

EU-IN-TIME Rise Workshop on Geochronology and Mars Exploration The University of Texas at Austin, April 7, 2019

ChemCam (Wiens, LANL/CNES) – Elemental composition; microimaging

CONTACT INSTRUMENTS (ARM)

MAHLI (Edgett, MSSS) – Hand-lens color imaging APXS (Gellert, U. Guelph, Canada) – Elemental composition

ANALYTICAL LABORATORY (ROVER BODY)

SAM (Mahaffy, GSFC/CNES) - Chemical and isotopic composition, organics CheMin (Blake, ARC) - Mineralogy

ENVIRONMENTAL CHARACTERIZATION

MARDI (Malin, MSSS) - Descent imaging REMS (Gómez-Elvira, CAB, Spain) - Meteorology /UV RAD (Hassler, SwRI) - High-energy radiation DAN (Mitrofanov, IKI, Russia) - Subsurface hydrogen Kastcam RAD REMS REMS RAD DAN DAN APXS Brush Drill / Sieves /Scoop

Wheel Base: 2.8 m Height of Deck: 1.1 m Ground Clearance: 0.66 m Height of Mast: 2.2 m

Curiosity in situ dating Geologic context considered using remote sensing and Mastcam K measured using APXS – surface measurement OR on drill tailings, bulk measurement of K and other elements Portion mass estimated from preflight engineering tests of CHIMRA K siting estimated using Chemin mineralogy Ar measured using SAM mass spectrometer on drilled portion

Barbara Cohen (barbara.a.cohen@nasa.gov)

Curiosity in situ dating

4/8/19

- Geologic context considered using remote sensing and Mastcam
- K measured using APXS surface measurement OR on drill tailings, bulk measurement of K and other elements
- Portion mass estimated from preflight
 engineering tests of CHIMRA
- K siting estimated using Chemin mineralogy
- Ar measured using SAM mass spectrometer on drilled portion

Barbara Cohen (barbara.a.cohen@nasa.gov)

Curiosity in situ dating

- Geologic context considered using remote sensing and Mastcam
- K measured using APXS surface measurement OR on drill tailings, bulk measurement of K and other elements
- Portion mass estimated from preflight
 engineering tests of CHIMRA
- K siting estimated using Chemin mineralogy
- Ar measured using SAM mass spectrometer on drilled portion

Curiosity in situ dating

- Geologic context considered using remote sensing and Mastcam
- K measured using APXS surface measurement OR on drill tailings, bulk measurement of K and other elements
- Portion mass estimated from preflight
 engineering tests of CHIMRA
- K siting estimated using Chemin mineralogy
- Ar measured using SAM mass spectrometer on drilled portion

NASA

Curiosity in situ dating

- Geologic context considered using remote sensing and Mastcam
- K measured using APXS surface measurement OR on drill tailings, bulk measurement of K and other elements
- Portion mass estimated from preflight
 engineering tests of CHIMRA
- K siting estimated using Chemin mineralogy
- Ar measured using SAM mass spectrometer on drilled portion

4/8/19

Windjana

- Kimberley formation sediments, ~35m topographically and stratigraphically above the Sheepbed mudstone
- Postdeposition episodes of diagenetic alteration followed by significant aeolian abrasion
- Elevated K2O abundances attributable to sanidine
- K-Ar measurements = sanidine, cosmogenic ages = overburden removal

Mojave 2

- A finely-laminated mudstone in the Pahrump Hills, grain size unresolvable by MAHLI (<60 μm)
- Contains detrital plagioclase and authigenic jarosite, both of which host K, but which have different Ar release temperatures
- Two-step heating schedule to release each phase separately
- Detrital plag = 4.07 ± 0.63 Ga (consistent with, though less precise than, Cumberland)
- Jarosite formation in a post-depositional fluid environment = 2.12 ± 0.36 Ga (!!)
- Complex/discrepant 36Ar and 3He ages may imply exposure prior to erosion into the Gale basin

Mineralogy								
Mineral		Cumberland ^d	Windjanac	Mojave 2 ^b		1000		
Plagioclas	e	22.2 ± 1.3	3.0 ± 0.3	23.5 ± 1.6	Plagio	clase		
Sanidine		1.6 ± 0.8	21.0 ± 3.0	-	Amorp	hous		
Olivine		0.9 ± 0.45	4.7 ± 1.0	0.2 ± 0.8	& Sme	ctite		
Augite		4.1 ± 1.0	20 ± 0.3	2.2 ± 1.1				
Pigeonite		8.0 ± 2.0	11 ± 0.2	4.6 ± 0.7				
Orthopyro	xene	4.1 ± 1.0	-	-				
Magnetite		4.4 ± 1.1	12 ± 0.2	3.0 ± 0.6				
Hematite		0.7 ± 0.35	0.6 ± 0.4	3.0 ± 0.6				
Anhydrite		0.8 ± 0.4	0.4 ± 0.3	-				
Bassanite		0.7 ± 0.35	0.5 ± 0.4	-				
Quartz		0.1 ± 0.1	-	0.8 ± 0.3	Pla	agioclase		
Jarosite		-	-	3.1 ± 1.6		arosite		
Fluorapatit	te	-	0.8 ± 0.8	1.8 ± 1.0	Ph Ph	yllosilicates		
Ilmenite		0.5 ± 0.5	0.8 ± 0.5	-		71		
Akaganeite	е	1.7 ± 0.85	0.2 ± 0.2	-	T			
Halite		0.1 ± 0.1	-	-	and the			
Pyrrhotite		1.0 ± 0.5	0.3 ± 0.3	-		al l		
Phyllosilic	ate	18 ± 9	10 ± 0.2	4.7 ± 2.4	A Dort	1 de		
Amorphou	S	31 ± 19	15 ± 0.3	53 ± 15		2-0		

12

	In situ ag	es on l	NASA			
	Location Aliquot		Radiometric age (Myr)	CRE age (Myr)	Interpretation	
	Cumberland		4210 ± 350 (8.3%)	78 ± 6 (7.7%)	Crystallization age of detrital minerals from basaltic precusor; mm to cm/Ma denudation by scarp retreat	
	Windiana	Aliquot 1	627 ± 50 (8.0%)	145 ± 203	Radiometric ages inaccurate due to incomplete degassing and/or	
1 1 1	Windjana	Aliquot 2	1710 ± 110 (6.4%)	(140%)	mineralogic fractionation during sample handling	
5 5 5	Meiovo 2	Plag	4070 ± 630 (16%)	300 (³⁶ Ar) –	Crystallization age of detrital minerals from basaltic precusor; pre-burial exposure	
10 10	Mojave 2	Jarosite	2120 ± 360 (17%)	1000 (³ He)	Fluid flow through the Murray bedrock	

Developments in *in situ* dating instrumentation

- Must yield ages that are precise, accurate, interpretable, and meaningful
 - Cooperative, characterizable samples
 - Small uncertainties on the calculated age
 - Calibrated standards
 - Age must be recognizable and interpretable as a geologic event
- The NASA Technology roadmaps provide guidelines
 - Required ±200 Ma (or ±5% over 4.5 Ga)
 - Desired ±50 Ma (or ±1% over 4.5 Ga).
- Multiple techniques in development
 - Radiometric isotope dating (e.g., K-Ar, Rb-Sr, and U-Th-Pb systems)
 - Csmogenic nuclide dating
 - Dosimetry-based methods (i.e., luminescence)
 - Exploitation of processes on Mars such as variation in atmospheric stable isotopes and flux of extraterrestrial material
- None are standoff or remote techniques; common need for sample acquisition and handling
- Agreement between multiple chronometers increases confidence, though disagreement does not negate the inherent value of each measurement

Additional K-Ar and Ar-Ar developments

- Farley et al. (2013) developed ID-KArD, uses powdered samples in cups similar to Curiosity, along with K-Ar spike with flux to enable degassing
- Morgan et al (2017) investigated the requirements for in situ 40Ar-39Ar dating would require sufficient neutron fluence to create 39Ar, also high-resolution mass spectrometer to measure 39Ar

NASA

Rb-Sr

4/8/19

- Rb is highly incompatible, while Sr concentrates in crystallizing minerals (plagioclase)
- 87Rb and 87Sr are isobaric, requiring mass resolution better than m/z=300,000 to distinguish them
- Coleman et al. (2012) used ICP-MC-MS, assume variations in 87Sr resulting from radioactive decay produces only minor variations in overall Sr abundance; only valid for minerals that have a very high Rb/Sr ratio
- Anderson et al. (2014, 2015) Resonance Ionization - Mass Spectrometry (RIMS) after laser ablation, independently introducing parent and daughter to MS via ion optics

Dosimetric techniques

- Thermoluminescence (TL), optically stimulated luminescence (OSL), and electron spin resonance (ESR) accumulation of free electrons from exposure to natural ionizing radiation (radioactive elements and/or cosmic rays)
- Sunlight can deplete the trapped charge
- Sample exposed to thermal or optical stimulation; intensity of the emitted luminescence is proportional to the dose absorbed since the last exposure to sunlight, dating the time since burial (i.e. the depositional age)
- Potential for dating of Martian sedimentary processes, such as the frequency of aeolian dust storms, polar layering, and fluvial activity - complementary to noble gas CRE age
- Luminescence dating typically concentrates on quartz and feldspar; iron-bearing materials dilute the OSL effect

TL/OSL for Mars developed by Risø National Laboratory

Dosimetric techniques For a rover- or lander-based instrument, material would be collected from the surface via an arm with a scoop or drill, deposited into a sample hopper for grain size and magnetic separation, and transported to the analysis and irradiation chambers (DeWitt and McKeever, 2013) • The possible range in ages determinable by luminescence dating on Mars, assuming reliable ROCM doses can be measured close to apparent saturation, 1801 is ~ 40–600 ka (Jain *et al.*, 2006; Sohbati *et al.*, 2012) Complex mineralogy, poorly defined sample grain size distributions, high cosmic ray dose rates, anomalous **ODIN TL/OSL unit (DeWitt** fading, and low temperatures are among the and McKeever, 2013) challenges that need to be addressed in determining the success of Martian luminescence dating

