inherent model 703 

biases (and vice-versa for degradation). 704 
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This underscores the importance of understanding inherent coupled model behavior before 705 

introducing new datasets or ICs, so that their impacts can be more accurately assessed.  As satellite 706 

data continues to improve in quality and resolution, there can be greater incorporation of more 707 

accurate observations into coupled models.  Understanding their impacts requires quantification 708 

of process-chain impacts in order to avoid compensating errors.  It will be difficult for highly-709 

tuned systems to incorporate new datasets and see direct improvements as a result, but the 710 

approaches here will help aid in identifying what remaining model biases and deficiencies exist in 711 

order to further fully integrated model development and improvement.   712 

While the statistical significance of the limited number of deterministic simulations 713 

performed here is clearly lacking, the methodology remains valid as an approach that can be 714 

adopted by operational and cycled modeling centers.  It is clear from this work that biases and 715 

forecast errors can be best understood and improved via integrated (LoCo-type) assessment of 716 

relative impacts of land surface and atmospheric (specifically in PBL vertical profiles) ICs that are 717 

used to drive the coupled simulations.  One example where this can be applied is in the work of 718 

Fang et al. (2018), where novel approaches to assimilating satellite-based land surface temperature 719 

were performed, and the regional and temporal impacts on 2-meter statistics could be better 720 

understood with more integrated process-level understanding.  This approach also reduces the 721 

potential for mischaracterizing forecast impacts and improvements that may result from 722 

compensating errors or misattribution. 723 

In terms of the offline soil moisture analysis, it is clear that the governing soil and 724 

vegetation physics and parameters in the Noah LSM do not allow for soil drying behavior that is 725 

observed from satellite or in-situ.  While likely due primarily to soil texture and rigid lookup tables 726 

of soil hydraulic properties (setting the maximum and minimum range of soil moisture), there are 727 
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also potential impacts on soil moisture dynamics from improper rooting depth specification, lack 728 

of leaf litter, and inconsistencies in GVF in the LSM versus what is observed. Incidentally, the 729 

wetter LIS runs (compared with SMAP) were actually advantageous in the coupled runs due to the 730 

warm, dry bias of NARR and GFS.  Even when modifying the upper 10cm of soil layering to 731 

create a 2, 3, or 5cm top layer, the soil drying dynamics were only marginally impacted indicating 732 

there are structural limitations in the LSM that prohibit it from having the observability necessary 733 

for unbiased data assimilation or direct comparison of soil moisture with satellite or in-situ 734 

observations.   Clearly, the structural deficiencies in the LSM and systematic errors need to be 735 

addressed via calibration and parameter estimation approaches in order to better match the soil 736 

moisture dynamics with those observed.  However, avoiding so-called ‘effective’ parameters that 737 

absorb additional unrelated model errors and estimating physically meaningful soil characteristics 738 

remains a challenge.   739 

These results highlight the critical nature of soil type information, parameter lookup tables, 740 

and the difficulty in modeling soil moisture dynamics at the local scale using only coarse soils 741 

information.  It also highlights the relative inflexibility of LSM parameters and soil physics, 742 

whereby soil moisture results can only be improved to a limited degree when introducing 743 

improved, high-resolution inputs such as atmospheric forcing and vegetation characteristics.  To 744 

address this, there are community efforts underway in GEWEX focused on reexamination of 745 

pedotransfer functions and soils in LSMs, and also to improve the collaboration between the soils 746 

and LSM communities themselves.   747 

Another interesting result (not shown) is that the soil moisture IC differences at 12 UTC 748 

tend to diminish over time throughout the domain (e.g. by 19 UTC).  When examining timeseries 749 

at specific sites, it is apparent that when comparing two simulations with different ICs, the wetter 750 
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of the simulations tends to dry down over time and at a more rapid rate than the drier simulations.  751 

This can be traced once again to the Noah LSM soil physics and hydraulic parameters that 752 

determine the levels of atmosphere and soil limited evaporation.  In the case of NLDAS-2 vs. 753 

SMAP, for example, SMAP is already very dry and soil-limited such that it doesn’t change much 754 

or dry out further while at the same time the wetter NLDAS-2 is in a very active evaporative stage 755 

and dries out rapidly, thus converging towards the SMAP values.  As a result, it is common for IC 756 

differences to be dampened over time due to evaporative physics, as opposed to an initial 757 

perturbation that is amplified.  Exceptions to this occur when wetter soil moisture promotes 758 

precipitation, and vice-versa, over a more extended period of time. 759 

 A related variant of soil moisture ICs can be generated by performing data assimilation 760 

during an offline spinup (e.g. Santanello et al. 2016).  Based on the largely incremental soil 761 

moisture DA impacts in studies to date combined with the results here in terms of the narrow 762 

envelope of LIS simulations with different parameters and forcing, it is likely that SMAP 763 

assimilation will not lead to vastly different results or ICs.  The CDF matching approach to bias 764 

correction makes large impacts even less likely, as discussed in Kumar et al. 2015 and Navari et 765 

al. 2018.  The SMAP direct insertion approach taken here, while not advisable (but still 766 

used/published in the community), was chosen as a brute force approach to see what the maximum 767 

impact of satellite soil moisture might be on the IC, while acknowledging that any proper EnKF 768 

assimilation is likely to impact the ICs to a much lesser degree and be just another permutation of 769 

a LIS run.  Only via model calibration (discussed above, specifically targeting hydraulic 770 

properties) that addresses systematic errors would we expect more distinct ICs and impacts on the 771 

LSM climatology and drydown behavior. 772 
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 Ongoing and future work on this topic includes performing formal EnKF data assimilation 773 

with SMAP and LIS, as well as LIS calibration using in-situ networks in an effort to improve LSM 774 

observability, and reduce the negative impacts of typical satellite bias correction approaches.  In 775 

addition, the capabilities of SMAP to detect agricultural and irrigation practices (largely missing 776 

or mischaracterized in LSMs) are being evaluated in an effort to improve model-data-fusion efforts 777 

and aid in offline and coupled model development.  It is clear that the community is now 778 

demonstrating that the land states and strength of land-atmosphere coupling can play a significant 779 

role in the accuracy of ambient weather forecasts.  Improving the initial conditions of soil moisture, 780 

temperature, and vegetation using NASA satellite observations and assimilation systems therefore 781 

becomes even more critical, and the combination of NASA’s SMAP, LIS and NU-WRF resources 782 

will continue to be used to develop and test these approaches and coupled impacts.  As a result, 783 

the continuity of missions (beyond SMAP) to provide accurate, global data records of near-surface 784 

soil moisture remains important to consider going forward at NASA and other space agencies. 785 
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