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Rationale: We report new K–Ar isochron data for two ~380 Ma basaltic rocks,

using an updated version of the Potassium–Argon Laser Experiment (KArLE), which

is being developed for future in situ dating of planetary materials. These basalts have

K contents comparable with those of lunar KREEP basalts or igneous lithologies found

by Mars rovers, whereas previous proof‐of‐concept studies focused primarily on more

K‐rich rocks. We aim to measure these analogous samples to show the advancing

capability of in situ K–Ar geochronology.

Methods: Combining laser‐induced breakdown spectroscopy (LIBS), mass

spectrometry (MS), and microscopic analyses, we measured the abundance of K and
40Ar from 23 spots on the basalt samples. We then constructed K–Ar isochron plots

from these rocks. The breadboard instrument consists of flight‐equivalent devices

including a 30‐mJ Nd:YAG laser and a quadrupole mass spectrometer.

Results: Despite much lower K abundances than in previous studies, the isochron

slopes yielded 380 ± 44 Ma and 398 ± 50 Ma for 380.7‐Ma and 373.5‐Ma rocks,

respectively, indicating that accuracy better than 25 Ma (<7%) is achievable with

our instrument. The isochron intercepts both yielded trapped 40Ar approximately

1 × 10−6 cm3 STP/g.

Conclusions: Our experimental results demonstrate that accurate and precise

measurements are possible using the KArLE approach on basaltic rocks, which are

ubiquitous on planetary surfaces, and are useful in addressing a wide range of

questions in planetary science.
1 | INTRODUCTION

Geochronology is a fundamental tool to understanding the history of

planetary and asteroidal bodies. Radiogenic ages of rocks provide

the absolute timing of geological events as well as the duration of

geochemical or climatic conditions prevailing in the planetary/asteroidal

body. Dating rocks from multiple horizons by a rover travelling on the

planet or multiple landers at different sites further allows the entire

history of the planet to be reconstructed. Such measurements will

enable us to place the history of individual planetary bodies into the

context of the entire solar system evolution. The capability of in situ

geochronology on board planetary landers or rovers is highly desirable
5. wileyonlinelibra
given the challenges and highly limited opportunities for sample return

missions.1

Three geochronology experiments have been conducted on Mars

using the Curiosity rover.2-4 These experiments demonstrated the

feasibility of in situ K–Ar dating on Mars and underlined the utility of

acquiring absolute ages along with other geochemical data, such as

elemental and mineralogic composition of rocks. However, the results

also revealed challenges involved with this technique, such as the

difficulty in extracting 40Ar from highly retentive minerals using the

onboard furnace,4 the incapability of directly measuring the mass of

the sample,2 and the possibility of mineral sorting/separation during

the sample delivery.4
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To resolve these problems and expand the capability of in situ

geochronology, several groups, including ours, have been developing

K–Ar dating instruments based on a laser‐ablation approach.1,5-12 In

this technique, laser pulses vaporize the sample surface, liberating K

and Ar locally (hundreds of microns in diameter and depth). The

concentrations of K and 40Ar in the laser spots are measured with

laser‐induced breakdown spectroscopy (LIBS) and mass spectrometry

(MS), respectively (LIBS–MS approach). The LIBS–MS approach is

attractive for flight implementation because its components (laser,

optical spectrometers, mass spectrometer and micro‐imaging) have

flown on multiple missions, including aboard Curiosity as ChemCam,

SAM, and MAHLI, respectively. This feature is advantageous because

building on this flight heritage reduces the cost, time, and risk of

hardware development. The K–Ar Laser Experiment, KArLE,

implements the LIBS–MS approach using components with

performance characteristics similar to flight.1

Several proof‐of‐concept studies have shown that the LIBS–MS

analysis of heterogeneous rocks allows isochrons to be constructed

and radiogenic 40Ar to be discriminated from trapped 40Ar.1,10

The applicability of the performance analysis conducted by

these studies, however, could be limited because of the insufficient

fidelity of the measured samples and their experimental setups.

First, the terrestrial rocks measured in previous studies were very

K‐rich, coarse‐grained, and/or heterogeneous, such as a granite, a

K‐rich tuff,1 or gneiss.10 As a result, the K–Ar isochrons largely

relied on data points measured in biotites or K‐feldspars, which

contain very high (>5 wt%) K. Although such rocks are favorable

for K–Ar isochron dating, the majority of planetary surfaces are

covered with basaltic rocks,13,14 which are typically much K‐poorer

and much more homogeneous. Thus, the capability of isochron

measurements could be limited when more homogeneous, K‐poor

rocks are measured in actual missions. In fact, more than 50% of

ChemCam data exhibit K2O abundance less than ~6500 ppm, while

only <25% samples show K2O abundances higher than 3 wt%.15

Thus, the capability of the LIBS–MS approach needs to be assessed

for basaltic rocks to further validate its performance as an in situ

dating technique.

Second, using components and experimental conditions different

from those achievable on landed missions hinders a reliable

assessment of actual performance of the geochronology experiments.

For example, Cho et al10 used a high‐energy (100 mJ) laser, a cold trap

cooled with liquid nitrogen, and a Ti–Zr getter heated to a high

temperature (700–800°C). The same concern holds for an innovative

LIBS–MS study using a quadrupled ultraviolet (UV) Nd:YAG laser;11

although a 170‐Ma basaltic rock was measured, the laser‐ablation

process depends on the wavelength of laser emission, and only the

infrared (IR) laser is flight qualified for LIBS at this time. Solé12 used

the known terrestrial ratios of Ar isotopes to correct for trapped Ar

in the samples studied, a technique that will not be applicable to the

Moon or Mars.

Thus, in this study, we conducted a series of case‐study

experiments to measure basaltic rocks using an instrument suite and

experimental conditions more comparable with flight instruments to

investigate the accuracy and precision that KArLE can achieve in a

more realistic situation.
2 | EXPERIMENTAL

This study used the breadboard geochronology instrument developed

by Cohen et al1 with some upgrades. Major upgrades include the

following: (1) the pulse energy of the Nd:YAG laser was attenuated

to 30 mJ to simulate the laser equipped on Curiosity;16 and (2) the

shutter of the optical spectrometer was synchronized with the laser

pulses to reduce the dark noise of the optical spectrometer. The

shutter opened before the laser pulses generated plasma. The exposure

time was set at 1 ms, which is sufficiently longer than the typical

timescale of laser‐induced plasma under a high vacuum condition

(<1 μs),17 to record the time‐integrated emission from the plasma.

Two ~380 Ma basaltic rocks from Viluy traps, Siberia (TL‐18

(380.7 ± 5.4 Ma) and TO‐35 (373.5 ± 5.3 Ma)18) were measured with

the KArLE breadboard. The thin section indicates that TL‐18 has

relatively large plagioclase crystals as long as 1 mm × hundreds of

microns, whereas TO‐35 is composed of much finer minerals.18 Both

samples were cut into slabs and placed in the analysis chamber. The

bulk density of the rocks was measured with an electronic scale to

be 2.8 ± 0.2 g/cm3, which was used for the age calculation. In actual

missions, the density of minerals would be measured by combining

elemental analysis and porosity assessment using LIBS and an imager,

respectively.1 The concentration of K2O in plagioclase was 4200 ppm

for TL‐18 and 6400 ppm for TO‐35.18

The LIBS–MS data were acquired following the procedure below.

After placing both of the samples in the KArLE chamber, the entire

vacuum system was pumped down and baked at 150°C for 48 h.

The typical background pressure in the vacuum line was of the order

of 10−7 Pa. We analyzed 13 spots for TL‐18 and 10 spots for TO‐

35. Before measuring each spot, 5 precursory laser shots were applied

to remove any gases adsorbed at the surface of the sample. After

pumping out the surface‐related gases, 500 laser pulses were applied

on each spot to generate plasma as well as to extract gas from the

sample. The LIBS spectra from the plasma were averaged over 50

shots in the optical spectrometer. We thus acquired 10 spectra per

laser pit, which were then averaged to obtain one LIBS spectrum

representing each laser spot. A dark spectrum was obtained separately

and subtracted from the emission spectrum. The optical spectrometer

measured the wavelength range of 723–812 nm with a resolution of

0.2 nm FWHM (full width at half maximum). The pulse energy and

the pulse repetition rate were set at 30 mJ and 3 Hz, respectively,

to simulate the laser used by ChemCam.16 The spectral response

function was not corrected in this study.

The gas liberated from the samples was then purified for 5 min

by a GP‐50 getter (SAES Getters, Milan, Italy) heated at 430°C.

The purified gas was admitted to a quadrupole mass spectrometer

in a static operation (i.e., isolated from the pump). The mass

spectrometer recorded the time evolution of the signal intensity at

m/z 39 and 40 for ~200 s. The integration time was 100 ms for both

m/z values. The entire data acquisition, from starting laser shots to

pumping out measured gas, took approximately 10 min. The volume

of the laser‐ablation pits was measured externally with a laser

microscope (see Cohen et al1 for details of volume estimation). We did

not use a cold trap in this experiment, while Cho et al10 used one to

concentrate 40Ar and to remove hydrocarbons efficiently.
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The concentration of K in each laser spot was determined

using two calibration curves covering different concentration ranges

(Figure 1): a linear function covering K2O < 1.1 wt% and a

quadratic function covering 1.1–3.0 wt% K2O. Both calibration

curves were constructed by measuring K2O standards and used

the sum of the intensities of K emission lines at 766.5 and

769.9 nm (IK). The intensity of each K emission line was calculated

by integrating the area under the peak. The base area of each peak

was approximated by a right‐angled trapezoid where long and short

sides were calculated by averaging the intensities over 10 pixels

located right before the shorter wavelength limit or right after the

longer wavelength limit used for the peak area integration. Then,

the intensities of the emission lines were normalized with the total

emission intensity recorded by the optical spectrometer (Itotal). This

normalization reduces the signal variation caused by the inevitable

shot‐by‐shot fluctuation of laser pulse energy, as well as by the

variable emission intensity from plasma generated in a laser pit.19

The normalization with the total emission intensity is equivalent

to that with the continuum intensity, a normalization examined by

Cho et al,6 because the majority of the emission intensity derives

from continuum emission.

A weighted linear regression procedure was used for the data

points showing IK/Itotal < 0.01 (corresponding to <1.1 wt%). The

weighting was implemented to improve predictive capabilities for

low‐K samples. The weighting factor was the standard deviation of

the signal intensity from the replicate measurements of the reference

samples. The calibration data were also regressed with a quadratic

equation. This calibration curve was used for the data points showing

0.01 < IK/Itotal < 0.02 (i.e., 1.1–3.0 wt%) to address the potential self‐

absorption effect.20 We confirmed that the two calibration curves

yielded virtually identical K contents in the transitional K concentration

range (1.0–1.2 wt%).
FIGURE 1 Potassium calibration models using standard samples.
A linear regression was applied at K2O < 1.1 wt% and a quadratic curve
was used at K2O > 1.1 wt% to address potential self‐absorption effect
[Color figure can be viewed at wileyonlinelibrary.com]
The error of K contents was determined based on the width of

the prediction band at the intensity ratio measured in each

experiment.6,9 In this study, the amount of error (i.e., the width of

the prediction band) was constant at 1000 ppm when the K2O

abundance was below 1.1 wt%, whereas it was larger in the

1.1–3.0 wt% K2O range. In the latter range, positive errors are

always larger than negative errors due to the asymmetrical nature

of the prediction band. Here we assigned the larger positive errors

as analytical errors of K to conservatively estimate the uncertainties

of K abundances.

The detection limit of K2O was 1000 ppm based on the 1σ

prediction band approach, although the K emission line at 766 nm

was still detected with a 3σ level from a calibration sample

containing 1300 ppm K2O. The detection limit in this study was

higher than that of Cho et al6 (87 ppm) by an order of magnitude.

This can be attributed to the lower quantum efficiency of the

optical spectrometer detector used in this study, as well as the

smaller number of the standards. Note that the quantum efficiency

of the spectrometer used by Cho et al6 was comparable with that

of the ChemCam.21

The abundance of 40Ar was measured with the quadrupole mass

spectrometer. The sensitivity for Ar measurements in static mode (α)

was calibrated in advance by measuring the known amount of

terrestrial air using a pipette and a tank. We multiplied this factor by

the ion current acquired by the mass spectrometer to calculate the

amount of 40Ar released from the samples. We fitted the temporal

change of the signals with a linear function and regressed the ion

current back to t0 (i.e., the time when the valve leading to the mass

spectrometer opened). A procedural blank was measured before each

gas analysis and subtracted from the mass spectrum of the gas.

The detection limit of 40Ar is determined by the amount

of background gas. The background level at m/z 40 was

1.4 × 10−11 cm3 STP on average, gradually decreasing from 2 × 10−11

to 9 × 10−12 cm3 STP as the experiments proceeded from the first spot

of TL‐18 to the tenth spot of TO‐35. The lowest blank level is

comparable with the blank level of 8 × 10−12 cm3 STP reported by

Cho et al10 using a different experimental setup. The blank levels for

other mass numbers were 1 × 10−12 cm3 STP for m/z 36,

1 × 10−12 cm3 STP for m/z 38, and 1 × 10−11 cm3 STP for m/z 39. The

presence of hydrocarbons is inferred by the fact that the ratio of the

blank at m/z 40 and 36 was ~10, much smaller than the isotopic ratio

of Ar in the terrestrial air (i.e., 40Ar/36Ar = 298.6).22

The gas released from the sample can contain C3H4 in addition to
40Ar at m/z 40. Therefore, the isobaric correction was performed

following the same procedure employed by the geochronology

experiments on Curiosity, using the signal at m/z 39 (C3H3) as a

tracer.2 We estimated the abundance ratio of C3H4/C3H3 using the

spots where K was not detected with LIBS, because such data points

are expected to contain little to no 40Ar. The estimated contribution

from C3H4 was subtracted from the signal at m/z 40 using the

equation M40Ar = M40 − kM39, where k = 0.59 ± 0.02 for TL‐18 and

0.87 ± 0.04 for TO‐35. Here, M40 and M39 denote the signal

intensities at m/z 40 and 39 after blank corrections, respectively.

The k values were determined by the lowest M40/M39 ratio observed

with each sample.

http://wileyonlinelibrary.com


FIGURE 2 LIBS spectra for TL‐18 spots #4 and #10 (offset by 100).
Two K emission lines are present next to the oxygen triplet peak.
Background spectra were subtracted. The instrumental response
function is not corrected
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The K–Ar age of the sample t and its error Δt are written as

Equations 1 and 2, respectively, using the observables obtained in this

study:

t ¼ 1
λ
ln 1þ CαM40Ar

ρV K2O½ �
� �

(1)

Δt ¼ CαM40Ar

λ ρV K2O½ � þ CαM40Arð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ K2O½ �
K2O½ �

� �2

þ Δρ
ρ

� �2

þ ΔV
V

� �2

þ Δα
α

� �2

þ ΔM40Ar

M40Ar

� �2
s

(2)

where

M40Ar ¼ S40−B40ð Þ−k S39−B39ð Þ

ΔM40Ar ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔS40ð Þ2 þ ΔB40ð Þ2 þ Δkð Þ2 S39−B39ð Þ2 þ k2 ΔS39ð Þ2 þ ΔB39ð Þ2

n or
:

Here, C is a unit conversion factor. The unit conversion involves

constants F40K (naturally occurring fraction of 40K in total

K) = 0.01167% and MK (K atomic mass) = 39.1 g/mol, the molar mass

ratio 2MK/MK2O = 0.830, and MV (the molar volume of a gas at

standard temperature and pressure) = 22400 cm3/mol. λ and λe refer

to the total and electron‐capture decay constants.

C ¼ λ
λe

MK

2MK

MK2O

� �
F40KMV

×100

Here, the uncertainty in K2O concentration ([K2O]) measured with

LIBS is denoted as Δ[K2O]. The error assigned to the amount of 40Ar

was calculated based on the propagation of multiple errors: the

uncertainties in the temporal regression of the signals and blanks for

the m/z values of 40 and 39, the contribution of the blanks at m/z 39,

mass spectrometer sensitivity for Ar analysis in the static mode α, and

isobaric correction factor k. Because measuring the concentration of
40Ar ([40Ar]) requires the mass of ablated sample, its error involves those

in sample density ρ and laser pit volume V. Here, the signals at m/z 40

and 39 are S40 and S39, respectively; and the blanks are B40 and B39.

Their regression errors are denoted as ΔS40, ΔS39, ΔB40 and ΔB39. The

magnitude of individual errors observed in this study is discussed in

the following section.
3 | AGE MEASUREMENT RESULTS AND
DISCUSSION

Figures 2 and 3 show examples of LIBS and MS data acquired in this

study, respectively. The two examples of the LIBS spectra show the

two K emission lines and an O triplet peak overlying the continuum

emission. No other obvious peak was observed in the wavelength

range of our optical spectrometer.

Figure 3 shows the time evolution of gas abundances at m/z 40

and 39 immediately after the gas was admitted to the quadrupole

mass spectrometer, as well as corresponding procedural blanks. The

signals at m/z 40 are almost constant over the experiment time

(+0.7%/min), as expected for a noble gas. In contrast, those for m/z 39,

for example, decrease at a rate of 4%/min, suggesting that they are

composed of hydrocarbons.
The LIBS–MS data obtained in this study are summarized in

Table 1. The K2O–40Ar data pairs follow straight lines23 very well for

both samples (Figure 4). The observed scatter is smaller than those

reported in previous studies (e.g., hornblende‐biotite gneiss by Cho

et al10), suggesting a simple cooling history of the basalts supported

by their 40Ar–39Ar degassing spectra.18 Note that the deviation from

an isochron could provide background information regarding the

sample, such as the degree of disturbance after the rock formation,

non‐uniformity of trapped 40Ar concentrations, and variation of ages

within a rock.23 Such information provides interpretation of the

obtained ages and gives confidence in the age measurement. In these

experiments, we did not normalize the abundance of 40K or 40Ar with

those of other Ar isotopes, such as 36Ar or 38Ar, because of their low

abundances and significant isobaric interferences by hydrocarbons.

The measurements of these minor isotopes, however, are not required

in our baseline experiments because we assume that trapped 40Ar is

uniformly distributed throughout the sample (at the current level of

analytical uncertainties) and is addressed by the intercept of the

isochron (Figure 4). The use of this K2O–40Ar isochron may not be

valid if the abundance of trapped component is highly heterogeneous

within the target rock. In actual missions, supplemental laser ablation

to vaporize much larger volume may be used to determine the

abundance of these minor isotopes.1

The slopes of the isochrons yield 380 ± 44 Ma for TL‐18 and

398 ± 50 Ma for TO‐35. These ages agree well with the K–Ar ages

of the plagioclase grains measured with a conventional technique

(i.e., 381 ± 5 Ma for TL‐18 and 374 ± 5 Ma for TO‐3518). Our



FIGURE 3 Time evolution of gases of selected mass numbers and corresponding blanks for TL‐18 spot #10

TABLE 1 Summary of K–Ar data

Sample Spot
K2O
[wt%]

Massa

[μg] 40Ar [10−6 cm3 STP/g]
K–Ar apparent ageb

[Ma]

TL‐18 1 0.10 ± 0.10 36 ± 4 1.58 ± 0.49 431 ± 400
2 0.21 ± 0.10 50 ± 5 2.95 ± 0.43 392 ± 176
3 0.23 ± 0.10 36 ± 4 5.58 ± 0.84 626 ± 242
4 0.62 ± 0.10 45 ± 4 12.83 ± 1.65 553 ± 99
5 0.20 ± 0.10 36 ± 4 2.70 ± 0.43 384 ± 185
6 0.06 ± 0.10 42 ± 4 2.27 ± 0.35 925 ± 1244
7 −0.12 ± 0.10 36 ± 4 0.01 ± 0.13 na
8 0.75 ± 0.10 53 ± 5 9.99 ± 1.25 371 ± 61
9 0.43 ± 0.10 48 ± 4 13.66 ± 1.74 786 ± 169

10 2.65 ± 0.28 53 ± 5 44.15 ± 5.31 455 ± 64
11 1.71 ± 0.13 59 ± 5 23.65 ± 2.79 385 ± 49
12 0.92 ± 0.10 53 ± 7 12.22 ± 1.85 372 ± 63
13 1.42 ± 0.13 67 ± 6 14.64 ± 1.70 295 ± 40

TO‐35 1 −0.20 ± 0.10 48 ± 4 0.00 ± 0.09 na
2 0.60 ± 0.10 53 ± 5 11.08 ± 1.36 501 ± 91
3 0.06 ± 0.10 50 ± 7 2.56 ± 0.43 1058 ± 1456
4 0.19 ± 0.10 50 ± 7 2.89 ± 0.47 417 ± 204
5 0.42 ± 0.10 56 ± 7 6.39 ± 0.97 416 ± 104
6 0.70 ± 0.10 48 ± 7 10.83 ± 1.76 427 ± 82
7 0.30 ± 0.10 50 ± 7 2.72 ± 0.45 265 ± 93
8 0.00 ± 0.10 56 ± 9 0.34 ± 0.10 na
9 −0.07 ± 0.10 53 ± 7 0.20 ± 0.08 na

10 0.60 ± 0.10 45 ± 6 9.81 ± 1.64 450 ± 94

aDensity of 2.8 ± 0.2 g/cm3 was used.
bApparent ages are not calculated for the spots showing zero or negative K concentrations.
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experimental results indicate that the current KArLE breadboard

achieves a precision of 50 Ma (~12%) for basaltic rocks with a 1σ

significance level. The accuracy of the best‐fit age was better than

25 Ma, or <7%.

The intercepts of our isochrons indicate that the amount of

trapped 40Ar was (11 ± 10) × 10−7 cm3 STP/g for TL‐18 and

(9 ± 6) × 10−7 cm3 STP/g for TO‐35. These values are consistent with

the values reported by Ricci et al:18 4 × 10−7 and 7 × 10−7 cm3 STP/g

for TL‐18 and TO‐35, respectively. If only the bulk rock were

measured, the overestimation of age due to the trapped 40Ar of

1.0 × 10−6 cm3 STP would be 61 Ma (an overestimation of 16%) and

290 Ma (76%) when the bulk K2O contents are 5000 ppm and

1000 ppm, respectively. Furthermore, the intercepts obtained in this

study (~1 × 10−6 cm3 STP/g) are lower than previously reported values

of 4–15 × 10−6 cm3 STP/g with other rock samples1,10 and comparable

with the amount of bulk‐rock excess 40Ar in shergottites (1–
2 × 10−6 cm3 STP/g).24 Our results suggest that the isochron approach

enables recognition of trapped 40Ar in situations where it is evenly

distributed throughout the mineral phases, such as by incorporation

of atmosphere (Mars) or solar wind (moon or asteroids).

The accuracy and precision of an isochron age depend on analytical

uncertainties in K–Ar data and the range of K contents.25 Our

experimental results (accuracy <7% and precision <13%) show an

improvement in the accuracy and precision of isochron ages

compared with previously published results, except for one gneiss

sample.10 In the previous efforts, the relative accuracy for these

samples exhibited an overestimation ranging from 0.2 to 33%. The

relative precision ranged from 9% for the pyroxene gneiss10 to 48%

for the tuff.1 Multiple factors contributed to the improvement. First,

in terms of the analytical error of individual K–Ar pairs, themedian error

in 40Ar/K2O ratio was smaller (15%) than those in previous work: 31%10

and 18%.1 Second, the range of measured K is larger than found in
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some samples in the previous studies, if not all (discussed in the next

paragraph). Third, the lack of significant geologic disturbance of the

basalt samples could also account for the small scattering of the

isochron data, hence the small regression errors. This is in contrast to

metamorphic rocks, such as gneiss, which potentially have complicated

cooling history and different K–Ar ages within the sample. Fourth, the

larger number of data points (N = 13 or 10) also contributes to error

reduction compared with most samples measured in the previous

studies (N = 6–11). We measured ~10 laser spots in this study to

compare our results with those numerically investigated by Bogard.25

Measuring a large number of laser spots is preferable because the

random age error generally decreases according to (N – 2)–1/2,1 while

the actual degree of error reduction depends on the distribution of

the data points along the isochron. The number of laser spots

measured in rover/lander missions would be determined based on

various factors, such as whether or not a satisfactory isochron is

obtained in the run, the time required for individual age analysis

(particularly the time for vacuum pumping), the mobility of the

rover/lander, the operational time of the rover/lander, the lifetime

of key instruments such as a vacuum pump, the number of interesting

samples around the landing site, and the scientific objectives of the

entire mission.

The capability to measure a wide range of K is a unique advantage

of K–Ar isochron dating by the LIBS–MS approach. Our isochrons

show a large spot‐to‐spot variation of K contents (Figure 4), reflecting

the samples' heterogeneity on the scale of the laser spot (three‐

dimensional parabolic pit with a ~400 μm opening at the sample

surface and the depth of ~400 μm). For example, the range of K2O

is larger than ×27 (<1000 ppm–2.7 wt%) for TL‐18 and larger than

×7 (<1000–7000 ppm) for TO‐35, whereas a fine‐grained basalt

showed the variation of a factor of 8 (0.29–2.33 wt%) in a previous

study.11 These lines of evidence suggest that a K abundance range

larger than a factor of 4, which is used by Bogard25 as an example

of desirable K range, is possible for basaltic samples.

Another advantage of the laser‐ablation analysis is its potential

to measure small, K‐rich phases, which would be diluted by

predominantly K‐poor phases in a bulk analysis. In fact, the
FIGURE 4 K–Ar isochrons for two basaltic samples. The dashed lines ind
2.7 wt% K2O for TL‐18 is more than twice as high as its bulk K2O

concentration of 1.1 wt% and > 6 times higher than that of plagioclase

in this sample (4200 ppm).18 This is probably because the laser spot

sampled a K‐rich phase, such as glass in the groundmass. Our data

show no evidence of K or Ar loss from this high‐K phase. The direct

measurement of such a K‐rich phase by spot‐by‐spot analysis would

be particularly useful for measuring samples with very low bulk K

concentration (K2O <1000 ppm) containing small, K‐rich phases, such

as shergottites.24

The highest K abundances in the TO‐35 isochron was 6000–

7000 ppm. This abundance is consistent with the K content of

plagioclase in the sample (6400 ppm)18 and is the lowest K maximum

content in the isochrons obtained with the LIBS–MS approach. Our

results suggest that the isochron measurement yields accurate and

precise ages for a sample where plagioclase is the dominant K‐bearing

phase, significantly expanding the applicability of this approach to

more K‐poor rocks. Obtaining an accurate and precise isochron with

the maximum K2O of 7000 ± 1000 ppm is particularly important

because this result suggests that very K‐rich phases, such as biotite

or K‐feldspar in the gneiss samples, are not required for LIBS–MS

measurements.

Because only a small amount of sample is vaporized by laser

ablation, accurately measuring the amount of 40Ar has been one of

the challenges of the LIBS–MS approach. The 40Ar concentrations

measured in this study were of the order of 10−6 to 10−5 cm3 STP/g

depending on the K content of individual spots (Table 1). The highest
40Ar contents here are 10–30 times lower than those measured by

previous studies.1,10 This result experimentally shows that the

quadrupole mass spectrometer yields 40Ar amounts accurately at this

abundance range, demonstrating that K–Ar ages are measurable from

these 40Ar‐poor rocks. Another advantage to this low detection limit

of 40Ar is in reducing the required sample mass to liberate a given

amount of 40Ar, which could enhance the spatial resolution of

LIBS–MS analysis, or reduce the number of laser shots required per

sample spot. Reducing the number of laser shots would reduce the

time required for onboard experiments and the power consumption

of the laser.
icate the best‐fit isochrons



FIGURE 5 Apparent K–Ar ages for individual laser spots. TL‐18 spot
#1 to TO‐35 spot #10 to from the top to the bottom. Vertical dashed
lines indicate the published K–Ar ages of each sample. Negative
apparent ages (spot #7 of TL‐18, spots #1, 8, and 9 of TO‐35) are not
shown. Two samples with >1000 Ma with large error bars are shown
with wavy lines
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The volume of the 23 laser pits measured in this study was

(1.8 ± 0.3) × 107 μm3, which is equivalent to 49 ± 8 μg. A weak

positive correlation (R = 0.7) was observed between the K content

and ablation volume with TL‐18, whereas no correlation was found

with TO‐35. The larger mineral size of TL‐18 could account for the

different ablation efficiency of different mineral species. The observed

sample mass is comparable with those reported by Cohen et al1

(~50 μg) and between those reported by Devismes et al11 (~14 μg)

and Cho et al10 (~100 μg). The volume differences with the latter

two studies can be attributed to pulse numbers (i.e., 500 in this study

vs 30011), spot diameters (i.e., 400 μm in this study vs 250 μm11),

different laser wavelengths (i.e., 1064 nm in this study vs 266 nm11),

different laser pulse energies (i.e., 30 mJ in this study vs 100 mJ10),

or the relative hardness of the materials, where softer rocks develop

deeper and larger‐diameter pits for the same laser energy deposited.1

The isochron plots in this study used the K–Ar data pairs of all the

spots measured in the experiments. This is in contrast to Cho et al,10

where a few isochron data were excluded based on the following

reasons. The first reason involved variation of the K abundance within

a laser spot. Because of the three‐dimensional distribution of minerals,

the concentration of K could vary in the depth direction as laser

ablation proceeds. Our data, however, did not show any significant

change in K content as the laser pulses excavated the samples. This

is probably because the laser pits in this study were smaller than

those of Cho et al,10 so only a single mineral phase was interrogated

each time. Note that heterogeneous K measurements can be

accommodated by assigning a bulk K measurement to the pit material

based on the LIBS spectra with depth. The second reason for the data

selection involved spallation during development of laser pits, which

may make the volume measurements unreliable. No laser pit, however,

exhibited fragmentation in this study. This may be because the pulse

energy used in this study (30 mJ) is much lower than that of Cho et al10

(100 mJ). Another plausible explanation is that the laser–sample

coupling was good for these basaltic rocks. The issue of spallation

can be addressed by better understanding laser pit development in

multiple geologically relevant samples, including the relationships

between laser energy, number of pulses, and pit depth.26 The overall

results show that the LIBS–MS approach works without noticeable

issues even with the 30‐mJ laser and without a cold trap or a high‐

temperature getter, strongly suggesting that the LIBS–MS approach

can be implemented with flight‐proven instruments.

We also found that the isochron approach is robust against the

isobaric interferences by hydrocarbons from the samples. Isochron

fitting for the data before the isobaric correction yielded the ages

consistent with the known ages within 1σ error: 356 ± 46 Ma for TL‐18

and 398 ± 51 Ma for TO‐35. This is because the concentration of the

hydrocarbon can be deemed constant and/or insignificant over every

spot measurement. The contribution of C3H4 to the total signal at m/z

40 (C3H4/(
40Ar + C3H4)) varied from 0.01 (for 40Ar‐rich spots) to 1 (for

the spots used to quantify C3H4 abundances). The median of this ratio

was 0.09 and 0.17 for TL‐18 and TO‐35, respectively. In fact, the lack

of the correction would just increase the intercept of the isochron by a

factor of 2, to 2.9 × 10−6 (TL‐18) and 1.6 × 10−6 (TO‐35) cm3 STP/g,

but would not change the isochron slopes significantly. This is a good

contrast with the model age approach, in which incomplete isobaric
correction directly increases age values. This robustness is advantageous

for obtaining accurate age values under the presence of hydrocarbons or

chlorinated compounds, which is typical on Mars.27,28

The laser‐ablation approach yields multiple age data from a single

sample by measuring multiple spots. In addition to the isochron ages,

therefore, we can calculate spot‐by‐spot apparent ages based on the

K–Ar pairs from individual laser spots (Table 1) to investigate the

accuracy and precision of the spot‐by‐spot dating (Figure 5).

Determining spot‐by‐spot ages is useful for examining the

performance of the LIBS–MS approach for various K concentrations

without measuring a number of different rocks. The ages of individual

spots were determined after the isobaric correction. Because calculating

the apparent ages is equivalent to determining the slope of each data

point in Figure 4 by assuming that the y‐intercept is exactly zero, the

apparent K–Ar ages deviate from the isochron age if a trapped or lost

component is present. First, the weighted averages of the overall

apparent K–Ar ages are calculated to compare the apparent ages with

the isochron ages. Weighting was implemented to address the large

errors associated with low‐K data. We thus obtained 380 ± 22 Ma for

TL‐18 and 414 ± 40 Ma for TO‐35. While the results fromTL‐18 show

a strikingly accurate and precise age, those fromTO‐35 indicate a broad
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overestimation, at least partly due to trapped 40Ar. This overestimation

underlines the importance of isochron analysis particularly when the K

abundance is low or the sample is young.

Second, the accuracy and precision of the [40Ar]/[K2O] ratios

obtained in this study are shown as a function of K abundance since

potassium abundance is a fundamental parameter for K–Ar dating

(Figure 6). General improvements in accuracy and precision with an

increase in K2O are observed. The median accuracy and precision of

nine spots having K2O content higher than 5000 ppm were 14% and

22%, respectively, after correcting for isobaric interference and

trapped Ar. This level of analytical error results in an accuracy of

±48 Ma and a precision of ±75 Ma for a 380‐Ma rock. On the other

hand, the median relative accuracy and precision of our six 40Ar/K2O

data exhibiting K2O between 1000 and 3000 ppm were 41% and

70%, respectively. Figure 6 also indicates that the overall accuracy

improved after the isobaric and trapped corrections, particularly in

the low‐K range (< ~3000 ppm). This is because the relative

contribution of the trapped 40Ar is larger for the K‐poor (and therefore

Ar‐poor) spots. Some data in our experiments show negative ages. Our

LIBS calibration yields negative K contents when IK/Itotal < 0.00089

(Figure 1). Neither these K contents nor the resulting age values are

reliable, but measuring such K‐poor spots is essential for estimating

the concentration of the trapped component. This ability is a unique

advantage of the LIBS–MS method.

Multiple error sources contribute to the final age determination

errors (Equation 2). Potassium abundance was the largest error source

except for spots #11 and #12 of TL‐18. The errors in sample density ρ
FIGURE 6 Relative accuracy and precision of 40Ar/K2O ratios measu
corrections (A, B) and after trapped Ar and isobaric species correction (C,
exactly accurate. General improvements in accuracy and precision with an
beyond 150% and they are shown by their numbers (600 ppm, 344%; 600
(7%), laser pit volume V (5–15%; median = 8%), and 40Ar amount (8–

36% excluding the spots used for the C3H4/C3H3 ratio assessments;

median = 9%) were similar.

In our breadboard, the uncertainty in K2O abundance above

the detection limit ranged from 8% to 99% depending on the

K2O content, with a median of 17%. Several improvements could

be made to improve this uncertainty. A previous LIBS study using

a high‐sensitivity optical spectrometer, which has a quantum

efficiency comparable with that of the ChemCam, showed that

the K measurement error is much improved, particularly for low‐K

samples. The errors were estimated as ±400 ppm at 1000 ppm

K2O; ±600 ppm at 3000 ppm; and ±900 ppm at 5000 ppm.6 If a

4000 Ma rock with 3000 ppm K2O is measured, for example, a

K2O error reduction from ±1000 ppm to ±600 ppm decreases

the age error by 200 Ma. The use of an intensified CCD (ICCD)

detector, which is planned for the SuperCam instrument,29 could

also lead to higher precision. Stipe et al30 reported an error of

±8% at 6100 ppm K2O using an ICCD camera as a detector.

Furthermore, measuring the full range of elemental abundances

and using the partial least squares (PLS) regression could improve

the accuracy of K2O abundances.31,32 The use of sub‐model training

sets, which are composed of calibration samples having a more

relevant concentration range, was shown to improve measurement

capabilities.31 Therefore, training the PLS model using a number of

low‐K (hundreds to thousands of ppm) standards would be

particularly useful to enable accurate analysis of K in this

concentration range.
red at individual laser spots before trapped Ar or isobaric species
D). Positive accuracy means an overestimation; zero accuracy means
increase in K2O are observed as expected. Three data points in (A) fall
ppm, 326%, and 1000 ppm, 310%)



TABLE 2 Source of uncertainties and potential improvements to achieve target error values

Method
Dominant sources of uncertainty in
breadboard Potential improvements for flight Error budget

K LIBS Low signal‐to‐noise ratio for K lines,
calibration for low‐K samples

Better calibration set, PLS data reduction,
high‐QE detector

10%

Ar Mass spectrometry Uncertainty in mass spectrometer sensitivity,
high blank levels

Precise determination of mass spectrometer
sensitivity, smaller manifold volume
(higher partial pressure)

5%

Volume Optical metrology Vertical resolution of volume reconstruction Higher‐resolution imaging 10%

Density Computed Mineralogy, porosity PLS data reduction, higher‐resolution imaging 5%

RSS error 16%
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For the 40Ar measurements, the largest contributor to the age

error in our breadboard configuration is the sensitivity of the mass

spectrometer α (relative precision of 8%); other terms in Equation 2,

such as the regression errors of signals and blanks at m/z 40 and 39,

blank corrections at m/z 40 and 39, or the isobaric correction, made

only minor contributions to the uncertainty. For flight instruments,

the sensitivity is extremely well characterized,2 so we do not expect

this to be a large contributor in the flight version of the system.

Another difference between our laboratory setup and a flight

instrument is in the volume of the vacuum line. Flight mass

spectrometers use much smaller manifolds, resulting in higher partial

pressure of gases for a given abundance. Therefore, the uncertainty

associated with signal intensities is expected to be much smaller, leading

to more accurate and precise measurement of blank mass spectra. This

will also reduce the error involved with the blank and isobaric

corrections and allow us to determine 40Ar abundance with smaller

uncertainties.

The capability of KArLE can be predicted from our experimental

results, potential improvements, and limitations of flight instruments.

Table 2 summarizes the parameters determining K–Ar ages, the

dominant sources of uncertainties, potential approaches to improving

them, and the error budget for each measurement to achieve an

uncertainty of ±100 Ma on a 4000 Ma planetary sample. To meet this

age uncertainty, the root sum square (RSS) error in each laser spot

must be 16% or less and an isochron must be constructed consisting

of eight or more spots. The error allocation for 40Ar is currently

achievable with flight instruments: geochronology experiments using

SAM achieved 3–5% errors in 40Ar.2,3 These experiments estimated

the sample mass using spacecraft parameters, but an alternative

approach to mass determination using sample density ρ and laser pit

volume V is estimated to be achievable with 5% and 10% uncertainties

using flight‐like imaging resolution.1 A precision of ±3200 ppm has been

reported for K using ChemCam31 and a feasibility study for future lunar

missions showed that precision of ±1600 ppm is possible.33 By reducing

LIBS errors on K abundance to 10% and measuring eight meaningful

laser spots for isochron analysis, we would achieve a ±100 Ma error

for 4000 Ma rocks.

The age error estimations suggest that in situ K–Ar geochronology

with our LIBS–MS approach would be able to resolve a wide range of

issues in planetary science. For example, the LIBS–MS geochronology

would determine the absolute ages of a variety of geologic units

explored by Mars rovers/landers. Such measurements will provide
key data to improve our understandings on the changing habitability

of ancient Mars: anchoring the absolute timing of the transition

between Noachian and Hesperian. The Hesperian–Amazonian transition,

which has a two‐billion‐years uncertainty in the middle part of the

Martian chronology,34 would be determined much more accurately

and precisely. For in situ geochronology on the Moon, the measurement

error would be sufficiently small to determine the age of key lunar

basins where crater counting saturates,35,36 and constrain the impact

flux at the 1000–3000 Ma range, where the crater chronology models

may have an uncertainty up to ±1000 Ma.37
4 | CONCLUSIONS

The state‐of‐the‐art capability of in situ K–Ar geochronology is

examined based on the case study for two ~380 Ma basaltic rocks.

The LIBS–MS instrument was updated to improve the fidelity to the

flight‐equivalent experimental devices in terms of laser energy or a

cold trap. Both samples exhibit well‐defined isochron plots. The

isochron slopes yield ages of 380 ± 44 Ma and 398 ± 50 Ma for

380.7‐Ma and 373.5‐Ma rocks, respectively, experimentally indicating

that accuracy better than 25 Ma (<7%) and precision of ±50 Ma (13%)

are achievable with our current breadboard. The intercepts of the

isochrons both yielded the amount of trapped 40Ar as approximately

1 × 10−6 cm3 STP/g, which is comparable with the amount of excess
40Ar found in shergottites. The ranges of K2O were < 1000–

7000 ppm or < 1000 ppm–2.7 wt%. The maximum K contents of

these isochron plots are a factor of two to one order of magnitude

lower than those measured with previous studies. This result validates

the capability of measuring K‐poor rocks, where plagioclase is the

main K‐bearing phase. The noble gas analysis using the mass

spectrometer yielded 40Ar concentrations of approximately 10−6 to

10−5 cm3 STP/g, one order of magnitude lower than those obtained

by previous studies. This result indicates that KArLE can measure K‐

poor and/or young rocks, as well as the gas released from much

smaller sample volumes. The capability of reducing sample mass leads

to fewer laser pulses being necessary and higher spatial resolution of

analyses, both of which are advantageous for in situ measurements.

Our experimental results demonstrate that accurate and precise

measurements are possible using the KArLE approach on basaltic

rocks, which are ubiquitous on planetary surfaces. This capability is

useful in addressing a wide range of questions in planetary science.
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