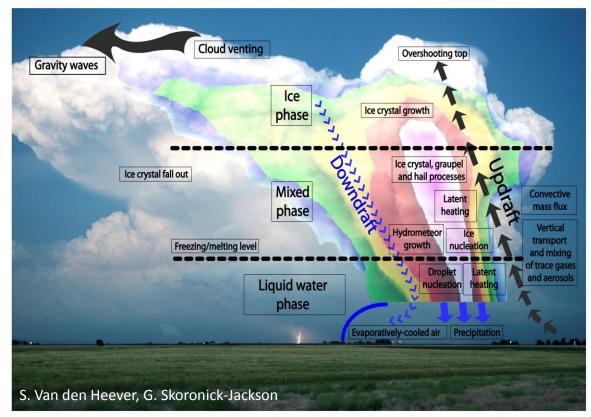
Objective 3: Storm Dynamics

Walt Petersen Duane Waliser, Scott Braun, Graeme Stephens • Background and Traceability to Decadal Survey

Outline


- Statement of Objective-3 and Overarching Science Questions
- Approach to addressing science objective
 - Geophysical Variables
- Desired Geophysical Variable Capabilities
 - Example observables
- Outstanding questions, work in progress

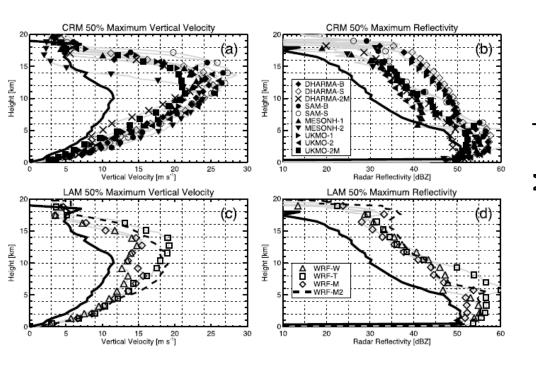
Overarching A-CCP Goal	A+CCP	A	ССР	2017 DS Most Important Very Important	Goals			
				C-2a, <mark>C2</mark> g, W- 1a, W-2a	G1 <u>Cloud Feedbacks</u> Reduce the uncertainty in low- and high-cloud climate feedbacks by advancing our ability to predict the properties of low and high clouds.			
Understand the processing of water and aerosol through the				C-2a* C-2g, C2-h*, C-5c*, H-1b, W-1a*, W-2a*, W-4a	G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation <i>and dynamical processes</i> within storms.			
atmosphere and develop the societal applications enabled from this				H-1b, W1-a <u>,</u> W- <mark>3</mark> a,_S-4a	G3 <u>Falling Snow</u> Quantify the rate of falling snow at middle to high latitudes to advance understanding of its role in cryosphere-climate feedbacks.			
understanding.				W-1a <u>, W-5a,</u> <u>C-5a</u>	G4 <u>Aerosol Processes</u> Reduce uncertainty in key processes that link aerosols to weather, climate and air quality related impacts.			
		р 		C-2h, C-5c	G5 <u>Aerosol Radiative Forcing</u> Reduce the uncertainty in Direct (D) and Indirect (I) aerosol-related radiative forcing of the climate system.			

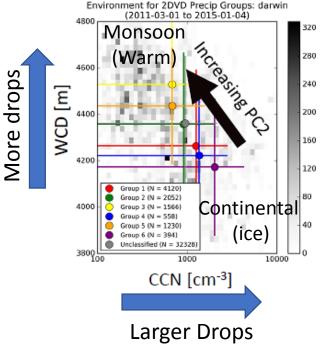
Goal only fully realizable via combined mission.

A or CCP makes meaningful contribution to goal

Goal 2: Storm Dynamics Background

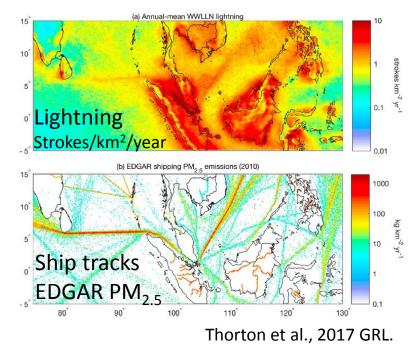
Climate: Convective clouds and associated processes are *fundamental to <u>Earth system</u>* transports/exchanges of fresh water, mass, and energy, between the surface and atmosphere.


Modeling and Prediction: Global NWP at cloud resolving scales is imminent......However, weaknesses exist in representations of coupled convective dynamic (drafts) and microphysical <u>processes</u>:


Documented impacts on precipitation initiation, intensity, frequency, and location, transports, diabatic heating, storm intensity, lifecycle, and organization, and cloud feedbacks in the climate system.

Priority: Improve global observation of the fundamental process **coupling** between convective cloud **vertical motion** (dynamics), **microphysics**, and **precipitation** production across a **full range of cloud environments (including aerosol background) and meteorological regimes**

Goal 2: Storm Dynamics Background


Poor updraft prediction impacts microphysics

"Therefore, <u>overly intense simulated updrafts</u> may additionally be a product of unrealistic <u>interactions</u> <u>between convective dynamics, parameterized</u> <u>microphysics</u>......" Varble et al., 2014 JGR. Precipitation size distribution varies with convective regime as does aerosol.....Dolan et al. 2018 (AGU).

Regime and Aerosol Modification of Convective Processes?

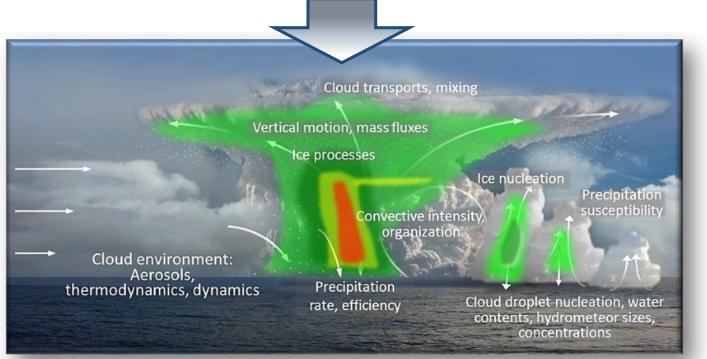
CAPE+precipitation studies do not conclusively explain ocean-land lightning difference.

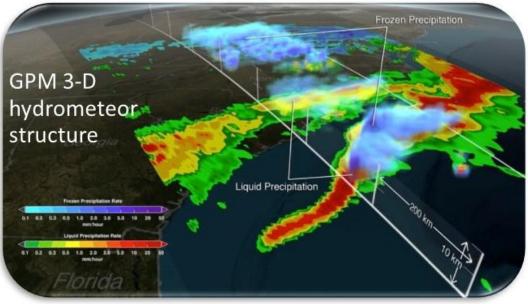
How does aerosol alter convective physical processes (microphysics, dynamics)?

Goal 2 Broader Context: Trace to Decadal Survey Topics

Weather

- Overarching needs for *coupled <u>Earth system model</u> evolution* and improved weather, climate prediction:
 - Observations of *moist convection and precipitation processes* on convective scales
 - Observations to assess *impacts of convective organization on the larger circulation* (sub/seasonal prediction)
 - W-1a Boundary layer process impacts on weather, hydrologic, and air quality forecasts.
 - W-4a Measure <u>vertical motion in deep convection, heavy precipitation rates</u> to <u>improve model</u> forecasts of extreme precipitation, convective <u>transports</u>/redistribution of mass, moisture, momentum, chemical species.
 - W-2a Improved prediction of natural low-frequency modes of weather/climate variability tied in part to improved process understanding, assimilation/models of convection, mesoscale organization, circulation impact
- <u>Climate:</u>
 - Uncertainties in climate forcing and sensitivity associated with cloud feedbacks
 - Connect *cloud and convection <u>processes</u>* to atmospheric circulation
 - Improved understanding/representation of *affects of aerosols* on clouds and climate response
 - C-2a High cloud feedbacks ("shaped by <u>convective processes</u>", coupling of cloud, precipitation, aerosols)
 - C-2g Quantify the contribution of the UTLS to climate feedbacks and change (how composition changes affect)
 - C-2h, 5c Quantify the effect that aerosol has on cloud (indirect aspects).
- Hydrologic Cycle and Water Resources
 - Coupling of water and energy cycles in the context of a dynamic "Earth systems approach"
 - H-1b Quantify rates of *precipitation, phase (rain and snow/ice),* worldwide, convective and orographic scales......


Storm Dynamics: Science Question and Objective 3


A+CCP	A	ССР	Goal	Example Science Question	Objectives
			G2 <u>Storm Dynamics</u> Improve our physical understanding and model representations of cloud, precipitation and dynamical processes within storms.	How do different convective storm systems contribute to the vertical mixing and transports of heat, water, and other constituents within the atmosphere and how do these transports relate to the cloud and precipitation properties of storms?	O3 <u>Convective Storm Systems</u> Minimum: Relate vertical motion within convective storms and their cloud- and precipitation-structures to a) storm life cycle, b) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind shear, c) ambient aerosols, and d) surface properties. Enhanced: Relate vertical motion within convective storms and their cloud- and precipitation-structures to a) latent heating profiles, b) storm life cycle, c) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind shear, d) ambient aerosols, and e) surface properties.

Storm Dynamics Approach

Advance from reflectivity profile/structure "snapshots" and mapping requirements for precipitation rate (TRMM, CloudSat, GPM) to measure observational proxies for coupled dynamic and microphysical processes

"Processes" - physics that evolve convective cloud systems in the context of impacts on atmospheric circulation and composition; e.g., environment - updraft - cloud - precipitation - downdrafts - storm organization - diabatic heating - transports/detrainment

Key geophysical observation(s): Coincident global convective-scale vertical motion (Doppler or related proxy) column hydrometeor structure, precipitation rate, phase, and type, surrounding aerosol profile, set in context of PoR convective storm coverage and tendency, and dynamic and thermodynamic environments.

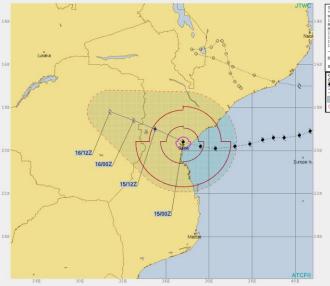
Program of Record

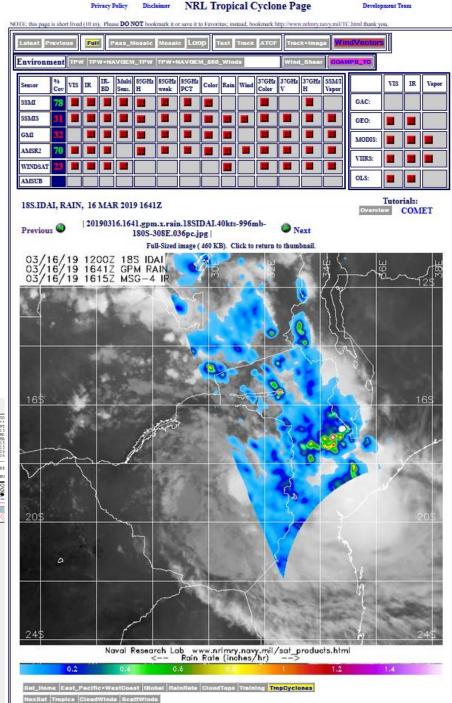
Mission	Orbit	Objective-3 Related Sensors	Agency	Ops Years
GPM	LEO (407 km) 65º incl.	Radar: DPR (Ka, Ku-Band) Microwave radiometer (imager): GMI (10-183 GHz)	NASA, JAXA	2014-2032 (+/-5)
EarthCARE* *Depends on launch date	LEO (393 km) Polar	Radar: CPR (W-Band, Doppler) / Lidar: ATLID (355 nm; HSRL) Vis/IR: MSI (0.67 - 12.0 μm , 7 channel)	ESA, JAXA	2021(?)-2026*
NOAA 20*, JPSS (2-4) *7-year design life	LEO (824 km) Polar	Microwave radiometer (sounder): ATMS (23.8 - 183 GHz) Vis/IR: VIIRS (412-12 μm, 22 bands) IR Sounder: CrIS	NOAA/NASA/ EUMETSAT	2017 - 2038
EPS/MetOP-SG-A 1-3	LEO (835 km) Polar	Microwave radiometer (sounder): MWS (23.8 - 229 GHz) IR Sounder: IASI-NG (3.62-15.5 μm; 12 bands) Vis/IR: MetImage (0.343 - 13.3 μm; 20 channels) Polarimeter: 3MI (0.41 - 2.1 μm)	EUMETSAT/CNES/ ESA	2022 - 2042
EPS/MetOP-SG-B 1-3	LEO (835 km) Polar	Microwave radiometer (imager): MWI (18.7 - 183.3 GHz) ICI (183 - 664 GHz)	EUMETSAT/CNES/ ESA	2022 - 2042
WSF-M	LEO, Polar	Microwave radiometer (imager)- Modified GMI	DoD	2022 - (?)
GOES 16-19	GEO	Vis/IR: ABI(0.47-13.3 μm ;16 channels) Lightning:GLM (Optical .777 $\mu m)$	NOAA/NASA	2017 - 2038
Himawari	GEO	Vis/IR: AHI (0.455 - 13.3 µm; 16 channels)	JMA	2014 - 2031
MTG I (1-4)	GEO	Vis/IR: FCI (0.44 -13.3 μm ; 16 channels), Lightning: LI (Optical;.777 μm)	EUMETSAT/ESA	2021 - 2038
GEO-KOMPSAT (2A, 2B*)	GEO	Vis/IR: AMI (0.47 - 13.3 μm; 16 channels) *Vis/NIR: GOCI-II (0.38-0.87 mm + panchromatic; 13 channels)	KARI/KMA/NIER	2018 - 2029+

A+CCP	A	ССР	Objectives	A	ССР	ODO	POR	Potentia l Enabled Apps	Geophysica Minimum	Enhanced	Qualifiers
			O3 Convective Storm Systems		V		-	1,2,3	Vertical air velocity		Above 5km, >2 m/s
							(√)	1,2,3,5,6	Cloud top height		
			Minimum: Relate vertical motion within convective storms	V			(√)	1,2,3,5,6	Cloud top temperature		
			and their cloud- and precipitation-structures to a) storm life		V		(√)	1,2,3,5,6,9-12	Precipitation rate profile		
			cycle, b) local environment thermodynamic and kinematic factors such as temperature, humidity, and vertical wind		٧		(√)	1,2,3,5,6,9-12	Precipitation phase profile		Liquid/mixed/frozen
			shear, c) ambient aerosols, and d) surface properties.		v		(√)	1,2,3,6	Cloud vertical structure		E.g., reflectivity-profile above 5 km
			Enhanced Delete control on the within a constant		٧		(√)	1,2,3,5,6,9-12	Ice water path		
			Enhanced: Relate vertical motion within convective		٧		(√)	1,2,3,5,6,9-12	Convective classification		Org./intensity/depth
			storms and their cloud- and precipitation-structures to a) latent heating profiles , b) storm life cycle, c) local environment thermodynamic and kinematic factors such				(√)	1,2,3,5,6,9-12	Stratiform/convective prec	ipitation discrimination	Conv./Stratiform
							٧		Cloud lifecycle categories		
		as temperature, humidity, and vertical wind shear, d) ambient aerosols, and e) surface properties.					٧		Diurnally resolved cloud co	over and cloud top height	
								1,2,3,5,6	Aerosol extinction profile		
						S	(√)	1,2,3,5,6	AOD		Column, PBL
			A+CCP Potential Enabled Applications				٧		Synoptic scale motion		Environmental shear
PEA1	Sever	re Stori	n Forecasting & Modeling (NOAA, NCAR, Private Industry)				٧		Environmental thermodyna	amic profiles	
PEA2 PEA3 PEA5	PEA2Aerosol & Precipitation Interaction (NWS, NOAA, CTM, AQ agencies)PEA3Climate Modeling (NOAA, CTM, EPA, state AQ agencies, policy makers)				v		(√)	1,3	Latent heating profile		Instantaneous estimate
PEA6			nformation & Analytics (IBM, DoD, public companies) ustry and Safety: (NOAA, FAA, DoD, DoE, Volcanic DoE, Ash Advisory		٧		(√)	1,2,3,5,6,9-12	Precipitation particle size		
5540			ines, private industry)		٧		(√)		2D Surface Precipitation R	late	Mapped precip. rate
	 PEA9 Hydrologic Modeling (FEWS NET, World Bank, FAO, USDA Resource/Mgmt comm.) PEA10 Agricultural Modeling & Monitoring (USDA, ClimateCorp, ag. Comm./planners) 				٧			1,2,3,5,6,9-12	Convective core size		
				V				1,2,3,5,6	Aerosol effective radius		Profile
	PEA11 Health & Ecological Forecasting & monitoring (CDC, NOAA, Red Cross, World							1,2,3,5,6	Aerosol non-sphericity		Profile & column
	Bank, publi	ic/priva	te sector)	V				1,2,3,5,6	AAOD		Profile
	2 Disas	•	nitoring, Modeling, & Assessment (FEMA, NOAA, Red Cross, FAO,				٧		Lightning		
	US Army	y, reins	urance, NGOs)			1					

O3 <u>Convective Storm Systems</u> Geophysical Variables (1 of 3)			Desire	d Capab	oility				Examples of	
		Denne			Scale	s			- Examples of Observables	Notes
		Range	Uncertainty -	ХҮ	Z	т	T Swath			
Minimum	Enhanced	IMPOR	(ANT: Desir	ed Car	oabiliti	es (and	<u>0</u>	oservables are preliminary	. Click <u>here</u> for additional information.
		2-25 m/s	- 2 m/s -	3 km	250 m				Doppier shifted radial velocity, time	Δx resolution marginal for convective updraft; capture mean level at/or above maximum mass
	Vertical air velocity		2 m/s	1 km	250 m				differenced reflectivity ($\Delta Z \sim 2 \text{ dBZ}$, 90sec); Height $\geq 5 \text{ km}$	flux; (E) will enable either or both improved sampling, resolution, and/or limited scan.
Cloud top height		6 - 20km	100m -	2 km 1 km	100m		Nadir	20 km	VIS backscatter	Expect to address this from lidar backscatter
Cloud top temperature		260-170K	2К -	2 km 1 km	N/A					Cloud height from lidar, temperature matched to sounding; else PoR and broader context
Ice water path		0.2 -10 kg m ⁻²	100%	3 km 1 km	N/A	*suc			Radar reflectivity (> 14 GHz); VIS-SWNIR reflection, DFR, VIS backscatter	Combined radar/lidar has heritage
Convective classification		≥ 3-classes	N/A	5 km	N/A	lnstantaneous*	wi		VIS/IR Geostationary PoR, multi-freq. microwave, radar reflectivity profile	Identify by org. (MCS, isolated conv, multi-cell etc.) and/or intensity (weak, moderate, intense), depth (shallow, moderate, deep) etc.
Cloud lifecycle categories		≥ 3 phases	N/A	5 km	N/A	-	wi	ide		e.g., Cu, mature, decaying; alternatively, MCS approach such as Roca et al., 2017 and refs therein
Diurnally resolved cloud to	p height	6 -20 km	1000 m	2 km	500m		wi	ide	VIS/IR Geostationary PoR	PoR IR estimates boost uncertainty
Diurnally resolved cloud co	over	0.05-1.00	5%	2 km	N/A		wi	ide	VIS/IR Geostationary PoR	For context only
				3 km			[]		radar reflectivity >14 GHZ, µwave	Lower freq radar for heavier rains; Near surface
Precipitation rate profile		2-100 mm/hr	<100%	1 km	250m		Nadir	20 km		estimate can come from the profile lowest bin.
				3 km			Na	20	Radar reflectivity profile (>14 GHZ)	Minimum confined to above melting layer and
Cloud vertical structure		0.5 - 20 km	N/A	1 km	250m				above melting layer (ML) ~ 5 km.	~coincident with vertical velocity measurement

O3 <u>Convective Storm Systems</u> Geophysical Variables (2 of 3)			Desire	d Capab	oility				Examples of			
		Pango	Uncertainty		Scales	s			 Examples of Observables 	Notes		
		Range	Uncertainty -	ХҮ	Z	т	T Swath					
Minimum	Enhanced		IMPORTA	NT: Desir	ed Capał	oilitie	es an	id Ot	bservables are preliminary. Click <u>here</u> for additional information.			
Precipitation phase profile		liquid, solid, mixed		≤3 km	250 m		Nadir		Z profile, bright band, ΔV_r , pol. radar linear depolarization ratio (LDR; e.g., Ka > ~-15 dB), differential reflectivity ΔZ ~2dBZ, dual- frequency ratio (e.g., Ka/W, Ku/Ka, Ku/W), polarimetric VIS backscatter	Basic separation of liquid and frozen in stratiform most straight forward. However, this would include approach for convective clouds, mixed phase, and the associated profile. Melting layer ID is implicit.		
Stratiform/convective precipitation discrimination		0-100%	10 %	3 km	N/A	eous			Radar reflectivity profile	3 types- C, S, Other. Better with multiple radar frequencies (E), vertically- resolved Doppler vertical motion		
Aerosol extinction profile		Sfc-18 km	25%	10 m	100 m	Instantaneous	Nadir		Backscatter profiles at VIS	Vicinity of convection		
AOD (column, PBL)		0.03 - 4	15%	2 km		Insta	20		Multi-angle radiance (UV,VIS) – 5%, multi- angle DOLP (x%) - Multispectral radiance in UV (aerosol absorption)- VIS (AOD, fine			
		0.03 - 4	10 %	1 km			20 r		mode aerosol absorption)- VIS (AOD, fine mode aerosol over water) - SWIR (surface properties and cirrus screening) - 5%			
Synoptic scale motion									From met analysis (PoR)	Dynamics		
Environmental thermodyna	amic profiles								From met analysis (PoR)	Temperature, humidity, instability profiles/indices		
Latent heating profile		-50-100 K/hr	30%	≤3 km	250 m	Instantaneous		Nadir or swath	Radar reflectivity profile, C/S type, Doppler velocity, time differenced reflectivity (ΔZ~2 dBZ, 90sec)	Instantaneous estimate with velocity constraint; Highly derived from combination of sources		


O3 <u>Convective Storm Systems</u> Geophysical Variables (3 of 3)			Desire	d Capak	oility			Examples of		
		Pango	Uncortainty	Scales				Observables	Notes	
		Range	Uncertainty	XY	Z	Т	Swath			
Minimum	Enhanced		IMPORTA	NT: Desir	ed Capab	oilitie	es and Ob	servables are preliminary. Click <u>here</u>	for additional information.	
Precipitation particle size		0.4-4.0 mm*	0.5 mm	≤3 km	250 m		Nadir	Radar reflectivity, attenuation, dual- frequency ratio (DFR), combined TB and reflectivity/DFR.	*Characteristic water equivalent diameter (e.g., D_m , D_0 etc.). D_m largely < 3 mm (e.g., Gatlin et al., 2015); multi-frequency best.	
2D Surface Precipitation Rate		0.5-50 mm/hr	< 50% @1 mm/hr; < 25% @>10 mm/hr	≤ 25 km	N/A	SL	>500 km	Scanning passive µwave, >85 GHz	Contributes to horizontal mapping of precip. Uncertainty similar to GPM L1 Requirements.	
Convective core size		25-400km ²	25 km ²	≤3 km	N/A	aneot	20 km	Radar reflectivity, microwave TB	Limited scanning or mapping implied	
Aerosol effective radius profile		0.1–0.5	±20% when extinction exceeds 0.05 km ⁻¹			Instantaneous				
Aerosol non-sphericity										
AAOD										
Lightning								PoR; group/flash rates, flash area, length, energy	Geo, LEO and ground-based sensors	


Objective 3: Convective Storms Potential Enabled Application Example

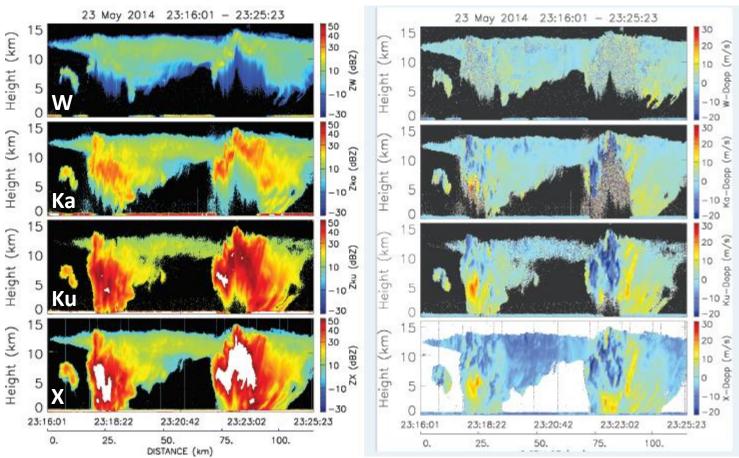
- Severe Storm Forecasting and Modeling: Observations of aerosols, cloud properties, and precipitation are used by the weather modeling and forecasting communities to predict hurricane and mid-latitude cyclone development, intensity, and track and associated precipitation type and amount
- Relevant Geophysical Properties: Cloud height, depth, surface precipitation, brightness temps
- **Partners**: NWP Modeling Communities, NOAA, Disasters planning communities

A+CCP has the potential to provide more information on convective events to inform storm intensification forecasting

NRL Tropical Cyclone Page https://www.nrlmry.navy.mil

Develop Sub-Orbital Needs and Approaches

Potential gap(s) in orbiting instrument capability may dictate targeted sub-orbital sampling.


Example (*one*)- severe storms: Tail of intensity distribution but large impact!

Problem: Excessive attenuation/multiple scattering at higher radar frequencies- requires multi-parameter Doppler radar sampling at longer wavelengths.

Sub-orbital possibilities: Multi-platform airborne active/passive remote sensing, in situ environment, coordinated and combined with ground-based research rapid-scanning Doppler/polarimetric radar and supporting instrument networks (temporal sampling) 4-Frequency radar sampling from ER-2; IPHEx severe storm

Reflectivity (dBZ)

Doppler Velocity (m/s)

Heymsfield et al., 2017

Outstanding, Ongoing, and Next Steps

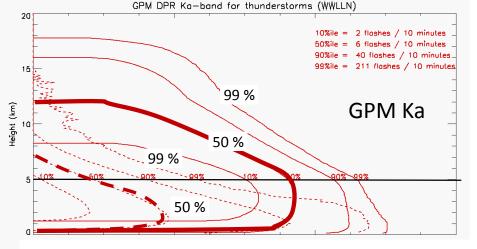
Geophysical variable adjustments and other issues need resolution based on SCC and community inputs

- Missing variables?
- Should cloud phase be included in the O3 minimum in addition to precipitation phase profile? If so, is "cloud top phase" more appropriate for this objective?
- Need to better define "convective classification" and "convective lifecycle" GVs.

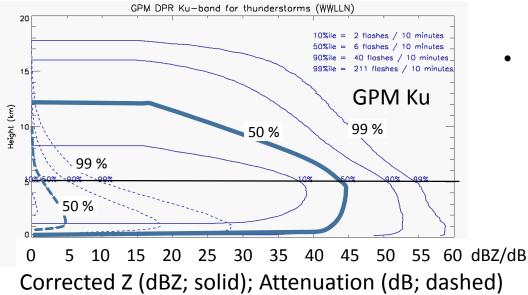
Incorporate SIT "reality checks" on GV desired capabilities (ranges, uncertainties, resolution)

More detailed specification of PoR contribution(s)

Better define candidate observables and associated measurement specs


Value Framework Utility assignment to GVs SIT Quality metrics for observables/measurements (literature, model/field campaign OSSEs etc.)

Initial architectural studies


Identify potential "sub-orbital" components

BACKUP/EXTRA

GPM Estimate of Impact on Convective Storm Profiles if Limited to Ka-Band Radar

0 5 10 15 20 25 30 35 40 45 50 55 60 dBZ/dB Corrected Z (dBZ; solid); Attenuation (dB; dashed)

DPR <u>two-way</u> attenuation in thunderstorms $(Z_m - Z_c)$ *Multiple scattering not accounted for.....

At an *altitude of 5 km*:

- For typical (50th %) thunderstorms, Ka has ~8 dB attenuation
- For moderate (90th %) thunderstorms, Ka has ~15 dB attenuation
- For strong (99th %) thunderstorms, Ka has ~22 dB attenuation

• For Ku, these numbers are 1.5, 5, and 10 dB, respectively (at 5 km)