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Abstract: The Long Term Data Record (LTDR) project has the goal of developing a quality and
consistent surface reflectance product from coarse resolution optical sensors. This paper focuses on
the Advanced Very High Resolution Radiometer (AVHRR) part of the record, using the Moderate
Resolution Imaging Spectrometer (MODIS) instrument as a reference. When a surface reflectance
time series is acquired from satellites with variable observation geometry, the directional variation
generates an apparent noise which can be corrected by modeling the bidirectional reflectance
distribution function (BRDF). The VJB (Vermote, Justice and Bréon, 2009) method estimates a
target’s BRDF shape using 5 years of observation and corrects for directional effects maintaining
the high temporal resolution of the measurement using the instantaneous Normalized Difference
Vegetation Index (NDVI). The method was originally established on MODIS data but its viability
and optimization for AVHRR data have not been fully explored. In this study we analyze different
approaches to find the most robust way of applying the VJB correction to AVHRR data, considering
that high noise in the red band (B1) caused by atmospheric effect makes the VJB method unstable.
Firstly, our results show that for coarse spatial resolution, where the vegetation dynamics of the target
don’t change significantly, deriving BRDF parameters from 15+ years of observations reduces the
average noise by up to 7% in the Near Infrared (NIR) band and 6% in the NDVI, in comparison to
using 3-year windows. Secondly, we find that the VJB method can be modified for AVHRR data to
improve the robustness of the correction parameters and decrease the noise by an extra 8% and 9%
in the red and NIR bands with respect to using the classical VJB inversion. We do this by using the
Stable method, which obtains the volumetric BRDF parameter (V) based on its NDVI dependency,
and then obtains the geometric BRDF parameter (R) through the inversion of just one parameter.

Keywords: AVHRR; BRDF; MODIS; VJB; LTDR; directional correction

1. Introduction

The Advanced Very High-Resolution Radiometer (AVHRR) sensor provides a unique global
remote sensing dataset that ranges from the 1980s to the present. Among the different products
delivered from this sensor, NASA is currently funding the Long Term Data Record (LTDR) project [1]
to develop a quality and consistent Climate Data Record (CDR) of AVHRR data with the use of the
Moderate Resolution Imaging Spectrometer (MODIS) instrument as a reference. This data record
creates daily global surface reflectance products with a geographic projection at coarse spatial resolution
(0.05◦). The utility of this long time series has been demonstrated in the literature for a large number
of applications such as agriculture [2], burned area mapping [3], Leaf Area Index (LAI) and Fraction
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of Absorbed Photosynthetically Active Radiation (FAPAR) retrieval [4,5], snow cover estimation [6],
global vegetation monitoring [7], and surface albedo estimation products [8–11].

Long-term consistent data records are becoming crucial to provide improved detection, attribution
and prediction of global climate and environmental changes, as well as helping decision makers
respond and adapt to climate change and other variability in advance [12–14]. The knowledge of
surface albedo is of critical importance to monitor land surface processes and plays an important role
in energy-budget considerations within climate and weather-prediction models. For this reason, it has
been listed as an Essential Climate Variable by the Global Climate Observing System (GCOS) [13,15].
Surface albedo can be derived from satellite data. The most common procedure consists on integrating
a BRDF angular model, which can explain the reflectance’s anisotropic behavior on different types
of surfaces to obtain the black-sky (direct beam) and white-sky (completely diffuse) narrowband
albedo. One can then perform narrow-to-broadband conversions to obtain the respective broadband
albedos [16] and obtain the actual (blue-sky) albedo by doing a weighted average, using the fraction of
diffuse skylight [17].

For this product to be of highest quality, it is critical that the surface reflectance data record has
minimal uncertainties in the calibration, geo-location, spectral correction, cloud masking, atmospheric
correction and directional effects correction. Issues regarding calibration, cloud masking and
atmospheric correction in the AVHRR data have been accurately corrected, after the year 2000, when
MODIS data were used as a reference [2]. However, some issues persist for data before this year
(1982–2000), such as aerosol and water vapor correction and calibration [1]. These errors propagate
resulting in surface reflectance time series with high noise. This is especially true in the red band,
where the atmospheric errors are higher, compared to the Near Infrared (NIR) band. Therefore, the
BRDF parameters derived from these time series have high uncertainties and might not provide an
accurate correction of the directional effects.

To address this issue, the LTDR product uses MODIS retrieved parameters using the Vermote,
Justice and Bréon (VJB) method [18,19] and then applies them to AVHRR data. The VJB method uses
a pixel’s time series (typically 5 years) to compute BRDF parameters (V, R) in a daily manner. This
is done with the use of the instantaneous Normalized Difference Vegetation Index (NDVI), which
quantifies the vegetation by measuring the difference between NIR and red sunlight. These parameters
can later be used to correct the database. This method is based on the assumptions that 1) the target
reflectance changes during the year but BRDF shape variations are limited and 2) the difference in
surface reflectance between successive acquisitions is mostly explained by directional effects.

Assumption 1 holds true while retrieving the correction parameters with short enough periods, or
in other words, if the surface doesn’t change significantly over this period. When dealing with AVHRR
data, due to the lower number of high-quality observations, a larger number of years is required to
make the computation of the BRDF parameters reliable, in which the surface is subject to change.
One could argue, however, that because the product is at 0.05◦ spatial resolution, the stability of the
pixel through the years is more likely to be maintained. Assumption 2 holds true for MODIS data
because the evolution of the view zenith angle during the year is not gradual, so the difference between
successive observations is high, and atmospheric errors are low. This means that the time series have
high directional effects, which are higher than the atmospheric correction errors. This is not the case
for AVHRR data; the difference of view zenith angle between successive observations is low and
atmospheric errors are high, especially for the red band. These facts could justify the use of MODIS
parameters to correct AVHRR data, however, these also experience propagated uncertainties caused
by the different spectral response of the two sensors or calibration issues of AVHRR.

In this paper we explore different approaches to the AVHRR directional effects correction using
the VJB method, to optimize it to AVHRR data. Firstly, we find relationships between BRDF correction
parameters using different bands and band combinations derived from MODIS data. With this, we aim
to minimize the propagation of atmospheric errors to the correction of directional effects. Secondly, we
calculate said parameters using 3 years and the whole time series (15+ years). To test the best method,
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we compare the noise of the normalized surface reflectance to check which one shows the lowest noise
in the time series. Section 2 describes the materials used for the study and the methodology employed.
Section 3 presents the results. Section 4 presents a discussion of the results and Section 5 presents
the conclusion.

2. Materials and Methods

2.1. Materials

For this study, we downloaded MODIS data from the MOD09 product [20,21] from 2000–2015 and
AVHRR from the LTDR product [22]. We divided the data into AVHRR-pre MODIS (1982-2000) and
AVHRR (2000–2015). These data contain surface reflectance at Climate Modelling Grid (CMG) spatial
resolution (0.05◦). We use the red and NIR surface reflectance bands, as well as the view zenith (θv),
solar zenith (θs), and relative azimuth (φ) angles, selecting pixels of the highest quality. We extracted
the data for individual pixels in the 445 Benchmark Land Multisite Analysis and Intercomparison of
Products (BELMANIP2) sites. BELMANIP2 sites are an update of BELMANIP1 [23] and were selected
due to their representativeness and variability of vegetation types and climatological conditions around
the world. Moreover, they were selected so that the sites are homogeneous over a 10 × 10 km2 area, so
these sites are homogeneous at CMG resolution (0.05◦ or 5.6 km). We obtained the NDVI from the
red and NIR bands from AVHRR-pre, AVHRR and MODIS data. The product includes no spectral
adjustment method, which is necessary considering that the time series is composed of data from
several different National Oceanic and Atmospheric Administration (NOAA) satellites. Moreover, an
accurate intercomparison with MODIS requires that all data be on the same radiometric scale. For this
reason, we perform spectral adjustment using methods from Reference [24], selecting NOAA14 as
a reference.

2.2. Methods

An outline of the methodology is shown in Figure 1 We first use MODIS data to obtain
relationships between the BRDF parameters, so we can use them to build different models with
AVHRR data. They are then applied to MODIS and AVHRR data, using parameters derived every
3 years, and for the full time series. With these, we derive BRDF correction parameters, which are used
to calculate the normalized time series using Equation (9). The normalized NDVI is obtained from the
normalized red and NIR reflectances. Finally, given the lack of BRDF field measurements that can be
used as a reference to evaluate the best method, we derive the noise of the time series before correction
and after the model inversions. This allows us to compare the noise improvement depending on the
different BRDF model inversion used, and the number of years employed. The noise is calculated
using the statistical difference between the center measurement of three successive triplets and the
linear interpolation between the two extremes [18]:

Noise(y) =

√√√√∑n−2
i=1

(
yi+1 −

yi+2−yi
dayi+2−dayi

(dayi+1 − dayi)− yi

)2

N − 2
. (1)
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Figure 1. Flow diagram of the methodology followed by this study.

2.2.1. VJB Method

The directional effects correction is done using the VJB method, which is based on the Ross Thick
Li-Sparse Reciprocal (RTLSR) BRDF model [25,26]. This model expresses the surface reflectance ρ as:

ρ(θv, θs, φ, t) = kiso(t)
[
1 + RFgeo(θv, θs, φ) + VFvol(θv, θs, φ)

]
(2)

where, (Fgeo, Fvol) are the geometric and volumetric scattering components that provide the basic BRDF
shapes for characterizing the heterogeneous scattering of the soil-vegetation system; (kiso, kgeo, kvol)

are the weight coefficients of the isotropic, geometric and volumetric kernel functions; V = kvol/kiso,
R = kgeo/kiso.

It assumes that the difference between consecutive observations is due principally to directional
effects, with small variations of the isotropic weight coefficient kiso.

ρ(ti)

1 + VFi
vol + RFi

geo
≈ ρ(ti+1)

1 + VFi+1
vol + RFi+1

geo
. (3)

The values of V and R are the unknowns and can be derived using N observations from a certain
pixel by minimizing the merit function:

M = ∑N−1
i=1

(
ρi+1

[
1 + VFi

1 + RFi
2
]
− ρi

[
1 + VFi+1

1 + RFi+1
2

])2

dayi+1 − dayi + 1
. (4)

The minimization is done by the classic derivation:

dM
dV

=
dM
dR

= 0. (5)

This leads to the system of equations:
N−1
∑

i=1
∆iρF1∆iρF1

N−1
∑

i=1
∆iρF1∆iρF2

N−1
∑

i=1
∆iρF1∆iρF2

N−1
∑

i=1
∆iρF2∆iρF2

⊗
(

V
R

)
=

 −
N−1
∑

i=1
∆iρ∆iρF1

−
N−1
∑

i=1
∆iρ∆iρF2

 (6)
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where:
∆id = dayi+1 − dayi + 1

∆iρ = (ρi+1 − ρi)/
√

∆id

∆iρF1,2 =
(

ρi+1Fi
1,2 − ρi+1Fi+1

1,2

)
/
√

∆id . (7)

Through the inversion of Equation (6), we can now obtain a V and R parameter for every pixel.
To perform the instantaneous directional correction for every observation, V and R parameters are
needed for every date, so the inversion of the V and R parameters is done for five different NDVI
populations. A linear regression is performed for V and R as a function of the NDVI (Equation (8)).
This retrieves a slope and intercept for every pixel which allow the computation of V and R parameters
for a certain date given the surface’s NDVI value.

V = V0 + V1 ∗ NDVI

R = R0 + R1 ∗ NDVI. (8)

These V and R can now be used to calculate the normalized surface reflectance (ρN) at θs = 45◦,
and nadir observation using Equation (9) [18]:

ρN(45, 0, 0) = ρ(θs, θv, φ) ∗ 1 + VF1(45, 0, 0) + RF2(45, 0, 0)
1 + VF1(θs, θv, φ) + RF2(θs, θv, φ)

(9)

The NDVI can now be obtained using the normalized reflectances:

NDVIN =
ρN

NIR − ρN
red

ρN
NIR + ρN

red
. (10)

2.2.2. BRDF Parameters Relationship

To minimize the propagation of the atmospheric errors into the BRDF correction, we analyze the V
and R parameters for bands 1 (red) and 2 (NIR). The goal is to find a physical relationship between the
BRDF parameters of both bands to avoid using the noisy red AVHRR band. Therefore, we can derive
the BRDF parameters of the NIR band and then estimate the red band based on these parameters.
To build this physical relationship we use MODIS data since we need data with the least error possible.

To do this, we extract the band 1, band 2 and NDVI time series of one pixel. We then sort them
in ascending values of NDVI. We divide these values into five groups, using the 20th, 40th, 60th and
80th percentiles as group edge values. Each of these groups is defined as an NDVI population with its
own average. We then extract the V and R values of each one using their band 1, band 2 and NDVI.
This means that for every pixel and every band, we obtain 5 different V and R values. When using all
the BELMANIP2 sites we obtain a total of 445 × 5 = 2225 points for each band. Finally, we do simple
regressions between the obtained parameters for the different bands and with the NDVI itself.

2.2.3. Inversion Period

The idea of this section is to analyze the effect of using a short versus a long period in the
computation of the BRDF parameters. For the short period, we use 3 years to make sure the AVHRR
time series has enough observations to allow a reliable estimate of parameters. We divided the data
from (1982–1999) into three year intervals 1982–1984, 1985–1987, 1988–1990, 1991–1993, 1994–1996,
and 1997–1999, and the data from (2000–2015) in 2000–2002, 2003–2005, 2006–2008, 2009–2011, and
2012–2015. For the long period, we use 18 years for AVHRR-pre and 15 years for MODIS and AVHRR.
We compute the BRDF parameters using the VJB inversion and the original sensor’s data. In other
words, we use MODIS data to calculate MODIS BRDF parameters and AVHRR data to calculate
AVHRR BRDF parameters.
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2.2.4. Inversion Models

In this section, we compare the different inversion models whose choice is based on different
possible hypotheses. The aim is to see which of these are valid for the different data employed. The
inversion models used in this paper are the following:

MODIS

We calculate the V and R parameters using the VJB method directly from MODIS data. We
hypothesize that calculating BRDF parameters using a time series with small atmospheric and
calibration errors provide the best correction. These errors are normally propagated to the correction
of directional effects, decreasing the uncertainty of the correction parameters.

AVHRR

Analogous to the MODIS approach, but using AVHRR data. Here we hypothesize that calculating
V and R from the sensor we are attempting to correct is more representative than using a different
sensor, even if said sensor has less noise in the time series. In other words, we theorize that propagated
uncertainties from the atmospheric correction are smaller than data harmonization uncertainties and
problems in the original model’s assumption.

Average

Here we make the broad assumption that given the high noise in the AVHRR time series, average
V and R parameters which directly depend on the NDVI can be applied. The correction parameters
used are derived from Bréon and Vermote [27] and are shown in Table 1.

Table 1. V(NDVI) and R(NDVI) from [27].

Band 1 (red) V = NDVI + 0.50 R = 0.20*NDVI + 0.10

Band 2 (NIR) V = 2.00*NDVI + 0.50 R = −0.05*NDVI + 0.15

B1(B2)

Given that the red AVHRR band (B1) is noisy due to the higher errors in the atmospheric correction,
we attempt to correct the red band using the parameters from the NIR band. The relationships between
them are estimated using MODIS data, which has a robust atmospheric correction and is now a
well-established product [28]. We derive the NIR parameters using normal VJB inversion, so one value
of V and R for each of the five NDVI populations in each pixel. Then, we apply Equation (10) and
continue with the regular VJB method procedure (dependence with NDVI). These relationships are
derived in the results section, but are:

VB1 = 0.82 ∗VB2 + 0.11

RB1 = 0.91 ∗ RB2 + 0.04. (11)

Stable

In this inversion, we hypothesize that the instability of AVHRR BRDF parameters is due to
performing a matrix inversion using two parameters. This provides occasionally very unstable
correction parameters when using noisy data. For this reason, we calculate the VB1 parameter using
the NDVI, and the VB2 parameter from the VB1. We finally solve R for each band from the second
equation of Equation (6). Again, this is done for each of the 5 NDVI populations within every pixel,
after which a linear regression with the NDVI is performed.

VB1 = 1.42 ∗ NDVI + 0.63
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VB2 = 0.83 ∗VB1 + 0.30. (12)

3. Results

3.1. BRDF Parameters Relationship

Figure 2 shows the relationship obtained between VB1 and VB2 with the NDVI and between V
and R of bands 1 and 2. The r2, Root Mean Square Error (RMSE) and linear fit (red line) regression
values are shown in the top left of each subplot. The results show that there is a general dependence of
the V parameter with the NDVI. This result was expected considering that the V parameter models
the volumetric component of the vegetation. A high V value means a denser vegetation, a higher
biomass, and effectively a higher NDVI value. However, the high RMSE values both for band 1 and
band 2 (0.42,0.45), suggest that this is not a very precise approximation. In the case of the inter-band
relationships, the results show that there is a high correlation (r2 > 0.8) between the parameters derived
from bands 1 and 2. The small RMSE values (0.24,0.04) indicate that this approximation is reliable and
could provide a smaller error than that derived by the atmospheric effects propagation from AVHRR
or the spectral adjustment and calibration errors from MODIS. The cluster of points that show a 1:1
relation belongs to points with a small NDVI (NDVI < 0.2). Figure 3 shows the relationship between
the Band 1 and Band 2 parameters for low NDVI values. It has been shown in previous studies that for
low vegetation amount, the RB1 and RB2 values are almost identical [25,29]. We also noticed the same
behavior for the V parameters, when the NDVI < 0.1. In this study, we also computed the relationship
of R with the NDVI, but there was little or no correlation. This is expected considering that the R
parameter is associated with the geometric component, and higher NDVI values such as for forests
show a similar value to bare ground.
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Figure 3. Regression between VB1, VB2, RB1 and RB2 for low NDVI values. The red line represents the
linear regression fit. The blue line shows the 1:1 line.

3.2. Inversion Period

Table 2 shows the average absolute noise (×104) of the BELMANIP sites’ time series obtained
when the full dataset and 3-year intervals are used to derive the correction parameters for the red, NIR
and NDVI. Inversion using full and 3-year parameters is shown in green and brown font respectively.
The percentage under every noise value indicates the improvement with respect to the raw data. For
almost every band and dataset, the average noise of the time series using full parameters is lower than
using 3-year parameters. In MODIS data, the difference between the full and 3-year parameters is of
~2.5%, 8% and 5% in the red, NIR and NDVI time series noise. This difference is lower for AVHRR-pre
(~0%, 7% and 6%) and AVHRR (~2%, 5% and 1%) data.

Table 2. Average noise (×104) of the Benchmark Land Multisite Analysis and Intercomparison Products
(BELMANIP2) sites’ time series obtained before (raw) and after directional effects for the red and
Near Infrared bands and the NDVI, using MODIS, the Advanced Very High Resolution Radiometer
(AVHRR) pre-MODIS data and AVHRR data from top to bottom. Full and 3-year columns describe the
noise after computing the Bidirectional Reflectance Distribution Function (BRDF) parameters using the
whole time series, or 3-year intervals, respectively. The percentage under every noise value indicates
the improvement with respect to the raw data.

Red NIR NDVI

Full 3-Year Full 3-Year Full 3-Year

MODIS
Raw 201.42 201.42 430.45 430.45 162.21 162.21

Corrected 48.38
(75.98%)

53.44
(73.47%)

76.23
(82.29%)

107.80
(74.96%)

113.20
(30.22%)

121.19
(25.29%)

AVHRR
pre

Raw 212.97 212.97 456.51 456.51 379.83 379.83

Corrected 130.46
(38.74%)

130.16
(38.88%)

198.10
(56.61%)

230.63
(49.48%)

363.58
(4.28%)

389.08
(−2.43%)

AVHRR
Raw 168.22 168.22 292.62 292.62 317.32 317.32

Corrected 103.73
(38.34%)

106.58
(36.64%)

144.02
(50.78%)

158.68
(45.77%)

315.33
(0.63%)

319.48
(−0.68%)

Effectively, these results show that the effect of the gradual surface change in coarse spatial
resolution pixels has little impact on the noise of the time series, as compared with the effect of the
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number of observations used to compute the parameters. Using a larger number of years retrieves
information about the surface which is used in the model to retrieve more accurate parameters and
reduce the noise of the normalized time series by a significant amount, especially for the NIR and NDVI.

3.3. Inversion Models

Figure 4 shows the time series of two BELMANIP pixels for different inversion models and their
noise value using AVHRR-pre-data. In brackets is shown the relative noise of the time series. For visual
purposes, the data is shifted in the y-axis by 0.3 × n in the red and 0.6 × n in the NIR and NDVI for the
nth model. The first one is a savanna pixel located in Brazil (−14.72, −41.75). The red and NIR band
show a significant improvement in the noise after the directional effects’ correction of ~60% and ~80%
respectively, even when using the average method, which is based on the broadest approximation. The
result can be appreciated visually, where the seasonal variation of the data can be distinguished after
the correction. In the case of the NDVI, however, there is little or no improvement in the noise. When
using MODIS parameters, for example, the noise increases. This is due to the intrinsic directional
effects’ correction of the NDVI computation [18]. The second pixel is a bare ground pixel located in
the Algerian Saharan Desert (28.28, −5.03). In this case, there is also a significant decrease in the red
and NIR noise when using the different inversion models, but not in the NDVI. The average method,
however, significantly increases the noise, evidencing that the approximation it uses might not be
viable for non-vegetated sites. These results also show that the assumption that for low NDVI values,
the parameters are the same for both bands is reasonable.

To analyze the performance of every individual model in detail, we plotted the distribution of the
noise corrections for every pixel considered in this study. Figure 5 shows these distributions in the
form of a boxplot, using the different inversion models and for MODIS, AVHRR-pre and AVHRR data.
The top and bottom blue edges of the box represent the 25th and 75th percentiles, respectively, while
the middle red line shows the median. Points outside the black bars are considered outliers. The green
diamond represents the average of the distribution. These values are shown in Table 3.

Table 3. Average noise (×104) of the BELMANIP sites’ time series obtained before (raw) and after
directional effects using the models described for the red and NIR bands and the NDVI, and using
MODIS, AVHRR-pre and AVHRR data from top to bottom. The percentage next to every noise value
indicates the improvement with respect to the raw data.

Red NIR NDVI

MODIS

Raw 201.42 430.45 162.21
MODIS 48.94 (75.70%) 76.23 (82.29%) 113.20 (30.22%)
Average 90.19 (55.22%) 163.47 (62.02%) 175.16 (−7.98%)
B1(B2) 53.28 (73.55%) 76.28 (82.28%) 146.00 (10.00%)
Stable 53.33 (73.52%) 89.74 (79.15%) 136.81 (15.66%)

AVHRR pre

Raw 212.97 456.51 379.83
MODIS 115.96 (45.55%) 184.07 (59.68%) 396.65 (−4.43%)

AVHRR-pre 126.98 (40.37%) 198.10 (56.61%) 363.58 (4.28%)
Average 132.78 (37.65%) 210.16 (53.96%) 394.81 (−3.94%)
B1(B2) 134.41 (36.89%) 199.32 (56.34%) 397.18 (−4.57%)
Stable 108.75 (48.93%) 163.30 (64.23%) 368.93 (2.87%)

AVHRR

Raw 168.22 292.62 317.32
MODIS 103.42 (38.52%) 145.35 (50.33%) 314.67 (0.84%)
AVHRR 104.08 (38.13%) 144.02 (50.78%) 315.33 (0.63%)
Average 116.37 (30.82%) 166.03 (43.26%) 329.07 (−3.70%)
B1(B2) 105.14 (37.50%) 144.74 (50.53%) 315.00 (0.73%)
Stable 99.28 (40.98%) 140.84 (51.87%) 314.92 (0.76%)
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Figure 4. Time series of two BELMANIP pixels (savanna and barren) for different inversion models
and their noise value using AVHRR-pre-data. In brackets is shown the relative noise of the time series.
For visual purposes, the data is shifted in the y-axis by 0.3n in the red band, and 0.6n in the NIR and
NDVI for the nth model.

Firstly, we can see that the average raw noise of the red and NIR time series is similar for MODIS
data (0.020, 0.043) and AVHRR-pre data (0.021, 0.045), but higher than the AVHRR data (0.017, 0.029).
This is caused by the large directional errors in MODIS data and the high atmospheric errors in
AVHRR-pre-data. Evidence of this can be seen on the NDVI noise. In MODIS, its value is very
low (0.016), meaning that the intrinsic directional correction of this index has corrected most of the
directional effects. In AVHRR-pre, because the directional effects are not as high, the NDVI correction
errors are mostly because of atmospheric uncertainty propagation (0.038).

Secondly, looking at MODIS data (Figure 5, column 1) gives an indication of the quality of the
approximations considered by the different models. As is expected, the MODIS inversion provides the
best correction (75.7%, 82.3% and 30.2% for the red, NIR and NDVI respectively). Using the Average
model, not only is the red and NIR noise improvement lower by ~20%, as compared to the MODIS
inversion, but it also has a higher spread of the noise distribution. This is expected considering the
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broad generalizations of the model. The B1(B2) model shows the second-best performance, only 2%
worse than the MODIS inversion, indicating that this a valid approximation that could reduce the
computational time while achieving high-quality directional correction. For the NDVI, however, this
method shows a significantly smaller improvement (10.0%) than the MODIS model (30.2%). Finally,
the Stable method shows to be a valid alternative for the red band, but not for the NIR band. For the
NDVI value, it can correct ~5% better than the B1(B2) method.

Analyzing the effects of these models on AVHRR-pre-data (Figure 5, column 2) can now show
whether the error provided by their approximations is smaller or higher than the propagated
atmospheric error. The MODIS model on AVHRR-pre provides a good correction of the directional
effects with ~45.6%, 59.7% in the red and NIR bands, 5% and 3% better than the AVHRR-pre model.
This shows that MODIS parameters are preferable to AVHRR-pre derived parameters. The opposite
is true for the NDVI. The Average and the B1(B2) model show the worst performances among all of
them, with a significant difference with the MODIS model in the red (~8% and 9%) and the NIR (~6%
and 3%). This is expected for the Average method but is surprising for the B1(B2) model considering
its good performance with MODIS data. It seems like the inversion with two parameters still isn’t
good enough, despite having reliable assumptions. In the case of the NDVI, the three of them provide
a negative improvement (~4%) given that the noise on the raw data is already low. Finally, the Stable
method provides the best improvement in the red and NIR bands, with differences of ~9% and 8%
respectively, compared to the AVHRR-pre model. This shows that performing the inversion with
one parameter provides higher stability to the parameters and therefore a smaller distribution in the
corrected noise values, as can be appreciated by the width of the boxplots in Figure 5. In the NDVI, it
provides a positive improvement of 2.87%, but it’s still lower than using the AVHRR-pre-data.
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Figure 5. Noise distributions for all the bands considered (rows), using the different inversion models
and for MODIS, AVHRR-pre and AVHRR data, (columns 1, 2, and 3, respectively). The green diamonds
represent the average of the distribution. The top and bottom blue edges of the box represent the 25th
and 75th percentiles, respectively, while the middle red line shows the median. Points outside the black
bars are considered outliers.

These results are analogous to the AVHRR data (Figure 5, column 3), but with a significantly
smaller difference between the methods. The Stable method, for example, only provides a ~3% and 2%
improvement difference with the AVHRR model in the red and NIR bands respectively. The average
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method of AVHRR data improves significantly less than with AVHRR-pre-data. This is because
atmospheric errors are not as high in this time series and, therefore, the broad assumptions made by
the model provide more uncertainty than the propagated atmospheric perturbations.

4. Discussion

4.1. BRDF Parameters Relationships

The V parameter shows good correspondence with the NDVI, which is expected considering
that it models the volumetric component of vegetation. Therefore, it is not surprising that we find
a relationship between them. The R parameter can be physically interpreted as the aerodynamic
roughness [29]. The relationship between the aerodynamic roughness and the NDVI is not that evident,
in fact, we didn’t find any meaningful relationship between the parameters. Given a certain pixel and
its geometry, it’s reasonable to think that for higher amounts of vegetation, the aerodynamic roughness
is bound to change. In fact, Franch et al., studied the possibility of a quadratic evolution of R with the
NDVI within a pixel [30].

Considering that the R parameter is associated with a geometrical component, one would expect
it to be independent of the spectral band. Experimental results have shown that this isn’t true and
that there is a difference between both values for medium to high NDVI values [25,31,32]. We did
find, nevertheless, a good relationship between the R parameter for both bands, which have a slope
relatively close to 1 and an intercept close to 0. For low NDVI values, the R parameters are independent
of the spectral band. This was also the case for V parameters with NDVI < 0.1, which as far as we are
concerned, has never been observed in previous literature.

4.2. Inversion Period

Originally, the VJB method was performed using 5-years of data. The results showed an
improvement of ~30% in the NDVI using MODIS data [18], which agree with our results. When
including a higher number of years in the inversion, we are increasing the number of observations
that are used in the model. This means increasing the range of observation geometries and of possible
NDVI values that the pixel can have during the years. However, the accuracy gained by including
these observations in the models might be counterbalanced by the change in vegetation characteristics
of the target over the years. The larger the amount of years, the more likely it is that this change
occurs, and the less likely it is for the assumptions behind the VJB method to hold. Nonetheless, these
land cover changes are contemplated to some extent through the NDVI regression implicit in the
VJB method. The analysis from this section on the different bands and sensors has shown that this
change in vegetation is insignificant compared to the information gained by the increased number of
observations. This might only be true, however, so long as the vegetation dynamics or human factors
such as deforestation or agricultural practices don’t change the surface value significantly. In these
cases, the noise of the time series after BRDF normalization is likely to be high, and a shorter inversion
period is recommended that correctly quantifies these land cover changes. When using high spatial
resolution, these land cover changes are more discernible than at moderate or high spatial resolution.
In this case, a further analysis is required to determine what the adequate inversion period to retrieve
the V and R parameters would be.

4.3. Inversion Models

The results of this section show that the conclusions are different for the NDVI correction than for
the individual bands. For the red and NIR bands, the Stable model proved to be the best method to
use when the data’s time series has too much noise to derive the correction parameters from it. This
is true especially for AVHRR-pre, for which the Stable method provided a significant improvement
in the noise correction. This is, therefore, the recommended model for the derivation of surface
albedo using AVHRR-pre and AVHRR data, provided that the NDVI computation is not required.
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For MODIS data, the use of the MODIS inversion is still preferable, as assumptions made by the
models devised introduce uncertainty. In the case of the NDVI, however, the use of the regular VJB
model using parameters derived from the same data is preferred. For users with a large computational
burden that look for a compromise between computational time and accuracy, the use of the Average
method provides very fast correction parameters at the expense of ~10% noise improvement. If the
BRDF correction parameters are already available from MODIS data or another sensor with little
atmospheric perturbation at the same spatial resolution, the use of these parameters provides the
second best correction after the Stable method with virtually no significant computational time required
in comparison.

5. Conclusions

In this paper we explore, different approaches to find the most robust way of applying the VJB
correction to AVHRR data. To do this we use AVHRR data from 1982-2015 divided in AVHRR-pre
(1982–2000) and AVHRR (2000–2015) and MODIS data (2000–2015) at CMG spatial resolution (0.05◦) in
445 BELMANIP2 sites. In the first place, we compare the effect of using 3-years or 15+ years to derive
the BRDF parameters. We found that for coarse spatial resolution, where the vegetation characteristics
of the target don’t appear to change significantly, it’s preferable to use 15+ years of observation. This
result was true both for AVHRR and for MODIS data. The differences were higher for the NIR band,
where the average noise was reduced by 7% when using the whole time series from AVHRR-pre-data
instead of 3-year parameters.

Secondly, we used MODIS data to retrieve relationships between the BRDF parameters. With the
information derived from this sensor, we built different models based on the VJB method, which aim
to minimize the propagation of the atmospheric errors present in the AVHRR data to the correction
of directional effects. We found that for the red and NIR bands, the Stable method provides a robust
correction in terms of reducing both the average noise of the pixels considered and the width of the
noise distribution. This is the recommended model for surface albedo retrieval for the VJB method
using AVHRR data. For the NDVI, however, we found that the lowest average noise is obtained by
correcting MODIS data with MODIS derived parameters and AVHRR data with AVHRR derived
parameters. These results are true both for AVHRR-pre which has no aerosol or water vapor correction
and for AVHRR, which uses MODIS information for the atmospheric correction.

Further studies should focus on the effect of the spatial resolution on the assumptions made by
the VJB method, such as the invariability of a certain site during the composite period of the model.
This information is especially useful for the derivation of surface albedo. A surface albedo using
AVHRR data from 1982–2018 is of great interest to the scientific community, especially one which relies
heavily on observations and on semi-empirical physical models.
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