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On behalf of both the U.S. Agency for International Development (USAID) and the U.S. Geological Survey (USGS), 
and specifically on behalf of the SilvaCarbon initiative, we are proud to share with you the following Handbook, the 

product of a collaboration between SilvaCarbon and the SERVIR program. Established in 2010, SilvaCarbon represents 
the US contribution to the Global Forest Observation Initiative (GFOI), itself a collaborative effort supporting countries 
in using Earth observation data for monitoring forests. SilvaCarbon’s implementing agencies include USAID, the U.S. 
Department of State, the U.S. Forest Service (USFS), the USGS, the U.S. Environmental Protection Agency (EPA), the 
National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA), 
and the Smithsonian Institution. This Handbook also represents an important contribution from a number of U.S.-
based experts in Synthetic Aperture Radar (SAR), as well as experts from SERVIR’s global network of hubs.

The motivation for this Handbook is to translate knowledge gained from decades of research in SAR into practical guidance 
to countries on how SAR can be used for different aspects of forest monitoring, reporting, and verification (MRV) for 
REDD+. There has been growing interest in applying this technology to land cover mapping and monitoring in the tropics, 
where seasonal and permanent cloud cover make detecting deforestation and forest degradation very challenging. 

Radar data historically was known for being costly and complicated to use. However, with new datasets becoming avail-
able and open source, such as SENTINEL -1 from the European Space Agency (ESA), the fusion of optical and radar data 
becomes an option for sustainable and replicable methods. The drawback is the lack of historical radar data to include 
in historical baselines. However, the sooner SAR data is included in National Forest Monitoring Systems, the sooner it 
will be considered historical data in the future. 

One of the GFOI’s focus activities is providing ‘Methods & Guidance’ documentation to support countries’ forest mon-
itoring activities. This Handbook thus fits into that context as an important contribution to methods & guidance, espe-
cially since the body of available datasets and tools has been growing. One anticipated resource is the joint U.S. / India 
NISAR satellite mission whose launch is expected in the next few years.

The handbook walks you through the principles of SAR data applications from the beginning, starting from how to 
access the data and perform basic processing techniques. It describes how to use SAR data to map deforestation and 
forest degradation and how to estimate forest height. It also provides guidance on the best methods for using SAR to 
map and monitor forest biomass. It includes a chapter that exemplifies the use of radar for mapping mangrove forests. 
It concludes with the important issue of choosing a sampling design while using SAR data for biomass estimation.

PREFACE
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The handbook was first conceptualized as an outcome from a workshop hosted by SERVIR. This workshop brought together 
scientists, program managers, and country practitioners to identify challenges on using SAR data, gaps where SAR data 
is not available, and potential areas where SAR could fill the gap in forest monitoring for remote sensing data. Thanks 
to the efforts of the SERVIR team, especially Africa Flores for managing the overall initiative, the scientists involved in the 
development of the handbook, and the SilvaCarbon team, this handbook offers a set of tools and operational methods that 
will streamline efforts to assist countries to build robust, transparent, replicable and verifiable Monitoring, Reporting and 
Verification Systems. 

We therefore invite you to take advantage of this important resource, and feel free to provide us with feedback on how the 
Handbook can be improved, as we hope that this will evolve into a truly living document. We also take this opportunity to 
recognize the contributions of the subject matter experts who drafted the bulk of the Handbook, our counterparts from 
the respective SERVIR hubs across the globe, and our partners at NASA’s SERVIR Science Coordination Office. Thank you.

Juliann Aukema 
SilvaCarbon Coordinator, USAID

Sylvia Wilson
SilvaCarbon Coordinator, USGS
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FOREWORD

Two years ago, a group of scientists and practitioners representing a dozen countries across Africa, Asia, 
and the Americas identified a pressing need and opportunity for the applied Earth observations and 

international development communities.  Global and national commitments to sustainable landscape man-
agement—including forests, mangroves, and the biomass they store and CO2 they capture—has challenged 
scientists and resource managers to develop and implement new, accurate, and cost ef fective monitoring 
and reporting systems.  Field measurements combined with satellite remote sensing techniques have pro-
vided industry-standard inputs into monitoring, reporting, and verification systems.  In the last decade, 
critical access to satellite data has skyrocketed, thanks largely to public releases of over 40 years of Landsat 
data from the NASA and USGS, along with the European Space Agency ’s (ESA)  free and open data policies 
under the Copernicus Sentinel series.  However, data access alone does not guarantee appropriate use.  
Tools and training are important steps in ensuring adequate capacity at individual and institutional levels.  

This Handbook represents a joint contribution from the U.S. government-led SilvaCarbon initiative, and the 
joint NASA-USAID SERVIR program, to support global capacity building endeavors as called for by the Global 
Forest Observations Initiative (GFOI).  SERVIR’s global network of international technical centers of excel-
lence, known as “SERVIR Hubs”, played a crucial role in defining needs and initial expansion of Synthetic 
Aperture Radar (SAR) capacity.  SERVIR Hubs have deep knowledge of existing national and regional capac-
ities in remote sensing for forestry and biomass monitoring, which articulated the critical gaps addressed 
in this Handbook.  

A common challenge that the applied remote sensing community faces in forestry and landscape monitoring 
are clouds. For years, SAR promised all-weather, day-and-night capability, but at a steep cost.  Until the 
launch of the Sentinel-1 series by ESA’s Copernicus Program and the release of archived ALOS-1 imagery by 
JAXA, SAR data were ef fectively inaccessible and inappropriate for national and regional level forestry and 
biomass monitoring.  The forthcoming NASA and Indian Space Research Organization (ISRO) SAR mission, 
NISAR, will only add to the free access of SAR data.
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The series of chapters in this handbook are authored by leading global experts in SAR remote sensing fun-
damentals and applications in this field, and co-developed with professionals who thrive at the transition 
of research to applications for societal benefit.  Through careful testing and curation, these materials are 
meant to complement existing national, regional, and global methods in forestry and biomass estimation.  
We are proud to share this as a multilateral contribution to improve the use of free satellite data toward 
better monitoring and management of our terrestrial environments.

Daniel Irwin
SERVIR Global Program Manager, NASA
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Data leads, Chiefs of Party and Directors of Institutions hosting SERVIR Hubs, for their investments in 
this SAR capacity building effort. The development of this SAR Handbook has been truly a community 
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interagency partners in the forestry community. We would also like to thank all of the SAR experts 
authoring this book; Franz Meyer, Josef Kellndorfer, Sassan Saatchi, Marc Simard, Paul Siqueira, and 
Hans Andersen for their valuable contributions and for the development and delivery of hands-on 
trainings in SERVIR Hub regions.
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1.1  Background
As highlighted by the Global Forest Observation 

Initiative (GFOI) in their Methods and Guidance 
Document (MGD) (GFOI 2017), SAR datasets have 
proven useful as a source of activity data for forest 
Monitoring, Reporting, and Verification (MRV) sys-
tems at national and regional levels. SAR datasets can 
provide substantial aid to MRV systems, particularly in 
areas with persistent cloud cover, due to the sensor’s 
all-weather capability (Reich et al. 2016).

The MGD also highlights the potential of SAR data-
sets with higher spatial resolution (<5 m) to charac-
terize forest canopy. SAR captures different target 
parameters than optical sensors, therefore providing 
unique information that complements standard opti-
cal remote sensing methods. A helpful analogy would 
be that while the energy captured by optical sensors 
of a green leaf relates to its amount of chlorophyll 
(or “greenness”), the amount of microwave energy 
(part of the electromagnetic spectrum used in SAR) 
scattered by the leaf would be proportional to its size, 

shape, and water content (Woodhouse 2006). SAR 
indeed has a strong sensitivity to forest structure and 
biomass (Saatchi 2015).

GFOI’s MGD also documents the limitations of op-
tical data such as Landsat and MODIS to estimate for-
est biomass and to detect early regrowth of secondary 
vegetation, including a limited ability to expose small 
disturbances such as removal of individual trees 
(GFOI 2017). The main premise and recommendation 
of GFOI’s MGD is to combine both remote sensing 
technologies, optical and SAR. However, the main 
limitation faced over and over by users is how to start 
ingesting SAR when its assimilation and analysis is 
rather difficult, considered highly sophisticated, and 
previously limited only to experienced professionals.

To clearly define the need for SAR technology for 
forest monitoring systems, a needs assessment was 
carried out within the SERVIR global network. SERVIR 
is a joint initiative between NASA and the U.S. Agency 
for International Development (USAID) that fosters 
the use of Earth observations to assess environmental 
conditions to improve decision-making actions. 

Then, in collaboration with SilvaCarbon, a plan 
was designed and implemented to effectively address 
needs and knowledge gaps of remote sensing special-
ists working in MRV systems to use SAR. SilvaCarbon 
is an interagency technical cooperation program of the 
U.S. government to enhance the capacity of selected 
tropical countries in measuring, monitoring, and re-
porting on carbon in their forests and other lands. In 
addition, SilvaCarbon is the U.S. primary contributor to 
GFOI, where their activities focus on capacity building.

1.2  Limitations and 
Opportunities of Applying 
SAR Technologies 

Multiple research efforts investigate empirical re-
lationships between SAR backscatter and biophysical 
forest properties, particularly aboveground biomass 
(Woodhouse 2006, Reich et al. 2016). Yet there are 
a number of limitations that are well summarized by 
GFOI’s MGD in using SAR for biomass estimation:

• Depending on wavelength, rapid saturation of 

This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with 
SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capa-
bility for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-as-
similate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector.

This introductory chapter explains the needs of regional stakeholders that initiated the development of this SAR handbook and the generation of applied training 
materials. It also explains the primary objectives of this handbook. To generate this applied content on a topic that is usually addressed from a research point of view, 
the authors followed a unique approach that involved the global SERVIR network. This process ensured that the content covered in this handbook actually addresses 
the needs of users attempting to apply cutting-edge scientific SAR processing and analysis methods. Intended users of this handbook include, but are not limited to 
forest and environmental managers and local scientists already working with satellite remote sensing datasets for forest monitoring.  

ABSTRACT

CHAPTER 1
Introduction and Rationale
Africa Ixmucane Flores-Anderson 1,2, Kelsey Herndon 1,2, Emil Cherrington 1,2, Rajesh Thapa 3, Leah Kucera 1,2, Nguyen Hanh Quyen 5, Phoebe Odour 4, Anastasia Wahome 4, 
Karis Tenneson 6, Bako Mamane 7, David Saah 6,8, Farrukh Chishtie 5, Ashutosh Limaye 1

1 NASA Marshall Space Flight Center / SERVIR Science Coordination Office, 2 University of Alabama in Huntsville, 3 International Centre for Integrated Mountain Development (ICIMOD) / SERVIR-Hindu Kush Himalaya, 4 Regional Centre for Mapping of Resources for Development (RCMRD) 
/ SERVIR-Eastern & Southern Africa, 5 Asian Disaster Preparedness Center (ADPC) / SERVIR-Mekong, 6 Spatial Informatics Group (SIG) / SERVIR-Mekong, 7 Agro-meteorology, Hydrology, and Meteorology regional center (AGRHYMET) / SERVIR-West Africa, 8 University of San Francisco
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the signal at low aboveground biomass stock 
(~50–100 t C/ha) (Gibbs et al. 2007)

• Increased errors due to terrain
• Rainfall and soil moisture effects
• Localized algorithm development focused on a 

single biome or mono-species stands
• Lack of consistency in estimates as a function of 

sensor parameters
Of particular concern is the limited transferabili-

ty of algorithms within and between different forest 
structural types (GFOI 2017). Chapter 5 of this 
handbook addresses this particular topic in depth. 
Though these limitations may confine some appli-
cability of SAR technology, this handbook addresses 
them effectively and provides users with practical 
information to facilitate the appropriate use of SAR 
data for accurate results. It explains state-of-the-art 
methods not only with theory but also with hands-on 
exercises. 

The use of SAR datasets to accurately monitor pro-
cesses of deforestation, land and forest degradation, 
and secondary forest regrowth (Hoekman & Quinonez 
2000) has produced promising results that should not 
be overlooked. Chapter 3 provides practical infor-
mation on change detection and forest degradation 
analysis. All chapters provide key information that 
addresses the listed challenges in working with SAR 
data. Practical workflows are also included to provide 
SAR analysis tools specific for stated user needs and 
forest monitoring applications.

With publicly available C-band data from the Sen-
tinel-1 mission (Malenovský et al. 2012, Berger et al. 
2012) since 2014, the outlook of SAR operational use 
has changed significantly, and in the most promising 
way. This, in addition to the forthcoming availability 
of public L-band data from NISAR and TanDem-L, 
completely changes the game in terms of potential 
operational use of SAR datasets. Previously designat-
ed Research and Development (R&D) topics by GFOI 
(2013) now use SAR for forestry applications such as 
change detection within forest land, near-real time 
forest change indicators, and forest stratification.

This previous R&D has enabled current and oper-
ational use of SAR for these applications. This hand-
book strives to provide technical materials to facilitate 
these new resources into operational use. 

1.2.1  FROM NEEDS TO PRACTICE

Though extremely useful and educational, the most 
complete literature available on SAR is constrained 
mainly to textbooks (Woodhouse 2006, Shimada 2018) 
and does not focus on an applied approach needed by 
technicians to start processing SAR datasets. In addi-
tion, there are a number of studies and peer-reviewed 
publications (Moreira et al. 2013, Hoekman & Quiriones 
2000) that add to the wealth of knowledge, but also lack 
applied content that facilitates uptake of SAR technol-
ogy. This handbook represents a comprehensive re-
source for using SAR datasets for forestry and biomass 
applications, and also augments recent efforts to gener-
ate reference documentation for interpreting SAR data-
sets (CEOS 2018), given its applied focus that includes 
processing workflows for specific forestry applications.

The content of this handbook has been driven by the 
needs of the community (see Sec. 1.3), and as such, is 
strongly focused on forest biomass estimation. Howev-
er, it also covers a range of topics from basic preprocess-
ing to change detection, including mangrove monitor-
ing, Forest Stand Height (FSH), and sampling design for 
uncertainty estimation. Given that current state-of-the-
art methods use SAR data for forest biomass estimation 
as well as the ongoing research on how to better under-
stand forest backscatter signals (Brolly & Woodhouse 
2012), this handbook clearly describes the limitations 
and advantages of using SAR for specific forest appli-
cations. It also conveys in practical and understandable 
terms the main considerations and concepts technical 
users should be aware of when analyzing SAR data. It 
is the authors’ intent to generate applied knowledge by 
leveraging the wealth of research knowledge that has 
been gathered over the past 30 years. 

SERVIR and SilvaCarbon are committed to strength-
ening the technical capacity of users working on forest 
monitoring applications, and as new SAR missions are 
launched and new technologies emerge, it becomes 
crucial to join efforts to achieve this goal.

1.3  Needs Assessment
1.3.1  WHO IS SERVIR? 

SERVIR operates through established technical 
organizations (called hubs) with unique sets of ca-
pabilities, including political buy-in from member 

countries, technical expertise in remote sensing, geo-
graphic information systems, and database manage-
ment, along with strong relationships with stakehold-
ers. Science within SERVIR is coordinated through the 
Science Coordination Office (SCO) at NASA Marshall 
Space Flight Center. All SERVIR activities and projects 
are user-driven and involve stakeholders who play a 
key role in service development and uptake. SERVIR’s 
network of hubs includes: 

• Eastern and Southern Africa, with the regional 
hub at the Regional Center for Mapping of Re-
sources for Development (RCMRD) in Nairobi, 
Kenya;

• Hindu-Kush Himalaya, with the regional hub at 
the International Center for Integrated Mountain 
Development (ICIMOD) in Kathmandu, Nepal;

• Lower Mekong River, with the regional hub at 
the Asian Disaster Preparedness Center (ADPC) 
in Bangkok, Thailand; 

• West Africa with the regional hub at Centre 
Regional de Formation et d’Application en 
Agrométéorologie et Hydrologie Opérationnelle 
(AGRHYMET) in Niamey, Niger; and

• Amazonia, with the regional hub based at the In-
ternational Center for Tropical Agriculture (CIAT) 
in Cali, Colombia. Because this is the newest hub 
in the SERVIR network and the agreement to 
start activities did not take effect until December 
2018, it was not included in the development of 
this material.

SERVIR hubs are comprised of recognized experts 
in their respective regions for satellite remote sensing 
and have developed multiple applications related 
to SERVIR’s thematic areas, including food security 
and agriculture, water and water-related disasters, 
weather and climate, and land cover/land use. Forest 
monitoring is one of the common threads among the 
services SERVIR hubs provide in the land cover/land 
use change thematic area. SERVIR’s stakeholders have 
identified forest biomass estimation using remote 
sensing as a key need. 

Measurements of forest biomass can advance the 
understanding of forests in the global carbon cycle 
(Pan et al. 2011). In addition, forest biomass estimates 
are useful to support the implementation of Reducing 
Emissions from Deforestation and forest Degradation 
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(REDD+) initiatives in different regions of the world. 
Demand to enhance forest monitoring systems by 

incorporating additional satellite datasets and to de-
rive forest biomass has increased due to newly avail-
able satellite datasets that incorporate SAR technology 
(De Sy et al. 2012). Currently, there are free and open 
historical archives (2006–2011) of the Advanced Land 
Observing Satellite-1 (ALOS-1) SAR datasets, and Sen-
tinel-1 has been providing free and open SAR imagery 
since 2014. In addition, new forthcoming missions 
such as NISAR, Biomass, and TanDEM-L will also pro-
vide free and open SAR data. 

The recent widespread availability of SAR data cou-
pled with the need to overcome cloud cover in most 
SERVIR regions highlight the need for understanding 
how these new and free SAR satellite resources might 
be leveraged, especially in the context of open source 
and freely available software for land cover and use 
applications (Brovelli at al. 2018). Figure 1.1 shows 
cloud coverage over the five SERVIR regions, including 
the most recent SERVIR-Amazonia hub. 

The SilvaCarbon program provides targeted tech-
nical support to countries in the process of develop-
ing and implementing national forest and landscape 
monitoring systems. SilvaCarbon leverages state-of-
the-art science and technology to advance the gen-
eration and use of improved information related to 
forest and terrestrial carbon. It is within this context 
that SERVIR and SilvaCarbon joined efforts to gener-
ate state-of-the-art technical materials that will make 
meaningful contributions to support these countries’ 
efforts to measure, monitor, and report on carbon in 
their forests.

Although the potential of SAR data is well recog-
nized, the current level of expertise in operational use 
of SAR data for LCLUC applications, forest mapping/
monitoring, and (more specifically) biomass estima-
tion is limited in SERVIR regions. This limitation not 
only applies to scientists in the SERVIR network, but is 
also observed worldwide (Reich et al. 2016).

SERVIR hubs have advanced expertise in using op-
tical remote sensing for land cover mapping, which is 
reflected in the multiple LCLUC projects executed over 
the years (http://catalogue.servirglobal.net). SERVIR 
hubs and their partners have requested support to 
increase their capacities to process and analyze SAR 

data for forest monitoring and biomass estimation 
applications. 

The SERVIR SCO performed a needs assessment 
across the SERVIR hubs to collect information on 
current capacity, main services, and requests on 
land cover/land use change applications. This needs 
assessment inspired an effort to work with SAR data 
for forest applications. The authors recognize that 
their focus in the SERVIR network does not represent 
a thorough global needs assessment; however, it like-

ly provides a good representation of the needs facing 
remote sensing specialists around the globe in forest 
monitoring applications (Table 1.1). 

In addition, due to the authors’ collaboration with 
SilvaCarbon, the focus of this handbook is to contrib-
ute to and to be in alignment with their objectives, 
which include enhancing the capacity of countries 
for forest MRV systems. Through this collaboration, 
the authors aim to address user needs through the 
development of a distinctive product that could serve 

Table 1.1 List of needs to apply SAR technology in SERVIR regions as identified by each SERVIR Hub 
during the needs assessment process.

SERVIR
REGION & HUB 

PRIMARY
STAKEHOLDERS

CURRENT RS TECHNOLOGY 
USED FOR MRV SYSTEMS

RELEVANT 
SAR CAPABILITIES

POTENTIAL 
APPLICATIONS

West Africa
AGHRYMET

Ghana Forestry 
Commission,
University of Ghana

Monitoring permanent plots 
for AGHRYMET (GCCA Project, 
starting support for countries to 
establish national forest MRV 
systems

Matching ancillary data with the RS 
(SAR) within a pilot site, upscaling 
to cover all of the West African 
sub-region.

Integration of SAR to support MRV 
systems 

Estimation of forest biomass in 
West Africa

Eastern & 
Southern 
Africa
RCMRD

Kenya Forest Service, 
Kenya Water Towers 
Agency, Kenya Marine 
and Fisheries Institute, 
Kenya REDD+, CIFOR, 
other agencies

Freely-available optical RS 
used; complicated by persistent 
cloud cover

Gain knowledge to start processing 
SAR data in general.  This 
knowledge will go a long way in 
supporting the countries as well as 
in the provision of data that can be 
used by the relevant authorities in 
decision making.

Forest biomass estimation.

Forest monitoring in cloudy regions

Support for REDD+ MRV

Hindu Kush-
Himalaya
ICIMOD

FRTC - Nepal, 
DFPS -  Bhutan

Optical RS

Object-based image analysis

Optical RS for MRV dev

Strength on capturing biomass 
estimates

Gain knowledge to process 
SAR data and develop biomass 
estimation models

Forest biomass estimation to 
support national communications to 
UNFCCC for assessing carbon fluxes

Accurate forest biomass estimation

Mekong
ADPC

Forest Inventory and 
Planning Institute of 
Viet Nam

For Activity data: using medium 
resolution optical satellite 
images (Landsat and Sentinel 2)

For Emission factors: using 
National systematic sample plots

Basic SAR processing (Sentinel 
1) and application in mapping to 
recognized forest/ nonforest

Using SAR to improve volume-based 
estimation for forest quality, 
monitoring forest degradation

Applied SAR for operation on forest 
change detection, forest plantation 
monitoring

Forest biomass estimation

GCCA: Global Climate Change Alliance 
FRTC: Forest Research and Training Centre
DFPS: Department of Forests and Park Services

Global cloud fraction from Terra/MODIS
January - November 2017

Figure 1.1 Cloud coverage for year 2017 over SERVIR regions

http://catalogue.servirglobal.net
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to lower the barrier and create wise users of SAR tech-
nology. Therefore, building from that expertise, the 
authors have focused on capacity building.

Training SERVIR hubs and their partners on the 
use of SAR data will further strengthen their remote 
sensing capabilities. Researchers in the SERVIR net-
work represent a link between national agencies, 
user groups and the global user/producer commu-
nity, and NASA scientists; thus, we envision that en-
gagement with SERVIR network researchers on SAR 
data capacity building and training activities will max-
imize benefits, in addition to complementing their 
current optical remote sensing methods with SAR 
methodologies. 

1.4  Objectives
The main objective of this handbook is to provide 

practical guidance on the application of SAR technol-
ogy for forest monitoring and biomass estimation. It 
addresses a gap that would otherwise exist on how to 
process SAR imagery for practical forest applications 
that can benefit from incorporating SAR technology. 
More specific objectives include:

• Disseminate practical knowledge on using SAR 
imagery for forest mapping/monitoring and 
biomass estimation 

• Generate applied theoretical and hands-on ma-
terials that will enhance operational uptake of 
SAR technology for forest monitoring and bio-
mass estimation

• Support SilvaCarbon objectives in developing 
good practices and approaches for using SAR 
data for MRV systems

1.5  SERVIR Approach
To meet the goals described above, SERVIR fol-

lowed the next steps: 
1.  Scoping workshop with SAR experts and SER-

VIR user community
2.  Define main topics for training and subsequent 

handbook
3.  Recruit subject matter experts on SAR applica-

tions (SAR experts) to provide training and develop 
applied documentation

4.  “Train the trainer” approach:

• Generate descriptive training material us-
ing open source software

• Hold sequential training events based on 
regional needs

• Trainees repeat training at their centers
• Review and update training materials per 

feedback collected at training events 
Rather than creating another product—such as a 

local or regional biomass product for a given region 
that later becomes outdated and which nobody can 
replicate—the authors chose to develop a strong ca-
pacity building approach, enabling and strengthening 
technical capacities of users to create such a product. 
This entailed work with world-renowned SAR experts 
that are also the authors of individual chapters in this 
handbook. These experts also created training tutori-
als that are included in the appendices of this hand-
book and on the handbook webpage. 

To identify the main technical topics this handbook 
addresses, the authors conducted a scoping meeting 
in February 2017, where SAR experts and technical ex-
perts on forest applications from SERVIR regions came 
together. This scoping meeting served to select topics 
for technical training that became the main topics ad-
dressed in this handbook. Hence, as portrayed in Ta-
ble 1.2, the trainers of these international workshops 
are the authors of the main technical chapters in this 
handbook (Chapters 2–7). The content they cover in 
their chapters and training tutorials have been tested 
at hands-on workshops and reviewed by remote sens-
ing specialists of the SERVIR global network and other 

SAR specialists to ensure functionality and usability.
Main deliverables include:

• SAR Handbook of Applied Methods for 
Forest Monitoring and Biomass Esti-
mation—The SAR Handbook consists of eight 
chapters that include theory and background on 
a wide range of topics related to monitoring for-
ests with SAR, as well as appendices that include 
step-by-step guides to applying the theory to 
practice. The authors envision this resource be-
ing used to develop forest applications and for 
capacity-building efforts. Chapters can be used 
together as a relatively complete and cohesive 
source of information on monitoring forests 
with SAR, or each chapter can stand alone as a 
resource on specific topics.  

• Hands-on training materials—The SAR 
Handbook website hosts the materials neces-
sary to complete the training described in the 
appendices. It includes PDFs of the handbook 
and step-by-step instructions, PowerPoint pre-
sentations to complement the training, scripts to 
process SAR data, and ancillary datasets, such as 
lidar and in-situ measurements. 

• One-pagers—The editors have identified the 
need for quick reference guides for various SAR 
topics, since no such reference exists for using 
SAR to monitor forests. The editors developed 
a number of one-page documents that provide 
clear and easy-to-read summaries of important 
SAR concepts discussed more in-depth within 

SAR EXPERT TRAINING HOSTING HUB(S) LOCATION & DATES

Franz Meyer
Univ. of Alaska Fairbanks

Josef Kellndorfer          
Earth BigData

SAR Basics, 
Forest Degradation & 
Deforestation

1)West Africa

2) Hindu Kush-Himalaya

Niamey, Niger (Jan 29 - Feb 2, 2018)

Kathmandu, Nepal (Feb 12-16, 2018)

Paul Siquiera 
Univ. of Mass. Amherst

Forest Stand Height Mekong Bangkok, Thailand (Mar 12-16, 2018)

Marc Simard
CalTech/NASA JPL

Hans Andersen 
US Forest Service 

Mangroves, 
Sampling Design

Eastern & Southern 
Africa

Nairobi, Kenya (April 16-20, 2018)

Sassan Saatchi
CalTech/NASA JPL

Biomass Estimation Hindu Kush-Himalaya Kathmandu, Nepal (April 30-May 4)

Table 1.2 List of global SAR capacity building workshops for international partners in Africa and Asia.

https://servirglobal.net/
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the handbook. These one-pagers include “SAR 
Data Access and Availability,” “SAR Vegetation 
Indices,” “SAR Preprocessing Steps,” “SAR for 
Biomass Estimation,” and “SAR for Forest Stand 
Height (FSH) Estimation.” Digital versions of 
these one-pagers can be found on the handbook 
webpage or in the handbook appendices.

• Technical videos—The editors have de-
veloped short animated videos to simplify and 
clearly communicate complex concepts found 
within the handbook. These include an introduc-
tion to SAR concepts (wavelength, penetration 
depth, polarization, etc.), FSH estimation, and 
biomass estimation. 

1.6  What to Expect
This handbook was developed to generate ap-

plied knowledge on using SAR for forest applications. 
The content has been generated by world-renowned 
experts on the topic and vetted, tested, and reviewed 
by a community of applied remote sensing users. It 
covers basic concepts to understand how SAR tech-
nology works and identifies some of the best practic-
es and approaches to estimating forest change, bio-
mass, and stand height; to mapping mangroves and 
estimating their biomass; and to sampling design for 
uncertainty estimation of biomass maps. 

All the training tutorials use open source software 
and programming languages to process and analyze 
SAR datasets. This was a requirement that was ful-
filled by the SAR experts that generated the materials. 

This handbook is comprised of eight chapters in 
total, including this introductory Chapter 1 and 
the following:

• Chapter 2, Spaceborne Synthetic Aperture Ra-
dar – Principles, Data Access, and Basic Process-
ing Techniques. Author: Franz Meyer—This first 
technical chapter explains basic concepts to start 
using SAR datasets. It covers basic preprocessing 
and the peculiarities of SAR imagery, which en-
ables an understanding of how these datasets 
are interpreted. This chapter also provides a 
comprehensive inventory of past, current, and 
planned SAR sensors. 

• Chapter 3, Use of SAR Data for Mapping Defor-
estation and Forest Degradation. Author: Josef 
Kellndorfer—This chapter focuses on the appli-
cations of SAR imagery for forest change detec-
tion. It discusses how SAR backscatter changes 
due to sensor and target parameters, with an 
emphasis on forest targets. It also explains an ap-
proach for time series analysis for forest change 
detection. 

• Chapter 4, Forest Stand Height. Author: Paul 
Siqueira—This chapter discusses the estimation 
of Forest Stand Height (FSH) through the use of 
spaceborne SAR, especially at L-band repeat-pass 
Interferometric SAR (InSAR). It covers the theory 
and software, and provides examples for the use 
of repeat-pass InSAR for FSH estimation.

• Chapter 5, SAR Methods for Mapping and 
Monitoring Forest Biomass. Author: Sassan 
Saatchi—This chapter provides a summary of 
the methodologies and techniques for estimat-
ing forest aboveground biomass. The content 
covers state-of-the-art SAR remote sensing ap-
proaches for characterizing vegetation structure 
and biomass estimation, and provides resources 

for future developments in the technology and 
emergency methodologies. 

• Chapter 6, Radar Remote Sensing of Mangrove 
Forests. Author: Marc Simard—This chapter 
addresses the use of SAR imagery to monitor 
changes in the mangrove forest extent. The state-
of-the-art radar remote sensing techniques to 
measure and monitor mangrove forest structure 
are also covered in this chapter. 

• Chapter 7, Sampling Designs for SAR-Assisted 
Forest Biomass. Author: Hans Andersen—This 
chapter discusses sampling design and statisti-
cal modeling/estimation frameworks to provide 
a sound, statistically rigorous assessment of the 
uncertainty of forest biomass maps. It provides 
examples for efficiently using expensive field plot 
data and more extensive use of less expensive, 
remotely sensed information. 

• Chapter 8, Perspectives on the Future Applica-
tion of SAR in Forest and Environmental Monitor-
ing. Authors: Emil Cherrington et al.—This chap-
ter discusses future and emerging applications 
of SAR for forest and environmental monitoring, 
and also reflects on how SAR is currently being 
used across a range of applications. This chapter 
discusses how this is expected to change due to 
the growing public availability of SAR data and 
platforms to process and analyze radar data. It 
also discusses how SERVIR regional hubs are 
applying SAR technology, and how the SERVIR 
global network can be important resource cen-
ters in support of SilvaCarbon and GFOI to aid in 
articulating and addressing new environmental 
monitoring challenges.
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CHAPTER 2
Spaceborne Synthetic Aperture Radar:
Principles, Data Access, and Basic Processing Techniques

This chapter provides background information and hands-on processing exercises on the main concepts of Synthetic Aperture Radar (SAR) remote sensing. 
After a short introduction on the peculiarities of the SAR image acquisition process, the remainder of this chapter is dedicated to supporting the reader in 
interpreting the often unfamiliar-looking SAR imagery. It describes how the appearance of a SAR image is influenced by sensor parameters (such as signal po-
larization and wavelength) as well as environmental factors (such as soil moisture and surface roughness). A comprehensive list of past, current, and planned 
SAR sensors is included to provide the reader with an overview of available SAR datasets. For each of these sensors, the main imaging properties are described 
and their most relevant applications listed. An explanation of SAR data types and product levels with their main uses and information on means of data access 
concludes the narrative part of this chapter and serves as a lead-in to a set of hands-on data processing techniques. These techniques use public domain 
software tools to walk the reader through some of the most relevant SAR image processing routines, including geocoding and radiometric terrain correction, 
interferometric SAR processing, and change detection.

2.1  On the Concepts of 
Imaging Radars
2.1.1  A WORD ABOUT HISTORY

The invention of RAdio Detection And Ranging, or 
radar, as a concept for detecting and localizing ob-
jects in a three-dimensional space dates back to the 
turn of the 20th century and is typically credited either 
to the German inventor and entrepreneur Christian 
Huelsmeyer—who proposed the so-called “Telemo-
biloskop” as an active microwave-based system for 
detecting distant metallic objects (Vollmar 1960)—
or to the British engineer Robert Watson-Watt, who 
in June of 1935 successfully demonstrated an object 
detection and ranging system that was capable of 
accurately locating airborne objects up to a distance 
of about 30 km (Watson-Watt 1946). Once invented, 
radar technology developed rapidly during the World 
War II era, motivated mostly by air defense and over-
the-horizon surveillance considerations. By the early 
1940s, radars had become small enough to be im-
plemented on airplanes, expanding the application 

realm of radar systems into a range of new fields, 
including the growing discipline of Earth observation. 
This chapter discusses the application of imaging ra-
dar sensors to this discipline.

2.1.2  SIDE-LOOKING AIRBORNE RADARS

The allure of using radar systems for imaging pur-
poses mostly stems from the all-weather and all-day 
capabilities that can be provided by this sensor type. 
These capabilities are advantageous for many surveil-
lance applications, allowing for regular mapping of 
areas affected by heavy cloud cover, persistent rain, 
or extended darkness. Additionally, radar signals 
interact differently with the surface than most other 
sensing systems, providing interesting new informa-
tion about the observed environment. 

With the development of Side-Looking Airborne 
Radar (SLAR) systems in the 1950s, the first airborne 
radar systems with reliable imaging performance 
became available. The observation configuration 
of a SLAR system is shown in Figure 2.1 and con-
sists of a radar sensor mounted on an airborne (or 
spaceborne) platform that, in this simplified exam-

ple, is moving along a straight path at altitude H. 
Unlike most optical imaging systems, which point 
their sensors towards nadir, the antenna of a SLAR 
(and any other imaging radar) system is pointed away 
from nadir by a so-called look angle θl such that it 
illuminates a continuous swath on the ground as the 
aircraft moves along. .

While flying along its track, the radar system is 
transmitting a sequence of short microwave pulses of 
pulse length τP, each of which illuminates an instan-
taneous area on the ground that is usually referred 
to as the antenna footprint (see darker gray area in 
Fig. 2.1). The size S of this instantaneous footprint 
in either the range or along-track (azimuth) direction 
is largely defined by the relationship between system 
wavelength λ and the side length of the antenna L 
(defining the antenna’s beamwidth through β = λ/L) 
along this direction, as well as by the distance of the 
radar sensor from the ground R:

 S≈λ
L
R=β ⋅R  [m]  . (2.1)

To form a two-dimensional image, the echoes 
received from the ground are sorted by their arrival 

ABSTRACT
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time in both range and azimuth direction. In range 
direction, echoes from the ground arrive progressive-
ly later from the near-range to the far-range edge of 
the swath. Objects at different ranges can be distin-
guished if their range separation is larger than half 
the transmitted pulse length. Hence, the range reso-
lution of a SLAR system is defined by

 ρ
R
=
c ⋅τ

P
2

 [m]  , (2.2)

with c corresponding to the speed of light. The vari-
able ρR in Eq. (2.2) is usually referred to as the slant 
range resolution of a SLAR system as it describes a 
SLAR’s ability to distinguish objects at different (slant) 
distances from the radar (see “slant range direction” 
in Fig. 2.1). While the slant range parameter ρR is 
useful for many system design questions, remote 
sensing is often more interested in the ground range 
resolution ρG, which describes the ability to discrim-
inate objects that are situated on the ground and is 
calculated from ρR via the local incidence angle θi:

 ρ
G
=
ρ
R

sin θ
i( )

  [m]  . (2.3)

Eq. (2.3) shows that the ground range resolution 

ρG is not constant across the swath and actually im-
proves with distance from nadir (due to the increase 
of θi). This is opposite to the behavior of most optical 
systems for which the ground resolution degrades 
with increasing θi.

In the along-track (or azimuth) direction, the 
ground is scanned by the movement of the radar 
along its track. In the case of SLAR systems, the azi-
muth resolution ρAz (the ability to discriminate objects 
in azimuth direction) is defined by the width of the 
antenna footprint in azimuth SAz, which, in turn, is 
limited by the side length LAz of the antenna in this 
direction. Hence, following Eq. (2.1), the azimuth res-
olution corresponds to

 ρ
Az
= S

Az
≈
λ

L
Az

R= β
Az
⋅R  [m]  . (2.4)

Eq. (2.4) indicates that the azimuth resolution 
ρAz is linearly degrading with increasing distance 
between the sensor and the ground R. This has two 
important implications for SLAR systems: first, as R 
changes from the near-range to the far-range edge 
of the swath, the azimuth resolution of a SLAR is not 

constant across range. Second, and more impor-
tantly, the dependence of ρAz on the distance to the 
ground R makes the application of SLAR systems on 
high-altitude or even spaceborne platforms highly 
impractical. To illustrate this point, assume a C-band 
SLAR system operating at λ = 0.03[m] and utilizing 
an antenna of L = 3[m] length. If operated from an 
aircraft at H = 3000[m] altitude and observing at a 
look angle of θl = 30°, this system will achieve an 
acceptable azimuth resolution of ρAz = 0.01 · 3000 · 
2 = 60[m]. However, if the same system is operated 
from a spaceborne platform at H = 800[km], ρAz will 
degrade to ρAz = 16[km], which is below the required 
system performance for most Earth observation ap-
plications.

A straightforward approach for keeping the sys-
tem’s azimuth resolution at an acceptable level even 
for spaceborne applications is to increase the length 
of the antenna used by the system until a desired 
value for ρAz is reached. Simple mathematics show, 
however, that this solution is not practical. Using the 
numbers from the previous example we find that an 
unreasonable antenna length of about L = 800[m] 
would be needed to achieve a ρAz = 60[m] resolution 
from space. An elegant and more practical solution 
for the azimuth resolution issue—the synthetic ap-
erture principle—was developed in 1952 and will be 
introduced in Section 2.1.3.

Despite their resolution limitations, SLAR systems 
remain popular for many ground-based and airborne 
applications. This continued popularity is largely due 
to the simplicity of SLAR systems in both their system 
design and data processing demands.

2.1.3  SYNTHETIC APERTURE RADAR SENSORS

In 1952, Carl Wiley, an engineer with the Good-
year Aircraft Cooperation, made an essential dis-
covery that provided a solution to the azimuth res-
olution problem plaguing existing SLAR technology 
(see Sec.  2.1.2). In technical terms, he observed 
that a one-to-one correspondence exists between 
the along-track coordinate (relative to a transmitted 
radar beam) of a reflecting object and the instanta-
neous Doppler shift of the signal reflected back to 
the radar by that object. He further postulated that a 
frequency analysis of the recorded signals could en-

Figure 2.1 Observation geometry of a SLAR imager. The radar flies along a straight line at altitude H and 
observes Earth at an oblique look angle θl. Instead of the look angle, sometimes the incidence angle θi = 
(90° – θl) is annotated. The size of the illuminated footprint is defined by the antenna beamwidth β and the 
distance between satellite and ground R. Note that the radar beam is wide in range direction but narrow in 
azimuth. The generation of an image is facilitated by the forward motion of the airborne platform.
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able a finer along-track resolution than that achieved 
by conventional SLAR systems. Wiley’s discovery—
which was originally published under the name 
Doppler beam-sharpening but is often referred to 
as aperture synthesis—is the key element behind 
all modern high-resolution imaging radar systems. 
There is a large body of literature on the mathemat-
ical details of Wiley’s aperture synthesis solution to 
radar imaging. Readers interested in more technical 
information should refer to the excellent summary by 
Cumming and Wong (2005).

The following conceptual explanations of Wiley’s 
invention provide a good summary. The aperture 
synthesis principle essentially allows one to create 
(or “synthesize”) a much longer effective antenna 
(the so-called synthetic aperture) from a sequence of 
acquisitions made with a shorter antenna as it moves 
along its flight line. As antenna length is intrinsically 
linked to the resolution capabilities of a radar system 
(we know this from Eq. (2.1)), the much longer anten-
na synthesized by Wiley’s principle allows high-reso-
lution imaging even from spaceborne platforms using 

antenna hardware of a manageable size. 
A simplified conceptual illustration of Wiley’s con-

cept is shown in Figure 2.2. There, a radar antenna 
(indicated by a gray rectangle) of reasonably short 
length is moving at a velocity V along its flight path 
from the right to the left. While moving, it is con-
stantly transmitting short radar pulses and receiving 
echoes returned from objects on the ground. Each 
radar pulse illuminates an instantaneous footprint 
of size S on the Earth surface. For spaceborne ap-
plications, the limited length L of the radar antenna 
(Eq. (2.1)) results in instantaneous footprints that 
typically measure several kilometers in size, resulting 
in the typical resolution limitation that plagues SLAR 
systems. 

To apply Wiley’s aperture synthesis concept, we 
have to first ensure that an object P on the Earth 
surface is imaged by many consecutive radar pulses 
as the antenna beam sweeps across the ground. This 
requirement is indicated in Figure 2.2 by several 
antenna positions that illuminate object P as the sen-
sor moves from point x1 (first time object P is seen) to 

point x2 (last time P is observed). Once the radar data 
are acquired, a postprocessing approach is applied to 
combine all acquisitions between x1 and x2 and into 
a single dataset that looks like it was acquired with a 
much longer antenna. This longer (virtual) antenna is 
typically called the “synthetic aperture,” as it was syn-
thesized from a number of acquisitions with shorter 
antennas. The length LSA of this synthetic aperture can 
be calculated via

LSA=
λ

L
⋅R0≈β ⋅R0

and is equivalent to the footprint S illuminated by the 
(shorter) real antenna installed on the spacecraft (see 
Eq. (2.1)).  

The dataset resulting from the aperture synthesis 
process is typically referred to as a SAR image and has 
much higher resolution than SLAR images acquired 
from the same distance. An example of a SAR image 
acquired by the European Space Agency’s (ESA’s) ERS-2 
sensor is shown in Figure 2.3. 

The aperture synthesis concept is the basis of all 
modern radar systems even though various modifica-
tions of the basic imaging concept are currently used 
to maximize either image resolution (Spotlight concept: 
Eineder et al. 2009, Lanari et al. 2001, Mittermayer et al. 
1999) or image coverage (ScanSAR: Bamler and Eined-
er 1996, Bamler and Holzner 2004, Monti Guarnieri 
and Prati 1996). Modern spaceborne SAR sensors typ-
ically achieve ground resolutions between roughly 0.5 
and 20 m, depending on their specific design. Recent 
developments in antenna design and image processing 

Figure 2.2 Geometry of 
observations used to form 

the synthetic aperture 
for target P at along-
track position x = 0.

Figure 2.3 Example of a spaceborne SAR 
dataset acquired by ESA’s C-band sensor ERS-2.
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techniques have made high-resolution imaging across 
large image swaths possible. These developments rely 
on the concept of digital beamforming (Gebert et al. 
2009, Krieger & Moreira 2003, Younis et al. 2003) and 
have spawned new imaging modes such as Terrain 
Observation with Progressive Scans SAR (TOPSAR) (De 
Zan & Monti Guarnieri 2006) and SweepSAR (Freeman 
et al. 2009). For technical details on these techniques, 
please see the literature cited.

2.1.4  GEOMETRIC PROPERTIES OF SAR DATA

Due to the oblique observation geometry inherent 
to all imaging radar systems, surface slopes and similar 
terrain features lead to geometric distortions in data 
acquired by SAR systems. The most relevant of these 
distortions are foreshortening, layover, and shadow. 
The origins and main characteristics are of these dis-
tortions are summarized in Figure 2.4. 

In side-looking viewing geometries, sensor-facing 
slopes appear foreshortened such that a symmetric 
mountain would appear in the radar image as if “lean-
ing” towards the sensor. The geometric background of 
foreshortening is shown in Figure  2.4(a), showing 
that the slope between points A and B will get fore-
shortened into the image area A′B′. The amount of fore-
shortening depends both on the system’s look angle θ 
and on the slope angle α, and reaches its maximum if θ 
→ α. In areas where θ < α (e.g., in areas of steep slopes 
combined with steep incidence angles), foreshortening 
turns into layover (see Fig. 2.4(b)). In layover situa-
tions, the tops of mountains are imaged ahead of their 
base (see projections of points B and C in Fig. 2.4(b)) 
and backscatter from mountain slopes will overlay with 
image information at closer and farther image ranges 
(see green, red, and gray areas in Fig. 2.4(b)). Both 
foreshortening and layover can be reduced if the look 
angle θ is increased; however, larger θ will produce 
more image shadow (Fig. 2.4(c)). Hence, topogra-
phy-related image distortions cannot be entirely re-
moved, and image acquisitions from more than one 
vantage point may be necessary to jointly minimize all 
three imaging effects. 

2.1.5  RADIOMETRIC PROPERTIES – THE 
SPECKLE EFFECT

Besides these geometric distortions, SAR images 
additionally are characterized by a somewhat grainy 

appearance that resembles “salt and pepper” noise. 
This noise-like pattern can be seen in Figure 2.3 
and is usually referred to as “speckle.” The speckle 
effect is inherent to all narrow-banded coherent im-
aging systems and is a result of interference from the 
many scattering echoes within a resolution cell. 

In a medium-resolution SAR image, the scattering 
response from one resolution cell (of about 10 × 10[m] 
in size) is the coherent sum of thousands of individ-
ual scattering events, as shown in Figure  2.5(a). 
Imagine the SAR system is imaging a homogeneous 
surface, such as a smooth meadow, and assume that 
the individual scattering events within one resolution 
cell (gray arrows in Fig. 2.5(a)) are all about equal-
ly strong. Due to their different positions within the 
resolution cell, the phase of the individual scatterers 
will vary randomly, such that the scattering response 
from one pixel is the summation of thousands of ran-
dom vectors (black arrow in Fig. 2.5(a)). As the ar-
rangement of scatterers in different resolution cells is 
not identical even for homogeneous targets, both the 
amplitude and phase of the summation vector (black 
arrow) will vary randomly from pixel to pixel, result-
ing in the typical grainy signature shown previously 
in Figure 2.3. If the number of individual scattering 
events is large, the distribution of intensities in a SAR 
image follows an exponential distribution of the form

 pdf I|σ0( )= 1

σ0
exp − I

σ0

⎧
⎨
⎪⎪

⎩⎪⎪

⎫
⎬
⎪⎪

⎭⎪⎪
  , (2.5)

where I = Re{u}2 + Im{u}2 is the image intensity in 

a pixel. The distribution in Eq. (2.5) is often called 
speckle distribution and is a valid description for the 
noise patterns observed for homogeneous targets in 
medium-resolution SAR images. 

Eq. (2.5) shows that the shape of the speckle 
distribution depends on the (true) normalized radar 
cross section σ0 of the observed target, such that 

Figure 2.4 Main geometric distortions on SAR images with their dependence on acquisition geometry: 
(a) foreshortening, (b) layover, and (c) shadow.

FORESHORTENING
• Sensor-facing slope 

foreshortened in image 
• Foreshortening effects decrease 

with increasing look angle

LAYOVER
• Mountain top overlain on 

ground ahead of mountain 
• Layover effects decrease with 

increasing look angle

SHADOW
• Area behind mountain cannot 

be seen by sensor 
• Shadow effects increase with 

increasing look angle

Figure 2.5 (a) Speckle originating from the 
coherent summation of many individual scattering 
events within a resolution cell and (b) shape of 
the speckle pdf for images areas with different 
normalized radar cross sections σ0.

(a)

(b)
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brighter image patches will show more intense noise. 
Here, σ0 describes the percentage of incoming radar 
energy that is scattered back to the sensor by an object 
on the ground. It is a normalized version of Eq. (2.6) 
discussed in the next section. The dependence of the 
speckle statistics on σ0 is visualized in Figure 2.5(b), 
where the speckle distribution pdf(I|σ0) is plotted for 
three different σ0 values. It can be seen that the speck-
le distribution becomes wider with increasing σ0 and 
starts to approximate a uniform distribution for very 
high σ0.

Speckle noise is distinguished from most other 
noise sources, which are often constant throughout the 
image, by its dependence on image brightness. Mul-
tiplicative noise such as speckle is difficult to treat, as 
the true radar cross section σ0 of the target needs to be 
known to correctly model pdf(I|σ0). Hence, throughout 
the last decade, a lot of effort has been dedicated to 
the development of effective speckle filters, resulting in 
a wealth of different filtering methods. While the most 
relevant/well known of these filters are listed in Ta-
ble 2.1, readers interested in this topic are referred to 
specialized literature such as Bruniquel & Lopes 1997, 
Ferretti et al. 2011, Huang et al. 2009, Lee et al. 1991, 
Lee et al. 1994, Lopez-Martinez & Pottier 2007, Novak & 
Burl 1990, and Sveinsson & Benediktsson 2003.

2.2  How SAR Images the 
World

SARs transmit microwave signals at an oblique 
angle and measure the backscattered (in the direc-
tion of the sensor) portion of this signal in order to 
analyze features on the surface. Mathematically, this 
(calibrated) measurement is described using the 
term Radar Cross Section (RCS) σ, which is defined 
as the ratio between the incident and received signal 
intensity:

 σ=
Ireceived
Iincident

4πR2   m2⎡
⎣
⎢
⎤
⎦
⎥   . (2.6)

The RCS recorded by a SAR for a specific surface 
feature is not always straightforward to interpret, 
as it is influenced both by a range of scene charac-
teristics as well as by the parameters of the imaging 
sensor. 

The most important scene parameters driving RCS 
are surface roughness hrough and the dielectric prop-
erties of the imaged object quantified by its complex 
relative dielectric constant εr. While hrough describes 
how much of the scattered radar energy is directed 
back to the sensor, the dielectric properties guide 

whether or not (and how deep) signals may penetrate 
into the scattering surface. The fact that both of these 
parameters are a function of sensor wavelength (and 
to some degree signal polarization) explains why 
the characteristics of the sensor play a role when 
attempting to interpret the measured signature of 
real-life objects in a SAR image. 

2.2.1  DIELECTRIC PROPERTIES AND 
PENETRATION DEPTH OF RADAR SIGNALS

The dielectric properties of a medium govern how 
a microwave signal of wavelength λ interacts with a 
scattering medium such as the Earth's surface or a 
vegetation canopy. These properties dictate how 
much of the incoming radiation scatters at the sur-
face, how much signal penetrates into the medium, 
and how much of the energy gets lost to the medium 
through absorption. While a detailed explanation of 
microwave scattering processes is beyond the scope 
of this chapter, information is provided on how these 
processes change with sensor wavelength. This will 
provide the reader with the required background to 
interpret differences in the appearance of observed 
data from different SAR instruments. For a more de-
tailed discussion on the interactions of microwaves 
with media, please refer to the excellent introducto-

SPECKLE FILTERS DESCRIPTION RELATED PUBLICATION(S)

Change-preserving 
multi-temporal Speckle filter

Filter for stacks of SAR images; reduces speckle while preserving changes in the time series 
(e.g., related to deforestation)

Quegan and Yu, 2001

Lee filter Standard deviation-based (sigma) filter, filtering data based on statistics calculated from 
the data. Unlike a Gaussian or boxcar filter, the Lee filter and other similar sigma filters 
preserve image sharpness and detail while suppressing noise.

Lee, 1980

Enhanced Lee filter The enhanced Lee filter is an adaptation of the Lee filter. Each pixel is put into one of three 
classes, which are treated as follows:

Homogeneous: The pixel value is replaced by the average of the filter window.
Heterogeneous: The pixel value is replaced by a weighted average.
Point target: The pixel value is not changed.

Lopes et al., 1990

Frost and enhanced 
Frost filters

The Frost filter is an exponentially damped circularly symmetric filter that uses local statis-
tics. The Enhanced Frost filter is an adaptation of the Frost filter. It classifies and filters pixels 
according to the logic explained in the row above.

Frost et al., 1982; Lopes et al., 1990

Non-local means filters The basic idea behind non-local means filters is to provide an estimate of the clean image 
via a proper averaging of similar pixels or patches, found in the image. Essentially, the al-
gorithm searches for image patches that resemble the area around the pixel to be filtered. 
Using some similarity criterion, these patches are found and averaged together to de-noise 
the image without losing resolution. 

Buades et al., 2005; Chen et al., 2014; Di Martino 
et al., 2016; Martino et al., 2015

Table 2.1 Summary of most relevant speckle filters with their properties and related publications.
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ry book on microwave remote sensing by Iain Wood-
house (2006).

Figure 2.6 provides a conceptual overview of 
the influence of sensor wavelength λ on signal pene-
tration into a variety of surface types. The radar sig-
nals penetrate deeper as sensor wavelength increas-
es. This is related to the dependence of the dielectric 
constant εr on the incident wavelength, allowing for 
higher penetration at L-band than at C- or X-bands. 
For vegetated areas, this implies that X-band SAR 
sensors mostly scatter at the tops of tree canopies, 
while C- and L-band signals penetrate increasingly 
deeper into the vegetation volume. Hence, if vegeta-
tion parameters (e.g., vegetation structure, biomass, 
etc.) are to be characterized using SAR, longer wave-
length systems should be used (see Table 2.3 to 
identify sensors operating at longer wavelengths). 
Similarly, users interested in mapping inundation 
under forest canopies should select longer wave-
length SAR sensors as their main data source. 

In addition to sensor wavelength, the penetration 
depth of a SAR signal into a vegetation canopy is also 
influenced by the density of this canopy. For exam-
ple, while C-band SAR data may “see” the ground un-
derneath sparse boreal forests, C-band signals will 
not be able to fully penetrate the denser and layered 
canopy structure of rainforests. 

The rule of increasing penetration with increasing 
sensor wavelength also holds true for bare surfaces 
such as alluvium soils or glacier ice; X-band signals 
scatter close to the surface, while C- and L-band data 
penetrate progressively deeper into the medium. To 
quantify penetration depths δp into bare surfaces, 
information about the dielectric properties εr of the 
medium is needed. If information on εr is available, 
δp can be approximated by

 δp≈λ ′εr 2π ′′εr( )  , (2.7)

where  is the real component and  is the 
imaginary component of the complex relative dielec-
tric constant. In addition to soil density and sensor 
wavelength,  and  are strongly dependent on 
the moisture content of the medium. Figure 2.7(a) 
shows an example of the dependence of dielectric 
properties on moisture content for loam soils com-

posed of a mix of sand, silt, and clay ingredients. The 
dielectric properties are plotted as a function of soil 
moisture for several sensor wavelengths. It can be 
seen that both  and  increase with soil moisture, 
leading to a reduction of penetration depth accord-
ing to Eq. (2.7). Also,  and  depend on sensor 
frequency f = c/λ. With increasing frequency (de-
creasing wavelength),  reduces and  increases 
such that penetration depth δp is significantly larger 
for low-frequency (long wavelength) SARs. A plot of 
the dependence of penetration depth δp on sensor 
wavelength λ is shown in Figure 2.7(b). Penetra-
tion depth is approximated according to Eq. (2.7) for 
the soil type shown in Figure 2.7(a) and assuming 
a volumetric soil moisture of 0.35. A near-linear in-
crease of penetration depth with increasing sensor 
wavelength can be observed.

2.2.2  SURFACE ROUGHNESS

With few exceptions (dry snow, dry sandy soils), 
most bare or low-vegetation surfaces allow very little 

penetration for microwave radiation (Fig. 2.7(b)) 
such that surface scattering dominates the measured 
radar response. In these cases, the roughness of the 
scattering surface is the main driver defining the ob-
served RCS in a SAR scene. 

For narrow-band imaging systems like SAR, 
whether a surface appears rough or not can only be 
decided with the observing sensor wavelength in 
mind. If the scale of roughness of a randomly rough 
surface is characterized using the standard deviation 
of the height deviation h from some mean height h  of 
the surface, then the question of how large h has to 
be for a surface to appear rough to an observing SAR 
system can be answered. According to the Fraunhofer 
criterion, a surface is defined as rough if the height 
deviations exceed the value hrough, which is deter-
mined by Eq. (2.8):

 hrough > λ / ((32 · cosθi))  . (2.8)

Note that the relationship in Eq. (2.8) depends on 
the signal wavelength λ and indicates that a surface 
with fixed height variations h may qualify as rough in 

Figure 2.6 SAR signal penetration by sensor wavelength λ. 
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Figure 2.7 (a) Relationship between soil 
moisture and dielectric constant and (b) 
dependence of penetration depth δp on sensor 
wavelength λ for a fixed soil moisture.

b.)

a.)

X-band but possibly not in C- or L-bands. This concept 
of wavelength-dependent roughness is visualized in 
Figure 2.8, which shows increasing roughness con-
ditions from left to right and identifies the transition 
from smooth (Fig  2.8(a)) to intermediately rough 
(Fig. 2.8(b)) to rough surfaces (Fig. 2.8(c)) in ac-
cordance with the Fraunhofer criterion in Eq. (2.8). It 
can be seen that the amount of backscatter increases 
(length of blue arrows pointing toward the sensor) 
as roughness increases such that rough surfaces (at 
wavelength λ) have higher RCS than intermediately 
rough or smooth surfaces. The wavelength depen-
dence also means that a surface will look increas-

ingly darker as wavelength increases from X-band 
(λ = 3.1 cm) through C-band (λ = 5.66 cm) to L-band 
(λ = 24 cm).

2.2.3  THE INFLUENCE OF SIGNAL 
POLARIZATION

As SAR is an active instrument with its own 
source of illumination, it is one of the few sensing 
instruments that allows one to fully control (and 
fully exploit) the polarization of the signal on both 
the transmit and the receive paths. Polarization de-
scribes the orientation of the plane of oscillation of 
a propagating signal. In linearly polarized systems, 
the orientation of this plane of oscillation is constant 
along the propagation path of the electromagnetic 
wave. In other systems, such as circular or elliptical-
ly polarized SARs, the orientation of the oscillation 
plane changes, describing geometric shapes such as 
ellipses or circles. 

The majority of today’s SAR sensors are linearly 
polarized and transmit horizontally and/or verti-
cally polarized wave forms. Many of the heritage 
SAR satellites carry single-polarized sensors, which 
support only one linear polarization. These sensors 
predominantly operate in HH- (horizontal polariza-
tion on transmit; horizontal polarization on receive) 
or VV-polarization (vertical transmit; vertical re-
ceive), while single-polarized sensors transmitting 
one linear polarization and receiving the other (e.g., 
HV (horizontal transmit; vertical receive)) are rare 
in practice. 

More recent sensors provide either dual-polariza-
tion or quad-polarization capabilities. In the latter, 

the sensor alternates between transmitting H- and 
V-polarized waveforms and receiving both H and V 
simultaneously, providing HH-, HV-, VH-, and VV-po-
larized imagery.

Knowing the polarization from which a SAR image 
was acquired is important, as signals at different 
polarizations interact differently with objects on the 
ground, affecting the recorded radar brightness in 
a specific polarization channel. While the details of 
polarimetric scattering are beyond the scope of this 
chapter, the following paragraph provides rules of 
thumb that should aid in the interpretation of pola-
rimetric SAR data. 

For simplicity, it is assumed that a natural scene 
can be described as a combination of three types 
of scatterers: (1) rough surface scatterers, (2) dou-
ble-bounce scatterers, and (3) volume scatterers. 
The nature of these scattering types is illustrated 
in Figure 2.9. The category of surface scatterers 
(shown in blue in Fig. 2.9) is made up of low-vege-
tation fields and bare soils, as well as roads and other 
paved surfaces. Double-bounce scatterers (red in 
Fig. 2.9) include buildings, tree trunks, light poles, 
and other vertical structures that deflect an initial 
first forward reflection back to the sensor. Finally, 
vegetation canopies belong to the category of volume 
scatterers (green in Fig. 2.9) as the signals bounce 
multiple times as they propagate through the vegeta-
tion structure.

It turns out that these scattering types do not con-
tribute to all polarimetric channels equally. Instead, 
each polarimetric channel “prefers” certain scattering 
types such that the scattering power |S| in the indi-

Figure 2.8 Conceptual sketch of the dependence of surface roughness on the sensor wavelength λ: (a) 
smooth, (b) intermediate, and (c) rough.
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vidual polarimetric channels follows the following 
general scheme shown in in Table 2.2.

These general rules should help when comparing 
the RCS in different polarimetric channels. They can 
be applied to perform an automatic classification of 
scattering types if data with all relevant polarizations 
(i.e., quad-polarization data) are available. For more 
information on polarimetric SAR and polarimetric 
SAR data analysis, see Pottier & Lee 2009 and Van Zyl 
2011.

An example of the information contained in 
quad-polarization SAR data is shown in Figure 2.10. 
There, the polarimetric scattering power of |SHH|, 
|SVV|, and |SHV| are presented in Figures 2.10(a), 
(b), and (c), respectively, for an ALOS PALSAR scene 
over Niamey, Niger. According to the rule above, 
strong scattering in |SHH| indicates a predominance 
of double-bounce scattering (e.g., stemmy vegeta-
tion, manmade structures), while strong |SVV| relates 
to rough surface scattering (e.g., bare ground, water), 
and spatial variations in |SHV| indicate the distribution 
of volume scatterers (e.g., vegation and high-pene-
tration soil types such as sand or other dry porous 
soils) across the scene. To enhance the visibility of 
differences between the channels, the HH, VV, and 

HV information is often combined into a single RGB 
image, with |SHH| in red, |SVV| assigned to blue, and 
|SHV| in green. Such an RGB image composite for the 
scene over Niamey is shown in Figure 2.10(d). Ex-
tensive red areas can be seen in some urban districts 
(buildings) and some agricultural zones (stemmy veg-
etation). A patch of green can be seen to the south 
of Niamey, presumably relating to higher penetration 
sandy soils and the volumetric scattering on inclusion 
within the sand body. Most other areas have a tinge 
of blue, indicating bare soils.

2.3  Historic, Current, and 
Future SAR Sensors

Amazingly, spaceborne SAR sensors have been 
around for more than 40 years. The first SAR was 

launched on June 28, 1978, on board NASA’s Seasat 
satellite, a spaceborne platform aimed at monitoring 
oceanographic phenomena. As part of its sensor 
suite, Seasat carried an HH-polarized L-band SAR 
that was mounted at a fixed angle to observe glob-
al surface wave fields and polar sea ice conditions. 
Even though Seasat’s SAR operated for only 106 
days (a short circuit in the satellite’s electrical sys-
tem occurred on October 10, 1979), the mission was 
deemed an extensive success, demonstrating a SAR 
capability both ocean and land surface observation 
(Fu & Holt 1982). 

Since the days of Seasat, SAR remote sensing has 
come a long way. Starting with ERS-1 in 1991, sev-
eral SAR sensors with ever-improving imaging char-
acteristics have been launched by an international 
community of satellite providers, collectively ensur-
ing continuous coverage of the Earth with SAR data. 
Unfortunately, this international constellation of SAR 
systems comes with a downside. The SAR satellites 
launched by the various agencies vary widely in their 
sensor configurations such that data from different 
sensors are not always directly comparable (see 
Sec. 2.2). Section 2.3.1 outlines the main differ-
ences between different sensors in order to assist 
new users in choosing the correct SAR data for an 
intended application.

2.3.1  SAR SENSOR WAVELENGTHS 

SAR sensors transmit energy in one of the micro-

Figure 2.9 Schematic sketch of the three main scattering types considered for SAR data. 

Double Bounce

Rough Surface

Volume

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

Rough Surface Scattering |SVV |>|SHH |>|SHV | or |SVH |

Double Bounce Scattering |SHH |>|SVV |>|SHV | or |SVH |

Volume Scattering Main source of |SHV | and |SVH |

Table 2.2 Relative scattering strength by polarization

Figure 2.10 Fully-polarimetric L-band SAR scenes from the ALOS PALSAR sensor over Niamey, Niger: 
(a) |SHH|, (b) |SVV|, and (c) |SHV| scattering powers. An RGB color combination of these channels is 
shown in (d).

a.) b.) c.) d.)
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wave frequency bands shown in Table 2.3. Roughly 
speaking, radar systems use frequencies from 1 to 90 
GHz, a spectral range that is subdivided into the fre-
quency bands shown in the first column of Table 2.3. 
These bands were initially defined according to the 
different equipment needed to generate and detect 
signals at these particular wavelengths, but now, they 
can be understood as the equivalent of colors in the 
visual range. As microwave remote sensing was de-
veloped largely during World War  II, a rather cryptic 
naming convention was used to disguise the meaning 
of microwave bands from the enemy. Unfortunately, 
this letter-based naming scheme (Ka-band to P-band) 
was never modified and may lead to confusion among 
new users of SAR.

Not all of the microwave bands shown in Table 2.3 
are used for SAR remote sensing. While some exper-
imental airborne Ka- and Ku-band SAR systems exist, 
civilian spaceborne sensors have been exclusively using 
the lower frequency bands ranging from X- to P-band 
(blue shaded region in Table 2.3). 

As explained in Section 2.2, the wavelength of 
a SAR sensor is intrinsically linked to the penetration 

capabilities of the transmitted microwave signal, such 
that longer wavelength signals (e.g., signals at L- and 
P-band) penetrate deeper into vegetation canopies and 
soils. Hence, the applications supported by a SAR sen-
sor depend on the SAR frequency band used.

Table 2.3 summarizes typical applications of SAR 
as a function of frequency band. It shows that sensors 
at X-band are predominantly used for urban and in-
frastructure monitoring. Due to the higher resolution 
capabilities of X-band radars, sensors at this frequency 
find broad application in surveillance and tracking and 
are also often used in the monitoring of industry instal-
lations. Due to the limited penetration into vegetation 
covers, X-band is rarely used for characterizing forest 
canopies for monitoring activity underneath vegetation. 

With the predominate number of legacy systems 
operating at this frequency range, C-band sensors have 
been the workhorse of SAR monitoring over the last 30 
years. With moderate- to high-resolution capabilities 
and increased vegetation penetration, C-band data can 
be seen as a good compromise between X-band and 
the longer wavelength L-band sensor classes. Com-
pared to X-band SARs, C-band sensors typically allow 

for wider swath imaging, lending themselves to re-
gional- and global-scale applications. While C-band 
has improved canopy penetration capabilities, its 
signals will typically not penetrate all the way through 
a vegetation layer. Especially in regions with denser 
vegetation, C-band is of limited use for analyzing ac-
tivity underneath canopy layers.

While S-band SAR sensors were rarely used in 
Earth observations in the past, this frequency will have 
increased usage in the near future. NovaSAR-S, an 
S-band SAR sensor, was launched in September 2018, 
and while access to NovaSAR-S data may be limited, it 
will provide some medium-resolution SAR data to ex-
plore the performance of S-band data for applications 
such as hazard monitoring, crop monitoring, forest 
monitoring (temperate and rainforests), as well as land-
use mapping. More interesting to most users will be the 
upcoming NASA ISRO SAR satellite, NISAR. In addition 
to an L-band radar, NISAR will carry a fully polarimetric 
S-band SAR. While NISAR’s S-band coverage will likely 
not be global, all data will be freely and openly available 
to the SAR science and applications community.

While most of the historic SAR systems operated 

Table 2.3 Designation of microwave bands. Spaceborne SARs typically operate in the frequency bands shaded in green. Note: This table uses standard 
terminology common to the radar community. This nomenclature is not identical to ones used by other disciplines. For instance, P-band is often referred to 
as UHF band. Also note that the actual frequencies allocated for radar use by the International Telecommunications Union are narrower bands within these 
broad classifications.

BAND FREQUENCY WAVELENGTH TYPICAL APPLICATION

Ka 27 – 40 GHz 1.1 – 0.8 cm Rarely used for SAR (airport surveillance)

K 18 – 27 GHz 1.7 – 1.1 cm Rarely used (H2O absorption)

Ku 12 – 18 GHz 2.4 – 1.7 cm Rarely used for SAR (satellite altimetry)

X 8 – 12 GHz 3.8 – 2.4 cm High-resolution SAR (urban monitoring; ice and snow, little penetration into vegetation cover; fast coherence decay in 
vegetated areas)

C 4 – 8 GHz 7.5 – 3.8 cm SAR workhorse (global mapping; change detection; monitor-ing of areas with low to moderate vegetation; improved 
pen-etration; higher coherence); Ice, ocean, maritime navigation

S 2 – 4 GHz 15 – 7.5 cm Little but increasing use for SAR-based Earth observation; agriculture monitoring (NISAR will carry an S-band channel; 
expands C-band applications to higher vegetation density)

L 1 – 2 GHz 30 – 15 cm Medium resolution SAR (Geophysical monitoring; biomass and vegetation mapping; high penetration; InSAR)

P 0.3 – 1 GHz 100 – 30 cm Biomass. First P-band spaceborne SAR will be launched ~2020; vegetation mapping and assessment. Experimental SAR.
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in C-band, the family of future SAR sensors is largely 
focused on the L-band frequency range. While L-band 
SARs do not provide the high-resolution capabilities 
of shorter wavelength SARs, their ability to penetrate 
vegetation holds a number of advantages for Earth 
observation. With a higher likelihood of seeing the 
ground, L-band SARs are useful for mapping activity 
underneath canopies such as flooding. Due to the 
high penetration into vegetation covers, L-band SAR 
also lends itself well to characterizing canopy struc-
ture, especially in denser forests. Finally, the higher 
canopy penetration is also advantageous for users of 
Interferometric SAR (InSAR), achieving higher inter-
ferometric coherence (see Sec. 2.6.2.) and better 
deformation tracking capabilities. 

P-band SAR sensors are currently under devel-
opment. Spaceborne applications at this frequency 
are hampered by ionospheric distortions, and only 
recent developments in ionospheric correction 
(Belcher 2008, Belcher and Rogers 2009, Gomba et 
al. 2016, Jehle et al. 2010, Jehle et al. 2009, Kim et 
al. 2011, Meyer et al. 2006, Meyer & Nicoll 2008a, 
Meyer 2011, Meyer et al. 2016, Meyer & Nicoll 2008b, 
Pi et al. 2012) have allowed spaceborne P-band SAR 
missions to go forward. The first spaceborne P-band 
SAR—ESA’s Biomass mission—is planned to launch 
in 2021 and will focus on mapping the status and the 
dynamics of Earth’s forests, as represented by the 
distribution of forest biomass and its changes.

2.3.2  A SUMMARY OF RELEVANT SAR 
PLATFORMS WITH THEIR PROPERTIES

A list of the most relevant past, current, and future 
SAR platforms is provided in Table 2.4. The sensors 
are sorted by their period of performance. For each 
instrument, the sensor wavelength, supported polar-
ization modes, resolution and size of image products, 
repeat cycle, and means of data access are listed. This 
quick guide may be useful in selecting appropriate 
sensors for a specific application. 

2.4  SAR Data Types and 
Their Applications

Table 2.4 showcases the diversity of SAR sensors 
that have been launched since the beginning of the 

spaceborne SAR era in 1979. While the deep, mul-
titemporal archive provided by these sensors is of 
tremendous value for users interested in long-term 
Earth observation, SAR data products from these 
various platforms are, unfortunately, plagued by in-
consistent naming conventions and come in a range 
of data types and formats, which can cause confusion 
even for more senior users of SAR. The following sec-
tions attempt to summarize and categorize the vari-
ous data types and nomenclatures used by different 
data providers to provide guidance to users new to 
this tremendously useful Earth observation asset. For 
every data type, typical naming conventions are listed 
and appropriate open source software tools are in-
troduced. Also summarized are the main applications 
associated with a specific data type. A concise sum-
mary of all information provided can also be found 
in Table 2.5.

The variety of data types provided by a SAR system 
are related to the diverse flavors of information that 
are captured in every SAR acquisition. In every pixel, 
a SAR provides measurements of signal amplitude, 
phase, and polarization, all of which are related to 
different physical quantities of the observed ground. 
As extracting and utilizing these different information 
layers is often not straightforward—and as ampli-
tude, phase, and polarization information is often 
relevant to different user communities—SAR data 
providers have decided to offer their imagery up in 
a range of different processing levels, each progres-
sively simplified and tailored to emphasize different 
components of the SAR information space. 

2.4.1  SAR RAW DATA

General Description: As the purest of all SAR 
processing levels, RAW data corresponds to the de-
coded but otherwise unfocused (i.e., Wiley’s aper-
ture synthesis processing has not yet been applied; 
Sec. 2.1.3) raw observables made by a SAR sen-
sor. Unlike optical sensors, visualizing raw SAR data 
does not provide much useful information about the 
scene. Only after aperture synthesis processing is the 
RAW data transformed into an interpretable image. 

Applications: RAW data products are the ba-
sis for all higher level SAR processing levels, and as 
such, RAW is an essential data type in every SAR data 

archive. Outside of the user community interested in 
SAR data processing, however, RAW products find 
very little use. Interestingly, while RAW data are an 
essential product for every SAR sensor, not every 
satellite operator has decided to make his RAW data 
products available to the community. For some sen-
sors, satellite data security laws prohibit the publica-
tion of RAW data products. Mostly, however, sensor 
providers elect to hide RAW data to retain proprietary 
information about their SAR processing routines.  

Naming Convention: RAW products are cat-
egorized as processing Level 0 data, a processing 
level typically abbreviated as L0. An exception to this 
abbreviation exists for data from the ALOS PALSAR 
sensor, which uses L1.0 when referring to their RAW 
data products. 

Open Source Software Tools: There are a 
number of open source software tools that can be 
used to read and manipulate (focus) RAW SAR data 
products. These include the following:

• InSAR Scientific Computing Environ-
ment (ISCE)—Developed by Jet Propulsion 
Laboratory (JPL)/Stanford/Caltech. More infor-
mation and download: https://winsar.unavco.
org/isce.html.

• GMTSAR—Developed by Scripps Institution 
of Oceanography. More information and down-
load: http://topex.ucsd.edu/gmtsar/.

• Repeat Orbit Interferometry PACkage 
(ROI_PAC)—Developed by JPL/Caltech. More 
information and download: https://winsar.un-
avco.org/portal/wiki/ROI_PAC/.

• Delft Object-oriented Radar Interfero-
metric Software (DORIS)—Developed by 
Delft University of Technology. More informa-
tion and download: http://doris.tudelft.nl/.

Note that most of these tools are focused on the 
SAR expert community and therefore require a con-
siderable amount of expertise to use correctly. Fur-
thermore, these tools predominantly reside on Linux 
or UNIX operating systems and use command-line 
methods as the means of user interaction.

2.4.2  SINGLE LOOK COMPLEX IMAGE

General Description: Single Look Complex 
(SLC) images are fully focused SAR data that are 

https://winsar.unavco.org/isce.html
https://winsar.unavco.org/isce.html
http://topex.ucsd.edu/gmtsar/
https://winsar.unavco.org/portal/wiki/ROI_PAC/
https://winsar.unavco.org/portal/wiki/ROI_PAC/
http://doris.tudelft.nl/
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SENSOR LIFETIME WAVELENGTH/
FREQUENCY POLARIZATION RESOLUTION FRAME SIZE REPEAT CYCLE ACCESS

Seasat 1978 L-band
λ = 24.6cm

HH Az: 25m
Rg: 25m

100km - Free & open

ERS-1 1991-2001 C-band
λ = 05.6cm

VV Az: 6-30m
Rg: 26m

100km 35 days Restrained

JERS-1 1995-1998 L-band
λ = 24.6cm

HH Az: 18m
Rg: 18m

75km 44 days Restrained

ERS-2 1995-2011 C-band
λ = 05.6cm

VV Az: 6-30m
Rg: 26m

100km 35 days Restrained

ENVISAT 2002-2012 C-band
λ = 05.6cm

HH, VV, VV/HH, 
HH/HV, VV/VH

Az: 28m
Rg: 28m

100km 35 days Restrained

ALOS-1 2006-2011 L-band
λ = 24.6cm

FBS: HH, VV
FBD: HH/HV, HH/VH
PLR: HH/HV
/VH /VV
ScanSAR: HH, VV

FBS: 10x10m
FBD: 20x10m
PLR: 30x10m
ScanSAR: 100m

FBS: 70km
FBD: 70km
PLR: 30km
ScanSAR: 250-350km

46 days Free & open

Radarsat-1 1995-2013 C-band
λ = 05.6cm

HH Standard: 25x28m
Fine: 9x9m
Wide1: 35x28m
Wide2: 35x28m
ScanSAR: 50x50-100x100m

Standard: 100km
Fine: 45km
Wide1: 165km
Wide2:150km
ScarSAR: 305-510km

24 days 1995-2008: Restrained
2008-2013: Commercial

TerraSAR-X
TanDEM-X

2007-
2010-

X-band
λ = 03.5cm

Single: HH, VV
Dual: HH/VV, HH/HV, VV/VH
Twin: HH/VV, HH/VH, VV/VH

Spotlight: 0.2x1.0-1.7x3.5m
Stripmap: 3x3m
ScanSAR: 18-40m

Spotlight: 3-10km
Stripmap: 50x30km
ScanSAR: 150x100-200x200km

11 days Application-dependent; 
restrained scientific, commercial

Radarsat-2 2007- C-band
λ = 05.6cm

Single: HH, VV, HV, VH
Dual: HH/HV, VV/VH
Quad: HH/HV/VH/VV

Spotlight: ~1.5m
Stripmap: ~3x3-25x25m 
ScanSAR: 35x35-100x100m

Spotlight: 18x8km
Stripmap: 20-170m 
ScanSAR: 300x300- 500x500km

24 days Commercial

COSMO 
-SkyMed

2007- X-band
λ = 03.5cm

Single: HH, VV, HV, VH
Dual: HH/HV, HH/VV, VV/VH

Spotlight: ≤1m
Stripmap: 3-15m
ScanSAR: 30-100m

Spotlight: 10x10km
Stripmap: 40x40km
ScanSAR: 100x100 - 
200x200km

Satellite: 16 days
Constellation: ~hrs

Commercial; limited proposal-
based scientific

ALOS-2
PALSAR-2

2014- L-band
λ = 24.6cm

Single: HH, VV, HV, VH
Dual: HH/HV, VV/VH
Quad: HH/HV/VH/VV

Spotlight: 1x3m
Stripmap: 3-10m
ScanSAR: 25-100m

Spotlight: 25x25km
Stripmap: 55x70-70x70km
ScanSAR: 355x355km

14 days Commercial; limited proposal-
based scientific

Sentinel-1 2014- C-band
λ = 05.6cm

Single: HH, VV
Dual: HH/HV, VV/VH

Stripmap: 5x5m
Interferometric Wide Swath (IW): 
5x20m
Extra Wide Swath (EW): 20-40m

Stripmap: 375km
IW: 250km
EW: 400km

Satellite: 12 days
Constellation: 6 days

Free & open

SAOCOM 2018- L-band
λ = 24.6cm

Single: HH, VV
Dual: HH/HV, VV/VH
Quad: HH/HV/VH/VV

Stripmap: 10x10m
TopSAR: 100x100m

Stripmap: >65km
TopSAR: 320km

Satellite: 16 days
Constellation: 8 days

TBD

PAZ SAR 2018- X-band
λ = 03.5cm

*See TerraSAR/TanDEM-x *See TerraSAR/TanDEM-x *See TerraSAR/TanDEM-x 11 days Commercial

RCM 2019 C-band
λ = 05.6cm

Single: HH, VV, VH, HV
Dual: HH/HV, VV/VH, HH/VV
Compact
Quad

Very high, high, medium, and 
low-res modes (3-100m)

20x20-500x500km Satellite: 12 days
Constellation: ~hrs

TBD

NISAR 2021 L-band
λ = 24.6cm

Single: HH, VV, VH, HV
Dual: HH/HV, VV/VH, HH/VV
Quad

3-20m (mode dependent) 250km 12 days Free & open

BIOMASS 2021 P-band
λ = 70.0cm

Quad ≤60x50m 160km 17 days Free & open

TanDEM-L 2023 L-band
λ = 24.6cm

Single, dual, quad modes 12x12m 350km Satellite: 16 days
Constellation: 8 days

Free & open

Table 2.4 List of past, current and upcoming spaceborne SAR sensors with their properties.
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SENSOR FORMAT PRODUCT NAME PRODUCT FILES PROCESSING LEVEL OPEN SOURCE TOOLS APPLICATIONS

CURRENT SPACEBORNE SENSORS

Seasat HDF5 L1 HDF5 Image h5, xml, kml, jpg, qc_report Amplitude ASF MapReady, QGIS Visualization; GIS-compatible

GeotTIFF L1 GeoTIFF tif, xml, kml, jpg, qc_report Geocoded amplitude QGIS; graphics software Visualization; GIS-compatible

ERS-1&2
Envisat
Radarsat-1
JERS-1

EOS L0 D,L,P, kml, jpg Raw N/A Production of higher-level products

L1 Image Amplitude ASF MapReady; S1TBX Visualization, mapping, change detection

ALOS-1 CEOS L1.0 LED, IMG, VOL, TRL Raw N/A Production of higher-level products

L1.1 Complex SLC SNAP; ROI_PAC; DORIS; PolSARpro; 
GMTSAR

Interferometry

L1.5 Amplitude ASF MapReady; S1TBX; PolSARpro Visualization, mapping, change detection

TerraSAR-X
TanDEM-X

COSAR 
fomat

L1 SSC (Single Look Slant 
Range Complex)

SLC SNAP; ROI_PAC; DORIS; PolSARpro; 
GMTSAR

Interferometry

GeoTIFF L1 MGD (Multi Look 
Ground Range Detected)

Amplitude ASF MapReady; SNAP; PolSARpro Visualization, mapping, change detection

GeoTIFF L1 GEC (Geocoded 
Ellipsoid Corrected)

Amplitude ASF MapReady; SNAP; PolSARpro Visualization, mapping, change detection

GeoTIFF L1 EEC (Enhanced 
ellipsoid corrected)

Amplitude ASF MapReady; SNAP; PolSARpro Visualization, mapping, change detection

Radarsat-2 GeoTIFF or 
NITF 2.1 
with XML

L1 SLC SLC SNAP; ROI_PAC; DORIS; PolSARpro; 
GMTSAR

Interferometry

L1 Ground Range (SGX; 
SGF; SCN; SCW; SCF; 
SCS)

Amplitude SNAP; PolSARpro Visualization, mapping, change detection

L1 Geocorrected (SSG; 
SPG)

Amplitude SNAP; PolSARpro Visualization, mapping, change detection

COSMO 
-SkyMed

HDF5 L0 RAW Raw Production of higher-level products

L1A SLC SNAP; ROI_PAC; DORIS; PolSARpro; 
GMTSAR

Interferometry

L1B MDG (Multi-look 
Detected Ground Range)

Amplitude SNAP; PolSARpro Visualization, mapping, change detection

L1C GEC Amplitude SNAP; PolSARpro Visualization, mapping, change detection

L1D GTC (Geocoded 
Terrain Corrected)

Amplitude SNAP; PolSARpro Visualization, mapping, change detection

Various higher-level products

ALOS-2
PALSAR-2

L1.1 SLC SLC SNAP; ROI_PAC; DORIS; Pol-SARpro; 
GMTSAR

Interferometry

L1.5 (slant-range 
detected)

Amplitude SNAP; PolSARpro Visualization, mapping, change detection

L2.1 GTC Geocoded amplitude SNAP; PolSARpro Visualization, mapping, change detection

L3.1 (Quality corrected 
L1.5)

Enhanced amplitude SNAP; PolSARpro Visualization, mapping, change detection

Sentinel-1 SAFE L0 raw data tiff, xml, xsd, kml, html, png, 
pdf, safe

Raw N/A Production of higher-level products

GeoTIFF L1 SLC SLC S1TBX; ROI_PAC; DORIS; PolSARpro Interferometry

GeoTIFF L1 Detected High-Res 
Single- & Dual-Pol

Georeferenced Amplitude ASF MapReady; Google Earth Engine; 
S1TBX; PolSARpro

Visualization, mapping, change detection

GeoTIFF L1 Detected Single- & 
Dual-Pol

Georeferenced Amplitude ASF MapReady; Google Earth Engine; 
S1TBX; PolSARpro

Visualization, mapping, change detection

Table 2.5 Current and upcoming spaceborne SAR sensors with their properties.

https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
https://www.asf.alaska.edu/data-tools/mapready/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/#geotiff
http://www.qgis.org/en/site/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
http://step.esa.int/main/download/
http://www.openchannelfoundation.org/orders/index.php?group_id=282
http://doris.tudelft.nl/Doris_download.html
https://earth.esa.int/web/polsarpro/home
http://topex.ucsd.edu/gmtsar/downloads/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/#safe
https://earthengine.google.com/
https://earthengine.google.com/
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provided at the full native resolution (single look) 
with both amplitude and phase information stored 
in each (complex) pixel. SLC products are typically 
provided in the original slant-range observation ge-
ometry (Fig. 2.1) and are therefore not geocoded or 
terrain-corrected. In contrast to most optical sensors, 
the native resolution of SAR sensors is often signifi-
cantly different along the azimuth and range image 
directions. Hence, SLC images often look geomet-
rically distorted when viewed in image processing 
software. While SLCs usually come with radiometric 
calibration factors already applied, speckle noise re-
mains unmitigated in these full-resolution products. 
For polarimetric data, separate SLC products are pro-
vided for each polarimetric channel. 

Applications: The phase information stored in 
SLC products is an essential prerequisite for InSAR 
processing (Sec. 2.6.2), which is used for mapping 
surface topography or surface deformation. In addi-
tion to its use in InSAR, SLCs are also the basis for 

higher level image products such as amplitude imag-
es, polarimetric products, and geocoded images. See 
Table 2.5 for more information.

Naming Convention: In the SAR world, SLC 
products are categorized as processing Level 1 data, 
typically abbreviated as L1 or L1 SLC data. An excep-
tion to this abbreviation exists for data from the ALOS 
PALSAR sensor, which uses L1.1 when referring to its 
SLC products.

Open Source Software Tools: SLC data can 
be read and further processed by a series of open 
source software tools. These include (but are not lim-
ited to) the following:

• All previously named RAW data tools (ISCE, 
ROI_PAC, GMTSAR, DORIS)

• MapReady: Developed by the Alaska Satel-
lite Facility. More information and download: 
https://www.asf.alaska.edu/data-tools/ma-
pready/.

• Sentinel Application Platform 

(SNAP): Developed by ESA. More 
information and download: http://
step.esa.int/main/download/.

While all of these tools are capable of processing 
SLC products, not all tools work with all sensors. Us-
ers should refer to the links above to ensure that their 
data can be successfully processed with a particular 
tool choice.

2.4.3  DETECTED (AMPLITUDE) IMAGES

General Description: Amplitude products are 
fully focused SAR images that have been stripped 
of phase information and are typically multi-looked 
(spatially averaged) to reduce speckle noise and to 
create pixels of approximately square size. While 
useful for a range of mapping and monitoring appli-
cations, amplitude products unfortunately come in a 
variety of geocoding stages. Most legacy SAR systems 
(e.g., ERS-1/2, Envisat, Radarsat-1, JERS-1, and ALOS 
PALSAR) provide non-geocoded amplitude products 

Table 2.5, continued

SENSOR FORMAT PRODUCT NAME PRODUCT FILES PROCESSING LEVEL OPEN SOURCE TOOLS APPLICATIONS

RECENT AND FUTURE SPACEBORNE SENSORS

SAOCOM
PAZ SAR
RCM
NISAR
BIOMASS
TanDEM-L

Formats and data types yet to be determined

AIRBORNE SENSORS

UAVSAR 
PolSAR

UAVSAR Ground Projected Com-
plex [full-res; 3x3; 5x5]

grd, ann Georeferenced Amplitude ASF MapReady; PolSARpro Visualization

Multi-Look Complex mic, ann MLC ASF MapReady; PolSARpro Polarimetry

Compressed Stokes 
Matrix

dat, ann AIRSAR compressed stokes 
matrix

ASF MapReady; PolSARpro Polarimetry

GeoTIFF Pauli
Decomposition

tif MLC pol. decomposition QGIS; graphics software Visualization, GIS compatible

KMZ Google Earth KMZ kmz KML compressed Google Earth Visualization

UAVSAR
InSAR

UAVSAR Amplitude amp1, amp2, ann Amplitude ASF MapReady; PolSARpro Visualization

Ground Projected 
Amplitude

amp1.grd, amp2.grd, hgt.
grd, ann

Georeferenced Amplitude ASF MapReady; PolSARpro Visualization

Interferogram int, unw, cor, ann Interferogram ASF MapReady; PolSARpro

Ground Projected 
Interferogram

cor.grd, hgt.grd, int.grd, 
unw.grd, ann

Interferogram ASF MapReady; PolSARpro

KMZ Google Earth KMZ amp.kmz,
cor.kmz, hgt.kmz, int.kmz, 
osr.kmz, unw.kmz

Google Earth Visualization

https://www.asf.alaska.edu/data-tools/mapready/
https://www.asf.alaska.edu/data-tools/mapready/
http://step.esa.int/main/download/
http://step.esa.int/main/download/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/#UAVSAR
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that are left in the original acquisition geometry, and 
it is upon the user to geocode these datasets man-
ually. Other sensors (e.g., Sentinel-1) make georef-
erenced amplitude products available. While these 
products remain in their native acquisition geometry, 
information needed to link the image coordinate sys-
tem to geographic coordinates is stored within the 
image file. Currently, only the recently reprocessed 
archive of Seasat (available at the Alaska Satellite Fa-
cility) provides data in full geocoded formats.

Note that amplitude products are typically geo-
referenced or geocoded to an ellipsoidal approxima-
tion of the Earth. This means that image distortions 
caused by surface topography (see Fig. 2.4) are not 
corrected in amplitude products.

Applications: In their original form, the main 
applications of amplitude images are limited to visu-
alization and data inspection. Only after an end user 
applies geocoding and terrain correction steps do 
these products have relevance in mapping, change 
detection, hazard monitoring, and other Earth obser-
vation disciplines.

Naming Convention: Amplitude products 
belong to the L1 family of products. To distinguish 
them from SLCs, they are often referred to as L1.5 
(ALOS PALSAR) or L1 Detected (Sentinel-1, ERS-1/2, 
Envisat, Radarsat-1, JERS-1). While data are provided 
in a range of custom formats, most modern sensors 
increasingly favor standard formatting such as Geo-
TIFF or HDF5. For more information, please refer to 
Table 2.5.

Open Source Software Tools: Amplitude 
products can be read and further processed by all of 
the software tools mentioned in Section 2.4.2 and 
Table 2.5.

2.4.4  POLARIMETRIC PRODUCTS

General Description: Most SAR sensors pro-
vide the different channels (i.e., HH, HV, VH, and 
VV; see Sec. 2.2.3) of multi-polarization data as 
separate layers, processed to either an L0, L1 SLC, 
or L1 Detected product. There are, however, some 
exceptions to this general approach. The NASA JPL-
run airborne remote sensing system UAVSAR offers 
two product types (the Compressed Stokes Matrix 
and Pauli Decomposition products) that are true po-

larimetric products. The Compressed Stokes Matrix 
captures information about the polarization state of 
the measured polarimetric signal, while the Pauli De-
composition provides information on the polarimetric 
scattering properties of an observed surface. Polari-
metric products are also planned for upcoming SAR 
missions NISAR and TanDEM-L.

Applications: Polarimetric data are useful for 
studying the structure of the observed surface and 
performing unsupervised image classifications. Pola-
rimetric products have been used extensively in ag-
riculture monitoring (crop classification, soil moisture 
extraction, and crop assessment) (Alemohammad et 
al. 2016, Jagdhuber et al. 2013, Liu et al. 2013, Quegan 
et al. 2003, Xie et al. 2015), oceanography (surface 
currents and wind field retrieval) (Hooper et al. 2015, 
Latini et al. 2016, Migliaccio & Nunziata 2014), forestry 
(forest monitoring, classification, and tree height esti-
mation) (Banqué et al. 2016, Mitchard et al. 2011, Shi-
mada et al. 2016, Walker et al. 2010), disaster moni-
toring (oil spill detection and disaster assessment), 
and military applications (ship detection and target 
recognition/classification). 

Naming Convention: Due to the recent devel-
opment of standalone polarimetric products, no nam-
ing convention has been established thus far. 

Open Source Software Tools: Polarimetric 
data can be processed with the following software 
packages (sorted in ascending order of sophistication 
of available polarimetric processing):

• MapReady—Developed by the Alaska Sat-
ellite Facility. More information and download: 
https://www.asf.alaska.edu/data-tools/ma-
pready/.

• SNAP (Sentinel Application Platform)—
Developed by ESA. More information and down-
load: http://step.esa.int/main/download/.

• PolSARpro—Developed by ESA. More infor-
mation and download: https://earth.esa.int/
web/polsarpro/home.

2.4.5  LEVEL 2 AND HIGHER LEVEL PRODUCTS

General Description: For the sake of this hand-
book, Level 2 data are defined as all data products 
that are projected to the ground, gridded in regular 
grids, and transformed into physical variables such as 

a calibrated radar cross section (e.g., the radiometric 
terrain-corrected data generated via the processing 
flow described in Sec. 2.6.1), line-of-sight deforma-
tion, or polarimetric decomposition variables. 

While Level 2 products are offered by only a few 
missions at this point in time, an increasing number 
of future sensors will offer products at advanced 
processing levels. Currently, operationally produced 
Level 2 products are only provided for the Seasat and 
the UAVSAR archive and include geocoded amplitude 
images (both sensors) as well as polarimetric and in-
terferometric products (UAVSAR; Table 2.4).

Several data formats have been used for Level 2 
and higher products from SAR, as no common data 
format has been established yet for this still uncom-
mon product type. Currently used formats include 
GeoTIFF, HDF5, and KMZ.

Applications: Level 2 SAR data products facil-
itate a wide range of applications. Calibrated am-
plitude images find use in a range of fields such as 
general mapping, land-use classification, change 
detection, and hazard analysis. Interferometric data 
may be used in damage mapping, geophysical analy-
ses of surface deformation, and more.  

Naming Convention: Various.
Open Source Software Tools: The geocoded 

products can be used in most Geographic Informa-
tion System (GIS) tools. While GeoTIFF products are 
natively compatible with GIS tools, readers may have 
to import HDF5 formats with their respective meta-
data information.

2.5  Accessing SAR Data
While an increasing number of satellite systems 

are operating under a free and open data policy, 
many legacy sensors and some currently operating 
higher resolution sensors are still providing data 
under a restricted or commercial paradigm. The fol-
lowing sections provide information on how, where, 
and under which conditions data from these different 
types of sensors can be accessed.

2.5.1  FREE AND OPEN DATA POLICY 
MISSIONS 

Past and current SAR missions that have (at the 
writing of this chapter) adopted a free and open data 

https://www.asf.alaska.edu/data-tools/mapready/
https://www.asf.alaska.edu/data-tools/mapready/
http://step.esa.int/main/download/
https://earth.esa.int/web/polsarpro/home
https://earth.esa.int/web/polsarpro/home
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policy include the spaceborne sensors Seasat, ERS-
1/2, ALOS-1, and Sentinel-1, as well as the NASA-op-
erated airborne SARs AirSAR, UAVSAR, and AIRMOSS. 
Upcoming missions also expected to provide data in 
a free and open manner include the Canadian Ra-
darsat Constellation Mission (RCM), NASA’s NISAR, 
DLR’s TanDEM-L, and ESA’s Biomass mission. Means 
of data access for these sensors is briefly described 
in the following sections. A summary of data access to 
free and open SAR sensors is provided in Table 2.6.

2.5.1.1  Accessing Data from the ERS-1/2 
and Envisat Missions

With a combined lifetime from 1991 until 2011, 
the ERS system (composed of ERS-1 and ERS-2) pro-
vides unique insights into 20 years of changes on the 
Earth’s surface. Therefore, it remains a relevant data 
source for those interested in climate change, hazard 
monitoring, and environmental analysis. 

Two means of accessing data from this long-lived 
legacy SAR system are:

• ESA Simple Online Catalogue—The glob-
al archive of the ERS and Envisat systems can be 
searched and ordered via the ESA-maintained 
Simple Online Catalogue. ESA SOC replaced the 
EOLi-SA (Earth Observation Link – Stand Alone) 
browser in early 2019. Once relevant data are 
identified, images can be downloaded by the 
user free of charge once reproduction is com-
pleted, with the possibility of additional data 
downloads depending on overall system avail-
ability.

• ASF Vertex—Alternately, a subset of the avail-
able ERS SAR data is available through the ser-
vices of the NASA Alaska Satellite Facility (ASF) 
Distributed Active Archive Center (DAAC). Level 
0 and L1.5 data over North America (ASF station 
mask) are freely and openly available through 
ASF’s Vertex client for immediate download. See 
Figure 2.11 for a view of the ASF Vertex inter-
face. Note that the ASF archive does not include 
data from the Envisat mission.

2.5.1.2  ALOS-1 PALSAR

Data from JAXA’s ALOS-1 PALSAR sensor are avail-
able through a distributed set of data nodes that 

MISSION(S) REGION DATA ACCESS REQUIREMENTS

Seasat Global ASF Vertex One-time registration

ERS-1&2, ENVISAT Global ESA Simple Online Catalogue PI proposal

ASF Station Mask (ERS only) ASF Vertex One-time registration

ALOS-1 PALSAR Americas/Antarctica ASF Vertex One-time registration

Europe/Africa/Greenland ALOS PALSAR On-The-Fly PI proposal

Asia AUIG2 PI proposal

Australia/Oceania Unknown Unknown

Sentinel-1 Global ASF Vertex
ESA’s Copernicus Open Access Hub

One-time registration

AIRSAR, UAVSAR Limited extent ASF Vertex One-time registration

AirMOSS Limited extent ORNL DAAC One-time registration

Table 2.6 List of free and open SAR sensors with modes of data access.

Figure 2.11.  A look at the interfaces of two major SAR data search clients: (a) ASF Vertex client and (b) 
ESA Copernicus Open Access Hub. Both clients allow for convenient data search via a map interface.

https://esar-ds.eo.esa.int/oads/access/
https://earth.esa.int/web/guest/eoli
https://www.asf.alaska.edu/ground-station/station-mask/
https://www.asf.alaska.edu/ground-station/station-mask/
https://vertex.daac.asf.alaska.edu/
https://vertex.daac.asf.alaska.edu/
https://esar-ds.eo.esa.int/oads/access/
https://alos-palsar-ds.eo.esa.int/oads/access/
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
https://scihub.copernicus.eu/dhus/
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=36
https://vertex.daac.asf.alaska.edu/
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SAR (C-, L-, and P-bands; 1990–2004) and UAVSAR 
(L-band; 2008–present) are accessible through the 
ASF Vertex client (Fig. 2.11). While covering only 
limited areas, the versatility and high resolution of 
these sensors make them interesting for a range of 
Earth observation disciplines. UAVSAR data are also 
available at JPL, which is also operating the mission. 
To download data directly from JPL, please visit 
https://uavsar.jpl.nasa.gov/.

Currently, AirMOSS data (P-band; 2012–present) 
are being offered through the NASA Oak Ridge Na-
tional Laboratory (ORNL) DAAC. To access AirMOSS 
data from ORNL, please visit https://daac.ornl.gov/
cgi-bin/dataset_lister.pl?p=36.

2.5.2  RESTRICTED-ACCESS AND 
COMMERCIAL SAR MISSIONS 

Despite their largely commercial nature, there are 
means to access certain data from the Radarsat-1 
and -2, TerraSAR-X, TanDEM-X, COSMO-SkyMed, and 
ALOS-2 PALSAR-2 missions at low cost. Detailed in-
formation on these individual sensors is provided in 
Table 2.7 and the following paragraphs.

2.5.2.1  Radarsat-1 and -2

Radarsat-1 and -2 are Canada’s staple SAR sensors 
which have been continuously providing C-band me-
dium- to high-resolution SAR data since 1995. Since 
the launch of Radarsat-2 in 2007, most of the com-
bined Radarsat archive has migrated to a commercial 
data policy with data access fees above $1,000 CAD 
per image frame. Information on the data costs for 
Radarsat-1 and -2 datasets can be found from the com-

were originally established to make access to ALOS 
data more effective for end users. Separate data 
centers are available for the Americas (data located 
at ASF; free and open access via ASF Vertex), Europe 
and Africa (ESA; Principal Investigator (PI) proposal 
needed; access via ALOS PALSAR On-The-Fly web 
interface), Asia (JAXA; PI proposal needed; access 
via ALOS User Interface Gateway (AUIG2)), and Aus-
tralia/Oceania (Geoscience Australia; data access via 
JAXA’s AUIG2). 

In 2015, data from the ALOS-1 PALSAR sensor 
became unrestricted, enabling all ALOS data nodes 
to provide data freely and openly to its users. While 
ASF has fully implemented this data policy—ALOS 
PALSAR data over the Americas are now freely and 
openly available through ASF’s Vertex client—other 
data nodes are still working on implementing this 
unrestricted data policy.

2.5.1.3  Sentinel-1

The Sentinel-1 mission is the first of the six Sen-
tinel-dedicated missions operated by the European 
Copernicus programme. Sentinel-1 is based on a 
constellation of two SAR satellites to ensure conti-
nuity of C-band SAR observations across the globe. 
Sentinel-1A was launched on April 3, 2014, and 
the second Sentinel-1 satellite, Sentinel-1B, was 
launched on April 25, 2016. 

The operational nature of Sentinel-1 is a game 
changer in a number of application domains thanks 
to the large-scale mapping capability and revisiting 
frequency of the two identical satellites, together 
with a high-capacity ground segment that system-
atically processes, archives, and makes available 
all the generated data products to users online in a 
routine operational way (Potin et al. 2016). 

The growing global archive of Sentinel-1 is acces-
sible through two freely available search clients: 

• ESA’s Copernicus Open Access Hub: The 
global archive of the Sentinel-1 SAR constel-
lation can be accessed via ESA’s Copernicus 
Open Access Hub. Requiring only a simple, 
one-time registration, this hub allows for quick 
and easy data download via an interactive map 
interface. In addition to Sentinel-1, the Coper-
nicus Open Access Hub also provides access 

to all other Sentinel missions (at the time of 
writing, access to Sentinel-1 to Sentinel-3 is 
possible), making it a convenient one-stop-
shop for users interested in multi-sensor Earth 
observation data. A screenshot of the Coper-
nicus Open Access Hub interface is shown in 
Figure 2.11. 

• ASF Vertex: The global Sentinel-1 archive 
is also available through the previously men-
tioned ASF Vertex client (Fig. 2.11). Similar 
to the Copernicus Open Access Hub, data can 
be searched via a convenient map interface. 
In addition to Sentinel-1, ASF Vertex provides 
free and open access to other SAR data such 
as those from the ERS, UAVSAR, AirSAR, and 
Seasat missions.

• Google Earth Engine: In addition to the 
previous options, geocoded Sentinel-1 De-
tected (Amplitude) products are now available 
through Google Earth Engine (GEE). While 
GEE does not allow downloading of Senti-
nel-1 image products, it provides a convenient 
cloud-based analysis platform within which 
Sentinel-1 data can be analyzed together with 
data from optical sensors. Hence, GEE may al-
low new users of SAR to gain experience with 
this dataset without requiring local software 
installs and without having to download large 
volumes of SAR data.

2.5.1.4  NASA’s Open Access Airborne SAR 
Sensors

Data from the NASA airborne SAR sensors AIR-

MISSION(S) REGION DATA ACCESS REQUIREMENTS

ALOS-2 
PALSAR-2 Global

Commercial: PASCO Price list

Science: AUIG2 Proposal to JAXA

Radarsat-1&2 Global Commercial: MDA MDA price list

North America Science: ASF Vertex Proposal to NASA

COSMO-
SkyMed Global

Commercial: e-goes e-goes price list

Science: ASI Proposal to ASI

TerraSAR-X, 
TanDEM-X

Global

Commercial: Airbus Airbus price list

Science (reduced cost): TSX / TDX Proposal to DLR 
(TSX / TDX)

Archived data (free): TSX Proposal to DLR

Table 2.7 List of restricted/commercial SAR sensors with modes of data access.

https://uavsar.jpl.nasa.gov/
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=36
https://daac.ornl.gov/cgi-bin/dataset_lister.pl?p=36
https://vertex.daac.asf.alaska.edu/
https://alos-palsar-ds.eo.esa.int/oads/access/
https://alos-palsar-ds.eo.esa.int/oads/access/
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
https://earthdata.nasa.gov/unrestricted-palsar-asf-daac
https://scihub.copernicus.eu/dhus/
https://scihub.copernicus.eu/dhus/
https://vertex.daac.asf.alaska.edu/
https://earthengine.google.com/
https://satpf.jp/spf_atl/?lang=en
http://en.alos-pasco.com/offer/price.html
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
http://www.eorc.jaxa.jp/ALOS/en/top/ra_top.htm
https://mdacorporation.com/geospatial/international/satellites
https://mdacorporation.com/geospatial/international/satellites
https://vertex.daac.asf.alaska.edu/
https://www.asf.alaska.edu/get-data/alaska-satellite-facility-daac-restricted-data-access-request/
http://www.e-geos.it/products/cosmo.html
http://www.asi.it/en/agency/calls-and-opportunities
http://www.asi.it/en/agency/calls-and-opportunities
http://www.intelligence-airbusds.com/terrasar-x/
http://www.intelligence-airbusds.com/en/122-price-lists
http://sss.terrasar-x.dlr.de/
https://tandemx-science.dlr.de/
http://sss.terrasar-x.dlr.de/
https://tandemx-science.dlr.de/
http://sss.terrasar-x.dlr.de/
http://sss.terrasar-x.dlr.de/
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mercial distributor MDA. On occasion, low-cost data 
access is granted to Canadian and European PIs under 
the Science and Operational Applications Research for 
Radarsat-2 (SOAR) program after a competitive PI pro-
posal is approved. 

Outside of this general agreement, some limited 
Radarsat-1 data (from the period of 1995–2009) are 
also available through the NASA ASF DAAC under a re-
stricted data access agreement and can be discovered 
through its ASF Vertex search client. To access ASF-held 
Radarsat-1 data, a proposal to NASA is necessary. Once 
approved, data can be accessed free of charge. More 
on ASF’s Radarsat-1 restricted data use agreement 
here at this link.

2.5.2.2  ALOS-2 PALSAR-2

While ALOS-2 PALSAR-2 data are distributed com-
mercially by the PASCO Corporation, a limited amount 
of data is provided for free to the science community. 
To apply for limited free data access (50 scenes per 
year), look for regularly released ALOS Research An-
nouncements. A proposal describing the research ef-
fort is needed and is reviewed for validity. If approved, 
free data access to up to 50 scenes per year is granted 
via the AUIG2 interface. Information about the data 
costs for commercial ALOS-2 PALSAR-2 data can be 
found here.

2.5.2.3  High-Resolution X-band SAR Data 
from TerraSAR-X, TanDEM-X, and COSMO-
SkyMed

While the high-resolution X-band SAR sensors 
TerraSAR-X, TanDEM-X, and COSMO-SkyMed provide 
most of their data under a commercial license, similar 
to ALOS-2 PALSAR-2, some limited data can be ac-
cessed at a low cost (or for free) once a PI proposal is 
reviewed and approved. 

Information on how to access commercial data from 
the TerraSAR-X and TanDEM-X missions (including 
pricing information) is available from the Airbus De-
fense and Space Company website. For information on 
how to apply for access to low-cost science use data, 
see the TerraSAR-X Science Server or, accordingly, the 
TanDEM-X Science Server. While proposals to access 
archived TerraSAR-X data can always be submitted, 
look for special announcements of opportunities to 

apply for access to newly acquired or special mission 
phase data. Through the TanDEM-X Science Server, us-
ers can also apply for segments of the TanDEM-X Digital 
Elevation Model (DEM) in addition to the SAR images 
themselves. 

Information on commercial access to COS-
MO-SkyMed data can be retrieved from their commer-
cial vendor, e-geos. Reduced-rate science data access 
is available regularly through COSMO SkyMed Constel-
lation Data Utilization announcement of opportunities. 
Please check for upcoming opportunities on the Italian 
Space Agency (ASI) webpage.

2.6  SAR Image Processing 
Routines – Theory 
2.6.1  GEOCODING AND RADIOMETRIC 
TERRAIN CORRECTION

2.6.1.1  Theoretical Background

Due to the side-looking observation geometry, 
SAR images are subject to geometric and radiometric 
distortions (Sec. 2.1.4). In addition to the geometric 
mislocation of pixels in topographically inclined areas, 
the oblique angle of the illuminating radar energy adds 
topographic shading to the true surface RCS, giving the 
sensor-facing side of hill slopes a radiometrically “over-
exposed” appearance (see Figure 2.12(a)). Both of 
these effects hamper the use of SAR for many applica-
tions. The radiometric modulations often disguise the 
true radar reflectance of the observed scene, reducing 
the applicability of SAR for studying the properties of 
the surface. Furthermore, geometric and radiometric 
distortions make the application of SAR for change 
detection more difficult, as these highly incidence an-
gle-dependent artifacts lead to classification errors if 
images with different observation geometries are com-
bined. Hence, correction of geometric and radiometric 
distortions is advisable if SAR data are to be analyzed 
together with other image data or across datasets with 
varying incidence angles.

The RCS of a pixel in a calibrated SAR image is com-
posed of:

 σ = σ0(θi) · Aσ(θi)  , (2.9)

where σ0 is the (incidence angle-dependent) normal-

ized RCS, θi is the local incidence angle, and Aσ is the 
surface area covered by a pixel. Following Eq. (2.9), 
two images acquired from different geometries will 
differ due to the incidence angle dependence of σ0 and 
Aσ, even if the observed surface remains unchanged.

Hence, to enable unbiased analysis of SAR images 
in a GIS and to allow for a joint change detection anal-
ysis of SAR amplitude images acquired from different 
observation geometries, geometric and radiometric 
distortions in these images need to first be removed. 
To retrieve the true RCS of the imaged surface σ0 from 

Figure 2.12 Example of geometric (b) and 
radiometric (c) normalization applied to an 
ALOS PALSAR image over Alaska (a). The applied 
corrections enable the use of SAR data in GIS 
environments (geometric correction step), 
provide physically correct RCS values for every 
pixel, and enable unbiased change detection 
from multiple observation geometries.

(c) After Radiometric Terrain Correction

(b) After Geometric Terrain Correction

(a) Original image

https://mdacorporation.com/geospatial/international/satellites
http://www.asc-csa.gc.ca/eng/programs/soar/default.asp
http://www.asc-csa.gc.ca/eng/programs/soar/default.asp
https://www.asf.alaska.edu/get-data/alaska-satellite-facility-daac-restricted-data-access-request/
http://www.eorc.jaxa.jp/ALOS/en/top/ra_top.htm
http://www.eorc.jaxa.jp/ALOS/en/top/ra_top.htm
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
http://en.alos-pasco.com/offer/price.html
http://www.intelligence-airbusds.com/terrasar-x/
http://www.intelligence-airbusds.com/terrasar-x/
http://sss.terrasar-x.dlr.de/
https://tandemx-science.dlr.de/
http://www.e-geos.it/products/cosmo.html
http://www.asi.it/en/agency/calls-and-opportunities
http://www.asi.it/en/agency/calls-and-opportunities
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the observed radar data σ, the geometry dependence 
of σ needs to be removed by correcting for Aσ(θi). The 
process of correcting for Aσ(θi) is called Radiometric 
Terrain Correction (RTC) (Small 2011). RTC includes 
both geometric terrain correction (geocoding) and 
radiometric compensation and is typically performed 
using the following steps:

• Geometric terrain correction (geocoding) is 
conducted to remove geometric image distor-
tions. A DEM is needed to correct the location 
of topographically inclined pixels. In areas be-
tween ±60° geographic latitude, the DEM pro-
vided by the Shuttle Radar Topography Mission 
(SRTM) should be sufficient (Gesch et al. 2014).

• Radiometric terrain normalization is performed 
to remove geometry-dependent radiometric 
distortions corresponding to a pixel-by-pixel 
estimation and compensation of Aσ(θi) using a 
DEM. The radiometric normalization technique 
in Small (2011) is applied.

Figure 2.12 shows an example of the effects 
of geometric and radiometric normalization. Fig-
ure 2.12(a) shows an original ALOS PALSAR image 
over an area near the Denali fault in Alaska. The ef-
fects of geometric correction are shown in Figure 
2.12(b), and the effects of radiometric normalization 
are presented in Figure 2.12(c). The normalized 
data are now largely devoid of geometric influences, 
reducing radiometric differences between images ac-
quired from different geometries. As a consequence, 
the RTC-corrected image data show improved perfor-
mance when combined with other remote sensing 
datasets and in multi-geometry change detection. 

2.6.1.2  More Information on Geocoding 
and RTC Processing

To learn more about the theory behind geocod-
ing and RTC processing please visit Lecture 9 of UAF’s 
Online Class on Microwave Remote Sensing. You can 
find Lecture 9 in Class Module 2 “Imaging Radar Sys-
tems.” To go directly to the slide deck, click here.

2.6.2  THEORY OF INTERFEROMETRIC SAR

InSAR processing exploits the difference between 
the phase signals of repeated SAR acquisitions to 
analyze the shape and deformation of the Earth’s 

surface. While the principles and processing flows of 
InSAR will not be described here in detail, is recom-
mended to look through the following material that is 
available freely and openly online. The lecture mate-
rials listed are part of a full-semester, graduate-level 
class on microwave remote sensing offered by the 
University of Alaska Fairbanks, listed in the "Supple-
mental materials on InSAR" callout.

2.6.2.1  A Word on Sentinel-1 
Interferometric Wide Swath Data

The Interferometric Wide (IW) swath mode is the 
main acquisition mode over land for Sentinel-1. It ac-
quires data with a 250-km swath at 5-x-20-m spatial 
resolution (single look). Interferometric wide mode 

captures three sub-swaths using the TOPSAR acqui-
sition principle. With the TOPSAR technique, in addi-
tion to steering the beam in range as in ScanSAR, the 
beam is also electronically steered from backward 

Figure 2.13 TOPSAR acquisition principle.

Vs

Supplemental materials on InSAR

The Principles and Applications of Interferometric SAR (InSAR): 

Interferometric SAR (InSAR) analyzes phase differences between two or more SAR acquisitions with the goal of 
measuring surface topography and/or surface deformation. While the quality of derived topographic information 
depends on the relative observation geometry of the SAR acquisitions used, surface deformation can be measured 
at a fraction of the signal wavelength and, hence, with millimeter to centimeter accuracy. In this lecture, you will 
hear about the concepts of InSAR and the general processing approaches to arrive at either surface topography 
or surface deformation. Limitations of InSAR as well as advanced processing concepts will be covered in future 
lectures.

Link: https://radar.community.uaf.edu/files/2017/03/Lecture12_ConceptsAndGeneralApproachesOfInSAR.pdf

Phase Unwrapping & Limitations of Traditional InSAR Methods:

The first part of this lecture will deal with the problem of phase unwrapping. As InSAR phase measurements are ini-
tially only available wrapped into the value range, a phase unwrapping process has to be applied to create an un-
ambiguous phase map ready for topography or deformation analysis. You will be introduced to the general process 
of phase unwrapping and learn about several popular solutions to this problem. In the second part of this lecture, 
we will look into the main limitations of the traditional two-image InSAR approach. These identified limitations will 
set us up for future lectures, which will describe advanced processing techniques (e.g., PS- and SBAS InSAR).

Link: https://radar.community.uaf.edu/files/2017/03/Lecture13_PhaseUnwrappingandLimitationsofInSAR.pdf

The Role of InSAR in Geophysics:

Intrinsically, InSAR is a geodetic discipline, providing accurate measurements of surface deformation. While this is 
interesting by itself, geoscientists are typically more interested in the geophysical source that causes an observed 
deformation rather than the deformation itself. Using volcanic activity as an example, this lecture will provide you 
with some insight on how geophysical parameters can be determined using InSAR measurements in combination 
with inverse modeling.

Link: https://radar.community.uaf.edu/files/2017/03/Lecture14_UsingInSARinGeophysics.pdf

https://radar.community.uaf.edu
https://radar.community.uaf.edu/module-2-imaging-radar-systems/
https://radar.community.uaf.edu/module-2-imaging-radar-systems/
https://docs.google.com/viewerng/viewer?url=https://radar.community.uaf.edu/files/2017/02/Lecture9_Geometrie_Radiometry_Geocoding.pdf&hl=en_US
https://radar.community.uaf.edu/files/2017/03/Lecture12_ConceptsAndGeneralApproachesOfInSAR.pdf
https://radar.community.uaf.edu/files/2017/03/Lecture13_PhaseUnwrappingandLimitationsofInSAR.pdf
https://radar.community.uaf.edu/files/2017/03/Lecture14_UsingInSARinGeophysics.pdf
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to forward in the azimuth direction for each burst, 
avoiding scalloping and resulting in homogeneous im-
age quality throughout the swath. A schematic of the 
TOPSAR acquisition principle is shown in Figure 2.13. 

The TOPSAR mode replaces the conventional 
ScanSAR mode, achieving the same coverage and res-
olution as ScanSAR, but with nearly uniform image 
quality (in terms of signal-to-noise ratio and distrib-
uted target ambiguity ratio).

Interferometric wide SLC products contain one 
image per sub-swath and one per polarization chan-
nel, for a total of three (single-polarization) or six 
(dual-polarization) images in an IW product. Each 
sub-swath image consists of a series of bursts, where 
each burst has been processed as a separate SLC im-
age. The individually focused complex burst images 
are included, in azimuth-time order, into a single sub-
swath image with black-fill demarcation in between.

2.6.3  CHANGE DETECTION USING SAR

2.6.3.1  Problem Statement

Detecting changes in land-use/land-cover is one 
of the most fundamental and common uses of remote 
sensing image analysis. One of the most rudimentary 
forms of change detection is the visual comparison of 
two images by a trained interpreter. With an effective 
display system large enough to display both images 
simultaneously and to explore and digitize with a cur-
sor tracking to the same location in both images, this 
is a quick method that can be used to locally collect 
valuable GIS-compatible data while streaming the 
images themselves over a relatively low-bandwidth 
Internet connection.

In an attempt to automate change detection (and 
hence make it available for large-scale and more op-
erational implementation), a wealth of digital change 
detection algorithms have been developed over the 
last decade that operate on a range of different sen-
sors and are grouped into “supervised” and “unsu-
pervised” categories. While a great many methods 
for detecting changes from remote sensing data are 
available in literature, this short introduction is limit-
ed to methods that are used in reference to SAR.

2.6.3.2  Summary of SAR-Based Change 

Detection Techniques

Even when limiting research to SAR-based change 
detection only, the number of algorithms proposed in 
recent years can seem overwhelming. Hence, instead 
of providing an extensive summary of all available 
techniques, this section attempts to categorize tech-
niques to help in choosing the right method for an 
envisioned application. Methods will be categorized 
using several indicators such as by the type of input 
information needed, the required amount of training 
data, and the amount of processing expertise needed 
to implement the algorithms. 

2.6.3.2.1  Input Data Used for Change Detection 

SAR-based change detection techniques can be 
categorized by the type of SAR information used 
for change identification. Categories include “am-
plitude-based methods,” “phase/coherence-based 
techniques,” and “polarimetric techniques.”

Amplitude-based methods focus on the RCS 
information contained in the data, initially ignoring 
information coming from phase and polarization. 
One of the advantages of amplitude-based methods 
lies in their ability maximize the temporal sampling 
that can be achieved with SAR-based change detec-
tion information. Amplitude information is available 
for every SAR collection, making every new image 
useful for change detection. As not all SAR acquisi-
tions allow for the use of phase and/or polarization, 
amplitude data naturally lead to better temporal 
sampling. This benefit can be further enhanced if RTC 
is applied to all images. As RTC processing removes 
most geometry-dependent distortions from the mea-
sured SAR RCS, it allows for combining SAR data ac-
quired from multiple incidence angles, leading to fur-
ther improvements in temporal sampling. However, a 
disadvantage of amplitude-based methods relates to 
its limited sensitivity, which often increases the like-
lihood of false negatives, in which true changes are 
erroneously missed in the classification. 

Phase/coherence-based techniques utilize 
the fact that significant surface change results in a 
significant reduction of interferometric coherence, 
enabling the automatic detection of change via coher-
ence thresholding. Coherence-based techniques are 

highly sensitive to change, which interestingly is both 
the main advantage and disadvantage of this catego-
ry. On one hand, the high sensitivity is an asset, as it 
reduces the likelihood for false negatives. On the oth-
er, coherent change detection methods tend to have 
very large false positive rates, where change is vastly 
overestimated. While methods have been developed 
to combat these problems, the need for false positive 
correction makes coherence-based methods appear 
very complicated and non-straightforward for the 
uninitiated user. Coherent image pairs are required 
for these methods to be applicable, which somewhat 
limits the temporal sampling that can be achieved. 

Polarimetric techniques are often highly 
capable, as they can analyze surface changes across 
several polarimetric channels. This maximizes the 
likelihood of change detection and allows one to 
associate those changes with scattering types (e.g., 
changes associated with double-bounce, roughness, 
and volume scattering). The latter is especially rel-
evant, as it enables one to ascertain as to whether 
a change signature is related to vegetation or the 
ground, enabling change classification. However, the 
main disadvantage of polarimetric change detection 
is related to its reliance on multi-polarization data, 
which are not always available. Furthermore, polari-
metric processing theory may be a bit overwhelming 
to uninitiated readers.

Independent of change detection methods, the 
proper choice of sensor is essential to optimizing 
change detection performance. In particular, the 
choice of sensor wavelength should be appropriate 
given the surface and vegetation characteristics of 
an area of interest. If changes underneath vegetation 
canopies are the target, longer wavelength sensors 
are preferred. For bare surfaces, shorter wave-
lengths often have an advantage. This is because 
shorter wavelength sensors often increase the RCS 
associated with rough surfaces and provide more 
dynamic range that can be used for the identification 
of change. 

2.6.3.2.2  Supervised vs. Unsupervised Methods

Change detection can be performed either un-
supervised (Bruzzone & Prieto 2000) or supervised 
(Huo et al. 2010). In unsupervised change detection, 
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a change map is generated by comparing objects in 
two images with a similarity metric. The change map 
then undergoes thresholding to classify each pixel 
into changed and unchanged classes (Bruzzone & 
Prieto 2000, Otsu 1979). In supervised change de-
tection, training samples are selected from the avail-
able dataset and are used to train a classifier, which 
is then used to classify an image into changed and 
unchanged classes (Huo et al. 2010).

Supervised methods are useful, as radar signa-
tures associated with change do not always have 
to be theoretically understood to be able to detect 
them. Instead, the impact of a surface change on the 
signal observed by a SAR is learned using training 
data, reducing the need for sophisticated modeling. 
The reliance on reference data, however, is also the 
main downside of these methods, as training data 
are sometimes hard to come by and are seldom free 

of errors. Some recent supervised algorithms based 
on amplitude, phase, and polarization data are list-
ed in Table 2.8.

Unsupervised methods have the advantage that 
no reference data are required to arrive at a classifi-
cation result. Instead, signal models are used to en-
code the impact of surface change on the observed 

data. Unsupervised techniques are particularly 
beneficial in hazard monitoring, where changes are 
often unanticipated and training data are typically 
not available in time. Selected recent unsupervised 
change detection methods are listed in Table 2.8 
as a function of input data type.

AMPLITUDE-BASED PHASE-BASED POLARIZATION-BASED

Super-
vised

White, 1991
Gong et al., 2016
Liu et al., 2016
Gong et al., 2017

Gamba et al., 2007
Pulvirenti et al., 2016

Marino and Hajnsek, 2014

Unsuper-
vised

Meyer et al., 2014
Ajadi et al., 2016
Bruzzone and Prieto, 2000
Bazi et al., 2005
Celik, 2010
Bovolo and Bruzzone, 2005

Yun et al., 2015a
Yun et al., 2015b
Sharma et al., 2017

Akbari et al., 2016

Table 2.8 List of 
change detection 
methods categorized 
by source data 
and need for 
reference data.

SARbian – A free and open SAR Operating System:

SARbian is an easy-to-use, Linux-based SAR processing virtual machine provided by the 
group behind the EO-College initiative (https://eo-college.org) that comes loaded with a 
wide range of currently-available, free-and-open SAR processing and GIS software tools. 
The virtual machine is completely pre-installed, ready for use in research, education, or 
operational applications. No knowledge of installation steps is needed. Hence, SARbian is a 
convenient resource for researchers and decision-makers that are looking
for a hassle-free start with SAR.

SARbian can be downloaded from https://eo-college.org/sarbian, and comes with the 
following list of software tools:
• SAR Processing Tools: ESA S1TBX; ASF MapReady; pyroSAR
• SAR Polarimetry: PolSARPro
• SAR Interferometry: DORIS; SNAPHU (phase unwrapping); PyRAT
• GIS Tools: GDAL; QGIS; GRASS GIS
• Supporting Tools: A number of Python, R, and Octave resources

https://eo-college.org
https://eo-college.org/sarbian


THE SAR HANDBOOK 41

2.7 References
Ajadi, O. A., Meyer, F. J., and Webley, P. W., 2016, Change Detection in Synthetic Aperture Radar 

Images Using a Multiscale-Driven Approach: Remote Sensing, v. 8, no. 6, p. 482.

Akbari, V., Anfinsen, S. N., Doulgeris, A. P., Eltoft, T., Moser, G., and Serpico, S. B., 2016, Polari-
metric SAR Change Detection With the Complex Hotelling–Lawley Trace Statistic: IEEE 
Transactions on Geoscience and Remote Sensing, v. 54, no. 7, p. 3953-3966.

Alemohammad, S. H., Jagdhuber, T., Moghaddam, M., and Entekhabi, D., Decomposing soil 
and vegetation contributions in polarimetric L-and P-band SAR observations, in Pro-
ceedings Geoscience and Remote Sensing Symposium (IGARSS), 2016 IEEE Internation-
al2016, IEEE, p. 7553-7556.

Bamler, R., and Eineder, M., 1996, ScanSAR processing using standard high precision SAR algo-
rithms: Ieee Transactions on Geoscience and Remote Sensing, v. 34, no. 1, p. 212-218.

Bamler, R., and Holzner, J., 2004, ScanSAR interferometry for RADARSAT-2 and RADARSAT-3: 
Canadian Journal of Remote Sensing, v. 30, no. 3, p. 437-447.

Banqué, X., Lopez-Sanchez, J. M., Monells, D., Ballester, D., Duro, J., and Koudogbo, F., 2016, Po-
larimetry-based Land Cover Classification with Sentinel-1 Data: Seminarios, v. 13, p. 07.

Bazi, Y., Bruzzone, L., and Melgani, F., 2005, An unsupervised approach based on the general-
ized Gaussian model to automatic change detection in multitemporal SAR images: IEEE 
Transactions on Geoscience and Remote Sensing, v. 43, no. 4, p. 874-887.

Belcher, D. P., 2008, Theoretical Limits on SAR Imposed by the Ionosphere: IET Radar Sonar and 
Navigation, v. 2, no. 6, p. 435-448.

Belcher, D. P., and Rogers, N. C., 2009, Theory and Simulation of Ionospheric Effects on Synthetic 
Aperture Radar: IET Radar Sonar and Navigation, v. 3, no. 5, p. 541-551.

Bovolo, F., and Bruzzone, L., 2005, A detail-preserving scale-driven approach to change de-
tection in multitemporal SAR images: IEEE Transactions on Geoscience and Remote 
Sensing, v. 43, no. 12, p. 2963-2972.

Bruniquel, J., and Lopes, A., 1997, Multi-variate optimal speckle reduction in SAR imagery: Inter-
national Journal of Remote Sensing, v. 18, no. 3, p. 603-627.

Bruzzone, L., and Prieto, D. F., 2000, Automatic analysis of the difference image for unsupervised 
change detection: IEEE Transactions on Geoscience and Remote sensing, v. 38, no. 3, 
p. 1171-1182.

Buades, A., Coll, B., and Morel, J. M., A non-local algorithm for image denoising, in Proceedings 
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR’05)20-25 June 2005 2005, Volume 2, p. 60-65 vol. 62.

Celik, T., 2010, A Bayesian approach to unsupervised multiscale change detection in synthetic 
aperture radar images: Signal Processing, v. 90, no. 5, p. 1471-1485.

Chen, S., Hou, J., Zhang, H., and Da, B., 2014, De-speckling method based on non-local means 
and coefficient variation of SAR image: Electronics Letters, v. 50, no. 18, p. 1314-1316.

Cumming, I. G., and Wong, F. H., 2005, Digital Processing of Synthetic Aperture Radar Data, 
Norwood, MA, Artech House, Inc.

De Zan, F., and Monti Guarnieri, A., 2006, TOPSAR: Terrain Observation by Progressive Scans: 
IEEE Transactions on Geoscience and Remote Sensing, v. 44, no. 9, p. 2352-2360.

Di Martino, G., Di Simone, A., Iodice, A., and Riccio, D., 2016, Scattering-based nonlocal means 
SAR despeckling: IEEE Transactions on Geoscience and Remote Sensing, v. 54, no. 6, 
p. 3574-3588.

Eineder, M., Adam, N., Bamler, R., Yague-Martinez, N., and Breit, H., 2009, Spaceborne Spot-
light SAR Interferometry With TerraSAR-X: IEEE Transactions on Geoscience and Remote 
Sensing, v. 47, no. 5, p. 1524-1535.

Ferretti, A., Fumagalli, A., Novali, F., Prati, C., Rocca, F., and Rucci, A., 2011, A New Algorithm 
for Processing Interferometric Data-Stacks: SqueeSAR: IEEE Transactions on Geoscience 
and Remote Sensing, v. 49, no. 9, p. 3460-3470.

Freeman, A., Krieger, G., Rosen, P., Younis, M., Johnson, W., Huber, S., Jordan, R., and Moreira, 
A., SweepSAR: Beam-forming on receive using a reflector-phased array feed combina-
tion for spaceborne SAR, in Proceedings IEEE Radar Conference, 2009 4-8 May 2009 
2009, p. 1-9.

Frost, V. S., Stiles, J. A., Shanmugan, K. S., and Holtzman, J. C., 1982, A model for radar images 
and its application to adaptive digital filtering of multiplicative noise: IEEE Transactions 
on Pattern Analysis & Machine Intelligence, no. 2, p. 157-166.

Fu, L.-L., and Holt, B., 1982, Seasat views oceans and sea ice with synthetic-aperture radar, 
California Institute of Technology, Jet Propulsion Laboratory.

Gamba, P., Dell’Acqua, F., and Trianni, G., 2007, Rapid damage detection in the Bam area using 
multitemporal SAR and exploiting ancillary data: IEEE Transactions on Geoscience and 
Remote Sensing, v. 45, no. 6, p. 1582-1589.

Gebert, N., Krieger, G., and Moreira, A., 2009, Digital Beamforming on Receive: Techniques and 
Optimization Strategies for High-Resolution Wide-Swath SAR Imaging: IEEE Transac-
tions on Aerospace and Electronic Systems, v. 45, no. 2, p. 564-592.

Gesch, D. B., Oimoen, M. J., and Evans, G. A., 2014, Accuracy assessment of the US Geological 
Survey National Elevation Dataset, and comparison with other large-area elevation 
datasets: SRTM and ASTER: US Geological Survey, 2331-1258.

Gomba, G., Parizzi, A., De Zan, F., Eineder, M., and Bamler, R., 2016, Toward operational com-
pensation of ionospheric effects in SAR interferograms: the split-spectrum method: 
IEEE Transactions on Geoscience and Remote Sensing, v. 54, no. 3, p. 1446-1461.



42 THE SAR HANDBOOK

Gong, M., Yang, H., and Zhang, P., 2017, Feature learning and change feature classification 
based on deep learning for ternary change detection in SAR images: ISPRS Journal of 
Photogrammetry and Remote Sensing, v. 129, p. 212-225.

Gong, M., Zhao, J., Liu, J., Miao, Q., and Jiao, L., 2016, Change detection in synthetic aperture 
radar images based on deep neural networks: IEEE transactions on neural networks 
and learning systems, v. 27, no. 1, p. 125-138.

Hooper, B. A., Van Pelt, B., Williams, J., Dugan, J., Yi, M., Piotrowski, C., and Miskey, C., 2015, 
Airborne spectral polarimeter for ocean wave research: Journal of Atmospheric and 
Oceanic Technology, v. 32, no. 4, p. 805-815.

Huang, S.-q., Liu, D.-z., Gao, G.-q., and Guo, X.-j., 2009, A novel method for speckle noise re-
duction and ship target detection in SAR images: Pattern Recognition, v. 42, no. 7, p. 
1533-1542.

Huo, C., Zhou, Z., Lu, H., Pan, C., and Chen, K., 2010, Fast object-level change detection for VHR 
images: IEEE Geoscience and Remote Sensing Letters, v. 7, no. 1, p. 118-122.

Jagdhuber, T., Hajnsek, I., Bronstert, A., and Papathanassiou, K. P., 2013, Soil moisture esti-
mation under low vegetation cover using a multi-angular polarimetric decomposition: 
IEEE Transactions on Geoscience and Remote Sensing, v. 51, no. 4, p. 2201-2215.

Jehle, M., Frey, O., Small, D., and Meier, E., 2010, Measurement of Ionospheric TEC in Space-
borne SAR Data: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 6, 
p. 2460-2468.

Jehle, M., Ruegg, M., Zuberbuhler, L., Small, D., and Meier, E., 2009, Measurement of Ionospher-
ic Faraday Rotation in Simulated and Real Spaceborne SAR Data: Ieee Transactions on 
Geoscience and Remote Sensing, v. 47, no. 5, p. 1512-1523.

Kim, J. S., Danklmayer, A., and Papathanassiou, K., Correction of ionospheric distortions in low 
frequency interferometric SAR data, in Proceedings Geoscience and Remote Sensing 
Symposium (IGARSS), 2011 IEEE International24-29 July 2011 2011, p. 1505-1508.

Krieger, G., and Moreira, A., Potential of digital beamforming in bi- and multistatic SAR, in Pro-
ceedings Geoscience and Remote Sensing Symposium, 2003. IGARSS ‘03. Proceedings. 
2003 IEEE International21-25 July 2003 2003, Volume 1, p. 527-529 vol.521.

Lanari, R., Tesauro, M., Sansosti, E., and Fornaro, G., 2001, Spotlight SAR data focusing based 
on a two-step processing approach: IEEE Transactions on Geoscience and Remote 
Sensing, v. 39, no. 9, p. 1993-2004.

Latini, D., Del Frate, F., and Jones, C. E., 2016, Multi-frequency and polarimetric quantitative 
analysis of the Gulf of Mexico oil spill event comparing different SAR systems: Remote 
Sensing of Environment, v. 183, p. 26-42.

Lee, J.-S., 1980, Digital image enhancement and noise filtering by use of local statistics: IEEE 
Transactions on Pattern Analysis & Machine Intelligence, no. 2, p. 165-168.

Lee, J.-S., Grunes, M., and Mango, S. A., 1991, Speckle reduction in multipolarization, multifre-
quency SAR imagery: Geoscience and Remote Sensing, IEEE Transactions on, v. 29, no. 
4, p. 535-544.

Lee, J.-S., Jurkevich, L., Dewaele, P., Wambacq, P., and Oosterlinck, A., 1994, Speckle filtering 
of synthetic aperture radar images: A review: Remote Sensing Reviews, v. 8, no. 4, p. 
313-340.

Liu, C., Shang, J., Vachon, P. W., and McNairn, H., 2013, Multiyear crop monitoring using pola-
rimetric RADARSAT-2 data: IEEE Transactions on Geoscience and Remote sensing, v. 51, 
no. 4, p. 2227-2240.

Liu, R., Jia, Z., Qin, X., Yang, J., and Kasabov, N., 2016, SAR Image Change Detection Method 
Based on Pulse-Coupled Neural Network: Journal of the Indian Society of Remote 
Sensing, v. 44, no. 3, p. 443-450.

Lopes, A., Touzi, R., and Nezry, E., 1990, Adaptive speckle filters and scene heterogeneity: IEEE 
transactions on Geoscience and Remote Sensing, v. 28, no. 6, p. 992-1000.

Lopez-Martinez, C., and Pottier, E., 2007, On the Extension of Multidimensional Speckle Noise 
Model from Single-look to Multilook SAR Imagery: IEEE Transactions on Geoscience 
and Remote Sensing, v. 45, no. 2, p. 305-320.

Marino, A., and Hajnsek, I., 2014, A change detector based on an optimization with polarimetric 
SAR imagery: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 8, p. 
4781-4798.

Martino, G. D., Simone, A. D., Iodice, A., Riccio, D., and Ruello, G., Non-local means SAR 
despeckling based on scattering, in Proceedings 2015 IEEE International Geoscience 
and Remote Sensing Symposium (IGARSS)26-31 July 2015 2015, p. 3172-3174.

Meyer, F., Bamler, R., Jakowski, N., and Fritz, T., 2006, The Potential of Low-Frequency SAR Sys-
tems for Mapping Ionospheric TEC Distributions: IEEE Geoscience and Remote Sensing 
Letters, v. 3, no. 4, p. 560-564.

Meyer, F., and Nicoll, J., Mapping Ionospheric TEC using Faraday Rotation in Full-Polarimetric 
L-Band SAR Data, in Proceedings European Synthetic Aperture Radar Conference EU-
SAR’08, Friedrichshafen, Germany, 2008a, Volume 2, VDE Verlag, p. 23-26.

Meyer, F. J., 2011, Performance Requirements for Ionospheric Correction of Low-Frequency SAR 
Data: IEEE Transactions on Geoscience and Remote Sensing, v. 49, no. 10, p. 3694-3702.

Meyer, F. J., Chotoo, K., Chotoo, S. D., Huxtable, B. D., and Carrano, C. S., 2016, The Influence of 
Equatorial Scintillation on L-Band SAR Image Quality and Phase: IEEE Transactions on 
Geoscience and Remote Sensing, v. 54, no. 2, p. 869-880.

Meyer, F. J., McAlpin, D. B., Gong, W., Ajadi, O., Arko, S., Webley, P. W., and Dehn, J., 2014, In-
tegrating SAR and derived products into operational volcano monitoring and decision 
support systems: Isprs Journal of Photogrammetry and Remote Sensing, no. 0.



THE SAR HANDBOOK 43

Meyer, F. J., and Nicoll, J. B., 2008b, Prediction, Detection, and Correction of Faraday Rotation 
in Full-Polarimetric L-Band SAR Data: IEEE Transactions on Geoscience and Remote 
Sensing, v. 46, no. 10, p. 3076-3086.

Migliaccio, M., and Nunziata, F., 2014, On the exploitation of polarimetric SAR data to map 
damping properties of the Deepwater Horizon oil spill: International journal of remote 
sensing, v. 35, no. 10, p. 3499-3519.

Mitchard, E. T. A., Saatchi, S. S., Lewis, S. L., Feldpausch, T. R., Woodhouse, I. H., Sonké, B., 
Rowland, C., and Meir, P., 2011, Measuring biomass changes due to woody encroach-
ment and deforestation/degradation in a forest–savanna boundary region of central 
Africa using multi-temporal L-band radar backscatter: Remote Sensing of Environment, 
v. 115, no. 11, p. 2861-2873.

Mittermayer, J., Moreira, A., and Loffeld, O., 1999, Spotlight SAR data processing using the fre-
quency scaling algorithm: IEEE Transactions on Geoscience and Remote Sensing, v. 37, 
no. 5, p. 2198-2214.

Monti Guarnieri, A., and Prati, C., 1996, ScanSAR focusing and interferometry: IEEE Transactions 
on Geoscience and Remote Sensing, v. 34, no. 4, p. 1029-1038.

Novak, L. M., and Burl, M. C., 1990, Optimal speckle reduction in polarimetric SAR imagery: 
Aerospace and Electronic Systems, IEEE Transactions on, v. 26, no. 2, p. 293-305.

Otsu, N., 1979, A threshold selection method from gray-level histograms: IEEE transactions on 
systems, man, and cybernetics, v. 9, no. 1, p. 62-66.

Pi, X., Meyer, F. J., Chotoo, K., Freeman, A., Caton, R. G., and Bridgwood, C. T., Impact of Iono-
spheric Scintillation on Spaceborne SAR Observations Studied Using GNSS, in Proceed-
ings ION GNSS2012, p. 1998-2006.

Potin, P., Rosich, B., Grimont, P., Miranda, N., Shurmer, I., O’Connell, A., Torres, R., and Krassen-
burg, M., Sentinel-1 mission status, in Proceedings EUSAR 2016: 11th European Confer-
ence on Synthetic Aperture Radar, Proceedings of2016, VDE, p. 1-6.

Pottier, E., and Lee, J. S., 2009, Polarimetric Radar Imaging: From Basics to Applications, Boca 
Raton, FL, CRC Press; Taylor & Francis Group, 438 p.:

Pulvirenti, L., Chini, M., Pierdicca, N., and Boni, G., 2016, Use of SAR data for detecting flood-
water in urban and agricultural areas: The role of the interferometric coherence: IEEE 
Transactions on Geoscience and Remote Sensing, v. 54, no. 3, p. 1532-1544.

Quegan, S., Le Toan, T., Skriver, H., Gomez-Dans, J., Gonzalez-Sampedro, M. C., and Hoekman, 
D. H., Crop classification with multitemporal polarimetric SAR data, in Proceedings Ap-
plications of SAR Polarimetry and Polarimetric Interferometry2003, Volume 529.

Quegan, S., and Yu, J. J., 2001, Filtering of multichannel SAR images: IEEE Transactions on Geo-
science and Remote Sensing, v. 39, no. 11, p. 2373-2379.

Sharma, R. C., Tateishi, R., Hara, K., Nguyen, H. T., Gharechelou, S., and Nguyen, L. V., 2017, 
Earthquake damage visualization (EDV) technique for the rapid detection of earth-
quake-induced damages using SAR data: Sensors, v. 17, no. 2, p. 235.

Shimada, M., Itoh, T., Motooka, T., Watanabe, M., and Thapa, R., Generation of the first PAL-
SAR-2 global mosaic 2014/2015 and change detection between 2007 and 2015 using 
the PALSAR and PALSAR-2, in Proceedings Geoscience and Remote Sensing Symposium 
(IGARSS), 2016 IEEE International2016, IEEE, p. 3871-3872.

Small, D., 2011, Flattening Gamma: Radiometric Terrain Correction for SAR Imagery: IEEE Trans-
actions on Geoscience and Remote Sensing, v. 49, no. 8, p. 3081-3093.

Sveinsson, J. R., and Benediktsson, J. A., 2003, Almost translation invariant wavelet transfor-
mations for speckle reduction of SAR images: Geoscience and Remote Sensing, IEEE 
Transactions on, v. 41, no. 10, p. 2404-2408.

Van Zyl, J. J., 2011, Synthetic Aperture Radar Polarimetry, Hoboken, New Jersey, John Wiley & 
Sons, Inc, 312 p.:

Vollmar, F., 1960, Das Telemobiloskop von Christian Hülsmeyer, ein früher Vorläufer des Radar-
geräts: Deutsches Museum, Abhandlungen und Berichte, v. 28, p. 33-40.

Walker, W. S., Stickler, C. M., Kellndorfer, J. M., Kirsch, K. M., and Nepstad, D. C., 2010, Large-ar-
ea classification and mapping of forest and land cover in the Brazilian Amazon: A com-
parative analysis of ALOS/PALSAR and Landsat data sources: Selected Topics in Ap-
plied Earth Observations and Remote Sensing, IEEE Journal of, v. 3, no. 4, p. 594-604.

Watson-Watt, R., 1946, The evolution of radiolocation: Journal of the Institution of Electrical 
Engineers - Part IIIA: Radiolocation, v. 93, no. 1, p. 11-19.

White, R., 1991, Change detection in SAR imagery: International Journal of remote sensing, v. 
12, no. 2, p. 339-360.

Woodhouse, I. H., 2006, Introduction to Microwave Remote Sensing, Boca Raton, FL, CRC Press, 
Taylor & Francis Group, 400 p.:

Xie, L., Zhang, H., Wu, F., Wang, C., and Zhang, B., 2015, Capability of rice mapping using hybrid 
polarimetric SAR data: IEEE Journal of Selected Topics in Applied Earth Observations 
and Remote Sensing, v. 8, no. 8, p. 3812-3822.

Younis, M., Fischer, C., and Wiesbeck, W., 2003, Digital beamforming in SAR systems: IEEE Trans-
actions on Geoscience and Remote Sensing, v. 41, no. 7, p. 1735-1739.

Yun, S.-H., Fielding, E. J., Webb, F. H., and Simons, M., 2015a, Damage proxy map from interfer-
ometric synthetic aperture radar coherence, Google Patents.

Yun, S.-H., Hudnut, K., Owen, S., Webb, F., Simons, M., Sacco, P., Gurrola, E., Manipon, G., 
Liang, C., and Fielding, E., 2015b, Rapid Damage Mapping for the 2015 M w 7.8 Gorkha 
Earthquake Using Synthetic Aperture Radar Data from COSMO–SkyMed and ALOS-2 
Satellites: Seismological Research Letters, v. 86, no. 6, p. 1549-1556.



44 THE SAR HANDBOOK

APPENDIX A
SAR Image Processing Routines 
– Chapter 2 Training Module

1  GEOCODING AND RTC PROCESSING USING 
ASF MAPREADY

Many of the SAR data holdings in the global archives 
are available as so-called ground-range projected 
products. While these products are typically georef-
erenced, they usually use an ellipsoid as reference 
surface. Hence, geometric distortions such as fore-
shortening are not corrected in these products and 
geolocation errors occur at points that don’t lie at the 
height of the applied reference surface. 

This lab is for users who wish to geocode and gen-
erate an RTC image from ERS-2 data using MapReady. 
MapReady is a free software tool distributed by ASF 
that can be used to correct geometric distortions from 
SAR data and generate fully geocoded GeoTIFF prod-
ucts ready for use in GIS analyses. In this part of the 
lab, we will demonstrate the MapReady tool and use it 
to geocode a ERS-2 scene over Fairbanks, AK. 

1.1  Starting and Exploring MapReady

MapReady is a free-and-open software tool pro-
vided by the Alaska Satellite Facility that provides some 
basic SAR data processing capabilities such as reading 
of SAR data formats, reprojection and geocoding, as 
well as some polarimetric data manipulations. Ma-
pReady can be downloaded from https://www.asf.
alaska.edu/data-tools/mapready/. Installation instruc-
tions are provided in the same location. For further 
information about MapReady functionality, please 
consult the MapReady user manual (http://media.asf.
alaska.edu/asfmainsite/documents/mapready_man-
ual_3.1.22.pdf).

To start MapReady, type  mapready  in your 
command window. You should see the MapReady in-
terface load (Figure 1.1). 

1.2  Geocoding a ERS-2 SAR Scene over 
Fairbanks, AK Using MapReady

ERS-2, a C-band (λ=5.66cm) SAR operated by 
the European Space Agency from 1995 to 2011, has 

Figure 1.1 The ASF MapReady user interface

provided a wealth of Earth observation data, much 
of which can be accessed through the services of 
ASF. While the depth of the archive provides a large 
potential value for a range of user communities, 
the images of the ERS-2 archive are currently not yet 
available in fully geocoded formats. Hence, being 
able to geocode ERS-2 images will help unlock this 
sensor’s vast potential in environmental analysis.

The data to be geocoded is ERS-2 granule 
E2_80464_STD_F163, which was acquired on Sep-
tember 10 of 2010 over the area of Fairbanks, AK.

1.3  Load the Image into MapReady and 
visualize the content of the Data Set

Here some instructions for loading and exploring 
the image:

• To load the image, click the Browse button in 
the Input Files section of the interface. Pick 
the E2_80464_STD_F163.D file within the 
E2_80464_STD_F163 folder and click Open. 

To visualize the image, click on the icon labeled with 
“Preview image” as shown in Figure 1.2. A viewer will 
open, displaying the image as well as metadata infor-
mation. Scroll around the image. Zoom in to evaluate 
image noise and structure. Also investigate metadata 
information on the left side of the viewer interface. 

1.4  Geocode and Terrain Correct the Image 
using MapReady

Apply the following settings to geocode and terrain 
correct your data:

In the “General” Tab:
• To terrain correct and geocode the image, 

activate the Terrain Correct and Geocode to a 
Map Projection radio buttons in the top ele-
ment of the interface. The Terrain Correction 
and Geocode tabs become active.

To separate input data from your processing re-
sults,  change the Destination Folder settings in the 
Input Files section of the interface. I recommend the 
following folder as your destination folder: /home/
ubuntu/SARLabs/SARFocusin-
gAndGeocoding/Results

Navigate to the “Calibration” tab:
This tab allows the chosen calibration procedure to be 
applied to the data. 

• Typically, scientists prefer data in σ projection, 
which allows relating the brightness in an im-
age pixel to physical quantities. Hence, I sug-
gest picking Sigma as Radiometric projection.

http://media.asf.alaska.edu/asfmainsite/documents/mapready_manual_3.1.22.pdf
http://media.asf.alaska.edu/asfmainsite/documents/mapready_manual_3.1.22.pdf
http://media.asf.alaska.edu/asfmainsite/documents/mapready_manual_3.1.22.pdf
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• You can also choose whether to output your 
image in amplitude or decibel (dB) format. 
As radar data have enormous dynamic range, 
converting the pixel values to a dB scale is of-
ten recommended.

Navigate to the “Terrain Correction” tab:
Please create two geocoded datasets here: (1) a 
dataset where only geometric terrain correction was 
applied; and (2) an image where both geometric and 
radiometric terrain correction was done.

Initially, create the geometrically corrected (GTC) image:
• To Pick a DEM file for terrain correction, click on 

Browse and pick the file E2_80464_STD_F163_
dem.tif in the Data directory.

• Explore the various options in the geocoding tab. 
We will discuss those options. 

Ensure that the Apply Terrain Correction feature is 
activated (see Figure 1.2).  
In a second run (after you complete the rest of the in-
structions), create the RTC image by:
• Selecting Also apply radiometric Terrain Correc-

tion in addition to the previous settings
• Click on Add Output File Prefix or Suffix in the “In-

put Files” section and add suffix “_RTC”. 

Navigate to the “Geocode” tab:
In this tab, you can change geocoding parameters such 
as the desired projection, the pixel size, and the inter-

Figure 1.2 The ASF MapReady “Terrain Correction” Tab

polation method. In our case, we will simply accept the 
default (UTM projection; in default mode, the pixel size 
is set to half the original image sampling distance).

Navigate to the “Export” tab:
This tab allows you to set output formats. Please set the 
Export format to GeoTIFF and activate the Output data 
in byte format radio button (see Figure 1.3).

Once all of these parameters are set, click on either 
the Process Individual Image icon (Figure 1.1) or the 
Process All button to start the geocoding and terrain 
correction process. You can monitor the progress of 
the procedure in your command window.

Figure 1.3 The ASF MapReady “Export” Tab

1.5  Visualize Geocoded Image in QGIS

Once the geocoding process has completed, you 
can visualize the product both within and outside of 
the MapReady tool. To compare the result with map 
information, we will open the file in QGIS. To do so, run 
the following command:

Qgis /home/ubuntu/SARLabs/
SARFocusingAndGeocoding/
Results/E2 _ 80464 _
STD _ F163.tif

2  GEOCODING AND RTC PROCESSING USING 
SNAP

This lab is for users who wish to generate an RTC im-
age from Sentinel-1 data using easy-to-follow instruc-
tions in a graphical user interface (GUI). Specifically, we 
will use ESA’s Sentinel Application Platform (SNAP) to 
perform geocoding and RTC processing on Sentinel-1 
images over Kathmandu, Nepal. The advantages of the 
SNAP tool include (1) its graphical user interface, which 
renders the SNAP tool straightforward to use (com-
pared to other InSAR processing tools); (2) the easy-
to-access, free-of-charge, and public domain nature of 
the SNAP tool; and (3) the fact that SNAP is an integra-
tive multi-sensor toolbox and enables processing data 
from all Sentinel sensors within one joint processing 
platform. To install SNAP on your own workstation, 
please visit http://step.esa.int/main/download/ for 
download instructions.

http://step.esa.int/main/download/
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2.1  Sentinel-1 SAR Data Sets Used in this 
Exercise

The data for this exercise are two Sentinel-1 acqui-
sitions bracketing the devastating 2015 Gorkha earth-
quake in Nepal, which killed nearly 9,000 people and 
injured nearly 22,000. It occurred at 11:56 Nepal Stan-
dard Time on 25 April, with a magnitude of 8.1Ms and 
a maximum Mercalli Intensity of VIII (Severe). Its epi-
center was east of Gorkha District at Barpak, Gorkha, 
and its hypocenter was at a depth of approximately 8.2 
km (5.1 mi). It was the worst natural disaster to strike 
Nepal since the 1934 Nepal–Bihar earthquake. 

The following data sets, called Ground Range De-
tected (GRD) images,  will be used for this exercise:

• Pre-event image acquired on April 17, 2015: 
S1A_IW_GRDH_1SSV_20150417T001852_2
0150417T001921_005516_0070C1_17AA

• Post-event image acquired on April 29, 2015: 
S1A_IW_GRDH_1SDV_20150429T001909_
20150429T001934_005691_0074DC_B016

Please download these Sentinel-1 SAR images us-
ing ASF’s Vertex search engine (http://vertex.daac.asf.
alaska.edu). 

2.2  Geocoding and RTC Processing Steps in 
SNAP

Start SNAP by clicking on the associated desktop 
icon or by typing in snap in your command window.

2.2.1  Open a SAR image in SNAP

In order to perform geocoding and RTC processing in 
SNAP, the input products should be one or more GRD or 
SLC products over your area of interest. While both data 
types can be processed to RTC images, we are using GRD 
images in this lab due to their smaller size.  

Step 1 - open the products:
Use the Open Product button in the top toolbar of 

the SNAP interface and browse for the location of the 
Sentinel-1 GRD products (Figure 1.4). 

Select the *.zip file containing the post-event image 
(dated 20150429) and click Open. Press and hold the 
Ctrl button on the keyboard should you want to select 
multiple products at a time. 

Figure 1.4 Open Product dialog in SNAP.

Step 2 - view the product: 
In the Product Explorer (Figure 1.5) you will see the 

opened products. For GRD data, the product band fold-
er will contain two to four layers, depending on whether 
the data set was acquired in single- or dual-pol (an am-
plitude and intensity image is provided per polarization). 
For SLC data, you will find two bands per polarization 
containing the real (i) and imaginary (q) parts of the 
complex data. 

Note that in Sentinel-1 IW SLC products, you will find 
three subswaths labeled IW1, IW2, and IW3. Each sub-
swath is for an adjacent acquisition collected by Senti-
nel-1’s TOPS mode. For more information on this mode 
and on the meaning of the subswath data, please refer 
to the lab on Interferometric SAR processing in Section 3.

Step 3 - view a band: 
To view the data, double-click on either the ampli-

tude or intensity band for one of the polarizations (e.g., 
Intensity_VV). The image will appear on the right side of 

the interface. Zoom in using the mouse wheel and pan 
by clicking and dragging the left mouse button.

2.2.2 Apply Precise Orbit File

This is an optional step that will maximize the geolo-
cation quality that can be achieved during geocoding. 
Precise orbit files are issued by the European Space 
Agency within weeks after the acquisition of a data set. 
These orbits are not annotated in the image data di-
rectly but are rather provided as a separate file. SNAP 
is able to locate, download, and apply these precise 
orbit files automatically via the following step:

Step 4 – apply orbit file: 
To apply precise orbits select Apply Orbit File in the 

Radar menu of SNAP. A new window will appear (Fig-
ure 1.6) providing some processing options. Note 
that the default settings for processing options should 
work for most applications.

Figure 1.5 Product Explorer tab within the SNAP user interface.

http://vertex.daac.asf.alaska.edu
http://vertex.daac.asf.alaska.edu
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Figure 1.6 Calibration inferface with relevant 
options selected.

The only exception to this general rule pertains to 
the I/OParameters tab where the output directory for 
the Target Products can be changed from the default 
to a desired storage location. Click Run to initiate the 
automatic download and application of files. A window 
will pop up showing the progress of the processing. 
Depending on the computing power of your machine, 
expect one to several minutes of processing time. Once 
processing is complete, the output from the previous 
step will appear in the Product Explorer window of the 
interface (filename ending in “_Orb”). Single click the 
file name to select it for the next processing step.

2.2.3 Apply Radiometric Calibration

Step 5 - calibration:
To correctly apply RTC corrections to the data, the 

image information needs to be calibrated following the 
β0 definition. To calibrate to β0, select the Radiometric 

> Calibrate option within SNAP’s Radar menu. In the box 
that appears, radiometrically calibrate the image to β0 by 
going into the Processing Parameters tab and selecting 
the Output beta0 band option (Figure 1.6). If dual-pol 
data are available, you have the choice of processing 
both polarizations or selecting a subset of polarizations 
by clicking on the desired channels. Click Run to initiate 
processing. The defaults place the output into the same 
directory as the input. 

2.2.4 Apply Radiometric Terrain Flattening (RTC Processing)

RTC processing is referrred to as “Radiometric Terrain 
Flattening" in the SNAP tool. This step will remove most 
of the radiometric distortions from the data that are in-
troduced by surface topography.

Step 6 – RTC processing: 
To apply RTC processing, first select the output of the 

previous processing step (extension “_Orb_Cal”) in the 
Product Explorer window. Then, select Radiometric > 
Radiometric Terrain Flattening from SNAP’s Radar menu 
(see below). The default settings download a digital el-
evation model (DEM) matching the geolocation of the 
scene being corrected, placing the output file into the 
same directory as the input. Most applications will not 
require a modification of the default settings. Click Run 
(~45 minutes or longer, depending on system capability).

Note that an internet connection is necessary for this 
step as the DEMs necessary for processing are down-
loaded from an online repository.

Potential necessary intermediary step – Multilooking: 
Depending on the resolution of the DEM that can be 

found for your area of interest, the SAR data may have to 
be multilooked (reduced in resolution) before process-
ing. If the DEM is of lower resolution than the SAR data, 
SNAP will enforce multilooking to the resolution of the 
DEM before RTC processing can be applied. To multilook 
your imagery, select the data set ending in “_Orb_Cal” in 
the Product Explorer window and then select Multilook-
ing from SNAP’s Radar menu (found on the very bottom 
of the menu). In the emerging window, select the de-
sired number of looks within the Processing Parameters 
tab and click Run. Once complete, use the output from 
this step (file ending in “_Orb_Cal_ML”) as the input for 
Step 6 – RTC Processing.

Small Data Analysis Exercise

BEFORE RTC PROCESSING

RTC CORRECTED

It may be instructional to compare the SAR im-
age data before and after RTC processing. Such 
a comparison will provide you with information 
both on the benefits and limitations of RTC cor-
rection for your area of interest. 

To conduct a comparison, open both the im-
age before (extension “_Orb_Cal_ML”) and af-
ter (extension “_Orb_Cal_ML_TF”) RTC correc-
tion in the SNAP viewer by double-clicking the 
image bands in the respective data sets. Click on 
the         symbol to synchronize views across 
multiple image windows and zoom into an area 
of interest (preferably an area with significant 
topography). Then toggle between images and 
compare content. You should see that most of 
the topographic shading was removed by the 
RTC processing step. Residual topography is 
mostly due to limitations in the resolution of the 
DEM and the small incidence angle dependence 
of  σ0 (θi). An example of the performance of RTC 
correction is shown below. A significant (albeit 
not perfect) reduction of topographic shading 
was achieved.
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2.2.5  Geocode the RTC-Corrected Data

Step 7 – Geocoding: 
Unfortunately, the nomenclature that is used in SNAP 

for the geocoding step is a bit opaque. You will have to 
pick Geometric > Terrain Correction > Range-Dopper 
Terrain Correction from the Radar menu to apply the 
geocoding procedure (Figure 1.7). Select the output 
of the RTC processing step (file ending in “_Orb_Cal_
ML_TF”) as input for the geocoding procedure.

The processing box pops up, and the defaults for the 
I/O Parameters tab place the output files in the same 
directory as the source file. The Processing Parameters 
tab enables you to specify the map projection you need, 
pixel spacing if you wish to change it, and options for 
additional output files.

For the sake of this exercise, it is recommended to 
use the default options for output files but select “UTM 
/ WGS 84” as your output map projection. Click Run af-
ter your settings are applied.

2.2.6  Visualizing Processing Results

The products of this processing flow can be visual-
ized easily both within SNAP and within a GIS system of 
your choosing (e.g., ArcGIS or QGIS).

To view within SNAP, double click the generated file 
(ending in “Orb_Cal_TF_TC”) in the Product Explorer 
window and explore within the SNAP interface. 

Figure 1.7 Geocoding interface in SNAP 
with relevant processing settings applied.

Figure 1.8 Geocoded and RTC corrected Sentinel-1 SAR image over Kathmandu, Nepal.

To view your RTC image within a GIS, follow these 
steps: (1) open ArcGIS or QGIS; Select Add Data (Arc-
GIS) or Add Raster Layer (QGIS); (3) Navigate to the 
directory that contains the output from Step 7; (4) 
Within this folder, click on the sub-folder ending in 
“_TC.data”; (5) Load the .img file(s) contained within. 
Figure 1.8 shows the geocoded and RTC corrected 
image in QGIS.

2.2.7  Visualizing Processing Results

A summary of the geocoding and RTC processing 
steps is provided in Figure 1.9. The following links 
may be useful in case you want to dive deeper into the 
topic of geocoding and RTC processing:

a) To learn a bit more about the theory behind geoc-
oding and RTC processing, please visit Lecture 9 of UAF’s 
Online Class on Microwave Remote Sensing. You can 
find Lecture 9 in Class Module 2 “Imaging Radar Sys-
tems”. To go directly to the slide deck, click here.

b) To learn how to Radiometrically Terrain Correct 
(RTC) Sentinel-1 Data Using SNAP Scripting Languages, 
please visit ASF’s SAR data recipe on this topic.

c) For instructions on how to do geocoding and 
RTC processing using the GAMMA RS software, 
please go here.

d) For instructions on how to geocode (no RTC) Sen-
tinel-1 data using GDAL, go here.

Figure 1.9 General workflow of geocoding and 
RTC processing.

e) For information on how to effectively view RTC 
data in a GIS Environment, go here.

Write data to 
desired format

Read in 
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orbit files
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Radiometric 
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Geocoding/geometric 
terrain correction
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Speckle filter
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https://radar.community.uaf.edu/
https://radar.community.uaf.edu/module-2-imaging-radar-systems/
https://radar.community.uaf.edu/module-2-imaging-radar-systems/
https://docs.google.com/viewerng/viewer?url=https://radar.community.uaf.edu/files/2017/02/Lecture9_Geometrie_Radiometry_Geocoding.pdf&hl=en_US
https://www.asf.alaska.edu/asf-tutorials/data-recipes/correct-sentinel-data/script/
https://www.asf.alaska.edu/asf-tutorials/data-recipes/correct-sentinel-data/gamma/
https://www.asf.alaska.edu/asf-tutorials/data-recipes/geocode-sentinel1/
https://www.asf.alaska.edu/asf-tutorials/data-recipes/view-rtc-in-gis/
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Small Data Analysis Exercise

As an additional exercise, geocode and RTC process the second data set 
(pre-earthquake image). After both data sets are available in geocoded and RTC 
corrected form, visually compare the images and see if you can identify changes in 
Kathmandu that might indicate earthquake damage. 

Pre-event image acquired on April 17, 2015:
• S1A_IW_GRDH_1SSV_20150417T001852_20150417T001921_005516_0070C1_17AA
Post-event image acquired on April 29, 2015:
• S1A_IW_GRDH_1SDV_20150429T001909_20150429T001934_005691_0074DC_B016

3  INSAR PROCESSING USING SNAP

3.1  Introduction

In this lab, we will analyze a pair of Sentinel-1 images 
that bracket the devastating 2015 Gorkha earthquake 
near Kathmandu, Nepal, whose 7.8 magnitude main 
shock on April 25 together with several aftershocks 
(6.9M on April 26; 7.3M on May 12)  triggered an ava-
lanche on Mount Everest. 21 people were killed, making 
April 25, 2015 the deadliest day on the mountain in his-
tory. Another huge avalanche was caused in in the Lang-
tang valley, where 250 people were reported missing. 
Hundreds of thousands of people were made homeless 
with entire villages flattened, across many districts of 
the country. Centuries-old buildings were destroyed at 
UNESCO World Heritage Sites in the Kathmandu Valley, 
including some at the Kathmandu Durbar Square, the 
Patan Durbar Square, the Bhaktapur Durbar Square, 
the Changu Narayan Temple, the Boudhanath stupa, 
and the Swayambhunath Stupa. 

Figure 1.10 shows the USGS ShakeMap associat-
ed with the 7.8 magnitude main shock, showing both 
the violence of the event and the location of the largest 
devastation. 

We will use ESA’s Sentinel Application Platform 
(SNAP) to perform InSAR processing on these Senti-
nel-1 images. The advantages of the SNAP tool include 
(1) its graphical user interface, which renders the 
SNAP tool straightforward to use (compared to other 
InSAR processing tools); (2) the easy-to-access, free-
of-charge, and public domain nature of the SNAP tool; 
and (3) the fact that SNAP is an integrative multi-sensor 
toolbox and enables processing data from all Sentinel 
sensors within one joint processing platform.

Should you be interested in using SNAP on your 
own work station, please visit http://step.esa.int/main/
download/ for download instructions.

3.2  Sentinel-1 and the 2015 Gorkha 
Earthquake

We will use a pair of repeated Sentine-1A images 
for this lab that were acquired on April 17 and April 
29, 2015, bracketing the main- and first aftershock of 
the Gorkha earthquake event. Hence, the phase dif-
ference between these image acquisitions capture the 
cumulative co-seismic deformation caused by both of 
these seismic events. The footprint of the Sentinel-1 im-
ages (Figure 1.11) shows good correspondence with 
the areas affected by the earthquake (Figure 1.10). 
Hence, Sentinel-1 data are a good basis for studying 
earthquake-related surface deformation.

SAR data for this exercise can be retrieved via the 
ASF Vertex SAR data search client.

• Pre-event image:    
S1A_IW_SLC__1SSV_20150417T001852_201
50417T001922_005516_0070C1_460B

• Post-event image:   
S1A_IW_SLC__1SDV_20150429T001907_201
50429T001935_005691_0074DC_7332

Figure 1.11 Footprint of the Sentine-1A SAR data used in this study.

Figure 1.10  USGS ShakeMap associated 
with the 7.8 main shock of the 2015 Gorkha 
Earthquake northwest of Kathmandu, Nepal.

http://step.esa.int/main/download/
http://step.esa.int/main/download/
https://vertex.daac.asf.alaska.edu/
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Figure 1.12 Open Product dialog in SNAP.

Figure 1.13  Product Explorer tab within the SNAP user interface.

3.3  InSAR Processing using the SNAP Tool

Start the SNAP on your computer by either dou-
ble-clicking on the related icon or by typing snap in 
your command window.

3.3.1  Opening a Pair of SLC Products

In order to perform interferometric processing, 
the input products should be two or more SLC prod-
ucts over the same area acquired at different times.

Step 1 - open the products: 
Use the Open Product button in the top toolbar of 

the SNAP interface and browse for the location of the 
Sentinel-1 Interferometric Wide (IW) swath products 
(Figure 1.12).

Select the *.zip files containing the respective Sen-
tinel-1 products that will be used in this lab and press 
Open Product. Press and hold the Ctrl button on the 
keyboard to select multiple products at a time.

Step 2 - view  the products: 
In the Product Explorer (Figure 1.13) you will 

see the opened products. Within the product bands, 
you will find two bands containing the real (i) and 
imaginary (q) parts of the complex data. The i and 
q bands are the bands that are actually in the prod-
uct. The virtual Intensity band is there to assist you in 
working with and visualization of the complex data.

Note that in Sentinel-1 IW SLC products, you will 
find three subswaths labeled IW1, IW2, and IW3. 
Each subswath is for an adjacent acquisition by the 
TOPS mode.

Step 3 - view a band: 
To view the data, double-click on the Intensi-

ty_IW1_VV band of one of the two images. Zoom in 
using the mouse wheel and pan by clicking and drag-
ging the left mouse button. Within a subswath, TOPS 
data is acquired in bursts. Each burst is separated by 
demarcation zones (Figure 1.14). Any ‘data’ within 
the demarcation zones can be considered invalid and 
should be zero-filled but may contain garbage values.

3.3.2  Coregistering the Data

For interferometric processing, two or more im-
ages must be co-registered into a stack. One image Figure 1.14  Intensity image of IW1 swath with bursts and demarcation areas identified.
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is selected as the master and the other images are 
the slaves. The pixels in slave images will be moved 
to align with the master image to sub-pixel accuracy. 

Coregistration ensures that each ground target 
contributes to the same (range, azimuth) pixel in both 
the master and the slave image. For TOPSAR InSAR, 
Sentinel-1 TOPS Coregistration should be used. 

Step 4 - Coregister the images into a stack: 
Select S-1 TOPS Coregistration in the Radar menu. 

TOPS Coregistration consists of a series of steps in-
cluding the reading of the two data products, the 
selection of a single subswath with TOPSAR-Split, 
the application of a precise orbit correction with Ap-
ply-Orbit-File and the conduction of a DEM-assisted 
Back-Geocoding co-registration. All of these steps 
occur automatically once the process is kicked off via 
mouse click (inset at right).

A window will appear allowing you to set a few 
parameters for the co-registration process (Figure 
1.15). In the first Read operator, select the first prod-
uct [1]. This will be your master image. In Read (2) se-
lect the other product. This will be your slave image. 

In the TOPSAR-Split tab, select the IW1 subswath 
for each of the products. In the Apply-Orbit-File tab, 
select Sentinel Precise Orbits. Orbit auxiliary data 
contain information about the position of the satel-
lite during the acquisition of SAR data. Orbit data are 
automatically downloaded by SNAP and no manual 
search is required by the user. 

The Precise Orbit Determination (POD) service 
for SENTINEL-1 provides Restituted orbit files and 
Precise Orbit Ephemerides (POE) orbit files. POE files 
cover approximately 28 hours and contain orbit state 
vectors at fixed time steps of 10 seconds intervals. 
Files are generated one file per day and are delivered 
within 20 days after data acquisition. 

If Precise orbits are not yet available for your prod-
uct, you may select the Restituted orbits, which may 
not be as accurate as the Precise orbits but will be 
better than the predicted orbits available within the 
product. 

In the Back-Geocoding tab, select the Digital El-
evation Model (DEM) to use and the interpolation 
methods. Areas that are not covered by the DEM or 
are located in the ocean may be optionally masked 

out. Select to output the Deramp and Demod phase 
if you require Enhanced Spectral Diversity to improve 
the coregistration.

Finally, in Write, change the Directory path to a 
preferred location. 

Press Process to begin co-registering the data. The 
resulting coregistered stack product will appear in 
the Product Explorer tab.

3.3.3  Interferogram Formation and Coherence Estimation

The interferogram is formed by cross-multiplying 
the master image with the complex conjugate of the 
slave. The amplitude of both images is multiplied 
while their respective phases are differenced to form 
the interferogram. 

The phase difference map, i.e., interferometric 
phase at each SAR image pixel depends only on the 
difference in the travel paths from each of the two 
SARs to the considered resolution cell. 

Figure 1.15  SNAP co-registration interface.
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Step 5 - Form the Interferogram: 
Select the stack ([3] in Product Explorer) and 

select Interferogram Formation from the Radar/
Interferometric/Products menu (see inset A at 
right). The information contained in the inter-
ferometric phase measurement is discussed in 
Lectures 12 - 14 referenced at the end of chapter 
2. Please refer to the Supplemental Material on 
InSAR and associated lecture notes for further 
information.

Through the interferometric processing flow 
we will try to eliminate other sources of error 
to be left with only the contributor of interest, 
which is typically the surface deformation related 
to an event.

The flat-Earth phase removal is done auto-
matically during Interferogram Formation step 
(Figure 1.16). The flat-Earth phase is the phase 
present in the interferometric signal due to the 
curvature of the reference surface. The flat-Earth 
phase is estimated using the orbital and metada-
ta information and subtracted from the complex 
interferogram. 

Once the interferogram product is created ([4] 
in Product Explorer), visualize the interferometric 
phase. You will still see the demarcation zones 
between bursts in this initial interferogram. This 
will be removed once TOPS Deburst is applied.

Interferometric fringes represent a full 2π 
cycle of phase change. Fringes appear on an in-
terferogram as cycles of colors, with each cycle 
representing relative range difference of half a 
sensor’s wavelength. Relative ground movement 
between two points can be calculated by count-
ing the fringes and multiplying by half of the 
wavelength. The closer the fringes are together, 
the greater the strain on the ground.

Flat terrain should produce a constant or only 
slowly varying fringes. Any deviation from a par-
allel fringe pattern can be interpreted as topo-
graphic variation. 

3.3.4  TOPS Deburst

To seamlessly join all bursts in a swath into a 
single image, we apply the TOPS Deburst opera-
tor from the Sentinel-1 TOPS menu.

Figure 1.16  Interferogram Formation Interface.

Step 6 – TOPS Deburst: 
Navigate to the the Radar/Sentinel-1 TOPS menu 

item and select the S-1 TOPS Deburst step (inset B).

3.3.5  Topographic Phase Removal

To emphasize phase signatures related to de-
formation, topographic phase contributions are 
typically removed using a known DEM. In SNAP, the 
Topographic Phase Removal operator will simulate 
an interferogram based on a reference DEM and 
subtract it from the processed interferogram.

Step 7 - Remove Topographic Phase: 
Select the Radar/Interferogram/Product menu 

item and select the Topographic Phase Removal 
step (inset C, right).

SNAP will automatically find and download the 
DEM segment required for correcting your interfer-
ogram of interest. After topographic phase removal, 

the resulting product will appear largely devoid of 
topographic influence. A separated band showing 
the topographic phase component simulated based 
on the DEM is also included.

3.3.6  Multi-looking and Phase Filtering

You will see that up to this stage, your interfero-
gram looks very noisy and fringe patterns are diffi-
cult to discern. Hence, we will apply two subsequent 
processing steps to reduce noise and enhance the 
appearance of the deformation fringes.

As discussed in the previously referenced Lec-
ture 12, interferometric phase can be corrupted by 
noise related to:

• Temporal decorrelation
• Geometric decorrelation
• Volume scattering
• Processing error
To be able to properly analyze the phase signa-

A.)

B.)
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tures in the interferogram, the signal-to-noise ra-
tio will be increased by applying multilooking and 
phase filtering techniques:

Step 8 – Multi-looking: 
The first step to improve phase fidelity is called 

multi-looking. To run this step, navigate to the Radar 
dropdown menu and select the Multilooking option 
(bottom of the menu). A new window opens. In the 
Processing Parameters portion of this window, pick 
the I and q bands as your Source Bands to be multi 
looked. In the Number of Range Looks field, pick 6 
range looks, resulting in a pixel size of about 25m 
(Figure 1.17).

In essence, multilooking performs a spatial aver-
age of a number of neighboring pixels (in our case 
6x2 pixels) to suppress noise. This process comes at 
the expense of spatial resolution.

Step 9 - Phase Filtering: 
In addition to multilooking we perform a phase 

filtering step using a state-of-the art filtering ap-
proach. For this purpose, navigate to Radar/Inter-
ferometric/Filtering and select Goldstein Phase 
Filtering (inset D).

After phase filtering, the interferometric phase 
is significantly improved, and the dense earthquake 
deformation-related fringe pattern is now clearly 
visible (Figure 1.18).

Figure 1.17  SNAP Multilooking interface.

Figure 1.18  Deformation fringes related to the 2016 Kumamoto Earthquake show clearly after 
multilooking and phase filtering was applied.

C.)

D.)
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3.3.7 Geocoding and Export in a User-Defined Format

To make the data useful to geoscientists, the 
interferometric phase image needs to be project-
ed into a geographic coordinate system using a 
DEM-assisted geocoding step.

Step 10 - Geocoding: 
To geocode the interferometric data, navigate 

to Radar/Geometric/Terrain Correction and select 
Range-Doppler Terrain Correction (inset above). In 
the Range-Dopper Terrain Correction window (Fig-
ure 1.19), select product [8] as source product 

Figure 1.19  SNAP Range-Doppler 
Terrain Correction interface.

Figure 1.20  Geocoded Gorkha earthquake interferogram mapped in QGIS.

and pick the Intensity, Phase, and Coherence imag-
es as Source Bands to be geocoded. Adjust the pixel 
spacing if you want (e.g., 50m). See Figure 1.20 
for the resulting geocoded interferogram of IW1.

Step 11 – Export Data: 
The final geocoded data can be exported from 

SNAP in a variety of formats. To find the export op-
tions navigate to File/Export. In addition to GeoTIFF 
and HDF5 formats, also KMZs and various specialty 
formats are supported. In addition to the Data Ex-
port functionalities, SNAP files can also be directly 

imported into most GIS packages such as QGIS. This 
is because SNAP uses the established ENVI format 
for its files, which breaks out each image in a bi-
nary data file accompanied by an ENVI-formatted 
metadata file. Figure 1.20 shows the processed 
Gorkha interferogram mapped on top of reference 
data using QGIS.
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We processed sub-swath IW1 in the preceding exercise.  You can extend this 
work by processing and merging multiple swaths. Specifically, you can create a geo-
coded differential interferogram by merging sub-swaths #1 and #2. 

Step 1: Create a Geocoded Differential Interferogram of the Gorkha 
Earthquake by Merging Subswaths #1 through #3
To create this merged product, repeat the processing chain for the remaining two 
subswaths starting from Step 4:

• Run “Step #4 – Coregistration” again but this time select IW2 (or IW3) in 
the TOPS Split operator tab → coregistered InSAR pair for sub-swath IW2 
(IW3) [Note: make sure to create a new filename under the “Write” tab to 
no overwrite the IW1 stack result]

• Run “Step #5 – Interferogram Formation” using the new IW2 (IW3) stack 
as input → IW2 (IW3) interferogram

• Run “Step #6 – Debursting” for the IW2 (IW3) interferogram → deburst-
ed IW2 (IW3) interferogram

• NEW STEP: Run Burst Merge: This step is combining the previously gener-
ated “debursted IW1 interferogram” with the newly generated “deburst-
ed IW2 interferogram” and “debursted IW3 interferogram”. To run burst 
merge, go to Radar/Sentinel-1 TOPS menu item and select the S-1 TOPS 
Merge step. Select the debursted IW1, debursted IW2, and debursted 
IW3 interferograms as inputs.

• Run Steps #7 - #11 for this merged product.

• Produce an image of the merged differential interferogram overlaid on 
Google Earth or on a QGIS basemap (see Figure 1.20).

Step 2: Compare InSAR Data to ShakeMap Information
The Earthquake Hazards Program of the U.S. Geological Survey is providing 

a wealth of information about all significant earthquakes around the globe. The 
ShakeMap® is one of many sets of information included in this USGS feed. It was 
developed by the USGS to facilitate communication of earthquake information 
beyond just magnitude and location. By rapidly mapping out earthquake ground 
motions, ShakeMap portrays the distribution and severity of shaking.

To access the ShakeMap for the 2015 Nepal Gorkha earthquake event, please 
visit https://earthquake.usgs.gov/earthquakes/eventpage/us20002926#executive 
and download the Event KML (you will find the KML download link on the bottom 
of the menu on the left side of the website).

Overlay the ShakeMap onto your interferogram and analyze how well the map 
conforms with the interferogram. Where do the two data sets match up? Are there 
places where they don’t match up?

Small Data Analysis Exercise: Multi-Swath Processing

3.4  Summary of Processing Steps

A summary of the InSAR processing steps as de-
scribed in this section can be found in Figure 1.21.

Figure 1.21  InSAR 
processing workflow as 

described in this section.
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Figure 1.22  Setting up a search mask around Huntsville, AL in Vertex.

Figure 1.23  Selecting date range 
(a) and platform type (b) on Vertex.

4  A SIMPLE AMPLITUDE CHANGE 
DETECTION TECHNIQUE USING SNAP/
MAPREADY AND GIS

4.1  Introduction

Due to their 24/7 observation capabilities, SAR 
data are relevant for a broad range of applications 
in environmental monitoring and emergency re-
sponse. This lab will touch on three examples of 
how SAR can be used to analyze various kinds of 
changes on the ground. Examples will include (1) 
repeated images over Huntsville, AL (or Fairbanks, 
AK), for the detection of environmental change; 
(2) imagery over Altamira, Brazil, a stronghold for 
illegal logging in the Amazon rainforest; and (3) 
data over Livingston Parish, LA, documenting the 
2016 Louisiana flooding event. 

Processing of these data will be done in QGIS, 
and emphasis will be put on simple, yet effective 
processing techniques. While this lab can be done 
within the cloud-based Virtual SAR Lab, which is 
available to you for these exercises, it might be 
more effective to process the data locally.

4.2  Detecting Changes in and Around 
Huntsville, AL / (alternatively Fairbanks, 
AK) from a Pair of ALOS PALAR RTC 
Images

The goal of this exercise to detect environmen-
tal changes around Huntsville, AL, Fairbanks, AK 
, or another area of interest through the obser-
vation period of the ALOS PALSAR SAR sensor 
system (2006 – 2011). A secondary goal is to 
demonstrate how quickly the ALOS PALSAR RTC 
products can be brought into a GIS system to aid 
in a geospatial analysis. 

4.2.1 Identify Suitable ALOS PALSAR RTC Images for 
Change Detection using Vertex

To identify ALOS PALSAR RTC images suitable 
for change detection, go to the ASF Vertex search 
engine (http://vertex.daac.asf.alaska.edu) and 
draw a box centered on Huntsville (Figure 1.22) 
/ Fairbanks, AK. Specify the following search set-
tings to find suitable data:

Step 1 – Set Geographic Search Region: 
Draw a bounding box on the Vertex map to in-

clude your study area.

Step 2 – Set Seasonal Search Range: 
Setting a seasonal search range will limit your 

search to images from the same season. This is im-
portant for change detection operations as it avoids 
seasonal changes and focuses on true environmen-
tal changes in a change detection analysis.

• In the Search Tab on the left-hand side of 
the Vertex interface, activate the Season-
al Search radio button and set the search 
range to July to September.

Also, search for the time span of the ALOS PAL-
SAR mission by setting the year range to 2006 – 
2011 (see Figure 1.23a).

Step 3 – Select Platform: 
This is to select the sensor of interest from the list of 

available sensors. Deactivate Sentinel-1A and -1B and 
activate ALOS PALSAR in the Platform selection inter-
face (see Figure 1.23b).

Step 4 – Start Search and Down select Search Results: 
Start the Vertex search by clicking on the Search 

button. Once the search is completed, down-select 
your results using the wonder bar (see Figure 1.22). 

A.)

B.)
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Once you have identified the images you are in-
terested in, click on their preview image to enlarge 
the product info tab and download the Hi-Res Ter-
rain Corrected data set via a mouse click per image 
of interest (Figure 1.24). 

Every downloaded file is encapsulated in a zip 
file. Expand the files into separate folders. Once 
that’s done, we are ready for an analysis of these 
scenes in a GIS system (QGIS or ArcGIS).

4.2.2 Load Images into QGIS and Visualize

Load the downloaded images into QGIS (or Arc-
GIS) using the raster import feature (we will walk 
through the process in this exercise should you be 
unfamiliar with QGIS). 

Ideally, load a background basemap image to 
be able to compare image features to known land-
marks. I suggest loading the OpenLayers Plugin into 
your QGIS system via the Plugins/Manage and In-
stall Plugins … item in the menu bar at the top of 
the QGIS interface.

Visualize the images and explore the data set. To 
improve visualization at all spatial scales, apply a 
few changes to the image properties:

• Open the property editor by right clicking 
on an image in the image list and selecting 
Properties. The Layer Properties interface 
will appear.

• In the Style tab, change the resampling 
method for Zoomed in to Cubic and for 
Zoomed out to Average. 

Analyze the data for geolocation quality, spatial 
resolution, and image content.

4.2.3 Perform a a Simple Change Detection Procedure 
in QGIS

The two images in your list were acquired ap-
proximately one year apart. As the data are season-
ally coordinated, differences between the images 

Figure 1.24  Image info view in Vertex. Download the High-res Terrain Corrected product per image of interest.

should largely be due to environmental changes 
between the image acquisition times, such as urban 
development, changes in river flow, or differences 
in agricultural activity.

Step 1 – Perform visual change analysis: 
Flicker between the images to try to identify 

changes. 
• Which changes can you identify? 
• How difficult is it for you to identify differenc-

es between images?
• What makes the identification of change 

difficult? 

Step 2 – Perform Log-ratio scaling, a simple change 
detection routine: 

Identifying changes in images with complex con-
tent (e.g., the complex landforms and urban struc-
tures in these PALSAR scenes) is hard, as the image 
content is masking the signatures of change. Our eyes 
and minds are overwhelmed and distracted by the 
wealth of information in the data. 

Hence, the main goal of image-based change 
detection approaches is to effectively suppress the 
image background information, while preserving 

the main change signatures of interest. A simple and 
effective change detection approach is the so-called 
log-ratio scaling method. It is based on a differential 
analysis of repeated images and has been shown to 
be effective in background suppression and change 
features enhancement. The callout on the next page 
provides a bit more details on this change detection 
method.
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Figure 1.25  Raster Calculator Interface and 
entries for calculating a log-ratio image.

To conduct log-ratio scaling in QGIS, apply the 
following procedure:

• In the Raster menu, select Raster Calculator 
• In the Raster Calculator window (Figure 

1.25), construct the following equation:  
log10 ((newer image) ⁄(older image))

• Define an output layer name (e.g., Huntsvil-
lePALSAR-Logratio.tif)

• Click Ok to calculate the log-ratio image. 

A screenshot of an example log-ratio image over 
Huntsville is shown in Figure 1.26. This image 
was created from a pair of images acquired on 
7/17/2009 and 9/04/2010. It can be seen that most 
of the original image content (city of Huntsville, hills 
and vegetation structures near town, …) was effec-
tively suppressed from the image. In the log-ratio 
image, unchanged features have intermediate gray 
tones (gray value around zero) while change fea-
tures are either bright white or dark black. Black 
features indicate areas where radar brightness 
decreased while in white areas, the brightness has 
increased. 

Step 3 – Analyze the log-ratio image: 
Analyze the change image that you have created. 

What kind of changes do you see? Compare change 
features to the base map (e.g., Google Maps) to ex-
plain the meaning of observed changes.

Figure 7.26  Example log-ratio image for Huntsville, AL.

Side-note: A Few Words on Log-Ratio Scaling

Log-ratio scaling is an effective means to suppress 
image background and enhance the change signatures in 
an image. To identify potential surface changes from SAR 
data using this approach, a ratio image is formed between 
a newly acquired image Xi and a reference data set XR. Us-
ing ratio images in change detection was first suggested by 
Dekker (1998) and has since been the basis of many change 
detection methods (Ajadi et al., 2016; Bazi et al., 2005; Celik, 
2010; Coppin et al., 2004; Meyer et al., 2015). To minimize 
the effects of seasonal variations as well as spurious chang-
es of surface reflectivity on the change detection product, 
the reference image XR should be selected in the same 
season as the newly-acquired image Xi. Before ratio image 
formation, all data should be geometrically and radiometri-
cally calibrated. These steps were done by the data provider 
(ASF) in our case. The ratio image can be modeled as:

 

where r is the observed intensity, x is a multiplicative speck-
le noise contribution, and R is the underlying true intensity 
ratio. The ratio image r has the disadvantage that the statis-
tical distribution of its gray values is highly non-normal and 
that its multiplicative noise is difficult to remove. Therefore, 
a logarithmic scaling is applied to r, resulting in:

 

where y=10 log(x), Q=10 log(R), and XLR is the log-scaled 
ratio data.
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4.3  Monitoring (Illegal) Logging Activities 
in the Amazon Rainforest

The region near Altamira, Brazil is one of the most 
active logging regions of the Amazon rainforest. While 
some of the logging activities in this area are legiti-
mate, illegal logging operations have flourished over 
the last decade. Existing logging roads can be clearly 
identified in optical satellite images such as those 
used by Google Maps© (Figure 1.27). However, 
frequent rain and cloud cover make change detection 
based on optical remote sensing data impractical.

4.3.1 Retrieve Repeated ALOS PALSAR RTC Images over 
Logging Areas near Altamira, Brazil

Use the ASF Vertex interface to retrieve repeated 
images over the logging areas near the Brazilian city 
of Altamira. When searching for images, don’t forget 
to target similar seasons. Due to the evergreen vege-
tation in this tropical area, there is no preference for 
which season you choose.

Once you have identified images of interest, 
download the High-Res Terrain Corrected images for 
your change detection analysis. The goal is to identify 
year-to-year changes in logging extent. 

4.3.2 Map Logging Activities Using Log-Ratio-based Change 
Detection Procedures

Experiment with Log-Ratio Scaling on your repeat-
ed ALOS PALSAR RTC data. 

4.4  Flood and Inundation Mapping for the 
2016 Louisiana Flooding

The Louisiana flood of 2016 was touted by many 
as the biggest U.S. natural disaster since Hurricane 
Sandy in 2012. In August 2016, prolonged rainfall in 
southern parts of the U.S. state of Louisiana resulted 
in catastrophic flooding that submerged thousands of 
houses and businesses. Many rivers and waterways, 
particularly the Amite and Comite rivers, reached re-
cord levels, and rainfall exceeded 20 inches (510 mm) 
in multiple parishes (Figure 1.28).

4.4.1 Meteorological History

Early on August 11, a mesoscale convective system 
flared up in southern Louisiana around a weak area 
of low pressure that was situated next to an outflow 

Figure 1.27  Logging roads can clearly be identified from optical satellite data around Altamira, Brazil.

boundary. It remained nearly stationary, and as a re-
sult, torrential downpours occurred in the areas sur-
rounding Baton Rouge and Lafayette. Rainfall rates of 
up to 2–3 inches (5.1–7.6 cm) an hour were reported 
in the most deluged areas. Totals exceeded nearly 2 
feet (61 cm) in some areas as a result of the system 
remaining stationary (Figure 1.28).

4.4.2 Flood History

Flooding began in earnest on August 12. On Au-

Figure 1.28  A map of radar-estimated rainfall accumulations across Louisiana between August 9 
and 16, 2016; areas shaded in white indicate accumulations in excess of 20 in (510 mm).

gust 13, a flash flood emergency was issued for ar-
eas along the Amite and Comite rivers. By August 15, 
more than ten rivers (Amite, Vermilion, Calcasieu, 
Comite, Mermentau, Pearl, Tangipahoa, Tchefuncte, 
Tickfaw, and Bogue Chitto) had reached a moderate, 
major, or record flood stage. Eight rivers reached re-
cord levels including the Amite and Comite rivers. The 
Amite River crested at nearly 5 ft (1.5 m) above the 
previous record in Denham Springs. Nearly one-third 
of all homes—approximately 15,000 structures—in 
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Figure 1.29  Global IW-mode coverage of Sentinel-1 between October 2014 and August 2016.

Figure 1.30  Footprint of Sentinel-1 data 
covering the 2016 Louisiana flooding event.

Ascension Parish were flooded after a levee along the 
Amite River was overtopped. Water levels began to 
slowly recede by August 15, though large swaths of 
land remained submerged. Livingston Parish was 
one the hardest hit areas; an official estimated that 
75 percent of the homes in the parish were a “total 
loss”. It was thought over 146,000 homes were dam-
aged in Louisiana. This mass flooding also damaged 
thousands of businesses.

4.4.3 Flood Mapping using Sentinel-1 SAR Data

In this exercise, we will look at the benefits (and 
limitations) of Sentinel-1 SAR data for mapping the 
extent of the 2016 Louisiana flood. As mentioned 
previously, Sentinel-1 is an operational SAR system 
acquiring images at a routine repeat frequency of ei-
ther 12 or 24 days for all areas of the globe that were 
defined as hazard zones. Large parts of the western 
and central U.S. are part of this hazard map and, 
hence, are well-covered. The eastern U.S., however, 
is less well served by Sentinel-1 acquisitions (see Fig-
ure 1.29). 

In addition to the coverage of hazard zones, Sen-
tinel-1 is attempting to respond to natural disasters 
such as the Louisiana flood, through the scheduling 
of an acquisition on its next pass over this area.

For the Louisiana Flooding event, the following 
Sentinel-1 data are available:

Pre-event data from Aug 7, 2016: 
• S1A_IW_GRDH_1SDV_20160807T000141_

20160807T000210_012487_013866_11BE
• S1A_IW_GRDH_1SDV_20160807T000210_

20160807T000235_012487_013866_7D4F

Post-event data from August 19, 2016:
• S1A_IW_GRDH_1SDV_20160819T000211_

20160819T000236_012662_013E26_5A79
• S1A_IW_GRDH_1SDV_20160819T000142_

20160819T000211_012662_013E26_8995

The footprint of these data is shown in Figure 
1.30. The footprint matches the affected areas well. 
However, the post-event image on Aug 19 might come 
a bit late to detect the maximum extent of the event.

4.4.4 Data Processing

Sentinel-1 data are (currently) available as SLC and as 
so-called Ground-Range Detected (GRD) products. While 
the GRD images are georeferenced, neither of these 
products come fully geocoded and some pre-processing 
is needed before it is straightforward to work with these 
data in a GIS system. The images hosted on the website 
for this lab are pre-processed, using the steps below:

A – Extract Image Files:
Extract the .tiff file that you are interested in.  In each 

zip file there will be a base directory that is the name of 
the granule followed by “.SAFE” and then a number of 
lower level directories. One of these is named measure-
ment, and within this directory will be the georeferenced 
.tiff files. Using the Unix (or Windows) unzip utility, you 
can extract only the file you want with a command like 
this: 

unzip <filename.zip> */
measurement/*vv*.tiff

This will extract just the VV polarized image from this 
zip package.  If you know which file you want, this is usual-
ly much faster than extracting the whole zip file.  

B – Project the Image Files:
Using the gdal (www.gdal.org) command line utilities 

you can project and export these files as more useful 

products. To begin, we want to project the files. The Sen-
tinel-1’s GCPs are provided in GCS (lat/lon) coordinates, 
but can easily be reprojected into another projection. In 
the case of the Louisiana data, tthis will be UTM zone 15 
(EPSG 32615).  To do this, you use the gdalwarp com-
mand:

gdalwarp -tps -r bilinear 
-tr 10 10 -t _ srs 
EPSG:32615 <inputfile.tiff> 
<output-utm-file.tif>
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Note that:
-t_srs  specifies the output projection
-r  specifies the resampling methos (default  

 is nearest neighbor)
-tr  specifies the output pixel size
-tps  specifies to use the thin plate spline tech- 

 nique when interpolating control points

Executing this command will result in a map pro-
jected geotiff file that could be read by nearly any GIS 
application. For Sentinel-1, the datatype will still be 
uint16.  

C – Scale the data:
Scale to byte using  gdal_translate.  You can easily 

scale the data to byte if you want, which may be more 
useful.  

gdal _ translate -ot Byte 
-scale 0 700 0 255 <infile.
tif>  <output.tif>

In this case, we convert from long int to byte and 
scale the range 0 to 700 into the 0 to 255 byte range. 
Values above 700 will be set to 255 and values below 
0 (though there shouldn’t be any) will be set to 0.

Once these pre-processing steps are completed, 
the data is ready for analysis in a GIS system. 

For the purpose of this training module, these 
steps have been fully geo-coded and pre-processed. 
Download the required image data from the website 
(radar.community.uaf.edu/lab-8-change-detection-
from-sar-images/). 

Load the pre-processed data 20160807.tif and 
20160819.tif into your GIS system and overlay them 
on a map. Inspect the images and flicker between 
them to get a first idea of potential flood extents in 
the area. 

We will apply two different simple yet effective 
water/flood masking approaches to these data: (1) 
Image Thresholding and (2) Log-ratio scaling.  

(1) Image Thresholding: 
Image thresholding can be an effective method for 

the detection of open water bodies in a SAR image. 

Here, we use the fact that water is often much darker 
than the true image content, causing the image histo-
gram to be bimodal and enabling the separation of 
water from the rest of the image using simple thresh-
olding operations. To conduct image thresholding on 
both images, please go through the following steps 
for both data, starting with image 20160819.

Step 1 - Perform a log-transformation:
This step creates image histograms for the data 

that are more Gaussian and simplifies the threshold-
ing operations. In GQIS, go to the Raster menu and 
select the Raster Calculator. Perform a log transfor-
mation by applying an equation to the image (e.g., 
log10 ( “20160819@1”)). Export the image as geotiff 
under the name 20160819-log.tif.

Step 2 – Analyze the image histogram:
Right click on the 20160819-log and select proper-

ties. Navigate to the histogram tab and zoom into the 
histogram to see its shape.

You should see a clearly bi-modal histogram (in-
set A) with water pixels appearing significantly darker 
than the main image data.

Step 3 – Pick a threshold:
To separate water from the rest of the image, 

pick a threshold at (or near) the minimum be-
tween the two modes of the distribution (e.g., at 
2.05) 

Step 4 – Create a black/white water mask:
A simple approach is to navigate to the Style tab 

of the Layer Properties window and rest the min-
imum and maximum value of the image to values 
just below and just above the threshold. Click ok 
or Apply to view the result (inset B). Your image 
should look similar to the one in Figure 1.31. 

Repeat this process for image 20160807 and 
compare the resulting flood masks:

• Analyze the quality of the water masks
• Compare flood mapping results to a base 

map (e.g., Google maps) 
• Think about the benefit of such a map in 

emergency management situations

A.)

B.)

http://radar.community.uaf.edu/lab-8-change-detection-from-sar-images/
http://radar.community.uaf.edu/lab-8-change-detection-from-sar-images/
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(2) Log-Ratio Scaling: 
Apply the log-ratio scaling approach from Section4.2 

to the Louisiana flood data. Use the following equation 
in your analysis:

log10 ((“20160819@1”) ⁄ (“20160807@1”))

The result of your analysis should resemble the map 
in Figure 1.32. Analyze the log-ratio map:

• Which signatures can you see?
• What may the bright areas in the log-ratio im-

age represent? 
• How does the log-ratio result compare to the 

water masks created via image thresholding?
• Do you think this may be a useful layer for 

emergency management situations?

4.4.5 Take Away Points

The goal of this last exercise was to demonstrate the 
potential of SAR data for flood mapping. We learned 
about two different simple water masking methods and 
compared them. You should have seen that even very 
simple techniques can achieve quite impressive results 
that can have bearing on emergency management sit-
uations. 

At the same time, this lab should also showcase 
some of the remaining limitations that still plague SAR 
data in general and Sentinel-1 SAR data specifically:

• Currently, Sentinel-1 data does not come fully 
geocoded and some pre-processing is re-
quired to be able to manipulate it effectively in 
a GIS environment.

• While Sentinel-1 is an operational system, it 
doesn’t cover all parts of the globe equally well 
(even though this is improving as Sentinel-1B is 
ramping up production).

• The temporal sampling of SAR systems is still 
limited. In the Louisiana flood example, we are 
missing the main flood pulse due to inconve-
nient image acquisition times. By the time of 
the post-event acquisition, most of the flood 
water has already receded. 

• Freely-available SAR data are also a bit limit-
ed in their spatial sampling. In the Louisiana 
flood case, this may have reduced the quality 
of flood maps in urbanized environments.

Figure 1.31  Threshold-based water mask for 20160818. 

Figure 1.32  Log-ratio image for 2016 Louisiana flood



THE SAR HANDBOOK 63



64 THE SAR HANDBOOK

Writing this chapter and development of the training material was supported by the NASA SERVIR pro-
gram. Sentinel-1 and ALOS examples were based on data from the Alaska Satellite Facility and work 
over many years with the JAXA Kyoto and Carbon Science Team. The following NASA grants supported 
some analysis of this work: NASA Carbon Monitoring System program, grant number 80NSSC18K0190; 
NASA NISAR Science Team, grant number 80NSSC18K0087.

DR. JOSEF KELLNDORFER’S research focuses on monitoring and assessing terres-
trial and aquatic ecosystems, and disseminating Earth observation data products to policy 
makers to improve decision making and support capacity building. He is a distinguished 
visiting scientist at the Woods Hole Research Center and currently serves on various 
expert working groups within NASA, the Japanese Space Agency JAXA, the Group on Earth 
Observation, and GOFC-GOLD to advance the use of remote-sensing technology for natural 
resource mapping and monitoring. He is a member of the NASA Science Team for the US/
Indian NISAR satellite. He founded Earth Big Data to provide scalable solutions to modern 
data-mining challenges.

Kellndorfer, Josef. “Using SAR Data for Mapping Deforestation and Forest Degradation.” SAR Handbook: Comprehensive 
Methodologies for Forest Monitoring and Biomass Estimation. Eds. Flores, A., Herndon, K., Thapa, R., Cherrington, E. NASA. 2019. 
DOI: . 10.25966/68c9-gw82



THE SAR HANDBOOK 65

3.1  SAR for Mapping 
Deforestation and Forest 
Degradation

As a vital natural resource, forests provide a host 
of ecosystem services, including carbon sequestra-
tion, diverse natural habitats for flora and fauna, and 
they are a key source of food and fiber for human 
consumption. Today, many nations have entered in-
ternational or regional agreements (e.g., the United 
Nations’ Framework Convention of Climate Change 
- Reducing Emissions from Deforestation or Forest 
Degradation (UNFCCC-REDD+)) to protect their for-
est resources. Tracking deforestation rates annually 
and developing early warning systems of forest loss 
(often from illegal activities) are essential. Remote 
sensing of forest change has an important role in this 

monitoring effort. While optical data have long been 
the workhorse for forest monitoring, the advent of 
operational SAR data availability offers an invaluable 
complement with a crucial sensitivity: microwave 
remote sensors are largely cloud-penetrating and 
thus guarantee continuous monitoring, even under 
cloudy skies. For tropical nations, this is particularly 
important as continuous cloud cover severely limits 
the availability of optical data at medium resolution 
(Kellndorfer et al. 2014, Mitchell et al. 2017).

3.2  Brief Review of Color 
Theory for Interpreting SAR 
Images

SAR backscatter images are representations of the 
microwave portion of the electromagnetic spectrum, 

and as such always represent grayscale or false col-
or combinations mapped to the human visual color 
space. This is analogous to the false color represen-
tation of multispectral optical remote sensing imag-
ery from bands outside the visual spectrum. (Please 
note that in this chapter, “SAR image” shall refer to 
a grayscale or multi-band image of SAR backscatter, 
calibrated to g0 with a Radiometric Terrain Correction 
(RTC) approach (see Chapter 2)).

3.2.1  GRAYSCALE DISPLAY OF SAR IMAGERY

A single-band SAR image (i.e., from one frequen-
cy and one polarization) is displayed such that low 
backscatter values correspond to dark colors and 
high backscatter values correspond to bright colors. 
Enhancements can be applied, like linear or histo-
gram stretches. Examples of SAR backscatter images 

CHAPTER 3
Using SAR Data for Mapping Deforestation and Forest Degradation
Josef Kellndorfer, President and Senior Scientist, Earth Big Data, LLC

This chapter focuses on Synthetic Aperture Radar (SAR) observations of forest cover change from deforestation 
and forest degradation. Discussed are SAR backscatter changes determined by sensor and target parameters. 
Sensor parameters include the wavelength/frequency of the SAR, as well as incidence angle, look directions, and 
transmit and receive polarization. Since sensor parameters are typically stable from a satellite SAR, backscatter 
variations over time can be attributed to two main target parameters: structure and moisture. For forests and oth-
er targets, this means observations of backscatter change can be linked directly to change in forest structure and 
moisture conditions of the vegetation and underlying soil. This makes observations with SAR complementary to 
optical data as (1) almost no atmospheric or Sun illumination variations play a role in SAR response, and (2) longer 
wavelengths and active penetration into forest canopies interact directly with structure and moisture conditions.

This chapter discusses the influence of sensor and target parameters on backscatter variations from forests and 
a time series analysis approach for forest change detection. Also discussed are proper methods for SAR data 
calibration for forest applications, including preprocessing and proper data scaling. Most image examples in this 
chapter stem from a time series stack of Sentinel-1 data acquired over Ecuador in the Universal Transverse Mer-
cator (UTM) projection  tile of the Military Grid Reference System (MGRS), tile number 18MTE (see Fig. 3.1). (The 
MGRS provides a global tiling scheme with UTM zone number, row designator, and two-letter tile identifier, i.e., 
18MTE = Zone 18, Row M, Tile TE. More information may be found here.) The tile is transected by the Napo and 
Coca rivers on the eastern slopes of the Andes.

ABSTRACT

Figure 3.1   Location of the example 
Military Grid Reference System (MGRS) tile 
18MTE in Ecuador used in this chapter.

http://earth-info.nga.mil/GandG/update/index.php?dir=coordsys&action=mgrs-100km-polyline-dloads
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from Sentinel-1 are shown in Figure 3.2 for a land-
scape scale subset in Ecuador and in Figure 3.3 for 
a large oil palm plantation just to the north of Puerto 
Francisco. 

3.2.2  COLOR DISPLAY OF SAR IMAGERY

For the interpretation of SAR imagery, it is useful 
to briefly review the basics of how multichannel SAR 
imagery is displayed. Tables 3.1 and 3.2 may be 
used as resources for understanding colors when 
displaying false color SAR Images (see Henderson & 
Lewis 1998).

Table 3.1 describes how the combination of 
grayscale imagery assigned to the Red/Green/Blue 
(RGB) bands would lead to the resulting colors when 
the extreme dark (black) and bright (white) colors are 
combined. This is useful when interpreting an RGB 

multitemporal color image. For example, assume that 
three dates are combined as per Table 3.2, with the 
earliest acquisition in red, the second acquisition in 
green, and the newest acquisition in blue. If a red col-
or is seen for a pixel, according to Table 3.1, the red 
layer is close to white (bright backscatter), while the 
subsequent acquisitions are close to black (dark back-
scatter). Thus, the backscatter drops after the first ac-
quisition, which is often a sign of deforestation or a 
degradation event. Note that for forest applications in 
particular, it is always useful to assign cross-polarized 
data, which are more related to volume scattering of 
the canopies to the green band. Co-polarized data 

(VV or HH) are suited for the red band, where surface 
scattering components are more pronounced. When 
only dual-polarimetric data are available (e.g., L-HH/
HV from ALOS, or C-VV/VH from Sentinel-1), a color 
SAR image is often constructed by assigning the ratio 
of co-polarized to cross-polarized data to the blue 
channel. Note that for multi-polarized images with 
only two polarizations, the co-polarized band is often 
assigned to red, the cross-polarized to green, and the 
ratio of co-/cross-polarized data to the blue channel.

Examples for Sentinel-1 C-band and ALOS-1 
L-band data are shown in Figures 3.4 and 3.5, 
respectively. The images show the Napo river in the 

Figure 3.2  Grayscale Sentinel-1 amplitude image in Ecuador. The area is mostly forested, with 
the Coca and Napo Rivers, Puerto Francisco, and an oil palm plantation being dark and bright 
prominent features. The Andes touch the western part of this image. The backscatter histogram 
in the right panel contains values ranging from about –23 to 0 dB, peaking at about –6 dB.

Figure 3.3 Google Earth and Sentinel-1 images of a subset of the large oil palm plantation. While the 
river and most agricultural fields exhibit dark colors, the various states of regrowth in the oil palm 
plantation correspond to different gray values.

Table 3.1 Color assignments and resultant colors 
for multi-dimensional SAR image composites 
(Manual of Remote Sensing, Vol. 2, 1998).

Img  Layer 1 Img  Layer 2 Img Layer 3 Resultant
Blue Green Red Color

Tonal Change on Image

White Black Black Blue

Black White Black Green

Black Black White Red

White White Black Cyan

White Black White Magenta

Black White White Yellow

No Tonal Change on Image
White White White White

Black Black Black Black

Grey Grey Grey Grey

Table 3.2 Often-used color scheme for 
multi-dimensional false color SAR composites 
(Manual of Remote Sensing, Vol. 2, 1998).

Type of Composite Assigned Color

BLUE GREEN RED

Multifrequency/band Shortest λ Middle λ Longest λ

Multitemporal (date) First 
(earliest)

Second Third 
(Latest)

Multipolarized Most to Least Common
(HH) (HV/VH) (VV)
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southeast, an oil palm plantation in the northeast, 
primary rainforest in the northwest, and active fish-
bone logging patterns in the southwest. The color 
composites are constructed from dual-polarimetric 
data with co-polarized data assigned to the red chan-
nel, cross-polarized data to the green channel, and 
the co-/cross-polarized ratio to the blue channel. A 
nice effect for forest applications with this color as-
signment strategy is that forests tend to be shown 
in shades of green, and typically the brightness of 
green corresponds to the amount of biomass in the 
forest. Also, water tends to be represented in blue 
colors, which also represent other surface scattering 
components. Naturally, different histogram stretches 
may be applied to enhance various surface compo-
nents. In these examples, it is remarkable that both 
C-VV/VH and L-HH/HV false color SAR composites over 
this predominantly forested landscape exhibit similar 
color impressions. Differences are notable, however, 
foremost by the appearance of some dark green color 
in agricultural areas in the C-band composite. This like-
ly stems from higher sensitivity to volume scattering 
from agricultural crops, which have less of a volume 
scattering component at L-band. 

3.3  Review of SAR 
Characteristics for Forest 
Mapping

SAR backscatter values are determined by two 
main groups of characteristics: sensor and target char-
acteristics. The first group includes the frequency/
wavelength of the SAR, polarization of the transmitted 
and received SAR signal, incidence angle of the radar 
beam interacting with the ground, and look direction 
of the sensor. The combination of these characteristics 
needs to be considered when interpreting and ana-
lyzing SAR imagery. It is often ill-advised to combine 
SAR imagery from a set of varying sensor parameters 
if the backscatter data are not carefully cross-calibrat-
ed. For time series analysis in particular, it is advisable 
to analyze data from the same sensor characteristics, 
otherwise signal variations can be misinterpreted as 
true change, though no change has actually occurred. 
The following sections review with examples the main 
sensor characteristics to point to these differences. 

Figure 3.4 Sentinel-1 C-band dual polarimetric VV and VH data: (a) VV, (b) VH, (c) VV/VH ratio, and (d) 
SAR false color composite with RGB = VV/VH/ratio channel assignment. Image acquired on May 31, 2018.

Figure 3.5 ALOS-1 L-band dual-polarimetric HH and HV data: (a) HH, (b) HV, (c) HH/HV ratio, and (d) SAR 
false color composite with RGB = HH/HV/ratio channel assignment. Same area as in Figure 3.4, acquired 
~10 years earlier on June 22, 2008.
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The other group of characteristics determining 
SAR backscatter of forests and other natural and 
manmade targets are related to target characteristics. 
In general, assuming constant imaging sensor char-
acteristics, SAR backscatter is a function of a target’s 
moisture content and structural characteristics. For 
forests, this means that forest volume (biomass) and 
structural complexity (forest trunks, branches, and 
leaves) can indicate species present (e.g., pines vs. 
deciduous). Unlike optical imagery, if sensor parame-
ters are stable—as is the case with most repeat-pass 
orbiting SAR sensors—signal variations at any given 
pixel location are only a function of these target char-
acteristics. Sun angle variations seen in optical data 
do not affect the active SAR sensing system. Also, at-
mospheric variations (including clouds) have (almost) 
no impact on the SAR signal; however, there are nota-
ble and important exceptions at shorter wavelength 
SARs when heavy active rain events are encoun-
tered, as seen in C-band observations over tropical 
environments. Thus, when analyzing radar signals, 
it is important to recognize that moisture changes 
in both soil and vegetation strongly determine SAR 
backscatter. For some key concepts in understanding 
SAR backscatter from forests and natural vegetation, 
see Ulaby et al. 1986, 1989, 1990, 2014; Henderson 
& Lewis 1998; Woodhouse 2006; and Kellndorfer & 
McDonald 2008.

3.3.1  ROLE OF FREQUENCY IN FORESTS

SAR frequency determines the wavelength of the 
electromagnetic wave interacting with targets such as 
forests. In a nutshell, the longer the wavelength (i.e., 
the smaller the frequency), the more a wave pene-
trates into forest canopies and interacts with larger 
parts of the forest volume. In a simplistic view, one 
can attribute X-band (at about 3 cm) to mostly crown 
and small branch and leaf/needle scattering. C-band 
(5 cm) penetrates somewhat deeper into crowns and 
scatters on medium-sized branches. L-band (23 cm) 
and P-band (40 cm) have strongest penetration ca-
pacity and interact with larger parts of trees like big 
branches and trunks (see Chapter 2, Fig.  2.6). 
As such, L-band and longer wavelengths are often 
connected with a strong “double-bounce” scattering 
component, where the incident energy is scattered 

forward towards the ground where it bounces back 
to the sensor (similar to a racquetball or squash). This 
double-bounce effect is invaluable for detecting be-
low-canopy flooding effects where inundation with 
standing water below a tree acts as a strong reflect-
ing surface in the forward direction back to the SAR 
instrument. In tropical forest environments, riparian 
forests are thus extremely bright in SAR imagery 
when flooded (Fig. 3.6). 

Figures 3.7 and 3.8 show L- and C-band back-
scatter images of the oil palm plantation in Ecuador. 
Although the C-band data are from a timeframe of 10 
years after the L-band acquisitions, most notably, the 
relative absence of very dark surfaces in the C-band 
data points to strong backscatter from rough surfaces 
at the shorter wavelengths, whereas at the L-band, 
surfaces appear smoother (hence, darker) when little 
or no vegetation is present. 

3.3.2  ROLE OF POLARIZATION IN FORESTS

It is important to consider the polarization of 
radar waves interacting with forests, as it deter-
mines how the signal interacts with trunks and 
crown components. Figure 3.9 shows a simpli-
fied diagram of how long and short wavelengths at 
horizontal and vertical polarizations interact with 
forests. Most important is that backscatter from 
co-polarization (VV, HH) (i.e., same transmit and 
receive components) is typically stronger for sur-
face scattering components, whereas energy mea-
sured from cross-polarized (VH or HV) detection 
(i.e., measuring energy returning at a 90° offset to 
the transmitting wave) is associated with measur-
ing volume scattering. Chapter 2, Section 2.2.3 
provides a good background about polarization and sur-

Figure 3.6 Double-bounce effect from bellow-canopy flooding at L-HH polarization from ALOS-1: (a) 
Low-water season and (b) high-water season. Note the brightening of the forests during inundation.

Figure 3.7 ALOS-1 L-band imagery for the oil 
palm plantation: (a) L-HH, (b) L-HV, (c) ratio, and 
(d) RGB composite LHH/LHV/ratio.

Figure 3.8 Sentinel-1 C-band imagery for the oil 
palm plantation: (a) C-VV, (b) C-VH, (c) ratio, and 
(d) RGB composite CVV/CVH/ratio.
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face scattering types. Thus, for biomass applications, for-
est degradation tracking, and identifying changes from 
volumes to surfaces, cross-polarized observations with 
SAR imagery are essential. The differences between like 
and cross-polarized imagery from the C- and L-bands of 
the oil palm plantation are visible in Figures 3.7 and 
3.8. It can clearly be seen at both L-HH or C-VV that large 
gray value ambiguities exist between forest canopies and 
non-forest regions. In the cross-polarized images, these 
distinctions are more readily made and less ambiguous. 
Note for example in the L-band image’s lower part in 
Figure 3.5 that the fishbone logging pattern visible in 
the HV polarization is not visible in the HH polarization. 

3.3.3  ROLE OF INCIDENCE ANGLE

The incidence angle describes the angle between 
the sensor and ground and the surface normal of the 
illuminated surface (see Chapter 2). SAR backscatter 
is strongly influenced by this angle, as it determines scat-
tering in the crown layer, trunks, and interactions with 
the ground. If slopes are tilted toward the sensor, stron-
ger backscatter can be expected. If slopes are tilted away 
from the sensor, weaker backscatter is to be expected. 
RTC will account for these effects to some degree; how-
ever, scattering behavior is strongly dependent on the 
type of surface cover. This effect is weaker over dense 
forested environments and stronger over sparse vegeta-
tion or bare soils. 

Figure 3.10 is an example from the Pacific North-
west of the United States where timber management 
involves clearcutting, selective logging, and replanting. 
The Sentinel-1 images show acquisitions in the subset 
from overlapping paths, one imaging the area closer to 
near range (steeper incidence angle) of the SAR sensor 
and one closer to far range (shallower incidence angle) 

of the sensor. While not immediately obvious, close in-
spection of the figure shows differences in the near- and 
far-range acquisitions only five days apart where no sig-
nificant rain events have changed moisture conditions. 
The rows show near- and far-range data for VV and VH 
data in the columns. A comparison of the top and bot-
tom figures in each column illustrates the differences 
stemming from variations in incidence angles from the 
overlapping paths. 

3.3.4  ROLE OF LOOK DIRECTION 
(ASCENDING/DESCENDING) DATA TAKES

The look direction of a SAR refers to the direction 
the radar antenna is pointed when emitting and re-
ceiving the radar beam. A SAR look direction is de-
termined with respect to the flight direction of the 

sensor (see Chapter 2, Sec. 2.1). It is analogous 
to sitting on the right or left side of an airplane and 
looking out the window. Typically, SAR sensors are 
configured to look either right or left. If the satellite 
is rotated, that direction can change. How an area is 
illuminated by a radar beam changes foremost with 
image acquisitions during ascending and descending 
overpasses of an area. Figure 3.11 exemplifies the 
effect of look direction from ascending or descending 
data. The image subset is from the Sentinel-1 cross-
over pass in northeast Ecuador at the location shown 
in the right-hand part of the figure. The left side of 
the figure shows from top to bottom the combined 
layover and shadow masks from ascending and de-
scending paths over a Google Earth subset. The cen-
ter figure shows the descending path, and the bottom 
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Figure 3.9 Schematic effects of polarization 
on backscatter of long and short wavelengths 
scattering from trunks and crowns.

Figure 3.10 Near- and far-range acquisitions of Sentinel-1 CVV and CVH data over a forested site in 
the Pacific Northwest.
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figure shows the ascending path. Differences in the 
backscatter can be seen as well as the varying loca-
tions of the layover and shadow masks (red color). 
Forest monitoring applications benefit from combin-
ing different look directions, as different regions will 
be mapped and complementary backscatter infor-
mation can be retrieved.

Figure 3.12 shows an example of look direction 
effects for forest observations in Chile from L-band. 
The city of Talca lies in the western part of the imag-
es and can be seen as a rose-colored blob, similar 
another smaller city farther north. Note that in the 
ascending data, these two cities turn green in the 
multi-polarization L-HH/L-HV/ratio image to assume 
the same backscatter levels as the forests south of 
Talca and on the Andean slopes in the eastern part 
of the images. Incidence angle might also contribute 
with near- and far-range observations, although the 
gamma naught values mostly flatten the backscatter 
in the narrow ALOS-1 swath of about a 70-km swath 
width. Thus, here look direction is mostly causing a 
change in how the city and forests are seen structur-
ally. Again, if time series analysis for change detection 
is targeted for forest monitoring, it is advisable to an-
alyze time series by repeat-pass orbits and not mix 
ascending and descending datasets. 

3.3.5  ROLE OF MOISTURE 

SAR is very sensitive to moisture in soils and 
vegetation, and also to standing open water and 
below-canopy standing water. Increased moisture 
content in soils and vegetation tend to increase the 
backscatter signals. Standing open water has very 
dark image characteristics due to most of its energy 
being scattered in the forward direction away from 
the sensor; however, when wind, currents, or boat 
engines rough up water surfaces, strong backscatter 
can originate from open water surfaces. In particular, 
shorter wavelengths like C- and X-bands have strong 
open water surface backscatter from rough water 
surfaces. At longer wavelengths, the aforementioned 
double-bounce effect under canopies can have a 
strong backscatter signal (Fig. 3.6). 

Figure 3.13 shows an example of moisture influ-
ence on the Sentinel-1 C-band data over Ecuador. The 

darkening effects are associated with actively raining 
strong tropical convection systems that cause signal 
attenuation. The brightening effects stem from wet 
vegetation and soils from the rain events associated 
with the tropical frontal system. Riverbeds are still 
seen in the midst of brightened backscatter areas in 
the affected image from February 27, 2017, confirm-

ing that the SAR signals indeed stem from an increase 
in vegetation and soil moisture. 

Figure 3.14 shows the effects of vegetation and 
soil moisture on signal brightening in L-band HH po-
larization from ALOS-1 at the Ecuador site. Three ac-
quisitions from the end of June 2008, 2009, and 2010 
are compared. While 2008 seems to have few effects 

Figure 3.12 ALOS-1 data over Chile, Talca, region from ascending and descending paths. RGB=L-
HH/L-HV/ratio. Red arrows indicate the look direction of the right-looking sensor.

Ascending superimposed 
on Descending

Descending

Talca Lon/Lat: W 71.7, S 35.5

Figure 3.11 Example showing the effects of 
look direction on backscatter and layover and 
shadow on Sentinel-1 C-VV/VH/ratio RGB data.
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Figure 3.13 Sentinel-1 CVV example of moisture influence on enhancing and darkening backscatter

Figure 3.14 ALOS-1 L-HH example of moisture influence on enhancing backscatter.
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from moisture-related backscatter enhancements, 
the year 2009 shows some effects in the eastern 
part of the image. In 2010, a strong moisture-related 
brightening is visible. As a result, the multitemporal 
color composite shows large-scale color variations 
that are moisture-related. Care must be taken when 
performing multitemporal image change detection for 
forest degradation so as to not to interpret darkening 
in a time series as a degradation signal when moisture 
variations can be the cause for decreases or increases 
in backscatter. Time series analysis can help to sepa-
rate these effects, as moisture variations are shorter 
in time and space and exhibit a more random pattern 
compared to real disturbance or deforestation signals.

3.3.6  ROLE OF STRUCTURE 

In addition to moisture conditions, vegetation 
structural characteristics determine SAR backscatter 
from forests. This includes both horizontal structure 
(i.e., canopy density, row plantations, texture) and 
vertical structure (i.e., crown depth, crown and trunk 
biomass, leaf and branching structure, life forms of 
trees, excurrent or decurrent growth). Figure 3.15 
provides a schematic overview of these structural 
classes (Dobson et al. 1996). 

Figure 3.16 provides an example of backscat-
ter response for C-VV and C-VH data for the oil palm 
plantation and its various growth, disturbance, and 
regrowth stages (including backscatter from undis-
turbed primary forest). The timing of the Google Earth 
subset corresponds to the C-band acquisition dates in 
September 2017. 

For L-band sensors, Figure 3.17 provides an ex-
ample from a timber management area in Louisiana, 
U.S. The area is heavily managed, and various stages 
of clearcutting, selective logging (row thinning), and 
regrowth can be seen. The cross-polarized data clearly 
show increased brightness where there are more ma-
ture, higher biomass forests. 

3.3.6  SUMMARY: DEFORESTATION AND 
FOREST DEGRADATION FROM A SAR POINT 
OF VIEW

In simple terms, broad characteristics of backscat-
ter behavior can be summarized as follows:

• Deforestation—Predominantly a change 
from volume to surface scattering. This means 

cross-polarized (VH, HV) backscatter decreases 
significantly. However, if deforestation results in 
rough soil conditions (e.g., slash) or if site prepa-
rations rough up soils, backscatter can be signifi-
cantly enhanced, to the point where actual felling 
events increase (e.g., until logs are removed). In 
time series observations, however, trends are to-
wards reduced backscatter. Moisture conditions 
of soils that are more visible now can enhance 
signals at C-band significantly and can introduce 
ambiguities. Time series signals will reveal those 
transitions.

• Degradation—Degradation of forests typi-
cally reduces volume scattering and (depending 
on the amount of degradation) how much soil 
contributes to the backscatter signal at the ob-
serving wavelength. At C-band, degradation is 
tough to detect unless larger patches of forest are 
removed. L-band tends to have a detectable sig-
nal drop from forest thinning. However, the type 
of degradation also determines the scattering 
mechanisms. For example, storm damage may 
be such that vegetation volumes and scattering 
mechanisms have enhanced backscatter from 
slanted trunks, which is difficult to separate from 
before-disturbance signal strength. Fire events 
have a strong increase at L-band, where stronger 
soil contributions enhance double-bounce and 
hence brighten the backscatter signal. Over time, 

as volume starts to significantly degrade, the SAR 
signal follows a pattern of backscatter decrease in 
degraded forests.

Table 3.3 gives an overview of the expected 
backscatter characteristics for different vegetation 
transition scenarios.

3.4  Appropriate SAR 
Preprocessing Methods for 
Forest Applications
3.4.1  WELL-CALIBRATED, RADIOMETRICALLY 
TERRAIN CORRECTED SAR DATA

Proper RTC of SAR data is a crucial starting point 
for any analysis of change detection, either bitem-
poral, in time series, or in combination with optical 
datasets (see Chapter 2 for RTC processing discus-
sion). A word of caution: as of this writing, the open 
source software SNAP delivered by the European 
Space Agency (ESA) has two known shortcomings: (1) 
geolocation inaccuracies up to 40 m in the range di-
rection and (2) radiometric correction that is subop-
timal given the novel approach by Small et al. (2012). 
For change detection purposes, careful co-regis-
tration after processing with SNAP (i.e., with image 
matching postprocessing) might overcome some of 
these issues. However, it is important to assess 
whether backscatter change stems from geometric 

Figure 3.15 Description of simple structural classes of vegetation (Dobson et al. 1996).

Herbaceous Woody

Growth Form Blade-like Broadleaf Shrubs Trees

Structural 
Characteristics: (i.e. grass, corn) (i.e. soybeans) (i.e. alder)

Excurrent Decurrent Columnar

Gymnosperms 
(i.e. pine)

Angiosperms 
Dicots  (i.e. oak)

Angiosperms 
Monocots (i.e. palm)

Trunks None None
Many small trunks 
with characteristic 

orientations

Conical trunk with 
layered dielectric

Cylindrical, 
forked trunk with 
layered dielectric

Cylindrical trunk 
of homogeneous 

dielectric

Branches Non-woody 
stalks or stems Non-woody stems Many small 

branches & stems

Branch size/orien-
tation varies with 
height; branches 
often long/thin

Forked branches, 
few horizontal el-
ements; branches 
often short/thick

None

Foliage Blade-like 
erectophile Broad leaves Blade-like or 

broad leaves Needles Broad leaves Blade-like clump 
at top of trunk
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Figure 3.16  Sentinel-1 C-band example of VV/VH backscatter in the oil palm plantation in Ecuador for 
different growth stages. Descending orbit (D).

Figure 3.17 ALOS-1 L-band data over a timber management region in southern Louisiana, U.S., showing 
various stages of clear cuts, selective logging, and regrowth. Ascending orbit (A).
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offsets rather than real change, particularly in hilly 
terrain. The quality of the DEM as an input to any 
orthorectification process is also critical. Note that 
SRTM-derived DEMs are often adequate for ~20- to 
30-m resolution SAR processing; however, improve-
ments in backscatter mapping could be achieved 
with better resolution DEMs. This is in some ways 
a question of cost/benefit ratios, as higher resolu-
tion DEMs are available, yet often not open source. 
All datasets shown in this chapter were produced 
with the Gamma Remote Sensing software, which 
is also employed by the Alaska SAR facility for RTC 
production and used by Earth Big Data, LLC, for all 
SAR geocoding. In preparation for the NISAR mis-
sion, the Jet Propulsion Laboratory ( JPL) developed 
the InSAR Scientific Computing Environment (ICSE) 
software which will eventually be available to the 
community. A well-suited open source software for 
post-RTC processing is available in the Geospatial 
Data Abstraction Library (GDAL) packages from 
command line or as Python API bindings.

3.4.2  MULTITEMPORAL SPECKLE NOISE 
REDUCTION

If properly stacked SAR data are available (such 
as in a tiling scheme for manageable data volume 
handling), it is advisable to preprocess time series 
data stacks with a multitemporal speckle filter (e.g., 
by Quegan et al. 2001). Multitemporal speckle fil-
ters have been shown to preserve spatial detail 
while significantly reducing speckle noise at each 
time step. Multitemporal speckle filters estimate 
speckle characteristics along the time domain rath-
er than the spatial domain. The resulting speckle 
statistics can be used to estimate a noise-reduced 
mean backscatter of a pixel, preserving the back-
scatter estimate at any time step, but at reduced 
noise. As such, spatial detail is preserved. 

Figure 3.18 contains an example of L-band 
data from ALOS. Sixteen multitemporal scenes 
were available to reduce speckle noise using multi-
temporal speckle diversity. After filter application, 
various forest growth and logging states are much 

WAVELENGTH POLARIZATION
RESPONSE BY FOREST TYPE

Sparse Forest (dry) Sparse Forest 
(flooded) Degraded Forest (dry) Degraded Forest 

(flooded) Dense Forest (dry) Dense Forest (flooded)

C-band
backscatter
(g0)

VV Medium to high; 
Depending on the 
roughness of the forest 
floor and moisture, 
there is lots of variation 
in this category

Low to medium; 
Depending on forest 
density, lots of forward 
scattering

Medium to high; most 
scattering from crown

Medium to high; most 
scattering from crown

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

VH Medium to high; 
Depending on the 
roughness of the forest 
floor and moisture, 
there is lots of variation 
in this category

Low to medium; 
Depending on forest 
density, lots of forward 
scattering

Medium to high; most 
scattering from crown

Medium to high; most 
scattering from crown

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

Medium to high; 
most scattering from 
crown (Can be low 
in scenarios where 
absorption dominates 
and diminishes 
backscatter)

VV/VH Ratio Medium to high Medium to high Medium Medium Medium Medium

L-band
backscatter
(g0)

HH Low to medium; lower 
than dense forest and 
flooded sparse forest. 
At steep incidence 
angles, backscatter can 
be medium to high

Medium to high, 
depending on how 
much double bounce 
is contributing to the 
signal

Medium to high High to very high, 
double bounce 
contributes to high 
backscatter

High to very high; 
higher than degraded 
forest, however at very 
high biomass levels 
we see saturation and 
no distinction with 
degraded forests

High to very high, 
double bounce 
contributes to high 
backscatter

HV Low to very low, 
depending on how dry 
the soils are

Low to very low. Most 
scattering is in the 
forward direction due 
to specular reflection

Medium to high Medium to high, no 
seasonal variation with 
flooded forest floor

High to very high; 
volume scattering 
is dominant – best 
senstivity to biomass 

Medium to high, no 
seasonal variation with 
flooded forest floor

HH/HV Ratio Medium High Medium High Medium High

Table 3.3 Expected backscatter characteristics for different vegetation transition scenarios. Note: Cross-polarized backscatter is generally lower than like 
polarized backscatter; backscatter values range from very low, low, medium, high, to very high.

more discernible than before filter application. 
Given the color theory in Section 3.2.2 and an 
understanding of volume backscatter changes in 
L-band HV for forests, the multitemporal image can 
be readily interpreted as to what areas underwent 
clearcutting or selective logging (red and yellow 
colors) and what areas are in regrowth (blue col-
ors) or unchanged stage (white and black colors). 
Note that perfect alignment of pixels over the tem-
poral domain is a prerequisite of successful multi-
temporal speckle filtering. Thus, it is advisable to 
apply the filter on data of the same repeat path.

3.4.3.  A WORD ON POWER, AMPLITUDE, 
AND DB SCALES 

With SAR data handling, it is important perform 
all spatial and temporal averaging operations in 
power scale. SAR data expressed in dB (logarithmic 
transformation) or amplitude scale (square root 
transformation) introduce mathematical errors 
when using these averaging or spatial convolution 

http://gdal.org/
http://gdal.org/
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AFTER FILTER APPLICATION:BEFORE FILTER APPLICATION:

L-HV RGB: 2007-07-03 2009-07-08 2010-07-11

Figure 3.18 Multitemporal speckle filter application on a perfectly co-registered time series data stack of 
ALOS L-band data over Louisiana, U.S

operations. This is also true for warping operations 
when convolutions on the SAR data are performed. 
Therefore, it is recommended that data be convert-
ed to the power domain during processing, such 
as the Earth Big Data’s (EBD’s) processing software 
for multitemporal filtering. The QGIS plugin of 
EBD’s open source SAR time series visualization 
tool also uses power transformations behind the 
scenes when displaying time series in dB scale. 

3.4.4  TILING AND CONSTRUCTION OF 
TIME SERIES FROM GEOTIFFS WITH 
VIRTUAL RASTER TABLES

With the advent of SAR sensors with global 
acquisitions at high temporal frequency, the era 
of time series analysis for SAR data has begun. 
Sentinel-1, with its two-sensor formation flights, 
now monitors most of the planet at 12-day repeat 
cycles, denser at higher latitudes. With swath 
width in high-resolution Interferometric Wide 
Swath mode at ~250 km, SAR data volumes be-
come massive quite quickly. Thus, it is imperative 
that appropriate tiling schemes and data handling 
strategies are employed. For many reasons, the 
GeoTIFF image format has evolved as a standard 
for handling remote sensing imagery. In concert 
with the Virtual Raster Table (VRT) format from the 
GDAL library, GeoTIFFs can be very efficiently tied 
together into time series that can readily be subset 
or rearranged without the need for large raster 
data operations. VRTs are just XML-based headers 
that form the metadata for building image band 
stacks. But even more so, many raster operations 
can be prescribed as VRT processing in multiple 
steps, only to be executed on the data when the 
raster output is generated. 

A tiling approach was developed for Sentinel-2 
optical data at 20-m resolution based on the Mili-
tary Grid Reference System (MGRS). This globally 
consistent Universal Transverse Mercator (UTM) 
projection-based approach keeps data consistent 
in spatial extent and projection across the globe. 
The pixel area of an MGRS UTM tile at the equator 
is the same as in a tile at higher latitudes. Argu-
ably, this approach keeps data globally minimally 
distorted, and algorithms for spatial convolutions 

like speckle filters would work consistently on UTM 
data. This is not true for data in latitude/longi-
tude spacing, where longitudinal pixel resolution 
changes with latitude. Using the Sentinel-2 MGRS 
tiling scheme also for Sentinel-1 data enables 
readily optical/SAR fusion without the need for 
further reprocessing. Hence, the EBD production 
suite readily provides Sentinel-1 SAR time series 
data stacks in MGRS tiling format. 

A data guide explaining the naming conventions 
and tiling of VRT/GeoTIFF time series data stacks 
used by EBD products can be found here. GDAL 
can be used directly to build VRT stacks solely 
based in open source components.

3.5  Change Detection 
Approaches for SAR Data
3.5.1  BITEMPORAL METHODS

Classic image change detection methods for 
bitemporal image comparison can be applied 
to well-calibrated RTC SAR imagery. The log-ra-
tio method was explained in Chapter 2. The 
Iteratively reweighted Multivariate Alteration De-
tection (iMAD) algorithm (Nielsen 2007) holds 
promise for change detection between two im-
ages; however, as shown in previous sections, 
it is important to understand possible impacts 
on backscatter change that are not linked to 
real changes such as deforestation. While for-
est changes are easier to detect in bitemporal 

analyses at L-band, C-band data often present 
a challenge, as surface roughness and moisture 
components can lead to significant SAR signal 
ambiguities. 

3.5.2  TIME SERIES ANALYSIS METHODS

In the past, the availability of SAR data was 
sparse in space and time; however, the Sen-
tinel-1 mission has been a game changer in 
moving SAR into operational use. The upcoming 
NISAR mission—with its open data policy and 
L-band data at 12-day repeat intervals at medi-
um resolution—will be the next big push for SAR 
data availability. With near-continuous availabil-
ity of SAR observations of the ground, real time 
forest monitoring can thus be achieved. Time 
series analysis techniques developed for optical 
imagery are somewhat applicable, although SAR 
characteristics of backscatter sensitivity to struc-
ture and moisture warrant a closer look at new 
methods. Change point detection with cumula-
tive sums (Manogaran & Lopez 2018) is an estab-
lished time series analysis technique stemming 
from the financial sector. With the general SAR 
backscatter trending to decrease with biomass 
loss due to deforestation or forest degradation, 
the application of cumulative sum analysis to 
SAR time series data seems potentially simple, 
yet powerful. 

The following figures show time series signals 
over a deforestation event in Ecuador observed 

https://github.com/EarthBigData/openSAR/tree/master/code/QGIS/plugins
https://github.com/EarthBigData/openSAR/tree/master/code/QGIS/plugins
https://www.gdal.org/gdal_vrttut.html
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml/ec05e22c-a2bc-4a13-9e84-02d5257b09a8
https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml/ec05e22c-a2bc-4a13-9e84-02d5257b09a8
https://github.com/EarthBigData/openSAR/blob/master/documentation/EBD_DataGuide.md
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with Sentinel-1 data from 2016 to 2018 that ex-
emplify the strength of SAR time series for forest 
change detection. Figure 3.19 shows a 4-x-4-km2 
subset of an active logging region in the northeast-
ern part of Ecuador, and Figure 3.20 shows the 
time series profile and associated imagery for a 
logging event in January 2017. While some noise 
exists in the time series, a clear backscatter de-
crease in early 2017 is visible in the center image 
and time series plot. As is typical for deforested 
areas at C-band, lower backscatter at higher vari-
ability is observed in the C-band profile after the 
deforestation event. This disturbance observation 
can be identified from the longer trends visible 
compared to more short-term random noise due 
to moisture variations. After applying a kernel 
filter to smooth the time series somewhat, a cu-
mulative sum curve can be constructed from the 
residuals of the time series data, minus the mean 
observation of the entire time series. 

Figure 3.21(a) shows the smoothed time se-
ries profile and the mean of the time series used 
to calculate the residuals. The cumulative sum of 
the residuals is shown as the peaking blue curve 
in the bottom panel. A way to establish the valid-
ity and significance of a candidate change point is 
to perform a bootstrap analysis in which the time 
steps are randomly reordered and cumulative 
sums of the randomized residuals are computed. 
If the randomization (n > 500) shows few or no 

Figure 3.19 Ecuador logging test site

Figure 3.20 Time series profile of red square with associated Sentinel-1 descending VV data.

curves reaching the same maximum value of the 
peak of the cumulative sum curve (which is the 
change point in time) the point can be labeled val-
id. The bootstrapping thus provides a confidence 
level for a detected change point. Other metrics 

can aid in the confirmation of change points in a 
SAR time series, as elaborated with formulas and 
Python code in the training Jupyter Notebooks that 
go along with this chapter. As can be seen in Fig-
ure 3.21(b), the 500-fold randomization shows 
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Figure 3.22 Sentinel-1 time series profiles of forest and non-forest land cover patches. Red profiles are C-VV, 
and blue profiles are C-VH backscatter curves. The backscatter range in each subset shows backscatter 
from 0 to –20 dB for the SAR g0 values. The timeframe covers dates from April 2015 to April 2017.

Sentinel-1
Time Series

Multi-temporal composite
R 2016-02-02 Dry
G 2016-04-07 Medium
B 2016-08-29 Wet

Burkina Faso
N11 w002 (lower left)

1x1 degree tile

Urban

Dense Forest

Open Forest

Mud Flat

Agriculture

Open Savannah

Figure 3.23  Logging progression detected from 
Sentinel-1 satellites. A 20-m pixel spacing the subset 
covers 300 x 320 m2. The logged area is 5 ha. 

that all randomized S-curves are significantly low-
er in their peak values compared to the candidate 
change point in the observed time series. 

Applying this approach to all pixels in the sub-
set results in the identification of change pixels 
and the detected dates of change shown in Fig-
ure 3.22 (right panel). The color codes corre-
spond to the change dates, at a time resolution of 
about 12 days. The left panel in this figure shows 
a multitemporal color composite of Sentinel-1 de-
scending VV acquisitions from 2016-11-15 (red), 
2017-08-29 (green), and 2018-05-21 (blue). Note 
that many of the red and yellow color tones in 
this multitemporal composite correspond to the 
expected and detected deforestation and forest 
degradation events. However, some red tones 
also are more associated with changes in agricul-
tural patterns, which were correctly not mapped 
as forest degradation events, as their time series 
profiles did not match the type of curves seen in 
the previous profiles. 

Lastly, to confirm the capability of Sentinel-1 
SAR time series to map logging progression, a 
close-up of the earliest detected event in this re-
gion is shown in Figure 3.23. Change dates show 
the progression of the logging of a 5-ha area over 
the course of four months starting in the southeast 
corner of the patch and progressing to the west. 

Figure 3.21 (a) Smoothed time series and mean backscatter, and (b) 500 cumulative sums of the 
residuals of the time series, minus the mean and 500-fold bootstrapped cumulative sum curves.

A.)

B.)
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3.5.3  SUMMARY ON TIME SERIES SIGNAL 
ANALYSIS FOR SAR BACKSCATTER DATA

In summary, SAR time series data, such as those 
now available from Sentinel-1, are an invaluable 
resource for detailed forest change mapping with 
quasi-continuous mapping capacity from the sen-
sors. Note that several regions of the planet might 
be covered more often with ascending or descend-
ing data, single-polarization VV or dual-polarization 
VV+VH datasets. The upcoming NISAR mission will 
bring the same datasets and temporal frequency at 
L-band, which will increase forest change detection 
capability, as fewer signal ambiguities in the time 
series exist with clear drops in backscatter from 
deforestation and forest degradation activities. 

An example of a semi-arid region and time se-
ries signal variation at C-band is provided for Burki-
na Faso. Figure 3.22 exemplifies the moisture 
and structure dependency of various dense for-
ests. Note in this figure how backscatter varies by 
season due to an increase in moisture and agricul-
tural activity. Even a strong rain event seems to be 
detected in April 2016, leading to a spike in almost 
all curves but urban and the mud flat. The mud flat 
profile shows a strong drop at one date (which is 
most likely associated with a flash flood event from 
the heavy rain event), leading to open water sur-
face detection in the time series. Also note that the 
amplitude in the time series signal increases with 
decreasing canopy cover, which can be attributed 
to an increase in soil moisture signal contribution 
during the rainy season. It can be seen that with 
decreasing density, the seasonal moisture changes 
contribute to the rise and fall of backscatter. Thus, 
it is again important to keep in mind that backscat-
ter signals vary over time, which is vital for careful 
selection of seasons for time series analysis. A com-
pilation by Ulaby et al. (2014) entitled Microwave 
Radar and Radiometric Remote Sensing contains in-
depth resources for SAR data backscatter behavior 
from soil and vegetation targets.

3.5.4 OPTICAL/SAR FUSION FOR FOREST 
MAPPING

SAR and optical data provide complementary 
information for forest monitoring, as different im-

aging principles underlie the SAR backscatter and 
optical multispectral reflectance measurements. 
As previously noted, SAR measures changes in 
vegetation and soil moisture content as well as 
the structural composition of the vegetation (life-
forms). Optical remote sensing measures changes 
in the chemical composition of leaves and their 
reflectance when illuminated by sunlight, also in-
cluding measurements of shadow fractions within 
canopies. Indices like the Normalized Difference 
Vegetation Index (NDVI) (Tucker 1979) normalize 
optical reflectance values and provide a measure of 
the vegetation density or leafiness. Thus, studies of 
SAR backscatter and NDVI can be used to compare 
time series of optical and SAR data. Several studies 
have exploited these similarities, fusing SAR data 
from Sentinel-1 and ALOS and Landsat time series 
(Reiche et al. 2016). Various approaches for fusing 
time series data can be applied. Attempts have 
been made to fuse time series at the signal level, 
where optical and SAR signals are normalized to 
simulate similar trends in a fused time series (e.g., 
filling NDVI gaps with simulated SAR backscatter 
assuming similar behaviors). This is problematic, 
however, given that the signals have different un-
derlying principles, although some successes have 
been demonstrated (Reiche et al. 2015).

Another approach is fusion at the prediction lev-
el, that is, optical and SAR time series are analyzed 
separately, and probabilities for deforestation and 
forest degradation events are computed and com-
pared in the time domain. This has an advantage 
in that inherent sensor characteristics are optimally 
analyzed, and probabilities as dimensionless mea-
sures can readily be fused in a time series. As such, 
SAR can fill time gaps in optical observations, and 
joint probabilities can confirm detections from sep-
arate optical or SAR analyses. Holden et al. (forth-
coming) developed and tested two approaches 
for fusing time series of Landsat reflectance and 
L-band backscatter time series for mapping defor-
estation for a site with both small- and large-scale 
agroforestry near Yurimaguas, Peru. This “Proba-
bility Fusion” approach—similar to the approach-
es used by Reiche et al. (2015, 2018)—performed 
slightly better for finding deforestation with radar 

data in terms of map accuracy (78.9% vs. 75.6%) 
and change detection timing, even with a relative 
abundance of Landsat data and only 11 radar ob-
servations. The improvement when using radar 
data was much higher when simulating reduc-
tions to Landsat data availability. Their “Residual 
Fusion” algorithm relies on time series regression 
forecasts (similar to BFAST Monitor (Verbesselt et 
al. 2010) or CCDC (Zhu et al. 2012)) and was less 
accurate when fusing data sources than when us-
ing Landsat alone, likely because there were too 
few radar observations to reliably develop forecast 
regression models. The authors encourage further 
development of time series fusion algorithms that 
can incorporate data from current and upcoming 
radar missions, especially approaches that can go 
beyond just deforestation mapping to provide class 
transition labels for IPCC reporting. 

3.6  Conclusions
With the launch of Sentinel-1 and its associat-

ed open data distribution, monitoring forest re-
sources at medium resolution with SAR has now 
reached operational levels. The C-band mission 
of the Sentinel-1 sensors are already projected to 
2030 in ESA’s budget. NASA and ISRO are poised 
to launch the L-band NISAR missions at the begin-
ning of the next decade, which will provide 12-day 
repeat global L-band and regional S-band acquisi-
tions, also with an open data policy. As shown in 
this chapter, SAR data have a strong sensitivity to 
forest change. Careful preprocessing is required to 
build good time series data stacks. Seasonal and 
moisture variations need to be separated from 
structural changes in change detection approach-
es. This requires potentially filtering of the time 
series to remove “outliers.” Cumulative sum-based 
change detection of SAR backscatter mean shifts 
are amongst efficient change detection techniques 
of the continuously available time series signals.
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APPENDIX B
Chapter 3 Training Module Overview

These training modules are provided as Python scripts in the form of Jupyter Notebooks (http://jupyter.org). The appeal of using Jupyter Notebooks is that Jupyter 
Notebook servers can be deployed from any platform/operating system and natively deploys a range of open source programming and scripting languages that are 
supported by a very large, growing open source developer community. Jupyter notebooks support the Python and R languages, amongst others. This means that all 
open source packages supported by Python (e.g., GDAL) are readily available in Jupyter. Also, Jupyter Notebooks are cloud-friendly, as servers can be launched on 
high-performance cloud instances and displayed via any web broweser. Terminals are also supported. The developed Notebooks for the SERVIR training courses have 
instructions for setting up and using Notebooks. A suite of Notebooks has been developed to cover various aspects of SAR data processing and analysis with a focus on 
forest mapping. To exercise the Notebooks, several example SAR time series data stacks have been provided for:

• West Africa Region - Sub-Sahelian Forest and Savanna ecosystems
• HKH Region - Foothills of the Himalaya 

The training datasets are hosted by SERVIR and can be downloaded from SERVIRglobal.net. The Notebooks cover the following topics with embedded exercises (and 
their solutions):

• • Part 1 - Getting to Know SAR Images and Forest Signatures
• • Part 2 - SAR Time Series Visualizations and Animations
• • Part 3 - Change Detection with Time Series Metrics and Log Ratio Method
• • Part 4 - SAR Time Series Change Point Detection
• • Part 5 - SAR/Optical (NDVI) Time Series Analysis
• • Part 6 - How to Make RGB Composites from Dual-Polarimetric SAR Data

Another Notebook is available that describes how to use the GDAL Virtual Raster Table (VRT) format for efficient stacking of SAR data into an analysis-ready time 
series data stack. All notebooks, dataset descriptions and installation instructions are also hosted on an open source GitHub repository that can be accessed from http://
github.com/jkellndorfer/servir_training and http://github.com/earthbigdata/openSAR

A time series visualization QGIS plugin tool is also available on the openSAR site.

http://jupyter.org
https://www.servirglobal.net/
http://github.com/jkellndorfer/servir_training
http://github.com/jkellndorfer/servir_training
http://github.com/earthbigdata/openSAR
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SAR Training Workshop for Forest Applications
Part 1 - Getting to Know SAR Images and Forest Signatures
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

This book chapter on SAR data analysis for forest applications with a focus on deforestation and forest degradation monitoring is implemented as an interactive notebook.
The digital format (a jupyter notebook) of this chapter can readily be launched in any web browser for interactive data exploration with provided or new traning data. The
notebook is comprised of text written in a combination of executable python code and markdown formatting including latex style mathematical equations. With this
approach, the trainees can readily expand, change, and share the entire work with new data sets in new regions or newly available time series steps.

While we are only scratching the surface of available open source tools, the course will provide a broad overview on what modern tools can be employed for SAR focused
data analysis, or remote sensing data analysis in general.

Software Installation and Data Sets
Please refer to the documents INSTALLATION and DATA_HOWTO.

The time series data sets for this training course were pre-processed with the EARTH BIG DATA Software for Earth Big Data Processing, Prediction Modeling and Organization

(SEPPO) using cloud-based processing on Amazon Web Services. SEPPO allows for the fully automated processing of large SAR (and other remote sensing) data sets to
constuct time series data effectively. The data format guide EBD_README explains data structures and filenaming conventions for data sets produced by EARTH BIG DATA,
LLC.

Notes on Working with this Notebook
1. After launching the notebook server and opening a notebook navigate to the Kernel menu and choose ebd: > Kernel > Change Kernel > Python \conda env:ebd\
2. To execute code in a cell, position your blinking cursor inside a cell and either select the Run Button from the notebook menu bar, or use the following keystroke

combination:

CTRL+Enter to run a cell
ALT+Enter to run a cell and insert a new cell below

3. To comment lines inside code cells use as first character #. You can mark several lines and use a keystroke combination to comment/uncomment the block with:

Windows: CTRL+/
MacOS: CMD+/

Importing relevant python packages
First step in the time series analysis approach after obtaining the preprocessed data stacks is the import of necessary python packages.

See the comments below as to what packages are needed and their functions. Note that all these packages should have been installed when the python anaconda
environment was created.

In [ ]: import pandas as pd 
import gdal 
import numpy as np 
import time,os, glob 
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In [2]: %matplotlib inline 
import matplotlib.pylab as plt 

Set Project Directory and Filenames
Edit and uncomment the respective cell entries below to activate the wanted project data directory. Take a look at the EBD Data Guide:
https://github.com/EarthBigData/openSAR/blob/master/documentation/EBD_DataGuide.md for an explanation of the filenaming conventions used for image and date
files.

How to specify data directories:

Linux  path to file

Windows  d path to file 
D: is the drive letter # IMPORTANT: Always use '/' instead '\' in Windows

TE  Directories and filenames are specified in python as strings enclosed in single or double uotes  string  string

West Africa - Biomass Site

In [5]: datadirectory='/Users/rmuench/Downloads/wa/BIOsS1' 
datefile= 2 2 5  
imagefile= 2 2 5  

= 2 2 5  

West Africa - Niamey Deforestation Site

In [ ]: # datadirectory='/dev/shm/projects/c401servir/wa/cra/' 
# datefile='S32631X402380Y1491460sS1_A_vv_0001_A_mtfil.dates' 
# imagefile='S32631X402380Y1491460sS1_A_vv_0001_A_mtfil.vrt' 

West Africa - Dam Site

In [ ]: # datadirectory='/dev/shm/projects/c401servir/wa/DAMsS1/' 
# datefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.dates' 
# imagefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.vrt' 

HKH Site

In [ ]: # datadirectory='C:/data/hkh/time_series/S32644X696260Y3052060sS1-EBD' 
# datefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.dates' 
# imagefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.vrt' 
# imagefile_cross='S32644X696260Y3052060sS1_D_vh_0092_mtfil.vrt' 

Switch to the data directory

In [ ]: os chdir(datadirectory) 
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In [ ]: os.getcwd()  # Uncomment this line to display the present working directory 

In [ ]: # glob.glob("*.vrt")   # Uncomment this line to see a List of the files  

Acquisition Dates
Read ro  the dates fi e the dates in the ti e series and a e a pandas date inde

In [ 2]: dates=open(datefile).readlines() 
tindex=pd.DatetimeIndex(dates) 

In [ ]: # From the index we make and print a lookup table for  
# band numbers and dates  
j=  
print('Bands and dates for',imagefile) 
for i in tindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=  
    if j%5 : n  

Image data

To open an image file and ma e it readable use the gdal. pen  function. This generates an image handle that can be used for further interactions ith the file

In [ ]: img=gdal.Open(imagefile) 

To explore the image, e.g. number of bands, pixels, lines you can use several functions associated ith the opened image ob ect, e.g.

[ ]: n n I

n n 2 2 5  
2 5 22 2 2 5 2 5 5 2 5 5 5 2 5 5 2  
2 5 2 2 5 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 5 25 2 5 5 2 5  
2 5 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 22 2 5 2 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2 2  

2 5 2 2 5 5 2 5 2 2 5 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 2 5 2  
2 2 2 2 2 5 2 2 5 2 2 2  

5 2 52 2 22 5 2 2 5 2 2 5 55 2 2 2  
5 2 5 2 2 5 2 5 2 2 2  

2 5 2 2 5 22 2 2 5 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 2 2 25 5 2  
2 2  
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In [ 5]: print(img.RasterCount) # Number of Bands 
print(img.RasterXSize) # Number of Pixels 
print(img.RasterYSize) # Number of Lines 

Reading data from an image band
To access any band in the image, use the img.GetRasterBand x  function. E.g. to access the first band x , the last band  x .

In [ ]: band=img.GetRasterBand( ) 

nce a band is selected, several functions associated ith the band are available for further processing, e.g.

band.ReadAsArray xoff ,yoff ,xsi e one,ysi e one

o, to read the entire raster layer for the band

In [ ]: raster=band.ReadAsArray() 

Subsets
Because of the potentially large data volume hen dealing ith time series data stac s, it may be re uired to read only a subset of data.

ith the gdal .ReadAsArray  function, subsets can be re uested ith offsets and si e

img.ReadAsArray(xoff 0  off 0  si e one  si e one

xoff,yoff are the offsets from the upper left corner in pixel line coordinates.

xsi e,ysi e specify the si e of the subset in x direction left to right  and y direction top to bottom .

E.g., to read only a subset of x  pixels ith an offset of  pixels and  lines

In [ ]: raster_sub=band.ReadAsArray(5,20,5,5) 

The result is a t o dimensional numpy array ith the datatype the data ere stored in. e can inspect these data in python by simply typing the array name on the
command line

In [ ]: raster_sub 

 
4243 

 

[ ]: [[ 5 ]  
[ 2 522 5]  
[ 5 5 ]  
[ 5 ]  
[ 5 55 5 ]] n
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Displaying Bands in the Time Series of SAR Data
From the look-up table we know that bands 5 and 18 in the Niamey dataset are from late March and late October. Let's take look at these images.

HINT: Because python is an object oriented scripting language, we can often combine several steps (or function calls) into one command.
See the trick below to access a raster band and read the data in one step.

In [2 ]: # These will select the two bands  
raster_1 = img.GetRasterBand(5).ReadAsArray() 

2 = img.GetRasterBand(18).ReadAsArray() 

Plotting in Python to Visualize the Image Bands
atplotlib s plotting functions allo  for po erful options to display imagery. e are follo ing some standard approaches for setting up figures.

First we are looking at a raster band and it's associated histogram.

In [2 ]: fig = plt.figure(figsize=(16,8)) # Initialize figure with a size 
ax1 = fig.add_subplot( 2 )  # 121 determines: 1 row, 2 plots, first plot 

2 = fig.add_subplot( 22)  # 122 determines: 1 row, 2 plots, second plot 
 
# First plot: Image 
bandnbr=5 
ax1.imshow(raster_1,cmap='gray',vmin=2 ,vmax= ) 
ax1.set_title('Image Band {} {}'.format(bandnbr, 
                                    tindex[bandnbr-1].date())) 
 
# Second plot: Historgram 
# IMPORTANT: To get a histogram, we first need to *flatten*  
# the two-dimensional image into a one-dimensional vector. 
h = 2.hist(raster_1.flatten(),bins= ,range=( , )) 
2.xaxis.set_label_text('Amplitude (Uncalibrated DN Values)') 

_= 2.set_title('Histogram Band {} {}'.format(bandnbr, 
                                    tindex[bandnbr-1].date())) 
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Writing a plotting function for the task

Below, the plotting commands used above are defined in a function named showImage. Several parameters can be passed to the function, some with default values listed
at the end:

raster = a numpy two dimensional array
tindex = a panda index array for dates
bandnbr = the band number the corresponds to the raster
vmin = minimim value to display
vmax = maximum value to display

Note: By default, data will be linearly stretched between vmin and vmax.

In [22]: def showImage(raster,tindex,bandnbr,vmin=None,vmax=None : 
    fig = plt.figure(figsize=(16,8)) 
    ax1 = fig.add_subplot( 2 ) 
    2 = fig.add_subplot( 22) 
 
    ax1.imshow(raster,cmap='gray',vmin=vmin,vmax=vmax) 
    ax1.set_title('Image Band {} {}'.format(bandnbr, 
                                tindex[bandnbr-1].date())) 
    vmin=np.percentile(raster,2) if vmin==None else vmin #change vmin & vmax to
 change what values are displayed 
    vmax=np.percentile(raster,98) if vmax==None else vmax 
    ax1.xaxis.set_label_text( 
        'Linear stretch Min={} Max={}'.format(vmin,vmax)) 
     
     
    h = 2.hist(raster.flatten(),bins=100,range=(0,8000)) 
    2.xaxis.set_label_text('Amplitude (Uncalibrated DN Values)') 
    2.set_title('Histogram Band {} {}'.format(bandnbr, 
                                tindex[bandnbr-1].date())) 

R  1  Read different ands and disp a  the  using the unction sho age

Use as a variable name for bands bandnbr. Use the already open image handle img to obtain the raster data from a band.
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In [2 ]: # ENTER YOUR CODE HERE 
showImage( 2,tindex,11,1000,2 ) 

R  2  Read t o different ands and disp a  the  side  side

The output should display t o bands ith a heading of the band numbers. se the concept for figures ith subplots from the function sho Image . Try your code to
compare images from different years and different seasons.

In [2 ]: # ENTER YOUR CODE HERE 
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Time Series Data Stacks
Just as we can use the ReadAsArray() function on a band, we can actually use it on the entire image data stack. To read an entire stack, i.e. all bands use the function on the
image data handle:

img.ReadAsArray()

CAUTION: Since this could potentially result in large memory need, it is wise to do some preliminary calcuations as to how large of a data set would be read in. For that we
can do the following calculation:

For SAR data we typically use dataypes of:

Float 32 bit (4 bytes per pixel) for power and dB data,
Unsigned Integer 16 bit (2 bytes per pixel) linearly scaled amplitudes, and
Unsigned Byte (1 byte per pixel) for dB-scaled to 8 bit data

The following table gives an overview of typically used data types for SAR data analysis in python:

Data Type Numpy Name GDAL Name GDAL Code Bytes per pixel

Float 32 bit np.float32 gdal.GDT_Float32 6 4

Unsigned Integer 16 bit np.uint16 gdal.GDT_UInt16 2 2

Unsigned Integer 8 bit np.uint8 gdal.GDT_Byte 1 1

Compare the result of the computation with the available RAM on the computer running the notebook.

EXERCISE 3: Compute the Data Volume of the Raster Stack

Compute the estimated data volume from the data set opened with gdal.Open() using the img object information img.RasterXSize, img.RasterYSize, img.RasterCount,
img.GetRasterBand(1).DataType

In [25]: # ENTER YOUR CODE HERE (if you need help see the bottom of the document) 
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Reading the SAR Time Series Subset

et s read a image subset offset ,   si e ,  of the entire time series data stac . The data are representatios of linearly scaled amplitudes scaled to
unsigned  bit interger

e use the gdal ReadAsArray xoff,yoff,xsi e,ysi e  function here

xoff  offset in pixels from upper left
yoff  offset in lines from upper left
xsi e  number of pixels
ysi e  number of lines

If ReadAsArray  is called ithout any parameters set, the entire image data stac  is read. ReadAsArray  returns a numpy array of the form

bands,lines,pixels

In [2 ]: # Alternatively you can make a subset and use  
# it in the ReadAsArray function prefixed with a star 
subset=(2 ,2 , 2 , 2 ) 
rasterDN = img.ReadAsArray(*subset) 

The numpy .shape ob ect tells us the dimensions of this data stac  as bands (here:time steps), lines, and pixels

In [2 ]: rasterDN.shape 

Data conversion from linear scaled amplitudes to dB, power and amplitude data

The values of the ra  image data sho  the linearly scaled amplitude values. These digital number D  values need to be converted to proper bac scatter values of .

e consider conversion to dB scale logarithmic scale  for the expression of the AR bac scatter, po er, or amplitude scale.

AR bac scatter data of radiometrically terrain corrected data are often expressed as  or the terrain attened  bac scattering coe cients. or forest and land cover
monitoring applications  is the preferred metric.

onversion from po er to the logarithmic decibel dB  scale follo s

As per idely used convention AR bac scatter data are often stored in bit unsigned integer values as linearly scaled amplitude data referred to belo  as digital numbers
DN , conversion to dB scale from the linear scaled amplitues is performed ith a standard calibration factor of -83 dB. This is ho  A  AR data are distributed by
A A, ho  Earth Big Data  produces all AR data including entinel  data, and ho  I AR data ill li ely be scaled

onversion from amplitude to dB

In [2 ]: rasterdB=2 *np. (rasterDN)-  

[2 ]: 2 2
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Conversion from dB to power:

In [2 ]: rasterPwr=np.power(10.,rasterdB/10.) 

Conversion from power to amplitude:

In [ ]: rasterAmp=np.sqrt(rasterPwr) 

Explore the image bands of the time steps

Let's explore how a band looks in the various image scales

hoose the and nu er and find hich date it is

In [ ]: bandnbr=2  
tindex[bandnbr-1] 

Belo  is the python code to create a four part figure comparing the effect of the representation of the bac scatter values in the D , amplitude, po er and dB scale.

[ ]: 2 5 2 : :

In [ 2]: fig=plt.figure(figsize=(16,16)) 
 
ax1=fig.add_subplot(22 ) 

2=fig.add_subplot(222) 
=fig.add_subplot(22 ) 

ax4=fig.add_subplot(22 ) 
 
ax1.imshow(rasterDN[bandnbr] cmap='gray', 
           vmin=np.percentile(rasterDN,10), 
           vmax=np.percentile(rasterDN,90)) 
2.imshow(rasterAmp[bandnbr] cmap='gray', 

           vmin=np.percentile(rasterAmp,10), 
           vmax=np.percentile(rasterAmp,90)) 

.imshow(rasterPwr[bandnbr] cmap='gray', 
           vmin=np.percentile(rasterPwr,10), 
           vmax=np.percentile(rasterPwr,90)) 
ax4.imshow(rasterdB[bandnbr] cmap='gray', 
           vmin=np.percentile(rasterdB,10), 
           vmax=np.percentile(rasterdB,90)) 
 
ax1.set_title('DN Scaled (Amplitudes)') 
2.set_title('Amplitude Scaled') 
.set_title('Power Scaled') 

_=ax4.set_title('dB Scaled') 
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In [ ]: # Setup for three part figure 
fig=plt.figure(figsize=(16,4)) 
fig.suptitle('Comparison of Histograms of SAR Backscatter in Different Scales',f
ontsize=14) 
ax1=fig.add_subplot( ) 
ax2=fig.add_subplot( 2) 

=fig.add_subplot( ) 
 
# Important to "flatten" the 2D raster image to produce a historgram 
ax1.hist(rasterAmp[bandnbr].flatten(),bins=100,range=(0.,0.6)) 
ax2.hist(rasterPwr[bandnbr].flatten(),bins=100,range=(0.,0.25)) 

.hist(rasterdB[bandnbr].flatten(),bins=100,range=(-25,-5)) 
 
# Means, medians and stddev 
amp_mean=rasterAmp[bandnbr].mean() 
amp_std=rasterAmp[bandnbr].std() 
pwr_mean=rasterPwr[bandnbr].mean() 
pwr_std=rasterPwr[bandnbr].std() 
dB_mean=rasterdB[bandnbr].mean() 
dB_std=rasterdB[bandnbr].std() 
 
# Some lines for mean and median 
ax1.axvline(amp_mean,color='red') 
ax1.axvline(np.median(rasterAmp[bandnbr] color='blue') 
ax2.axvline(pwr_mean,color='red',label='Mean') 
ax2.axvline(np.median(rasterPwr[bandnbr] color='blue',label='Median') 

.axvline(dB_mean,color='red') 

.axvline(np.median(rasterdB[bandnbr] color='blue') 
 
# Lines for 1 stddev 
ax1.axvline(amp_mean-amp_std,color='gray') 
ax1.axvline(amp_mean+amp_std,color='gray') 
ax2.axvline(pwr_mean-pwr_std,color='gray',label='1 $\sigma$') 
ax2.axvline(pwr_mean+pwr_std,color='gray') 

.axvline(dB_mean-dB_std,color='gray') 

.axvline(dB_mean+dB_std,color='gray') 
 
ax1.set_title('Amplitude Scaled') 
ax2.set_title('Power Scaled') 

.set_title('dB Scaled') 
_=ax2.legend() 

Comparing histograms of the amplitude, power, and dB scaled data
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Why is the scale important?
It is critical to use the correct scaling of SAR data for image processing operations. As we can see from the comparison of the histograms, the amplitude, power, and dB
scales have different statistial distributions.

In time series analysis we often compare measurements at any given time step against the mean of the time series and compute its residuals. When we compute the mean
of observations, it ma es a difference hether e do that in po er or dB scale. ince dB scale is a logarithmic scale, e cannot simply average data in that scale. onsider
the follo ing bac scatter values and their mean

et s compute the mean of these values in po er and dB scale and compare the result in dB scale

In [ ]: g1_dB = -10 
g2_dB = -15 
g1_pwr = np.power(10.,-10/10.) 
g2_pwr = np.power(10.,-15/10.) 
 
mean_dB = (g1_dB+g2_dB)/2. 
mean_pwr = (g1_pwr+g2_pwr)/2. 
mean_pwr_inDB = 10.*np.log10(mean_pwr) 
 
print( n n : {:.1f}'.format(mean_dB)) 
print( n n n : {:.1f}'.format(mean_pwr_inDB)) 

As one can see, there is a .  dB difference in the average of these t o  bac scatter values. If e ma e mean estimates of bac scatter values, the correct scale in which
operations need to be performed is the power scale. This is critical, e.g. hen spec le filters are applied, spatial operations li e bloc  averaging are performed, or time
series are analy ed. ery often e implement models that relate bac scatter to biophysical variables li e biomass, forest height, or use thresholds to determine change.
Ensure that the proper scaling is done hen or ing ith the AR data applying these models.

Another example of the effects can be illustrated ith our bac scatter data from the images e extracted. onsider a  hectare indo  extracted from our data sets ith an
off set of ,  for band . e compute the mean over time and space of all the pixels.

In [ 5]: offset=500 
size=5 
o1=offset 
o2=offset+size 

In [ ]: mean_dB = rasterdB[: o1:o2,o1:o2].mean() 
mean_dB 

In [ ]: mean_pwr = rasterPwr[: o1:o2,o1:o2].mean() 
mean_pwr_in_dB = 10.* np.log10(mean_pwr) 
mean_pwr_in_dB 

n n : 2 5 
n n n :  

[ ]: 2

[ ]: 55 2
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As one can see, a difference of more than .  dB is found simply by operating in the different scales. Hence  A TI

p oring o ari ation ifferences
e loo  at the bac scatter characteristics in AR data from li e polari ed same transmit and receive polar ation, hh or vv  and cross polari ed vh or hv polari ation . or

this, e read a timestep in both polari ations, plot the histograms, and display the images in dB scale. irst, e open the images, pic  the bands from the same ac uisition
date, read the raster bands and convert them to dB scale.

In [ ]: # Open the Images 
img_like=gdal.Open(imagefile) 
img_cross=gdal.Open(imagefile_cross) 
# Pick the bands, read rasters and convert to dB 
bandnbr_like=20 
bandnbr_cross=20 
rl=img_like.GetRasterBand(bandnbr_like).ReadAsArray() 
rc=img_cross.GetRasterBand(bandnbr_cross).ReadAsArray() 
rl_dB=20.*np.log10(rl)-  
rc_dB=20.*np.log10(rc)-  

o , e explore the differences in the polari ations by plotting the images ith their histograms. e loo  at the dB ranges over hich the histograms spread, and can
ad ust the linear scaling in the image display accordingly to enhace contrast. In the case belo

vv li e polari ed data are mostly spread from .  to  dB
vh cross polari ed data are mostly spread from  to  dB

Thus, e note that the cross polari ed data exhibit a larger dynamic range of about .  dB
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In [ ]: fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(16,16)) 
fig.suptitle('Comaprison of Like- and Cross-Polarized Sentinel-1 C-band Data', 
             fontsize=14) 
ax[0][0].set_title('C-VV Image') 
ax[0][1].set_title('C-VH Image') 
ax[1][0].set_title('C-VV Histogram') 
ax[1][1].set_title('C-VH Histogram') 
ax[0][0].axis('off') 
ax[0][1].axis('off') 
ax[0][0].imshow(rl_dB,vmin=-17.5,vmax=-5,cmap='gray') 
ax[0][1].imshow(rc_dB,vmin=-25,vmax=-10,cmap='gray') 
ax[1][0].hist(rl_dB.flatten(),range=(-25,-5),bins=100) 
ax[1][1].hist(rc_dB.flatten(),range=(-25,-5),bins=100) 
fig.tight_layout()  # Use the tight layout to make the figure more compact 

R  4  p ore different easons in different po ari ations

hange the band numbers bandnbr li e and bandnbr cross in the cell above to explore different bands.
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.

EXERCISE SOLUTIONS
Solution 1

In [ ]: # Pick different band numbers  for the exercise.  
# Adjust scaling factors and see the effect. 
bandnbr=40 
raster=img.GetRasterBand(bandnbr).ReadAsArray() 
showImage(raster,tindex,bandnbr,4000,8000) 

Solution 2

In [ ]: # Enter your code for the exercise here. 
bandnbr1=51 
raster1=img.GetRasterBand(bandnbr1).ReadAsArray() 
 
bandnbr2=66 
raster2=img.GetRasterBand(bandnbr2).ReadAsArray() 
 
fig=plt.figure(figsize=(16,8)) 
ax1=fig.add_subplot(121) 
ax2=fig.add_subplot(122) 
ax1.imshow(raster1,vmin=2000,vmax=8000,cmap='gray') 
ax2.imshow(raster2,vmin=2000,vmax=8000,cmap='gray') 
ax1.set_title('Band {}   Date {}'.format(bandnbr1,tindex[bandnbr1-1].date())) 
_=ax2.set_title('Band {}   Date {}'.format(bandnbr2,tindex[bandnbr2-1].date())) 

Solution 3:

In [ ]: # Get the Data type 
img.GetRasterBand(1).DataType 

In [ ]: #Use the lookup table for the number of bytes per pixel for this type: 
bytespp=2 
size=img.RasterCount*img.RasterXSize*img.RasterYSize*bytespp/(1024*1024*1024) 
print('Data Volume for {}: {:.1f} Gigabytes'.format(img.GetDescription(),size)) 
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SAR TRAINING WORKSHOP: Forest Applications
PART 2 - SAR TIME SERIES VISUALIZATION AND ANIMATIONS
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

This section introduces more sophisticated animations for time series visualization which allow us to inspect time series in more depth. Note that html animations are not
exported into the pdf file, but ill display interactively.

In [ ]: # Turn on inline presentations 
%matplotlib inline 

In [2]: # Imports 
import os 
import time 
import gdal 
import pandas as pd 
 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.patches as patches  # Needed to draw rectangles 
from matplotlib import animation, rc 
from IPython.display import HTML 

West Africa - Biomass Site

In [ ]: #datadirectory='/dev/shm/projects/c401servir/wa/BIOsS1/' 
datadirectory= :\\Users\\ n I 5 5 \\Downloads\\ I \\'  
#if using a PC you may need to add two forward slashes between folders 
 
datefile = 2 2 5  
imagefile= 2 2 5  
subset=None 
# subset=(2000,2000,1000,1000) 
# # Browse image 
# # datefile ='S32631X398020Y1315440sS1_A_vh_browse.dates' 
# # imagefile='S32631X398020Y1315440sS1_A_vh_browse.tif' 
# subset=None 
# subset=(3700,1500,500,500) 
# subset=(3000,700,500,500) 

West Africa - Niamey Deforestation Site

In [ ]: # datadirectory='/Users/rmuench/Downloads/wa/cra/' 
# datefile ='S32631X402380Y1491460sS1_A_vv_0001_A_mtfil.dates' 
# imagefile='S32631X402380Y1491460sS1_A_vv_0001_A_mtfil.vrt' 
# subset=None 

West Africa - Dam Site
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In [ ]: # datadirectory='/Users/rmuench/Downloads/wa/DAMsS1/' 
# datefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.dates' 
# imagefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.vrt' 
# subset=None 
# # subset=(2000,1500,500,500) 
# # subset=(1500,500,500,500) 

HKH Site

In [ ]: # datadirectory=/Users/rmuench/Downloads/hkh/time_series/S32644X696260Y3052060sS1
-EBD' 
# datefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.dates' 
# imagefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.vrt' 
# imagefile_cross='S32644X696260Y3052060sS1_D_vh_0092_mtfil.vrt' 

Prepare the Animations
In [ ]: os.chdir(datadirectory) 

In [5]: # Get the date indices via pandas 
dates=open(datefile).readlines() 
tindex=pd.DatetimeIndex(dates) 

In [ ]: tindex 

In [ ]: # Open the image and read the first raster band 
img = gdal.Open(imagefile) 
band = img.GetRasterBand(1) 
# Set the subset 
if subset==None: 
    subset=(0,0,img.RasterXSize,img.RasterYSize) 

[ ]: In [ 2 5 22 2 5 2 5 5 2 5 5  
2 5 5 2 2 5 2 2 5 2 5 2  
2 5 2 5 2 2 5 2 5  
2 5 25 2 5 2 5 2 5  
2 5 2 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 2 2 2 2  
2 2 2 2 2 2  
2 2 2 2 5 2 5 5  
2 5 2 2 2 2 2  
2 2 2 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 5  
2 2 2 2 2 2 2 22  
2 2 2 2 5 2 2 2 2  
2 2 2 2 2 2  
2 5 2 5 22 2 2 5  
2 2 2 2 2 2 2  
2 2 2 2 2  
2 2 25 2 2  
2 ]  

[n ] n
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In [ ]: subset 

In [ ]: # Plot one band and subset outline to see which subset we are interested in 
raster=band.ReadAsArray() 
vmin=np.percentile(raster.flatten(),5) 
vmax=np.percentile(raster.flatten(), 5) 
fig=plt.figure(figsize=(10,10)) 
ax=fig.add_subplot(111) 
ax.imshow(raster,cmap='gray',vmin=vmin,vmax=vmax) 
# plot the subset as rectangle 
_=ax.add_patch(patches.Rectangle((subset[0] subset[1] subset[2] subset[3]  
                                 fill=False,edgecolor='red')) 

In [ ]: raster0 = band.ReadAsArray(*subset) 
bandnbr=0 # Needed for updates 
rasterstack=img.ReadAsArray(*subset) 

[ ]: (0, 0, 4243, 3776)
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In [ ]: %%capture  
import matplotlib.pyplot as plt 
import matplotlib.animation 
import numpy as np 
 
fig=plt.figure(figsize=( , )) 
ax = fig.add_subplot( ) 
ax.axis('off') 
vmin=np.percentile(rasterstack.flatten(),5) 
vmax=np.percentile(rasterstack.flatten(),95) 
 
im = ax.imshow( ,cmap='gray',vmin=vmin,vmax=vmax) 
ax.set_title("{}".format(tindex[ ].date())) 
 
def animate(i : 
    ax.set_title("{}".format(tindex[i].date())) 
    im.set_data(rasterstack[i]  
 
# Interval is given in milliseconds 
ani = matplotlib.animation.FuncAnimation(fig, animate,  
                                         frames=rasterstack.shape[ ]  
                                        interval= ) 

In [ 2]: rc('animation',embed_limit= 52 )  # We need to increase the  
            # limit to show the entire animation 
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In [ ]: from IPython.display import HTML 
HTML(ani.to_jshtml()) 

Plot the global means of the Time Series for the Subset
1. Conversion to power

2. Compute means

3. Convert to dB

4. Plot time series of means

[ ]:

 

 
~  a  `   d  c  h  g  }

 n e  oop  efle t
c
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In [ ]: # 1. Conversion to Power 
caldB=-83 
calPwr = np.power( ,caldB/ ) 
rasterstack_pwr = np.power(rasterstack,2.)*calPwr 
# 2. Compute Means 
rs_means_pwr = np.mean(rasterstack_pwr,axis=( ,2)) 
# 3. Convert to dB 
rs_means_dB = *np. (rs_means_pwr) 

In [ 5]: rs_means_pwr.shape # Check that we got the means over time 

In [ ]: # 4. Plot 
fig=plt.figure(figsize=( , )) 

=fig.add_subplot( ) 
.plot(tindex,rs_means_pwr) 
.set_xlabel('Date') 
.set_ylabel( n [ ] ) 

 
 
ax2= .twinx() 
ax2.plot(tindex,rs_means_dB,color='red') 
ax2.set_ylabel( n [ ] ) 
fig.legend ['power','dB'] loc= ) 
plt.title('Time series profile of average band backscatter $\gamma^o$ ') 

In [ ]: a =pd.Series(rs_means_dB,index=tindex) 

[ 5]:

[ ]: 5 n
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In [ ]: #This will print a list of the dates and the respective dB mean values 
a 

Out[18]: 2015-03-22   -10.139979 
2015-04-03   -10.184575 
2015-04-15   -10.143337 
2015-05-09   -10.134364 
2015-05-21   -10.218999 
2015-06-02   -10.481450 
2015-06-14   -10.728489 
2015-06-26    -9.964857 
2015-07-08    -9.330598 
2015-07-20    -8.706461 
2015-08-01    -8.734129 
2015-08-13    -8.235253 
2015-08-25    -7.423883 
2015-09-06    -7.023914 
2015-09-18    -6.836782 
2015-09-30    -8.363434 
2015-10-12    -9.116455 
2015-10-24    -9.169089 
2015-11-17   -10.202442 
2015-11-29   -11.128629 
2015-12-11   -11.145837 
2015-12-23   -11.523537 
2016-01-04   -11.549477 
2016-01-28   -11.430446 
2016-02-09   -11.372730 
2016-03-04   -11.207707 
2016-03-16   -11.401895 
2016-03-28   -11.278982 
2016-04-09   -10.491783 
2016-04-21   -11.249865 
                ...     
2016-12-05   -11.314669 
2016-12-17   -11.671808 
2016-12-29   -11.566748 
2017-01-10   -11.438762 
2017-01-22   -11.441662 
2017-02-03   -11.427748 
2017-02-15   -11.367423 
2017-02-27   -11.354894 
2017-03-11   -11.246345 
2017-03-23   -11.229724 
2017-04-04   -11.605949 
2017-04-16   -11.442106 
2017-04-28   -11.490215 
2017-05-10   -11.580404 
2017-05-22   -11.092516 
2017-06-03   -11.248882 
2017-06-15   -10.215062 
2017-06-27   -10.183667 
2017-07-09    -9.969588 
2017-07-21    -9.901120 
2017-08-02    -9.140317 
2017-08-14    -8.085749 
2017-08-26    -7.777649 
2017-09-07    -8.956864 
2017-09-19    -8.700844 
2017-10-13    -9.901974 
2017-10-25   -10.611529 
2017-11-06   -11.038310 
2017-11-18   -11.161617 
2017-11-30   -11.492415 
Length: 77, dtype: float64

Out[18]: 2015-03-22   -10.139979 
2015-04-03   -10.184575 
2015-04-15   -10.143337 
2015-05-09   -10.134364 
2015-05-21   -10.218999 
2015-06-02   -10.481450 
2015-06-14   -10.728489 
2015-06-26    -9.964857 
2015-07-08    -9.330598 
2015-07-20    -8.706461 
2015-08-01    -8.734129 
2015-08-13    -8.235253 
2015-08-25    -7.423883 
2015-09-06    -7.023914 
2015-09-18    -6.836782 
2015-09-30    -8.363434 
2015-10-12    -9.116455 
2015-10-24    -9.169089 
2015-11-17   -10.202442 
2015-11-29   -11.128629 
2015-12-11   -11.145837 
2015-12-23   -11.523537 
2016-01-04   -11.549477 
2016-01-28   -11.430446 
2016-02-09   -11.372730 
2016-03-04   -11.207707 
2016-03-16   -11.401895 
2016-03-28   -11.278982 
2016-04-09   -10.491783 
2016-04-21   -11.249865 
                ...     
2016-12-05   -11.314669 
2016-12-17   -11.671808 
2016-12-29   -11.566748 
2017-01-10   -11.438762 
2017-01-22   -11.441662 
2017-02-03   -11.427748 
2017-02-15   -11.367423 
2017-02-27   -11.354894 
2017-03-11   -11.246345 
2017-03-23   -11.229724 
2017-04-04   -11.605949 
2017-04-16   -11.442106 
2017-04-28   -11.490215 
2017-05-10   -11.580404 
2017-05-22   -11.092516 
2017-06-03   -11.248882 
2017-06-15   -10.215062 
2017-06-27   -10.183667 
2017-07-09    -9.969588 
2017-07-21    -9.901120 
2017-08-02    -9.140317 
2017-08-14    -8.085749 
2017-08-26    -7.777649 
2017-09-07    -8.956864 
2017-09-19    -8.700844 
2017-10-13    -9.901974 
2017-10-25   -10.611529 
2017-11-06   -11.038310 
2017-11-18   -11.161617 
2017-11-30   -11.492415 
Length: 77, dtype: float64
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 t o part figure ith o ing g o a  ean ac scatter o  the ti e
series in d
In [ ]: %%capture  

import matplotlib.pyplot as plt 
import matplotlib.animation 
import numpy as np 
 
fig, ( ,ax2) = plt.subplots( ,2,figsize=( ,4),gridspec_kw = {'width_ratios':[
, 3]  
 
vmin=np.percentile(rasterstack.flatten(),5) 
vmax=np.percentile(rasterstack.flatten(), 5) 
im = .imshow(raster0,cmap='gray',vmin=vmin,vmax=vmax) 

.set_title("{}".format(tindex[0].date())) 

.set_axis_off() 
 
ax2.axis [tindex[0] tindex[- ] rs_means_dB.min(),rs_means_dB.max ]  
ax2.set_ylabel( n [ ] ) 
ax2.set_xlabel('Date') 
ax2.set_ylim((- 5,-5)) 
l, = ax2.plot [] []  
 
 
def animate(i : 
    .set_title("{}".format(tindex[i].date())) 
    im.set_data(rasterstack[i]  
    ax2.set_title("{}".format(tindex[i].date())) 
    l.set_data(tindex[: i+ ] rs_means_dB[: i+ ]  
 
# Interval is given in milliseconds 
ani = matplotlib.animation.FuncAnimation(fig, animate,  
                                         frames=rasterstack.shape[0]  
                                        interval=400) 

In [2 ]: from IPython.display import HTML 
HTML(ani.to_jshtml()) 

[2 ]:

 

 
~  a  `   d  c  h  g  }

 n e  oop  efle t
c

EXERCISE
Modify the animation function to display animation of a single pixel of your choosing.

Bonus: Add a second pixel to the right hand graph.
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SAR Training Workshop for Forest Applications
PART 3 - Change Detection with Time Series Metrics and Log Ratio
Method
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2018

In this chapter we introduce three methods for change detection based on

Time series metrics 95  and 5  percentile difference thresholding

Time series coe cient of variation thresholding

Log Ratio from two image pairs

Import Python modules
In [ ]: import os,sys,gdal 

%matplotlib inline 
import matplotlib.pylab as plt 
import matplotlib.patches as patches  # Needed to draw rectangles 
from skimage import exposure # to enhance image display 
import numpy as np 
import pandas as pd 

Select the project data set and time series data

Louisiana Timber Management Site

In [ ]: # SENTINEL-1 TIME SERIES STACK VV from LOUISIANA FOREST MANAGEMENT SITE 
#datapath='/dev/shm/projects/c303nisar/louisiana/15SWRsS1/15SWRsS1-EBD/' 
#imagefile='15SWRsS1_A_vv_0063_A_mtfil.vrt' 
#datefile='15SWRsS1_A_vv_0063_A_mtfil.dates' 

West Africa - Biomass Site

In [ ]: datapath= n n I  
datefile= 2 2 5  
imagefile= 2 2 5  

= 2 2 5  

In [5]: os chdir(datapath) 
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e are defining t o helper functions for this tas

reate eoTiff  to rite out images
ti eseries etrics  to compute various metrics from a time series data stac

In [ ]: def CreateGeoTiff(Name, Array, DataType, NDV,bandnames=None,ref_image=None,  
                  GeoT=None, Projection=None : 
    # If it's a 2D image we fake a third dimension: 
    if len(Array.shape)==2: 
        Array=np.array [Array]  
    if ref_image==None and (GeoT==None or Projection==None : 
        raise RuntimeWarning('ref_image or settings required.') 
    if bandnames != None: 
        if len(bandnames) != Array.shape[0]: 
            raise RuntimeError('Need {} bandnames. {} given' 
                               .format(Array.shape[0] len(bandnames))) 
    else: 
        bandnames=['Band {}'.format(i+1) for i in range(Array.shape[0] ] 
    if ref_image!= None: 
        refimg=gdal.Open(ref_image) 
        GeoT=refimg.GetGeoTransform() 
        Projection=refimg.GetProjection() 
    driver= gdal.GetDriverByName('GTIFF') 
    Array[np.isnan(Array ] = NDV 
    DataSet = driver.Create(Name,  
            Array.shape[2]  Array.shape[1]  Array.shape[0]  DataType) 
    DataSet.SetGeoTransform(GeoT) 
    DataSet.SetProjection( Projection) 
    for i, image in enumerate(Array, 1 : 
        DataSet.GetRasterBand(i).WriteArray( image ) 
        DataSet.GetRasterBand(i).SetNoDataValue(NDV) 
        DataSet.SetDescription(bandnames[i-1]  
    DataSet.FlushCache() 
    return Name 

In [ ]: def timeseries_metrics(raster,ndv=0 :  
    # Make us of numpy nan functions 
    # Check if type is a float array 
    if not raster.dtype.name.find('float')>-1: 
        raster=raster.astype(np.float32) 
    # Set ndv to nan 
    if ndv != np.nan: 
        raster[np.equal(raster,ndv ]=np.nan 
    # Build dictionary of the metrics 
    tsmetrics={} 
    rperc = np.nanpercentile(raster [5,50,95] axis=0) 
    tsmetrics['mean']=np.nanmean(raster,axis=0) 
    tsmetrics['max']=np.nanmax(raster,axis=0) 
    tsmetrics['min']=np.nanmin(raster,axis=0) 
    tsmetrics['range']=tsmetrics['max']-tsmetrics['min'] 
    tsmetrics['median']=rperc[1] 
    tsmetrics['p5']=rperc[0] 
    tsmetrics['p95']=rperc[2] 
    tsmetrics['prange']=rperc[2]-rperc[0] 
    tsmetrics['var']=np.nanvar(raster,axis=0) 
    tsmetrics['cov']=tsmetrics['var']/tsmetrics['mean'] 
    return tsmetrics 
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Set the Dates

In [ ]: # Get the date indices via pandas 
dates=open(datefile).readlines() 
tindex=pd.DatetimeIndex(dates) 
j=1 
print('Bands and dates for',imagefile) 
for i in tindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

Explore the Images
Below are a couple of plots showing the dataset

Open the image and get dimensions (bands,lines,pixels):

In [ ]: img=gdal.Open(imagefile) 
img.RasterCount,img.RasterYSize,img.RasterXSize 

For a managable size we choose a 1000x1000 pixel subset to read the entire data stack. We also convert the amplitude data to power data right away and will perform the
rest of the calculations on the po er data to be mathmatically correct. TE  hoose a different xsi e ysi e in the subset if you need to.

n n 2 2 5  
2 5 22 2 2 5 2 5 5 2 5 5 5 2 5 5 2  
2 5 2 2 5 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 5 25 2 5 5 2 5  
2 5 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 22 2 5 2 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2 2  

2 5 2 2 5 5 2 5 2 2 5 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 2 5 2  
2 2 2 2 2 5 2 2 5 2 2 2  

5 2 52 2 22 5 2 2 5 2 2 5 55 2 2 2  
5 2 5 2 2 5 2 5 2 2 2  

2 5 2 2 5 22 2 2 5 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 2 2 25 5 2  
2 2  

[ ]: 2
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In [ ]: subset=( 5 , ,5 ,5 )   # (xoff,yoff,xsize,ysize) 
bandnbr=  
 
rasterDN=img.GetRasterBand(bandnbr).ReadAsArray() 
fig, ax = plt.subplots(figsize=(8,8)) 
ax.set_title( n n I {}' 
             .format(tindex[bandnbr- ].date())) 
ax.imshow(rasterDN,cmap='gray',vmin=2 ,vmax= ) 
ax.grid(color='blue') 
ax.set_xlabel('Pixels') 
ax.set_ylabel('Lines') 
# plot the subset as rectangle 
if subset  None: 
    _=ax.add_patch(patches.Rectangle((subset[ ] subset[ ]  
                                     subset[2] subset[3]  
                                     fill=False,edgecolor='red', 
                                     linewidth=3)) 

In [ ]: rasterDN=img.ReadAsArray(*subset) 
mask=rasterDN==  

=np.power( ,-8.3) 
rasterPwr=np.ma.array(np.power(rasterDN,2.)* ,mask=mask,dtype=np.float32) 
# Code below is an example to generate an 8bit scaled dB image 
# rasterDB=(10.*np.ma.log10(rasterPwr)+31)/0.15    
# rasterDB[rasterDB<1.]=1. 
# rasterDB[rasterDB>255.]=255. 
# rasterDB=rasterDB.astype(np.uint8) 
# rasterDB=rasterDB.filled(0) 
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e ma e an RGB stac  to display the first, center, and last time step as a multi temporal color composite. The np.dstac  results in an array of the form lines,pixels,bands ,
hich is the format e need for RGB display ith matplotlib s imsho  function.

Note that numpy array indexing starts ith , so band  is raster .

In [ 2]: rgb_bands=( ,int(img.RasterCount/2),img.RasterCount)  # first, center, last band 
rgb_bands=( , , )  
rgb_bands=( ,45,74) 
rgb_idx=np.array(rgb_bands)-   # get array index from bands by subtracting 1 
rgb=np.dstack((rasterPwr[rgb_idx[ ]] rasterPwr[rgb_idx[ ]] rasterPwr[rgb_idx[2
]]  
rgb_dates=(tindex[rgb_idx[ ]].date(), 
           tindex[rgb_idx[ ]].date(),tindex[rgb_idx[2]].date()) 

e are also interested in displaying the image enhanced ith histogram e uali ation.

e can use the function exposure.e uali e hist  from the s image.exposure module

In [ ]: rgb_stretched=rgb.copy() 
# For each band we apply the strech 
for i in range(rgb_stretched.shape[2] : 
    rgb_stretched[: : i] = exposure.\ 
    equalize_hist(rgb_stretched[: : i].data, 
    mask=~np.equal(rgb_stretched[: : i].data, )) 

o  let s display the unstrechted and histogram e uali ed images side by side.

In [ ]: fig,ax = plt.subplots( ,2,figsize=( ,8)) 
fig.suptitle( n n :{} :{} :{}' 
             .format(rgb_dates[0] rgb_dates[ ] rgb_dates[2]  
plt.axis('off') 
ax[0].imshow(rgb) 
ax[0].set_title( n ) 
ax[0].axis('off') 
ax[ ].imshow( ) 
ax[ ].set_title('Histogram Equalized') 
_=ax[ ].axis('off') 
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Computation and Visualization of the Time Series Metrics
For the entire time series, we will compute some metrics that will aid us in change detection. For each pixel in the stack we compute:

Mean

Median

Maximum

Minimum

Range (Maximum - Minimum)

5th Percentile

95th Percentile

PRange (95th - 5th Percentile)

Variance

oe cient of ariation ariance ean

In [ 5]: = (rasterPwr.filled(np.nan),ndv=np.nan) 

In [ ]: #Print out what the various metrics keys are 
metrics.keys() 

et s loo  at the histograms for the time series variance and coeficient of variation to aid displaying those images

In [ ]: fig, ax= plt.subplots( ,2,figsize=( ,4)) 
ax[0].hist(metrics['var'].flatten(),bins= ) 
ax[ ].hist(metrics['cov'].flatten(),bins= ) 
_=ax[0].set_title('Variance') 
_=ax[ ].set_title('Coefficient of Variation') 

e use thresholds determined from those histograms to set the scaling in the time series visuali tion. or the bac scatter metrics e choose a typical range appropriate for
this ecosystem and radar sensor. A typical range is  dB .  to .  dB . .

[ ]: [ n n n n 5 5 n
]
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In [ ]: # List the metrics keys you want to plot 
metric_keys=['mean', 'median', 'max', 'min',  
             'p95', 'p5','range', 'prange','var','cov'] 
fig= plt.figure(figsize=( ,40)) 
idx=  
for i in metric_keys: 
    ax = fig.add_subplot(5,2,idx) 
    if i=='var': vmin,vmax=(0.0,0.005) 
    elif i == 'cov': vmin,vmax=(0.,0.04) 
    else: 
        vmin,vmax=( ,0.3) 
    ax.imshow(metrics[i] vmin=vmin,vmax=vmax,cmap='gray') 
    ax.set_title(i.upper()) 
    ax.axis('off') 
    idx+=  
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hange detection ith the ercenti e ifference Thresho d ethod
In this method e find thresholds on the  and  percentile difference. The advantage to loo  at percentiles verus maximum minus minimum is that outliers and
extremas in the time series are not in uencing the result.

or our example, the historgram of the  and  percentile difference image loo s li e this

In [ ]: plt.hist(metrics['range'].flatten(),bins= ,range=( , )) 
_=plt.axvline( 2 ,color='red') 
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et s visuali e the change pixels cp  here the th  th percentile difference in the time series for each pixel x,y  exceed a threshold 

With  the image loo s li e

In [2 ]: thres= 25 
plt figure(figsize=(8,8)) 
mask=metrics['range']<thres # For display we prepare the inverse mask 
maskpdiff=~mask # Store this for later output 
plt imshow(mask,cmap='gray') 
plt legend ['$p_{95} 5 5 ] loc='center right') 
_=plt title('Threshold Classifier on Percentile Difference ($P_{95} 5 5
$)') 

hange etection ith the oe cient o  ariation Method
e can set a threshold  for the coe cient of variation image to classify change in the time series

et s loo  at the histogram of the coe cient of variation
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In [2 ]: plt.hist(metrics['cov'].flatten(),bins= ,range=( , 5)) 
_=plt.axvline( 25,color='red') 

With a threshold t=0.01 the change pixels would look like the following image:

In [22]: thres= 25 
mask=metrics['cov'] < thres 
maskcv=~mask 
plt.figure(figsize=(8,8)) 
plt.imshow(mask,cmap='gray') 
_=plt.title('Threshold Classifier on Time Series Coefficient of Variation') 
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Change Detection with the Log Ratio Method
e compare t o images from the same season in different years. irst e loo  at global means of the bac scatter images in the subset building a time series ob ect of

ac uisition dates and global image means of bac scatter.

In [2 ]: tsmean=10*np.log10(np.nanmean(rasterPwr.filled(np.nan),axis=(1,2))) 

e ma e a time series ob ect to list the dates, mean bac scatter in dB, and band index number for the raster r array

In [2 ]: ts = pd.Series(tsmean,index=tindex) 
for i in range(len(ts : 
    print(i,ts.index[i].date(),ts[i]  

0 2015-03-22 -9.773781 
1 2015-04-03 -9.814333 
2 2015-04-15 -9.84827 
3 2015-05-09 -10.075288 
4 2015-05-21 -9.987606 
5 2015-06-02 -9.835003 
6 2015-06-14 -10.412914 
7 2015-06-26 -10.64331 
8 2015-07-08 -9.98234 
9 2015-07-20 -9.159636 
10 2015-08-01 -7.678219 
11 2015-08-13 -8.60141 
12 2015-08-25 -7.6070075 
13 2015-09-06 -7.645421 
14 2015-09-18 -6.655918 
15 2015-09-30 -8.7717705 
16 2015-10-12 -9.348694 
17 2015-10-24 -9.547744 
18 2015-11-17 -10.2138815 
19 2015-11-29 -11.099142 
20 2015-12-11 -11.029471 
21 2015-12-23 -11.332901 
22 2016-01-04 -11.346351 
23 2016-01-28 -11.197915 
24 2016-02-09 -11.145014 
25 2016-03-04 -10.9366045 
26 2016-03-16 -11.114582 
27 2016-03-28 -11.000681 
28 2016-04-09 -10.456753 
29 2016-04-21 -11.031124 
30 2016-05-03 -11.042203 
31 2016-05-15 -11.248089 
32 2016-05-27 -10.781347 
33 2016-06-08 -10.7717905 
34 2016-07-02 -10.622729 
35 2016-07-14 -10.262638 
36 2016-07-26 -9.969166 
37 2016-08-07 -9.227007 
38 2016-08-19 -8.372538 
39 2016-08-31 -7.8771267 
40 2016-09-12 -9.163029 
41 2016-09-24 -9.04641 
42 2016-10-06 -10.078144 
43 2016-10-18 -10.534364 
44 2016-10-30 -11.044583 
45 2016-11-11 -11.120414 
46 2016-11-23 -11.056729 
47 2016-12-05 -11.187023 
48 2016-12-17 -11.514052 
49 2016-12-29 -11.376835 
50 2017-01-10 -11.243304 
51 2017-01-22 -11.204616 
52 2017-02-03 -11.176929 
53 2017-02-15 -11.093778 
54 2017-02-27 -11.04459 
55 2017-03-11 -10.92975 
56 2017-03-23 -10.895084 
57 2017-04-04 -11.270055 
58 2017-04-16 -11.106432 
59 2017-04-28 -11.091718 
60 2017-05-10 -11.196309 
61 2017-05-22 -10.516581 
62 2017-06-03 -11.056223 

0 2015-03-22 -9.773781 
1 2015-04-03 -9.814333 
2 2015-04-15 -9.84827 
3 2015-05-09 -10.075288 
4 2015-05-21 -9.987606 
5 2015-06-02 -9.835003 
6 2015-06-14 -10.412914 
7 2015-06-26 -10.64331 
8 2015-07-08 -9.98234 
9 2015-07-20 -9.159636 
10 2015-08-01 -7.678219 
11 2015-08-13 -8.60141 
12 2015-08-25 -7.6070075 
13 2015-09-06 -7.645421 
14 2015-09-18 -6.655918 
15 2015-09-30 -8.7717705 
16 2015-10-12 -9.348694 
17 2015-10-24 -9.547744 
18 2015-11-17 -10.2138815 
19 2015-11-29 -11.099142 
20 2015-12-11 -11.029471 
21 2015-12-23 -11.332901 
22 2016-01-04 -11.346351 
23 2016-01-28 -11.197915 
24 2016-02-09 -11.145014 
25 2016-03-04 -10.9366045 
26 2016-03-16 -11.114582 
27 2016-03-28 -11.000681 
28 2016-04-09 -10.456753 
29 2016-04-21 -11.031124 
30 2016-05-03 -11.042203 
31 2016-05-15 -11.248089 
32 2016-05-27 -10.781347 
33 2016-06-08 -10.7717905 
34 2016-07-02 -10.622729 
35 2016-07-14 -10.262638 
36 2016-07-26 -9.969166 
37 2016-08-07 -9.227007 
38 2016-08-19 -8.372538 
39 2016-08-31 -7.8771267 
40 2016-09-12 -9.163029 
41 2016-09-24 -9.04641 
42 2016-10-06 -10.078144 
43 2016-10-18 -10.534364 
44 2016-10-30 -11.044583 
45 2016-11-11 -11.120414 
46 2016-11-23 -11.056729 
47 2016-12-05 -11.187023 
48 2016-12-17 -11.514052 
49 2016-12-29 -11.376835 
50 2017-01-10 -11.243304 
51 2017-01-22 -11.204616 
52 2017-02-03 -11.176929 
53 2017-02-15 -11.093778 
54 2017-02-27 -11.04459 
55 2017-03-11 -10.92975 
56 2017-03-23 -10.895084 
57 2017-04-04 -11.270055 
58 2017-04-16 -11.106432 
59 2017-04-28 -11.091718 
60 2017-05-10 -11.196309 
61 2017-05-22 -10.516581 
62 2017-06-03 -11.056223 
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To compare two dates for change detection with the log ratio approach we pick two dates of
relative low backscatter (dry conditions) and from similar times of the year. Two such
candidate dates are:
West Africa / Biomass Site example:

2015-11-29 -11.099142 dB (index 19)

2017-11-30 -11.273689 dB (index 76)

In [2 ]: # WA biomass 
Xr=rasterPwr[19]   # Reference Image 
Xi=rasterPwr[ ]  # New Image 

The Log ratio between the images is:

In [2 ]: r = np.log10(Xi/Xr) 

To find a threshold for change, e can display the absolute ration image  and the historgram of . e ad ust the scale factors for the display to enhance
visuali ation of change areas ith largest bac scatter change over the time series. Brighter values sho  larger change.

2 5  
2 2 2  

5 2  
2 2  
2 2 2  
2 22 5 
2 2  
2 2 
2 22 

2 2 2 2  
2 25 2  
2 5 2 

5 2 2252  
2 2  
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In [2 ]: # Display r 
fig, ax = plt.subplots(2,1,figsize=( ,16)) 
ax[0].axis('off') 
ax[0].imshow(np.abs(r),vmin=0,vmax=0.3,cmap='gray') 
_=ax[1].hist(r.flatten(),bins=100,range=(-0.4,0.4)) 
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et s define change pixels as those falling outside the range of three times the standard deviation of the ration image  ro  t e i age ean 

e are using the numpy mas ing to set the non changing pixels inside the range

In [2 ]: stddev=np.std(r) 
thres=3*stddev 
mask=np.logical_and(r>-1*thres,r<thres) 
masklr=~mask 

et s display pixels that fall outside  times the standard deviation

In [ ]: fig,ax = plt.subplots(figsize=(8,16)) 
ax.imshow(mask,cmap='gray') 
ax.xaxis.set_ticks []  
ax.yaxis.set_ticks []  
_=ax.set_title( 2 2 I ) 

Write the i ages to an output fi e
Determine output geometry
irst, e need to set the correct geotransformation and pro ection information. e retrieve the values from the input images and ad ust by the subset
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In [ ]: proj=img.GetProjection() 
geotrans=list(img.GetGeoTransform()) 
 
subset_xoff=geotrans[0]+subset[0]*geotrans[ ]   
subset_yoff=geotrans[ ]+subset[ ]*geotrans[5]  
geotrans[0]=subset_xoff 
geotrans[ ]=subset_yoff 
geotrans=tuple(geotrans) 
geotrans 

Time series metrics images
We use the root of the time series data stack name and append a tsmetrics_.tif ending as filenames

In [ 2]: # Time Series Metrics as image: 
# We make a new subdirectory where we will store the images 
dirname=imagefile.replace('.vrt', 2 ) 
os.makedirs(dirname,exist_ok=True) 
print(dirname) 

Output the individual metrics as GeoTIFF images:

In [ ]: Names=[] # List to keep track of all the names 
for i in metrics: 
    # Name, Array, DataType, NDV,bandnames=None,ref_image 
    Name=os.path.join(dirname,imagefile.replace('.vrt','_'+i+'.tif')) 
    CreateGeoTiff(Name,metrics[i] gdal. 2,np.nan [i] GeoT=geotrans,Proje
ction=proj) 
    Names.append(Name) 

Build a Virtual Raster Table on the Metrics GeoTIFF images

To tie the images in to one ne  raster stac  of time series metrics e build a virtual raster table ith all the metrics.

Tric  se  . oin ames  to build one long string of names separated by a space as input to gdalbuildvrt

In [ ]: cmd='gdalbuildvrt -separate -overwrite -vrtnodata nan '+\ 
   dirname+'.vrt '+' '.join(Names) 
# print(cmd) 
os.system(cmd) 

In [ 5]: os.getcwd() 

In [ ]: print( :\n',dirname+'.vrt') 

[ ]: 2 2 2 2

2 2 5 2 

[ ]: 0

[ 5]: n n I

: 
2 2 5 2  
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Change Images from the three methods
e are going to rite one three band GeoTI  output file that stores the results from the three classifiers

In [ ]: imagename=imagefile.replace('.vrt','_thresholds.tif') 
bandnames=['Percentile','COV','Log Ratio'] 
Array=np.array [maskpdiff,maskcv,masklr]  
CreateGeoTiff(imagename,Array,gdal.GDT_Byte,0,bandnames,GeoT=geotrans,Projection=
proj) 

This image can no  be loaded into GI  or similar programs and only the detected layers should sho .

Conclusion
Thresholds for the three methods are site dependent and need to be identified ith calibration data or visual post classification interpretation, and can subse uently be
ad usted to maximi e classification accuracy. Also, some methods ill have advantages in different scenarios.

At the Earth Big Data E  rocessor e actually transform many of the time series metrics data types bac  to lo er volume storage models, e.g.  bit scaled amplitudes.
ee the EBD Data Guide belo

https github.com EarthBigData open AR blob master doc EBD DataGuide.md

https github.com EarthBigData open AR blob master doc EBD DataGuide.pdf

Exercises
hange the threshold and band choices in this noteboo  to see the effects on detected changes.

Load mas s on the ith GI  and compare the detected areas ith your time series plots and image data in GI .

oo  at the effect of using cross polari ed versus li e polari ed polari ations

[ ]: 2 2 5
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SAR Training Workshop for Forest Applications
PART 4 - SAR Time Series Change Point Detection
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

In this chapter we introduce the advanced concepts of change point detection in time series. One of the goals of change detection for forest applications is to identify
disturbance over an observation period and the timing of events. any tools for change point detection stem from the financial sector and are available today ith different
complexities. In this workbook we will analyze time series signatures from SAR with emphasis on forest time series. We will start by exploring time series at pixel levels and
will work up to a change point detection scenario with image based analysis.

In [ ]: # Importing relevant python packages 
import pandas as pd 
import gdal 
import numpy as np 
import time,os 
 
# For plotting 
%matplotlib inline 
import matplotlib.pylab as plt 
import matplotlib.patches as patches 
 
font = {'family' : 'monospace', 
          'weight' : 'bold', 
          'size'   : } 
plt.rc('font',**font) 

Set Project Directory and Filenames
West Africa - Biomass Site

In [ ]: # datadirectory='c401servir/wa/BIOsS1/' 
# datefile='S32631X398020Y1315440sS1_A_vv_0001_mtfil.dates' 
# imagefile='S32631X398020Y1315440sS1_A_vv_0001_mtfil.vrt' 

West Africa - Niamey Deforestation Site

In [2]: datadirectory='/Users/rmuench/Downloads/wa/cra/' 
datefile= 2 2  
imagefile= 2 2  

West Africa - Dam Site

In [ ]: # datadirectory='/dev/shm/projects/c401servir/wa/DAMsS1/' 
# datefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.dates' 
# imagefile='S32631X232140Y1614300sS1_A_vh_0001_A_mtfil.vrt' 
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HKH Site

In [ ]: # datadirectory='hkh/time_series/S32644X696260Y3052060sS1-EBD' 
# datefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.dates' 
# imagefile='S32644X696260Y3052060sS1_D_vv_0092_mtfil.vrt' 
# imagefile_cross='S32644X696260Y3052060sS1_D_vh_0092_mtfil.vrt' 

In [ ]: # Switch to the data directory 
os.chdir(datadirectory) 

Acquisition Dates
Read from the Dates file the dates in the time series and ma e a pandas date index

In [ ]: dates=open(datefile).readlines() 
tindex=pd.DatetimeIndex(dates) 
j=1 
print('Bands and dates for',imagefile) 
for i in tindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

Image data
Get the time series raster stac  from the entire training data set.

In [5]: rasterstack=gdal.Open(imagefile).ReadAsArray() 

Data Pre-Processing
Plot the global means of the Time Series

1. onversion to po er
2. ompute means
3. onvert to dB
4. a e a pandas time series
. lot time series of means

n n 2 2  
2 5 2 2 5 2 5 2 2 5 2 5 2 5 2 2  
2 2 2 2 2 2 2  
2 2 2 2 2 2 2 5 5 2 5 5  
2 5 2 2 2 2 2 2 2 2  

2 2 22 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2  

2 2 5 2 2 2 2 2 2 2 5 2 22  
2 2 2 2 5 2 2 2 2 2 2  
2 2 2 2 2 2 5 5 2 5 22  
2 2 5 2 2 2 5 2 2  

5 2 2 52 2 5 2 2 5 2 55 2  
5 2 5 2 25 5 2 5 2 2  
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In [ ]: # 1. Conversion to Power 
caldB=-83 
calPwr = np.power(10.,caldB/10.) 
rasterstack_pwr = np.power(rasterstack,2.)*calPwr 
# 2. Compute Means 
rs_means_pwr = np.mean(rasterstack_pwr,axis=(1,2)) 
# 3. Convert to dB 
rs_means_dB = 10.*np.log10(rs_means_pwr) 

In [ ]: # 4. Make a pandas time series object 
ts = pd.Series(rs_means_dB,index=tindex) 

In [ ]: # 5. Use the pandas plot function of the time series object to plot 
# Put band numbers as data point labels 
plt.figure(figsize=( ,8)) 
ts.plot() 
xl = plt.xlabel('Date') 
yl = plt.ylabel( n [ ] ) 
for xyb in zip(ts.index,rs_means_dB,range(1,len(ts)+1 : 
    plt.annotate(xyb[2] xy=xyb[0:2]  

EXERCISE
Look at the global means plot and determine from the tindex array at which dates you see maximum and minimum values. Are relative peaks associated with seasons?
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Generate Time Series for Point Locations or Subsets
In python we can use the matrix slicing rules (Like Matlab) to obtain subsets of the data. For example to pick one pixel at a line/pixel location and obtain all band values,
use:

[:,line,pixel] notation.

r, if e are interested in a subset at an offset location e can use

,yoffset yoffset yrange ,xoffset xoffset xrange

In the section below we will learn how to generate time series plots for point locations (pixels) or areas (e.g. a 5x5 window region). To show individual bands, e define a
showImage function which incorporates the matrix slicing from above.

In [ ]: def showImage(rasterstack,tindex,bandnbr,subset=None,vmin=None,vmax=None : 
    '''Input:  
    rasterstack stack of images in SAR power units 
    tindex time series date index 
    bandnbr bandnumber of the rasterstack to dissplay''' 
    fig = plt.figure(figsize=(16,8)) 
    ax1 = fig.add_subplot(121) 
    ax2 = fig.add_subplot(122) 
     
    # If vmin or vmax are None we use percentiles as limits: 
    if vmin==None: vmin=np.percentile(rasterstack[bandnbr-1].flatten(),5) 
    if vmax==None: vmax=np.percentile(rasterstack[bandnbr-1].flatten(), 5) 
 
    ax1.imshow(rasterstack[bandnbr-1] cmap='gray',vmin=vmin,vmax=vmax) 
    ax1.set_title('Image Band {} {}'.format(bandnbr,tindex[bandnbr-1].date())) 
    if subset== None: 
        bands,ydim,xdim=rasterstack.shape 
        subset=(0,0,xdim,ydim) 
         
    ax1.add_patch(patches.Rectangle((subset[0] subset[1] subset[2] subset[3] fi
ll=False,edgecolor='red')) 
    ax1.xaxis.set_label_text('Pixel') 
    ax1.yaxis.set_label_text('Line') 
     
    ts_pwr=np.mean(rasterstack[: subset[1]: subset[1]+subset[3]  
                       subset[0]: subset[0]+subset[2] ] axis=(1,2)) 
    ts_dB=10.*np.log10(ts_pwr) 
    ax2.plot(tindex,ts_dB) 
    ax2.yaxis.set_label_text( [ ] ) 
    ax2.set_title('$\gamma^o$ Backscatter Time Series') 
    # Add a vertical line for the date where the image is displayed 
    ax2.axvline(tindex[bandnbr-1] color='red') 
 
    fig.autofmt_xdate() 

Exercise
Compare band 24 and band 43 visually
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In [ ]: bandnbr=24  #  
subset=[5,2 ,3,3] 
# subset=[30,15,3,3] 
# subset=[12,10,3,3] 

In [ ]: showImage(rasterstack_pwr,tindex,bandnbr,subset) 

In [ 2]: bandnbr=43 
showImage(rasterstack_pwr,tindex,bandnbr,subset) 
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EXERCISE
For subset (5,20,3,3):

1. What are the dates where backscatter falls below - 11 dB?
2. Compute the gradients bac scatter difference bet een t o consecutive dates.
3. hat is the largest gradient of bac scatter drop bet een t o consecutive dates
4. What are the dates associated with this gradient (before and after)?

Helper function the generate a time series object

In [ ]: def timeSeries(rasterstack_pwr,tindex,subset,ndv=0. : 
    # Extract the means along the time series axes 
    # raster shape is time steps, lines, pixels.  
    # With axis=1,2, we average lines and pixels for each time  
    # step (axis 0) 
    raster=rasterstack_pwr.copy() 
    if ndv != np.nan: raster[np.equal(raster,ndv ]=np.nan 
    ts_pwr=np.nanmean(raster[: subset[ ]: subset[ ]+subset[ ]  
                       subset[0]: subset[0]+subset[2] ] axis=( ,2)) 
    # convert the means to dB 
    ts_dB= *np. (ts_pwr) 
    # make the pandas time series object 
    ts = pd.Series(ts_dB,index=tindex) 
    # return it 
    return ts 

sing the time eries ...  function to ma e a time series ob ect for the chosen subset

In [ ]: ts = timeSeries(rasterstack_pwr,tindex,subset) 

lot the ob ect

In [ 5]: _=ts.plot(figsize=( , ))  # _= is a trick to suppress more output. 

ENTER YOUR CODE HERE

In [ ]: # 1. What are the dates where backscatter falls below - 11 dB? 
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In [ ]: # 2. Compute the gradients (backscatter difference  
# between two consecutive dates. 

In [ ]: # 3. What is the largest gradient of backscatter drop  
# between two consecutive dates?  

In [ ]: # What are the dates associated with this gradient  
# (before and after) 

uestion  an ou fie d eri  that change occured at this ocation et een these t o dates

easona  u sets o  ti e series records
Let's expand upon SAR time series analysis. Often it is desirable to subset time series by season or months to compare with similar conditions of a previous year's
observation. For example, in analyzing C-Band backscatter data, it might be useful to limit comparative analysis to dry season observations only as soil moisture might
confuse signals during the wet seasons. In this section we will expand upon the concepts of subsetting time series along the time axis. We will make use of the pandas
datatime index tools:

Month
Day of year

First we extract the time series again for a area at the subset location (5,20,5,5). We then convert the pandas time series to a pandas DataFrame to allow for more
processing options. We also label the data value column as 'g0' for gamma0:

In [ ]: subset=(5,20,5,5) 
ts = timeSeries(rasterstack_pwr,tindex,subset) 
tsdf = pd.DataFrame(ts,index=ts.index,columns=['g0']  
 
# Plot 
ylim=(-20,-5) 
tsdf.plot(figsize=( ,4)) 
plt.title( n n : 5 2 5 5 ) 
plt.ylabel( [ ] ) 
plt.ylim(ylim) 
_=plt.legend [ ]  

tart the ti e series in o e er 2015

We can use the pandas index parameters like month to make seasonal subsets



THE SAR HANDBOOK 129

In [ ]: =tsdf[tsdf.index> 2 5 ] 
 
# Plot 

.plot(figsize=( ,4)) 
plt.title( n n : {}'. (s
ubset)) 
plt. ( [ ] ) 
plt. ( ) 
_=plt.legend [ ]  

Subset by months:

We can make use of pandas DateTimeIndex object index.month and numpy's logical_and function to subset a time series easily by month.

March to May data only

In [ ]: tsdf_sub2= [ 
    np. n ( .index. n >=3, .index. n <=5 ] 
 
# Plot 
fig,  = plt.subplots(figsize=( ,4)) 
tsdf_sub2.plot( = ) 
plt.title( n n : {}' 
          . (subset)) 
plt. ( [ ] ) 
plt. ( ) 
_=plt.legend [ ]  

All other months

Using numpy's boolean invert function, we can invert a selection and in this example get to all other months:
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In [ ]: tsdf_sub3= [np.invert( 
    np.logical_and( .index.month>=3, .index.month<=5 ] 
 
# Plot 
fig, ax = plt.subplots(figsize=( ,4)) 
tsdf_sub3.plot(ax=ax) 
plt.title( n n : {}' 
          .format(subset)) 
plt.ylabel( [ ] ) 
plt.ylim(ylim) 
_=plt.legend ["June-February"]  

Group time series by year to compare average backscatter values

In [2 ]: ts_sub_by_year = .groupby(pd.Grouper(freq="Y")) 

In [2 ]: fig, ax = plt.subplots(figsize=( ,4)) 
for label, df in ts_sub_by_year: 
    df. .plot(ax=ax, label=label.year) 
plt.legend() 
# ts_sub_by_year.plot(ax=ax) 
plt.title( n n : {}' 
          .format(subset)) 
plt.ylabel( [ ] ) 
plt.ylim(ylim) 

[2 ]: 2 5
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Make a pivot table to group year and sort by day of year for plotting overlapping time series

First we add two coluns to the data frame:

Day of year (doy)
Year

In [22]: # Add doy 
tsdf_sub1 = tsdf_sub1.assign(doy=tsdf_sub1.index.dayofyear) 
# Add year 
tsdf_sub1 = tsdf_sub1.assign(year=tsdf_sub1.index.year) 

Then a pivot table gets created which has day of year as the index and years as columns:

In [2 ]: piv=pd.pivot_table(tsdf_sub1,index=['doy'] columns=['year'] values=['g0']  
# Set the names for the column indices 
piv.columns.set_names ['g0','Year'] inplace=True)  
print(piv.head(10)) 
print('...\n',piv.tail(10)) 

In [2 ]: piv.columns.set_names ['g0','year'] inplace=True) 

As e can see, there are a  ot a umber  values on the days in a year here no ac uisition too  place. o  e use time eighted interpolation to fill the dates for all
the observations in any given year. For time weighted interpolation to work we need to create a dummy year as a date index, perform the interpolation, and reset the
index to the day of year. This is accomplished with the following steps:

g0     g0                      
2 5 2 2  

doy                            
2  

2  
22 222  
2 55  

2  
5 52  

2 5  
5 5  

2 2  
22  

... 
 g0          g0                      

2 5 2 2  
doy                                 
2 5  
22 552  
2 5 5  

5 52  
5  

25  
5 5 52  
52 2  
5 2  

5  
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In [25]: # Add fake dates for year 100 to enable time sensitive interpolation  
# of missing values in the pivot table 
year_doy = [ 2 {}'.format(x) for x in piv.index] 

=pd.DatetimeIndex(pd.to_datetime(year_doy,format= )) 
 
# make a copy of the piv table and add two columns 

2=piv.copy() 
2= 2.assign( = ) # add the fake year dates 
2= 2.assign(doy= 2.index) # add doy as a column to replace as index later 

again 
 
# Set the index to the dummy year 

2.set_index( ,inplace=True,drop=True) 
 
# PERFORM THE TIME WEIGHTED INTERPOLATION 

2 = 2.interpolate(method='time')  # TIME WEIGHTED INTERPOLATION! 
 
# Set the index back to day of year. 

2.set_index('doy',inplace=True,drop=True) 

Let's inspect the new pivot table and see wheather we interpolated the NaN values where it made sense:

In [2 ]: print( 2.head( )) 
print('...\n', 2.tail( )) 

Now we can plot the time series data with overlapping years

 
2 5 2 2  

doy                            
2  
52 2  

22 5 5 222  
2 55 25 5  

25 2  
5 52  
2 2 2 5  

5 2 5  
2 2 5  
5 5 22  

... 
 

2 5 2 2  
doy                                 
2 5 2 2  
22 2 552  
2 25 5 5 5 5  

5 52 22 2  
5 2 2 5  
5 25 5  

5 5 52 55 22 5  
52 225 2 5  
5 2 5 55 5  

2 5 5  
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In [2 ]: 2.plot(figsize=(16,8)) 
plt.title('Sentinel-1 C-VV Time Series Backscatter Profile,\ 

: 5 2 5 5 ) 
plt.ylabel( [ ] ) 
plt.xlabel('Day of Year') 
_=plt.ylim(ylim) 

Change Detection on the Time Series
Data
We can now analyze the time series for change. We will discuss two approaches:

1. ear to year differencing of the subsetted time series
2. umulative um based change detection

In [2 ]: # Difference between years 
# Set a dB change threshold 
thres=3 

In [2 ]:  = ( 2. [2 ]- 2. [2 ]  

Year-to-Year Change Detection
e compute the differences bet een the interpolated time series and loo  for change ith a threshold value.
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In [ ]: _=diff1716.plot('line') 

In [ ]: thres_exceeded = diff1716[abs(diff1716) > thres] 
thres_exceeded 

[ ]: doy 
 

2 5 
 

52 52  
 

5  
2 2  

2 52 
2  

2 5 
25  

2 5  
 

5 2  
:
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rom the three exceeded dataframe e can infer the first date at hich the threshold as exeeded. e ould label that as a change point. As an additional criteria for
labeling a change point, one can also consider the number of observations after identification of a change point here bac scatter differed from the year before. If only one
or t o observations differed from the year before this could be considered an outlier. Addtionally, one can introduce smoothing operations ith the interpolation

EXERCISE:

or  through the or boo  again ith selection of a different point and determine if it is a change point.

Cumulative Sums for Change Detection
Another approach to detect change in regularly ac uired data is employing cumulative sums. hanges are determined against mean observations of time series. A full
explanation and examples from the the financial sector can be found at http .variation.com cpa tech changepoint.html

Time Series and Means

irst let s consider a time series and it s mean observation. e loo  at t o full years of observations from entinel  data for an area here e suspect change. In the
follo ing e consider  as a time series

with

 AR bac scatter at time 

 number of observations in the time series

In [ 2]: subset=(5,2 , , ) 
#subset=(12,5,3,3) 
ts1 = timeSeries(rasterstack_pwr,tindex,subset) 
X = ts1[ts1.index> 2 5 ] 

Filtering the time series for outliers
It is advantageous in noisy AR time series data li e Band data to filter on the time axis. andas offers a rolling  function for these purposes. ith that function e can
choose, for example, a median filter along the time axis. Belo  is an example of a median filter for an observation filters the time series hen the observation before and
after a time stamps are part of the filter.

In [ ]: Xr=X.rolling(5,center=True).median() 
Xr.plot() 
_=X.plot() 
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Let's plot the time series and it's mean over the time span

In [ ]: X=Xr  # Uncomment if rolling mean is wanted for further computation 
Xmean = X.mean() 

In [ 5]: fig,ax=plt.subplots(figsize=(16, )) 
X.plot() 
plt.ylabel( [ ] ) 
ax.axhline(Xmean,color= ) 
_=plt. n ['$\gamma^o$','$\overline{\gamma^o}$']  

Let's determine the residuals of the time series against the mean

In [ ]: R = X - Xmean 

Now we compute the cumulative sum of the residuals and plot it:
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In [ ]: S = R.cumsum() 
 
_=S.plot(figsize=(16,8)) 

An estimator for the magnitude of change is given as the difference bet een the maximum and minimum value of 

In [ ]: Sdiff=S.max() - S.min() 
Sdiff 

A candidate change point is identified from the  curve at the time here  is found:

ith

 Timestamp of last observation before change
 umulative um of R ith 

 umber of observations in the time series

The first observation after change occured  is then found as the first observation in the time series follo ing .

or our example time series  these points are

In [ ]: t_cp_before = S[S==S.max ].index[0] 
print( n : {}'.format(t_cp_before.date())) 

In [ ]: t_cp_after = S[S.index > t_cp_before].index[0] 
print( n : {}'.format(t_cp_after.date())) 

[ ]: 2 2 55

n : 2 2 5 

n : 2 2 2  
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Bootstrapping the cumulative sums by randomly reordering the time series
e can determine if an identified change point is indeed a valid detection by randomly reordring the time series and comparing the various  curves. During bootstrapping
e count ho  many times the  values are greater than  of the identified change point. A confindence level  is computed as

ith

 umber of times  > 
 umber of bootstraps randomi ing 

Another metric for the significance of a change point is  minus the ratio of the mean of the  values and . The closer this value is approaching , the
more significant the change point

The python code to conduct the boot strapping, including visuali ation of the  curves is belo

In [ ]: n_bootstraps=500  # bootstrap sample size 
fig,ax = plt.subplots(figsize=( ,8)) 
S.plot(ax=ax,linewidth=3) 
ax.set_ylabel('Cumulative Sums of the Residuals') 
fig.legend ['S Curve for Candidate Change Point'] loc=3) 
Sdiff_random_sum=0 
Sdiff_random_max=0  # to keep track of the maxium Sdiff of the  
               # bootstrapped sample 
n_Sdiff_gt_Sdiff_random=0  # to keep track of the maxium Sdiff of the  
               # bootstrapped sample 
for i in range(n_bootstraps : 
    Rrandom = R.sample(frac= )  # Randomize the time steps of the residuals 
    Srandom = Rrandom.cumsum() 
    Sdiff_random=Srandom.max()-Srandom.min() 
    Sdiff_random_sum += Sdiff_random 
    if Sdiff_random > Sdiff_random_max: 
        Sdiff_random_max = Sdiff_random 
    if Sdiff > Sdiff_random: 
        n_Sdiff_gt_Sdiff_random +=  
    Srandom.plot(ax=ax) 
_=ax.axhline(Sdiff_random_sum/n_bootstraps) 
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In [ 2]: CL = *n_Sdiff_gt_Sdiff_random/n_bootstraps 
print('Confidence Level for change point {} percent'.format(CL* )) 

In [ ]: CP_significance =  - (Sdiff_random_sum/n_bootstraps)/Sdiff  
print( n n n n : {}'.format(CP_significance)) 

Another useful metric to determine strength of a change point is the normalized integral  of the absolute values of the S curve:

n n n n n  

n n n n : 5 52 52 5  

In [ ]: # NaN's to be excluded in the computation  
S_ni=(S.abs()/S.abs().max()).cumsum().max()/len(S[S != np.nan]  
print( In : {}'.format(S_ni)) 

In : 5 5  
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In [ ]: # NaN's to be excluded in the computation  
S_ni=(S.abs()/S.abs().max()).cumsum().max()/len(S[S != np.nan]  
print( In : {}'.format(S_ni)) 

EXERCISE

onduct the change point analysis for different subsets in the traning data

Selection of threshold values
 and  can be used as threshold values for the acceptance or re ection of a candidate threshold. These values are to some degree specific to a AR

sensor and environmental conditions. E.g. Band AR has a more pronounced decrease in bac scatter after forest disturbance and logging, hereas Band can have more
ambigious signals. Also moisture regime changes, e.g. ith sno  cover, free e tha  conditions or dry et season changes have an in uence on the time series signal. or
example El ino years can suggest changes solely due to different etting and dryup conditions pertinent to a particular year. or this reason other techni ues can be added
to the AR time series ananlysis. T o techni ues can readily be thought of

ubsetting of time series by seasons
Detrending time series ith global image means

If year to year comparison is the focus, the first approach li ely leads to subsets that are too small for meaningful cumulative sum change point detection. The approach of
interannual differencing as discussed above li ely performs better.

In the follo ing e explore the approach to detrend the data ith global image means.

De-trending time series with global image means

The idea of de trending time series ith global image means should prepare time series for a some hat more robust change point detection as global image time series
anomalies stemming calibration or seasonal trends are removed prior to time series analysis. This de trending needs to be performed ith large subsets so real change is
not in uencing the image statistics.

TE  or our small subset, e ill see some of these effects.

et s start by building a global image means time series

In [ 5]: means_pwr = np.mean(rasterstack_pwr,axis=(1,2)) 
means_dB = 10.*np.log10(means_pwr) 
gm_ts = pd.Series(means_dB,index=tindex) 
gm_ts=gm_ts[gm_ts.index > 2 5 ]  # filter dates 
gm_ts=gm_ts.rolling(5,center=True).median() 

In : 5 5  
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In [ ]: gm_ts.plot() 

In [ ]: X.plot() 

In [ ]: Xd=X-gm_ts 
Xmean=Xd.mean() 
Xd.plot() 

In [ ]: R = Xd - Xmean 

[ ]: 2 5255

[ ]: 2 5

[ ]: 2 5 2
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Now we compute the cumulative sum of the residuals and plot it:

In [5 ]: S = R.cumsum() 
 
_=S.plot(figsize=(16,8)) 

An estimator for the magnitude of change is given as the difference bet een the maximum and minimum value of 

In [5 ]: Sdiff=S.max() - S.min() 
Sdiff 

A candidate change point is identified from the  curve at the time where  is found:

with

 Timestamp of last observation before change
 umulative um of R ith 

 umber of observations in the time series

The first observation after change occured  is then found as the first observation in the time series follo ing .

or our example time series  these points are

[5 ]: 5 52 2
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In [52]: t_cp_before = S[S==S.max ].index[0] 
print( n : {}'.format(t_cp_before.date())) 

In [5 ]: t_cp_after = S[S.index > t_cp_before].index[0] 
print( n : {}'.format(t_cp_after.date())) 

Cumulative Sum Change Detection for the entire image
ith numpy arrays e can apply the concept of cumulative sum change detection analysis effectively on the entire image stac . e ta e advantage of array slicing and axis

based computing in numpy. Axis  is the time domain in our raster stac s

In [5 ]: # Can do this in power or dB scale 
X = rasterstack_pwr 
# Filter out the first layer ( Dates >= '2015-11-1') 
X_sub=X[1: : :] 
tindex_sub=tindex[1:] 
X= 10.*np.log10(X_sub)  # Uncomment to test dB scale  

In [5 ]: plt.figure() 
#Indicate the band number 
bandnbr=0 
vmin=np.percentile(X[bandnbr] 5) 
vmax=np.percentile(X[bandnbr] 5) 
plt.title( n   {} {}'.format(bandnbr+1 tindex_sub[bandnbr].date())) 
plt.imshow(X[0] cmap='gray' vmin=vmin vmax=vmax) 
_=plt.colorbar() 

n : 2 2 5 

n : 2 2 2  
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In [ ]: Xmean=np.mean(X,axis= ) 
plt.figure() 
plt.imshow(Xmean,cmap='gray') 

In [ ]: #  
X.shape 

In [ 2]: R=X-Xmean 

In [ ]: #Create an image that spatially displays the residuals (R) 
plt.imshow(R[ ]  
plt.title('Residuals') 
_=plt.colorbar() 

[ ]: I 2

[ ]: 5
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In [ ]: S = np.cumsum(R,axis=0) 
Smax= np.max(S,axis=0) 
Smin= np.min(S,axis=0) 
Sdiff=Smax-Smin 
fig,ax=plt.subplots(1,3,figsize=( , )) 
vmin=Smin.min() 
vmax=Smax.max() 
p=ax[0].imshow(Smax,vmin=vmin,vmax=vmax) 
ax[0].set_title('$S_{max}$') 
ax[1].imshow(Smin,vmin=vmin,vmax=vmax) 
ax[1].set_title('$S_{min}$') 
ax[2].imshow(Sdiff,vmin=vmin,vmax=vmax) 
ax[2].set_title('$S_{diff}$') 
fig.subplots_adjust(right=0.8) 
cbar_ax = fig.add_axes [0.85, 0.15, 0.05, 0.7]  
_=fig.colorbar(p,cax=cbar_ax) 

as  diff ith a priori thresho d or e pected change
If we have an assumption as to how much actual change we expect in the image, we can threshold  to reduce computation of the bootstrapping. For land cover
change we would not expect more than 5-10% change in a landscape. So, if the test region is reasonably large, setting a threshold for expected change to 10% would be
appropriate. Thus we can set a mask with the 90th percentile of the histogram of . In our example we'll start out with a very conservative threshold of 50%.

The histogram for  is shown below:
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In [ 5]: #Display the Sdiff histogram 
precentile=5  
fig,ax=plt.subplots() 
h=ax.hist(Sdiff.flatten(),bins=5 ) 
thres=np.percentile(h[1] 5 ) 
print('At the {}% percentile, the threshold value is {:2.2f}'.format(precentile,
thres)) 
_=ax.axvline(thres,color='red') 

At the 50% percentile, the threshold value is ____ (printed above the histogram)

Using this threshold, we can visualize the candidate changepoints:

In [ ]: Sdiffmask=Sdiff<thres 
_=plt.imshow(Sdiffmask,cmap='gray') 

o  e can filter our Residuals and perform bootstrapping analysis on these data. e ma e use of numpy mas ed arrays for this purpose.

In [ ]: Rmask = np.broadcast_to(Sdiffmask,R.shape) 

In [ ]: Rmasked = np.ma.array(R,mask=Rmask) 

5 n 2 
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On the masked time series stack of residuals we can compute the cumulative sums:

In [ ]: Smasked = np.ma.cumsum(Rmasked,axis=0) 

, ,  can also be computed on the masked arrays :

In [ ]: plt.imshow(Rmasked.mask[0] cmap='gray') 

In [ ]: Smasked = np.ma.cumsum(Rmasked,axis=0) 
Smasked_max= np.ma.max(Smasked,axis=0) 
Smasked_min= np.ma.min(Smasked,axis=0) 
Smasked_diff=Smasked_max-Smasked_min 
fig,ax=plt.subplots( ,3,figsize=( ,4)) 
vmin=Smasked_min.min() 
vmax=Smasked_max.max() 
p=ax[0].imshow(Smasked_max,vmin=vmin,vmax=vmax) 
ax[0].set_title('$S_{max}$') 
ax[ ].imshow(Smasked_min,vmin=vmin,vmax=vmax) 
ax[ ].set_title('$S_{min}$') 
ax[2].imshow(Smasked_diff,vmin=vmin,vmax=vmax) 
ax[2].set_title('$S_{diff}$') 
fig.subplots_adjust(right=0.8) 
cbar_ax = fig.add_axes [0.85, 5, 0.05, ]  
_=fig.colorbar(p,cax=cbar_ax) 

[ ]: I 2
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Bootstrapping over the masked change point candidates
e can no  perform the bootstrapping analysis over the not mas ed out values. or e cient computing e permutate the index of the time axis.

In [ 2]: random_index=np.random.permutation(Rmasked.shape[0]  
Rrandom=Rmasked[random_index : :] 
 
fig,ax=plt.subplots(1,2,figsize=(8,4  
ax[0].imshow(Rmasked[0]  
ax[0].set_title('Band 0'  
ax[1].imshow(Rrandom[0]  
_=ax[1].set_title('Band 0 Randomized'  

In [ ]: Smasked_max=np.ma.max(Smasked,axis=0  

Belo  is the numpy based implementation of the bootstrapping over all pixels. ote the e cient implementation using nympy mas ed arrays.

In [ ]: n_bootstraps=1000  # bootstrap sample size 
 
# to keep track of the maxium Sdiff of the bootstrapped sample: 
Sdiff_random_max = np.ma.copy(Smasked_diff   
Sdiff_random_max[~Sdiff_random_max.mask]=0 
# to compute the Sdiff sums of the bootstrapped sample: 
Sdiff_random_sum = np.ma.copy(Smasked_diff   
Sdiff_random_sum[~Sdiff_random_max.mask]=0 
# to keep track of the count of the bootstrapped sample 
n_Sdiff_gt_Sdiff_random = np.ma.copy(Smasked_diff   
n_Sdiff_gt_Sdiff_random[~n_Sdiff_gt_Sdiff_random.mask]=0 
for i in range(n_bootstraps : 
    # For efficiency, we shuffle the time axis index and use that  
    #to randomize the masked array 
    random_index=np.random.permutation(Rmasked.shape[0]  
    # Randomize the time step of the residuals 
    Rrandom = Rmasked[random_index : :]   
    Srandom = np.ma.cumsum(Rrandom,axis=0  
    Srandom_max=np.ma.max(Srandom,axis=0  
    Srandom_min=np.ma.min(Srandom,axis=0  
    Sdiff_random=Srandom_max-Srandom_min 
    Sdiff_random_sum += Sdiff_random 
    Sdiff_random_max[np.ma.greater(Sdiff_random,Sdiff_random_max ]=\ 
    Sdiff_random[np.ma.greater(Sdiff_random,Sdiff_random_max ] 
    n_Sdiff_gt_Sdiff_random[np.ma.greater(Smasked_diff,Sdiff_random ] += 1 
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o  e can compute for all pixels the confidence level , the change point significance metric significance  and the product of the t o as our confidence metric
for identified changepoints.

In [ 5]: CL = n_Sdiff_gt_Sdiff_random/n_bootstraps 
CP_significance = 1.- (Sdiff_random_sum/n_bootstraps)/Sdiff  
#Plot 
fig,ax=plt.subplots(1,3,figsize=(16,4)) 
a = ax[0].imshow(CL*100) 
fig.colorbar(a,ax=ax[0]  
ax[0].set_title('Confidence Level %') 
a = ax[1].imshow(CP_significance) 
fig.colorbar(a,ax=ax[1]  
ax[1].set_title('Significance') 
a = ax[2].imshow(CL*CP_significance) 
fig.colorbar(a,ax=ax[2]  
_=ax[2].set_title('CL x S') 

o  if e ere to set a threshold of .  for the product as identified change our change map ould loo  li e the follo ing figure

In [ ]: cp_thres= 5 

In [ ]: plt.imshow(CL*CP_significance <  cp_thres,cmap='cool') 

ur last step is the idenficiaton of the change points is to extract the timing of the change. e ill produce a raster layer that sho s the band number of this first date after
detected change. e ill ma e use of the numpy indexing scheme. irst, e create a combined mas  of the first threshold and the identified change points after the
bootstrapping. or this e use the numpy mas or  operation.

[ ]: <matplotlib.image.AxesImage at 0x126bf49e8>
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In [ ]: # make a mask of our change points from the new threshold and the previous mask 
cp_mask=np.ma.mask_or(CL*CP_significance<cp_thres,CL.mask) 
# Broadcast the mask to the shape of the masked S curves 
cp_mask2 = np.broadcast_to(cp_mask,Smasked.shape) 
# Make a numpy masked array with this mask 
CPraster = np.ma.array(Smasked.data,mask=cp_mask2) 

To retrieve the dates of the change points e find the band indices in the time series along the time axis here the the maximum of the cumulative sums as located.
umpy offers the argmax  function for this purpose.

In [ ]: CP_index= np.ma.argmax(CPraster,axis=0) 
change_indices = list(np.unique(CP_index)) 
change_indices.remove(0) 
print(change_indices) 
# Look up the dates from the indices to get the change dates 
alldates=tindex[tindex>'2015-10-31'] 
change_dates=[str(alldates[x+1].date()) for x in change_indices] 
print(change_dates) 

astly, e visuali e the change dates by sho ing the index raster and label the change dates.

[2 2 2 2 2 5 ] 
[ 2 5 2 2 2 2 2 2 5 2 2 2 22 2 2

2 2 5 2 2 2 2 ] 

In [ ]: ticks=change_indices 
ticklabels=change_dates 
 
cmap=plt.cm.get_cmap('magma',ticks[-1]  
fig, ax = plt.subplots(figsize=( ,  
cax = ax.imshow(CP_index,interpolation='nearest',cmap=cmap  
# fig.subplots_adjust(right=0.8) 
# cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7]) 
# fig.colorbar(p,cax=cbar_ax) 
 
ax.set_title('Dates of Change'  
# cbar = fig.colorbar(cax,ticks=ticks) 
cbar=fig.colorbar(cax,ticks=ticks,orientation='horizontal'  
_=cbar.ax.set_xticklabels(ticklabels,size= ,rotation=45,ha='right'    
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Secondary Change Points
After detection of a change point in the time series we can split the series in before and after change subsets. For forest degradation or deforestation detection for example
this could apply when over the course of a multi-year time series selective logging precedes a clearing event or conversion of a logged plot to agriculture or regrowth, which
sho  typically different time series profiles of radar bac scatter. The approach to detect secondary change points ould be to repeat analysis of the time series split into
before and after change point detection.

Conclusion
andas and numpy are po erful open source scripting tools to implement change point detection on large data stac s. or image based analysis numpy offers more

e cient implementations compared to pandas, hereas pandas is more po erful in date time processing, e.g. time eighted interpolation.

Solutions
In [ ]: # 1.  

ts[ts<-11].index 

In [ ]: # 2. 
gradient_lag1 = ts.diff(1) 
gradient_lag1.plot() 

In [ ]: # 3.  
gradient_lag1.min() 

In [ ]: # 4. 
gradient_lag1[gradient_lag1==gradient_lag1.min ] 

In [ ]: before = gradient_lag1[gradient_lag1==gradient_lag1.min ].index[0] 
before 

In [ ]: after=tindex[tindex>before][0] 
after 
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SAR Training Workshop for Forest Applications
PART 5 - SAR/Optical (NDVI) Time Series Analysis
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

In this chapter e compare time series data of band Bac scatter and andsat  ormali ed Difference egetation Index D I  over a forested site in outhern iger.

In [ ]: # Importing relevant python packages 
import pandas as pd 
import gdal 
import numpy as np 
import time,os 
from skimage import exposure # to enhance image display 
 
# For plotting 
%matplotlib inline 
import matplotlib.pylab as plt 
import matplotlib.patches as patches 
import matplotlib.cm as cm 
 
font = {'family' : 'monospace', 
          'weight' : 'bold', 
          'size'   : } 
plt.rc('font',**font) 
 
# Define a helper function for a 4 part figure with backscatter, NDVI and False
 Color Infrared 
def ebd_plot(bandnbrs : 
    fig,ax=plt.subplots(2,2,figsize=( , )) 
    # Bands for sentinel and landsat: 
    # Sentinel VV 
    sentinel_vv=img_handle[0].GetRasterBand(bandnbrs[0] .ReadAsArray(*subset_sen
tinel) 
    sentinel_vv=20.*np. (sentinel_vv)-  # Covert to dB 
    # Sentinel VH 
    sentinel_vh=img_handle[ ].GetRasterBand(bandnbrs[0] .ReadAsArray(*subset_sen
tinel) 
    sentinel_vh=20.*np. (sentinel_vh)-  # Covert to dB 
    # # Landsat False Color InfraRed 
    r=img_handle[5].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    g=img_handle[4].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    b=img_handle[ ].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    fcir=np.dstack((r,g,b)) 
    for i in range(fcir.shape[2] : 
        fcir[: : i] = exposure.\ 
        equalize_hist(fcir[: : i]  
        mask=~np.equal(fcir[: : i] -.9999)) 
    # Landsat NDVI 
    landsat_ndvi=img_handle[2].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_la
ndsat) 
    mask=landsat_ndvi==-9999 
    landsat_ndvi = landsat_ndvi/  # Scale to real NDVI value 
    landsat_ndvi[mask]=np.nan 
    svv = ax[0][0].imshow(sentinel_vv,cmap='jet',vmin=np.nanpercentile(sentinel_
vv,5), 
                   vmax=np.nanpercentile(sentinel_vv,95)) 
    cb = fig.colorbar(svv,ax=ax[0][0] orientation='horizontal') 
    cb.ax.set_title( [ ] ) 
    svh = ax[0][ ].imshow(sentinel_vh,cmap='jet',vmin=np.nanpercentile(sentinel_
vh,5), 
                   vmax=np.nanpercentile(sentinel_vh,95)) 
    cb = fig.colorbar(svh,ax=ax[0][ ] orientation='horizontal') 
    cb.ax.set_title( [ ] ) 
 
    nvmin=np.nanpercentile(landsat_ndvi,5) 
    nvmax=np.nanpercentile(landsat_ndvi,95) 



THE SAR HANDBOOK 153

In [ ]: # Importing relevant python packages 
import pandas as pd 
import gdal 
import numpy as np 
import time,os 
from skimage import exposure # to enhance image display 
 
# For plotting 
%matplotlib inline 
import matplotlib.pylab as plt 
import matplotlib.patches as patches 
import matplotlib.cm as cm 
 
font = {'family' : 'monospace', 
          'weight' : 'bold', 
          'size'   : } 
plt.rc('font',**font) 
 
# Define a helper function for a 4 part figure with backscatter, NDVI and False
 Color Infrared 
def ebd_plot(bandnbrs : 
    fig,ax=plt.subplots(2,2,figsize=( , )) 
    # Bands for sentinel and landsat: 
    # Sentinel VV 
    sentinel_vv=img_handle[0].GetRasterBand(bandnbrs[0] .ReadAsArray(*subset_sen
tinel) 
    sentinel_vv=20.*np. (sentinel_vv)-  # Covert to dB 
    # Sentinel VH 
    sentinel_vh=img_handle[ ].GetRasterBand(bandnbrs[0] .ReadAsArray(*subset_sen
tinel) 
    sentinel_vh=20.*np. (sentinel_vh)-  # Covert to dB 
    # # Landsat False Color InfraRed 
    r=img_handle[5].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    g=img_handle[4].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    b=img_handle[ ].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_landsat)/
0. 
    fcir=np.dstack((r,g,b)) 
    for i in range(fcir.shape[2] : 
        fcir[: : i] = exposure.\ 
        equalize_hist(fcir[: : i]  
        mask=~np.equal(fcir[: : i] -.9999)) 
    # Landsat NDVI 
    landsat_ndvi=img_handle[2].GetRasterBand(bandnbrs[ ] .ReadAsArray(*subset_la
ndsat) 
    mask=landsat_ndvi==-9999 
    landsat_ndvi = landsat_ndvi/  # Scale to real NDVI value 
    landsat_ndvi[mask]=np.nan 
    svv = ax[0][0].imshow(sentinel_vv,cmap='jet',vmin=np.nanpercentile(sentinel_
vv,5), 
                   vmax=np.nanpercentile(sentinel_vv,95)) 
    cb = fig.colorbar(svv,ax=ax[0][0] orientation='horizontal') 
    cb.ax.set_title( [ ] ) 
    svh = ax[0][ ].imshow(sentinel_vh,cmap='jet',vmin=np.nanpercentile(sentinel_
vh,5), 
                   vmax=np.nanpercentile(sentinel_vh,95)) 
    cb = fig.colorbar(svh,ax=ax[0][ ] orientation='horizontal') 
    cb.ax.set_title( [ ] ) 
 
    nvmin=np.nanpercentile(landsat_ndvi,5) 
    nvmax=np.nanpercentile(landsat_ndvi,95) 

    # nvmin=-1 
    # nvmax=1 
    nax = ax[1][0].imshow(landsat_ndvi,cmap='jet',vmin=nvmin, 
                   vmax=nvmax) 
    cb = fig.colorbar(nax,ax=ax[1][0],orientation='horizontal') 
    cb.ax.set_title('NDVI') 
 
    fc= ax[1][1].imshow(fcir) 
    # cb = fig.colorbar(fc,cmap=cm.gray,ax=ax[1][1],orientation='horizontal') 
    # cb.ax.set_title('False Color Infrared') 
 
    ax[0][0].axis('off') 
    ax[0][1].axis('off') 
    ax[1][0].axis('off') 
    ax[1][1].axis('off') 
    ax[0][0].set_title('Sentinel-1 C-VV {}'.format(stindex[bandnbrs[0]-1].date
())) 
    ax[0][1].set_title('Sentinel-1 C-VH {}'.format(stindex[bandnbrs[0]-1].date
())) 
    ax[1][0].set_title('Landsat-8 NDVI {}'.format(ltindex[bandnbrs[1]-1].date
())) 
    ax[1][1].set_title('Landsat-8 False Color IR {}'.format(ltindex[bandnbrs[1]-
1].date())) 
    _=fig.suptitle('Sentinel-1 Backscatter and Landsat NDVI and FC IR',size=16) 

Set Project Directory and Filenames
West Africa - Biomass Site

In [2]: datadirectory= :\\Users\\loaner.SERVIRLOAN-5057.001\\Downloads\\BIOsS1' 
#datadirectory='/dev/shm/projects/c401servir/wa/BIOsS1' 
sentinel1_datefile= 2 2 5  
sentinel1_imagefile= 2 2 5  
sentinel1_imagefile_cross= 2 2 5  
landsat8_ndvi= n 2 52 I  
landsat8_b3= n 2 52  
n = n 2 52  

landsat8_b5= n 2 52 5  
landsat8_datefile= n 2 52 I  

In [ ]: # Switch to the data directory 
os.chdir(os.path.join(datadirectory)) 

Acquisition Dates
Read from the Dates file the dates in the time series and ma e a pandas date index
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    # nvmin=-1 
    # nvmax=1 
    nax = ax[1][0].imshow(landsat_ndvi,cmap='jet',vmin=nvmin, 
                   vmax=nvmax) 
    cb = fig.colorbar(nax,ax=ax[1][0],orientation='horizontal') 
    cb.ax.set_title('NDVI') 
 
    fc= ax[1][1].imshow(fcir) 
    # cb = fig.colorbar(fc,cmap=cm.gray,ax=ax[1][1],orientation='horizontal') 
    # cb.ax.set_title('False Color Infrared') 
 
    ax[0][0].axis('off') 
    ax[0][1].axis('off') 
    ax[1][0].axis('off') 
    ax[1][1].axis('off') 
    ax[0][0].set_title('Sentinel-1 C-VV {}'.format(stindex[bandnbrs[0]-1].date
())) 
    ax[0][1].set_title('Sentinel-1 C-VH {}'.format(stindex[bandnbrs[0]-1].date
())) 
    ax[1][0].set_title('Landsat-8 NDVI {}'.format(ltindex[bandnbrs[1]-1].date
())) 
    ax[1][1].set_title('Landsat-8 False Color IR {}'.format(ltindex[bandnbrs[1]-
1].date())) 
    _=fig.suptitle('Sentinel-1 Backscatter and Landsat NDVI and FC IR',size=16) 

Set Project Directory and Filenames
West Africa - Biomass Site

In [2]: datadirectory= :\\Users\\loaner.SERVIRLOAN-5057.001\\Downloads\\BIOsS1' 
#datadirectory='/dev/shm/projects/c401servir/wa/BIOsS1' 
sentinel1_datefile= 2 2 5  
sentinel1_imagefile= 2 2 5  
sentinel1_imagefile_cross= 2 2 5  
landsat8_ndvi= n 2 52 I  
landsat8_b3= n 2 52  
n = n 2 52  

landsat8_b5= n 2 52 5  
landsat8_datefile= n 2 52 I  

In [ ]: # Switch to the data directory 
os.chdir(os.path.join(datadirectory)) 

Acquisition Dates
Read from the Dates file the dates in the time series and ma e a pandas date index

In [ ]: sdates=open(sentinel1_datefile).readlines() 
stindex=pd.DatetimeIndex(sdates) 
j=1 
print('Bands and dates for',sentinel1_imagefile) 
for i in stindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

In [5]: ldates=open(landsat8_datefile).readlines() 
ltindex=pd.DatetimeIndex(ldates) 
j=1 
print('Bands and dates for',landsat8_ndvi) 
for i in ltindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

Projection and Georeferencing Information of the SAR and Optical
Time Series Data Stacks
For processing of the imagery in this notebook we generate a list of image handles and retrieve projection and georeferencing information. We print out the retrieved
information.

n n 2 2 5  
2 5 22 2 2 5 2 5 5 2 5 5 5 2 5 5 2  
2 5 2 2 5 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 5 25 2 5 5 2 5  
2 5 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 22 2 5 2 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2 2  

2 5 2 2 5 5 2 5 2 2 5 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 2 5 2  
2 2 2 2 2 5 2 2 5 2 2 2  

5 2 52 2 22 5 2 2 5 2 2 5 55 2 2 2  
5 2 5 2 2 5 2 5 2 2 2  

2 5 2 2 5 22 2 2 5 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 2 2 25 5 2  
2 2  

n n n 2 52 I  
2 5 2 2 5 2 2 5 2 2 5 5 2 5  
2 5 2 5 5 5 2 5 5 2 2 5 2 5 22  
2 5 2 2 5 2 2 5 2 5 25 5 2 5  
2 5 2 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 5 22 2 5 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 5 2 2 2 2 5  

2 5 2 2 2 2 2 2 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 5 2 2 2 2 5 2 2  
2 2 2 2 2 2 5 2 2  

5 2 52 2 2  
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In [ ]: sdates=open(sentinel1_datefile).readlines() 
stindex=pd.DatetimeIndex(sdates) 
j=1 
print('Bands and dates for',sentinel1_imagefile) 
for i in stindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

In [5]: ldates=open(landsat8_datefile).readlines() 
ltindex=pd.DatetimeIndex(ldates) 
j=1 
print('Bands and dates for',landsat8_ndvi) 
for i in ltindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

Projection and Georeferencing Information of the SAR and Optical
Time Series Data Stacks
For processing of the imagery in this notebook we generate a list of image handles and retrieve projection and georeferencing information. We print out the retrieved
information.

n n 2 2 5  
2 5 22 2 2 5 2 5 5 2 5 5 5 2 5 5 2  
2 5 2 2 5 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 5 25 2 5 5 2 5  
2 5 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 22 2 5 2 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2 2  

2 5 2 2 5 5 2 5 2 2 5 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 2 5 2  
2 2 2 2 2 5 2 2 5 2 2 2  

5 2 52 2 22 5 2 2 5 2 2 5 55 2 2 2  
5 2 5 2 2 5 2 5 2 2 2  

2 5 2 2 5 22 2 2 5 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 2 2 25 5 2  
2 2  

n n n 2 52 I  
2 5 2 2 5 2 2 5 2 2 5 5 2 5  
2 5 2 5 5 5 2 5 5 2 2 5 2 5 22  
2 5 2 2 5 2 2 5 2 5 25 5 2 5  
2 5 2 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 5 22 2 5 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 5 2 2 2 2 5  

2 5 2 2 2 2 2 2 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 5 2 2 2 2 5 2 2  
2 2 2 2 2 2 5 2 2  

5 2 52 2 2  

In [ ]: imagelist=[sentinel1_imagefile,sentinel1_imagefile_cross,landsat8_ndvi,landsat8_
b3,landsat8_b4,landsat8_b5] 
geotrans=[] 
proj=[] 
img_handle=[] 
xsize=[] 
ysize=[] 
bands=[] 
for i in imagelist: 
    img_handle.append(gdal.Open(i)) 
    geotrans.append(img_handle[-1].GetGeoTransform()) 
    proj.append(img_handle[-1].GetProjection()) 
    xsize.append(img_handle[-1].RasterXSize) 
    ysize.append(img_handle[-1].RasterYSize) 
    bands.append(img_handle[-1].RasterCount) 
# for i in proj: 
#     print(i) 
# for i in geotrans: 
#     print(i) 
# for i in zip(['C-VV','C-VH','NDVI','B3','B4','B5'],bands,ysize,xsize): 
#     print(i) 

Display SAR and NDVI Images
irst, depending on the capacity of the computer e might ant to define a subset. e ill choose the subset in the raster extension of the entinel  Image and use the

geotransformation information to extract the corresponding subset in the andsat Image. e assume that the images have the same upper left coordinate. The e can
compute the offsets and extent in the andsat image as follo s

e can use these calibration factors to get the landsat subset as follo s

xoffset,yoffset,xsi e,ysi e
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In [ ]: subset_sentinel=None 
subset_sentinel=(5 , ,5 ,5 )  # Adjust or comment out if you don't want a su
bset 
if subset_sentinel == None: 
    subset_sentinel=( , ,img_handle[ ].RasterXSize,img_handle[ ].RasterYSize) 
    subset_landsat=( , ,img_handle[2].RasterXSize,img_handle[2].RasterYSize) 
else: 
    xoff,yoff,xsize,ysize=subset_sentinel 
    xcal=geotrans[ ][1]/geotrans[2][1] 
    ycal=geotrans[ ][5]/geotrans[2][5] 
    subset_landsat=(int(xoff*xcal),int(yoff*ycal),int(xsize*xcal),int(ysize*ycal
)) 
 
print('Subset Sentinel-1',subset_sentinel,'\nSubset Landsat   ',subset_landsat) 

Now we can pick the bands and plot the Sentinel-1 and Landsat NDVI images of the subset. Change the band numbers to the bands we are interested in.

Dry Season Plot

n n 5 5 5  
n 2  

In [ ]: imagelist=[sentinel1_imagefile,sentinel1_imagefile_cross,landsat8_ndvi,landsat8_
b3,landsat8_b4,landsat8_b5] 
geotrans=[] 
proj=[] 
img_handle=[] 
xsize=[] 
ysize=[] 
bands=[] 
for i in imagelist: 
    img_handle.append(gdal.Open(i)) 
    geotrans.append(img_handle[-1].GetGeoTransform()) 
    proj.append(img_handle[-1].GetProjection()) 
    xsize.append(img_handle[-1].RasterXSize) 
    ysize.append(img_handle[-1].RasterYSize) 
    bands.append(img_handle[-1].RasterCount) 
# for i in proj: 
#     print(i) 
# for i in geotrans: 
#     print(i) 
# for i in zip(['C-VV','C-VH','NDVI','B3','B4','B5'],bands,ysize,xsize): 
#     print(i) 

Display SAR and NDVI Images
irst, depending on the capacity of the computer e might ant to define a subset. e ill choose the subset in the raster extension of the entinel  Image and use the

geotransformation information to extract the corresponding subset in the andsat Image. e assume that the images have the same upper left coordinate. The e can
compute the offsets and extent in the andsat image as follo s

e can use these calibration factors to get the landsat subset as follo s

xoffset,yoffset,xsi e,ysi e
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In [ ]: # Dry season plot 
bandnbrs=(24,24) 
ebd_plot(bandnbrs) 

Now we can pick the bands and plot the Sentinel-1 and Landsat NDVI images of the subset. Change the band numbers to the bands we are interested in.

Dry Season Plot
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Wet Season Plot

In [ ]: # Wet season plot 
bandnbrs=(40,37) 
ebd_plot(bandnbrs) 

In the figure above, for band  of entinel  and  of D I, hich as ac uired three days after the entinel  image, there is an inverse relationship. here entinel
exhibits lo  bac scatter, D I sho s relatively higher D I. hat are the reasons for this in this environment

Exercise
ic  different bands to compare. oo  at the list of the dates for AR data and andsat data ac uisitions in the above. ne good option is to compare bands from the dry

and et seasons .
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Ti e eries rofi es o  C-Band Backscatter and NDVI
We compute the image means of each time step in the time series stack and plot them together.

repare entine 1 and  ata stac s

entine  ti e series stac

In [ ]: caldB=-83 
calPwr = np.power( ,caldB/ ) 
 
s_ts=[] 
for idx in ( , : 
    means=[] 
    for i in range(bands[idx] : 
        rs=img_handle[idx].GetRasterBand(i+ ).ReadAsArray(*subset_sentinel) 
        # 1. Conversion to Power 
        rs_pwr=np.power(rs,2.)*calPwr 
        rs_means_pwr = np.mean(rs_pwr) 
        rs_means_dB = *np. (rs_means_pwr) 
        means.append(rs_means_dB) 
    s_ts.append(pd.Series(means,index=stindex)) 

Landsat NDVI time series stack

In [ ]: means=[] 
idx=2 
for i in range(bands[idx] : 
    r=img_handle[idx].GetRasterBand(i+ ).ReadAsArray(*subset_landsat) 
    means.append(r[r!=-9999].mean()/ ) 
l_ts=pd.Series(means,index=ltindex) 

oint ot o  R ac scatter and  o  age u set Means
Now we plot the time series of the SAR backscatter and NDVI values scaled to the same time axis. We also show the time stamps for the images we display above.
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In [ 2]: fig, ax = plt.subplots(2, ,figsize=( ,8)) 
# ax1.plot(s_ts.index,s_ts.values, 'r-') 
s_ts[0].plot(ax=ax[0] color='red',label='C-VV',xlim=(min(min(ltindex),min(stinde
x)), 
                                                     max(max(ltindex),max(stinde
x)))) 
s_ts[ ].plot(ax=ax[0] color='blue',label='C-VH') 
ax[0].set_xlabel('Date') 
ax[0].set_ylabel( n n [ ] ) 
 
# Make the y-axis label, ticks and tick labels match the line color. ax1.set_yla
bel('exp', color='b') 
# ax1.tick_params('y', colors='b') 
# ax[1] = ax1.twinx() 
# s_ts.plot(ax=ax[1],share=ax[0]) 
l_ts.plot(ax=ax[ ] sharex=ax[0] label='NDVI',xlim=(min(min(ltindex),min(stindex
)), 
                                                     max(max(ltindex),max(stinde
x))),ylim=(0,0.75)) 
# ax[1].plot(l_ts.index,l_ts.values,color='green',label='NDVI') 
ax[ ].set_ylabel('NDVI') 
ax[0].set_title( n n ) 
ax[ ].set_title('Landsat NDVI') 
 
ax[0].axvline(stindex[bandnbrs[0]- ] color='cyan',label='Sent. Date') 
ax[ ].axvline(ltindex[bandnbrs[ ]- ] color='green',label='NDVI Date') 
_=fig.legend(loc='center right') 
_=fig.suptitle( n n n n  
NDVI ') 
# fig.tight_layout()  

o parison o  ti e series profi es at point ocations.
e ill pic  a pixel location in the AR image, find the corresponding location in the andsat D I stac  and plot the oint time series.

irst let s pic  a pixel location in the AR image i.e. the reference image

e use the geotrans info to find the same location in the andsat image
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In [ ]: sarloc=(2000,2000) 
ref_x=geotrans[0][0]+sarloc[0]*geotrans[0][ ] 
ref_y=geotrans[0][ ]+sarloc[ ]*geotrans[0][5] 
print('UTM Coordinates      ',ref_x,ref_y) 
print('SAR pixel/line       ',sarloc[0] sarloc[ ]  
target_pixel=round((ref_x-geotrans[2][0] /geotrans[2][ ]  
target_line=round((ref_y-geotrans[2][ ] /geotrans[2][5]  
print('Landsat pixel/line   ',target_pixel,target_line) 

Read the image data at these locations

In [ ]: s_ts_pixel=[] 
for idx in (0, : 
    means=[] 
    for i in range(bands[idx] : 
        rs=img_handle[idx].GetRasterBand(i+ ).ReadAsArray(*sarloc,6,6) 
        # 1. Conversion to Power 
        rs_pwr=np.power(rs,2.)*calPwr 
        rs_means_pwr = np.mean(rs_pwr) 
        rs_means_dB = *np. (rs_means_pwr) 
        means.append(rs_means_dB) 
    s_ts_pixel.append(pd.Series(means,index=stindex)) 
 
means=[] 
idx=2 
for i in range(bands[idx] : 
    r=img_handle[idx].GetRasterBand(i+ ).ReadAsArray(target_pixel,target_line, ,
) 

    means.append(np.nanmean(r)/ ) 
l_ts_pixel=pd.Series(means,index=ltindex) 

Plot the joint time series.

n 2 5  
SAR pixel/line        2000 2000 
n n  
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Plot the joint time series.

In [ 5]: fig, ax = plt.subplots(2, ,figsize=( ,8)) 
# ax1.plot(s_ts.index,s_ts.values, 'r-') 
s_ts[0].plot(ax=ax[0] color='red',label='C-VV',xlim=(min(min(ltindex),min(stinde
x)), 
                                                     max(max(ltindex),max(stinde
x)))) 
s_ts_pixel[ ].plot(ax=ax[0] color='blue',label='C-VH') 
ax[0].set_xlabel('Date') 
ax[0].set_ylabel( [ ] ) 
 
# Make the y-axis label, ticks and tick labels match the line color. ax1.set_yla
bel('exp', color='b') 
# ax1.tick_params('y', colors='b') 
# ax[1] = ax1.twinx() 
# s_ts.plot(ax=ax[1],share=ax[0]) 
l_ts_pixel.plot(ax=ax[ ] sharex=ax[0] label='NDVI',xlim=(min(min(ltindex),min(st
index)), 
                                                     max(max(ltindex),max(stinde
x)))) 
# ax[1].plot(l_ts.index,l_ts.values,color='green',label='NDVI') 
ax[ ].set_ylabel('NDVI') 
ax[0].set_title( n n ) 
ax[ ].set_title('Landsat NDVI') 
_=ax[0].legend(loc='upper left') 
_=ax[ ].legend(loc='upper left') 
# fig.tight_layout()  

Interpret these time series profiles. hile generally the seasonal trends are visible in both li e  and cross polari ed H  data, and correlate ell ith the D I temporal
profile, the cross polari ed response is less pronounced at the example pixel location T  oordinates one  .  . .

EXERCISE
ic  different pixel locations and replot the figure above. Interpret the result ith respect to forest, non forest, deforestation and forest degradation signatures. In your

interpretation loo  for image signals of strong rain events in the AR data and cloud covered scenes in the andsat imagery.
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SAR Training Workshop for Forest Applications
How to Make RGB Composites from Dual-Polarimetric Data
Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

In this chapter we introduce how to make a three band color composite and save it

Import Python modules
In [ ]: import os,sys,gdal 

%matplotlib inline 
import matplotlib.pylab as plt 
import matplotlib.patches as patches  # Needed to draw rectangles 
from skimage import exposure # to enhance image display 
import numpy as np 
import pandas as pd 

In [2]: # Select the project data set and time series data 

In [ ]: # West Africa - Biomass Site 
datapath= n n I  
datefile= 2 2 5  

= 2 2 5  
= 2 2 5  

In [ ]: os chdir(datapath) 

e are defining t o helper functions for this tas

reate eoTiff  to write out images
dua po 2rg  to compute various metrics from a time series data stack
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In [5]: def CreateGeoTiff(Name, Array, DataType, NDV,bandnames=None,ref_image=None,  
                  GeoT=None, Projection=None : 
    # If it's a 2D image we fake a third dimension: 
    if len(Array.shape)==2: 
        Array=np.array [Array]  
    if ref_image==None and (GeoT==None or Projection==None : 
        raise RuntimeWarning('ref_image or settings required.') 
    if bandnames != None: 
        if len(bandnames) != Array.shape[0]: 
            raise RuntimeError('Need {} bandnames. {} given' 
                               .format(Array.shape[0] len(bandnames))) 
    else: 
        bandnames=['Band {}'.format(i+1) for i in range(Array.shape[0] ] 
    if ref_image!= None: 
        refimg=gdal.Open(ref_image) 
        GeoT=refimg.GetGeoTransform() 
        Projection=refimg.GetProjection() 
    driver= gdal.GetDriverByName('GTIFF') 
    Array[np.isnan(Array ] = NDV 
    DataSet = driver.Create(Name,  
            Array.shape[2]  Array.shape[1]  Array.shape[0]  DataType) 
    DataSet.SetGeoTransform(GeoT) 
    DataSet.SetProjection( Projection) 
    for i, image in enumerate(Array, 1 : 
        DataSet.GetRasterBand(i).WriteArray( image ) 
        DataSet.GetRasterBand(i).SetNoDataValue(NDV) 
        DataSet.SetDescription(bandnames[i-1]  
    DataSet.FlushCache() 
    return Name 
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In [ ]: def dualpol2rgb(like,cross,sartype='amp',ndv=0 : 
    CF=np.power(10.,-8.3) 
    if np.isnan(ndv : 
        mask=np.isnana(cross) 
    else: 
        mask=np.equal(cross,ndv)     
     
    l = np.ma.array(like,mask=mask,dtype=np.float32) 
    c = np.ma.array(cross,mask=mask,dtype=np.float32) 
     
    if sartype=='amp': 
        l=np.ma.power(l,2.)*CF 
        c=np.ma.power(l,2.)*CF   
    elif sartype=='dB': 
        l=np.ma.power(10.,l/10.) 
        c=np.ma.power(10.,c/10.) 
    elif sartype=='pwr': 
        pass 
    else: 
        print('invalid type ',sartype) 
        raise RuntimeError 
       
    if sartype=='amp': 
        ratio=np.ma.sqrt(l/c)/10 
        ratio[np.isinf(ratio.data ]=0.00001 
    elif sartype=='dB': 
        ratio=10.*np.ma.log10(l/c) 
    else: 
        ratio=l/c 
 
    ratio=ratio.filled(ndv) 
     
    rgb=np.dstack((like,cross,ratio.data)) 
 
     
    bandnames=('Like','Cross','Ratio') 
    return rgb,bandnames,sartype 
 
 
def any2amp(raster,sartype='amp',ndv=0 : 
    CF=np.power(10.,-8.3) 
    mask=raster==ndv 
     
    if sartype=='pwr': 
        raster=np.sqrt(raster/CF) 
    elif sartype=='dB': 
        raster=np.ma.power(10.,(raster+83)/20.) 
    elif sartype=='amp': 
        pass 
    else: 
        print('invalid type ',sartype) 
        raise RuntimeError 
     
    raster[raster<1]=1 
    raster[raster> 55 5]= 55 5 
    raster[mask]=0 
    raster=np.ndarray.astype(raster,dtype=np. n ) 
    return raster 
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Set the Dates

In [ ]: # Get the date indices via pandas 
dates=open(datefile).readlines() 
tindex=pd.DatetimeIndex(dates) 
j=1 
print('Bands and dates for',imagefile_like) 
for i in tindex: 
    print("{:4d} {}".format(j, i.date()),end=' ') 
    j+=1 
    if j%5 : n  

In [ ]: # PICK A BAND NAUMBER 
bandnbr=   

Open the image and get dimensions (bands,lines,pixels):

In [ ]: img_like=gdal.Open(imagefile_like) 
img_cross=gdal.Open(imagefile_cross) 
# Get Dimensions 
print('Likepol ',img_like.RasterCount,img_like.RasterYSize,img_like.RasterXSize) 
print('Crosspol',img_cross.RasterCount,img_cross.RasterYSize,img_cross.RasterXSiz
e) 

For a manageable size we can choose a 500x500 pixel subset to read the entire data stack (commented out). We also convert the amplitude data to power data right away
and will perform the rest of the calculations on the power data to be mathmatically correct.

NOTE: hoose a different xsi e ysi e in the subset if you need to.

n n 2 2 5  
2 5 22 2 2 5 2 5 5 2 5 5 5 2 5 5 2  
2 5 2 2 5 2 5 2 2 5 2 5 2  
2 5 2 2 5 2 5 25 2 5 5 2 5  
2 5 2 5 2 2 5 2 2 5 2 2 5 2  

2 2 5 2 22 2 5 2 2 2 2 2 2 2 25 2 2  
2 2 2 2 2 2 2 2 2 2 2  

2 5 2 2 5 5 2 5 2 2 5 2 2  
2 2 2 2 2 2  
2 2 2 2 2 2 2 5 2  
2 2 2 2 2 5 2 2 5 2 2 2  

5 2 52 2 22 5 2 2 5 2 2 5 55 2 2 2  
5 2 5 2 2 5 2 5 2 2 2  

2 5 2 2 5 22 2 2 5 5 2 2  
2 2 2 2 2 2 2 2  
2 2 2 2 2 25 5 2  
2 2  

2  
2  
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In [ ]: subset=None 
#subset=(3500,1000,500,500)   # (xoff,yoff,xsize,ysize) 
if subset==None: 
    subset=( , ,img_like.RasterXSize,img_like.RasterYSize) 
 
raster=img_like.GetRasterBand(bandnbr).ReadAsArray() 
fig, ax = plt.subplots(figsize=(8,8)) 
ax.set_title('Likepol full image {}' 
             .format(tindex[bandnbr- ].date())) 
ax.imshow(raster,cmap='gray',vmin=np.nanpercentile(raster,5),vmax=np.nanpercentil
e(raster,95)) 
ax.grid(color='blue') 
ax.set_xlabel('Pixels') 
ax.set_ylabel('Lines') 
# plot the subset as rectangle 
if subset != None: 
    _=ax.add_patch(patches.Rectangle((subset[ ] subset[ ]  
                                     subset[2] subset[3]  
                                     fill=False,edgecolor='red', 
                                     linewidth=3)) 

Make the RGB like/cross/ratio image
In [ ]: raster_like=img_like.GetRasterBand(bandnbr).ReadAsArray(*subset) 

raster_cross=img_cross.GetRasterBand(bandnbr).ReadAsArray(*subset) 

We make an RGB stack to display the like,cross, and ratio data as a color composite.

In [ 2]: rgb,bandnames,sartype=dualpol2rgb(raster_like,raster_cross) 
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We are interested in displaying the image enhanced with histogram equalization.

We can use the function exposure.equalize_hist() from the skimage.exposure module

In [ ]: rgb_stretched=np.ndarray.astype(rgb.copy(), 2 ) 
# For each band we apply the strech 
for i in range(rgb_stretched.shape[2] : 
    rgb_stretched[: : i] = np.ndarray.astype(exposure.equalize_hist(rgb_stretched
[: : i]  
    mask=~np.equal(rgb_stretched[: : i] 0)), 2 ) 

In [ ]: rgb_stretched 

Now let's display the the histograms and equalized image side by side.

[ ]: [[[ 25 5 2 525 2 5 ]  
[ 5 52 5 2 5 ]  
[ 2 5 2 2]  

 
[5 2 22 2 5 5 2 ]  
[ 22 52 55 2 55 ]  
[ 2 2 5 2 2 2 5 ]]  

 
[[5 22 2 5 5 2 ]  
[ 5 2 5 5 ]  
[ 2 52 2 25 ]  

 
[5 5 5 2 2 2 2 5 2 2 ]  
[ 2 2 55 2 2 2 5 ]  
[2 2 2 2 2 2 52 ]]  

 
[[ 5 5 5 5 ]  
[2 55 5 2 2 5 2 ]  
[ 55 5 5 2 ]  

 
[ 2 5 555 ]  
[ 5 225 2 2 2 5 ]  
[2 5 2 2 2 2 ]]  

 
 

 
[[5 5 ]  
[2 2 2 5 22 2 5 ]  
[ 2 2 5 5 5 ]  

 
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]]  

 
[[ 5 5 2 ]  
[2 5 5 5 2 5 5 5 ]  
[ 2 25 5 2 5 2 ]  

 
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]]  

 
[[ 22 252 5 ]  
[2 5 2 5 ]  
[ 22 5 5 ]  

 
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]  
[ 2 2 2 2 2 ]]] 2



THE SAR HANDBOOK 169

Now let's display the the histograms and equalized image side by side.

In [ 5]: fig,ax = plt.subplots( ,2,figsize=( ,8)) 
fig.suptitle( n n :{} :{} :{}' 
             .format(bandnames[0] bandnames[ ] bandnames[2]  
plt.axis('off') 
ax[0].hist(rgb[: : 0].flatten(),histtype='step', ='red',bins= ,range=(0,
00)) 
ax[0].hist(rgb[: : ].flatten(),histtype='step', ='green',bins= ,range=(0,
0000)) 
ax[0].hist(rgb[: : 2].flatten(),histtype='step', ='blue',bins= ,range=(0,
000)) 
ax[0].set_title('Histograms') 
ax[ ].imshow( ) 
ax[ ].set_title('Histogram Equalized') 
_=ax[ ].axis('off') 

Write the i ages to an output fi e
Determine output geometry
First, we need to set the correct geotransformation and projection information. We retrieve the values from the input images and adjust by the subset:

In [ ]: proj= . n() 
geotrans=list( .GetGeoTransform()) 
 
subset_xoff=geotrans[0]+subset[0]*geotrans[ ]   
subset_yoff=geotrans[3]+subset[ ]*geotrans[5]  
geotrans[0]=subset_xoff 
geotrans[3]=subset_yoff 
geotrans=tuple(geotrans) 
geotrans 

[ ]: 2 2 2
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Convert to 16bit Amplitude image
We use the root of the time series data stack name and append a _ts_metrics_.tif ending as filenames

Build a like/cross/ratio amplitude scaled GeoTIFF images

In [ ]: outbands=[] 
for i in range(3 : 
    outbands.append(any2amp(rgb[: : i]  
 
imagename=imagefile_like.replace('_vv_' '_lcr_').replace('.vrt' '_{}.tif'.format(
dates[bandnbr- ].rstrip())) 
bandnames=['Like' 'Cross' 'Ratio'] 
Array=np.array(outbands) 
CreateGeoTiff(imagename Array gdal. In 0 bandnames GeoT=geotrans Projectio
n=proj) 

This Image can no  be loaded into GI  or similar programs

Exercise
hange the bandnbr, generate a ne  rgb image and export it. Display in GI

[ ]: 2 2 5 2 2
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4.1  Theory 
4.1.1  BACKGROUND AND BASIC CONCEPTS

The average height of trees in a forest stand, or 
Forest Stand Height (FSH), is an indicator of the age 
of a forest stand and an important forest structure 
metric that helps to characterize (1) plant and ani-
mal habitats, (2) the history of land use, and (3) the 
amount of Above Ground Biomass (AGB) held in the 
forest stand. The size of the forest stand in this con-
text is minimally 1 ha in size, but is generally larger 
depending on the homogeneity of the forested re-
gion. In general, when using remote sensing data to 
estimate FSH, the smaller the size of the land unit, 
the less accurate the FSH estimate will be. This is due 
to basic sampling statistics and estimation errors 
that are incurred when a statistically varying quantity 
(such as forest height) is measured remotely.

4.1.1.1  Relating SAR to Forest Stand Height

SAR sensitivity to FSH is based on three funda-

mental SAR properties. These three fundamental 
properties are discussed below and are illustrated in 
Figure 4.1:

(1) As the number of scatterers increase within 
a SAR resolution cell, so does the reflected 
power. This trend is moderated by the effect 
of attenuation of signals as they pass through a 
forested canopy, and is directly related to the 
saturation effect seen in backscatter to bio-
mass relationships (discussed in Chapter 5). 

 Insomuch as the number of scatterers increas-
es with FSH and forest density, observations of 
the backscatter power from radar can be used 
as an indirect measure of FSH. This relation-
ship is often obtained through an empirical 
relationship between the two variables. 

 It should be noted that SAR data can have a 
number of different polarization combina-
tions, with the simplest being a co-polarized 
return, such as HH or VV (see Chapter 2); 
followed by dual-polarized, which is a combi-

nation of one of the co-polarized returns with 
its cross-polarized counterpart (HH with HV, or 
VV with VH); and finally, the quad-polarized 
signature, which is the most complicated as it 
has all four components (HH, HV, VV, and VH) 
of the polarimetric scattering matrix. Because 
of the sensitivity of the cross-polarized signa-
ture to the multiple scattering that occurs in 
vegetated environments, the cross-polarized 
channels of the backscatter power are most 
often used for characterizing forest structure.

(2) In addition to the power measured in a SAR 
backscatter image, SAR can also very accurate-
ly measure the distance to targets. When the 
height of target is not accurately known, there 
exists an ambiguity in the geometric relation-
ship between the target and the SAR sensor, 
principally through the look angle, which is de-
fined as the angle between the nadir direction 
of the SAR and the vector pointing from the 
SAR to the target.

Paul Siqueira, Professor of Electrical and Computer Engineering, Microwave Remote Sensing Laboratory, University of Massachusetts, Amherst

CHAPTER 4
Forest Stand Height Estimation

The measurement of forest structural characteristics is important for a variety of Monitoring, Reporting, and Verification (MRV) protocols in resource management. 
One characteristic of particular importance is Forest Stand Height (FSH), or the average height of trees in a forest stand. In this context, FSH can be used an indicator 
of the age of a forest stand, plant and animal habitats, and the amount of Above Ground Biomass (AGB) held in the forest stand. FSH can be measured through the 
use of terrestrial and/or airborne lidar, with airborne lidar being especially useful due to its wide area coverage and direct measurement of forest height. A difficulty 
with airborne measurements, however, is that while these measurements work well at the tens- to hundreds-of-hectares-level, they are difficult to scale beyond that. 

One method for the spatial scaling of FSH is through the use of spaceborne Synthetic Aperture Radar (SAR), especially at L-band repeat-pass Interferometric SAR 
(InSAR), which can be obtained through repeat observations from ALOS-2 and the future NISAR mission. In this scenario, the measure of InSAR decorrelation can 
be related to FSH through the use of localized training data obtained from lidar. This chapter focuses on the use of repeat-pass InSAR for FSH estimation, and 
presents the theory, software, and examples of these methods. Although there is currently a limited availability of L-band SAR from ALOS-2, when NISAR launches 
in 2021, the presented method of FSH determination can be applied over large regions, especially when initialized using instruments such as the Global Ecosystems 
Dynamics Investigation Lidar (GEDI) aboard the International Space Station, or other lidar observations.

ABSTRACT
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 When two SAR observations are made, howev-
er, this angle can be determined very accurately 
through some basic trigonometric calculations 
and indeed can be used for measuring the to-
pography of the Earth through a process known 
as Interferometric SAR, or InSAR. If the measure 
of InSAR height can be modeled relative to the 
bare ground surface, and if the topography of 
that surface can be determined through other 
means, then an estimate of the vegetation height 
can be determined by the difference between 
the InSAR-measured height and ground surface 
Digital Elevation Model (DEM).

 In places where the topographic height is not 
well defined (e.g., in a forest canopy where the 
interferometrically measured height can mean 
either at the ground surface or the canopy top), 
a unique interferometric signature arises in 
which the detected height from the interferom-
eter can be shown to be a random number. Its 
mean is an extinction weighted average of the 
radar signal penetration into the canopy. The 
term “extinction weighted average” refers to 
the loss of signal strength (extinction) as a radar 
signal penetrates a forest canopy. Hence, parts 
at the top of the canopy will contribute more to 
the backscatter signature than the bottom of the 

canopy. This depth of penetration is proportion-
al to the signal wavelength (24 cm for L-band 
and 5-cm for C-band) and the density of scat-
terers. For interferometric applications, the ver-
tical distribution of scatterers plays a role in the 
overall signature, and hence the use of the term 
“extinction weighted average.” The magnitude of 
this weighted average is known as the “interfer-
ometric coherence,” a normalized value with a 
range between 0 and 1. InSAR sensitivity to FSH 
statistics have led to a number of approaches to 
be explored using spaceborne satellites (e.g., 
Treuhaft & Siqueira 2000, Cloude & Papathanas-
siou 2001).

(3) For InSAR to work well over vegetated surfaces 
in the previously described manner, it is import-
ant to make the SAR observations simultaneous-
ly, or as close together in time as possible. This is 
because if the observations are made at differ-
ent times, the targets within a SAR resolution cell 
may have moved, and this movement will cause 
an error in measuring the trigonometric look 
angle and will create a reduction in the inter-
ferometric coherence. This process is known as 
“temporal decorrelation,” that is, the more that a 
target changes between observations, the lower 
the coherence will be.

 When an InSAR system makes both observa-
tions at the same time (typically requiring two 
satellites or a single airborne platform with two 
antennas), it is known as “single-pass InSAR.” 
Conversely, if the observations of the scene 
are made at different times, this is called “re-
peat-pass InSAR.”

 One way FSH can be estimated from repeat-pass 
InSAR is to measure the amount of temporal 
decorrelation that has occurred between passes 
and to make the broad assumption that the tall-
er a tree (or forest stand) is, the more movement 
that will occur between passes of the satellite. 
Hence, when the interferometric coherence is 
measured, it can indirectly (through an empirical 
relationship) be used to estimate FSH.
As in the case of backscatter to biomass relation-
ships, the cross-polarized channel (HV) of the 
interferometric coherence is more sensitive to 
FSH that the co-polarized channels (HH and VV).

Based on the principles highlighted above, a set 
of algorithms has been created for estimating FSH 
from InSAR observations. Because most spaceborne 
SAR systems cannot perform single-pass interfer-
ometry, the FSH algorithm relies on the repeat-pass 
relationship between interferometric coherence and 
vegetation height.

Figure 4.1  Illustration of the three principles behind the relationship of SAR measurements to vegetation height. Shown from left to right are (a) a test region 
located in the U.S. state of Maine imaged by the LVIS lidar sensor, (b) the radar backscatter intensity for the region (grayscale), (c) the height difference between 
L-band repeat-pass SAR and the ground surface DEM, and (d) a height estimate based on the interferometric correlation. The graphic at the right (e) shows the FSH 
error relative to the lidar measurement for each of the three SAR methods derived from the cross-polarized signal. It can be seen from the plot that for vegetation 
heights of less than 10 m, the backscatter intensity is most accurate. For vegetation taller than 10 m, the InSAR coherence proves to be more accurate.

Test Region RCS (HV) Intf. phase Intf. correlation
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4.1.1.2  Mission Platforms for Estimating 
Forest Stand Height

At the time of this writing, and algorithm develop-
ment, for spaceborne applications with a global ex-
tent, there are only two SAR systems with single-pass 
interferometry. One of these is the Shuttle Radar 
Topography Mission (SRTM), a C-band InSAR flown 
on board NASA’s space shuttle for an 11-day mission 
in February 2000. The other is TanDEM-X, flown by 
the German Space Agency (DLR), where data were 
collected by two co-orbiting satellites at X-band in 
2010 and made mostly available through commercial 
arrangements. Because both satellites operate with 
wavelengths less than 10 cm, the signals from SRTM 
and TanDEM-X do not penetrate far into the canopy, 
and without a model for the ground surface DEM, will 
have difficulty estimating FSH.

Upon implementation, a significant source of error 
in estimating coherence is related to thermal noise. 
As the amount of backscatter power received from 
a target decreases, an increased proportion of the 
coherence measurement is related to the signal that 
remains. In the case of a radar system, the residual 
signal not originating from the target itself is con-
sidered thermal noise (or simply instrument noise). 
Since bare surfaces (especially smooth surfaces) do 
not have a strong backscatter signal, the error in 
measuring interferometric coherence is large. Hence, 
the error in FSH estimation increases with decreasing 
values of vegetation height. For this reason, the best 
estimate of FSH made from repeat-pass interferom-
etry is made from a combination of SAR backscatter 
power and InSAR coherence. For this reason, the ap-
proach described here can be referred to as a com-
bined SAR/InSAR estimation of FSH.

With respect to theory, a final note should be 
made about this method’s sensitivity to the observ-
ing SAR’s wavelength. For most terrestrial remote 
sensing systems, wavelengths range between ~1 m 
(P-band) to ~3 cm (X-band) (for more information on 
SAR wavelengths, see Chapter 2, Section 2.3.1). 
Because vegetation structures are on the order of 
some tens of centimeters, forest vegetation is often 
best observed using P- and L-bands (~24 cm). For 
L-band SAR, only the Japanese Aerospace Exploration 

Agency’s (JAXA’s) JERS-1 and ALOS-1 and -2 satellites 
are available, but are limited due to their observing 
strategy and data distribution policy. The European 
Space Agency’s (ESA’s) Sentinel-1a and -1b satellites 
that operate at C-band (5 cm) are potential resources, 
but are limited for repeat-pass InSAR because of the 
short wavelength and dominance of temporal decor-
relation over vegetated targets. 

This leaves the capacity for estimating FSH on a 
global basis to future satellite systems. Of these, 
there are three upcoming missions that may fill this 
need:

(1) The Argentinian Space Agency’s (CONAE’s) L-band 
SAOCOM mission that was launched in 2018. The 
observing plan and data availability for this mis-
sion are currently not known.

(2) ESA’s P-band Biomass mission, which will launch 
in the 2021–2022 timeframe. This will be a first-
of-its-kind spaceborne P-band repeat-pass InSAR.

(3) NASA and the Indian Space Research Organiza-
tion’s (ISRO’s) L-band and S-band (10 cm) NISAR 
mission, which will launch in late 2021 or early 
2022. Data will be freely available and have glob-
al coverage at L-band. 

With the NISAR mission in mind, and under-
standing the C-band wavelength limitations of ESA’s 
Sentinel-1 data, prototyping of FSH algorithms have 
concentrated on L-band using geographically limited 
ALOS data as a proxy. 

4.1.1.3  Additional Theoretical and Applied 
Background 

To learn more about the FSH algorithm and to 
access Python-based scripts for executing the algo-
rithms described here, refer to the following journal 
articles:

• An introductory paper on the topic:

Lei, Y., P. Siqueira, “Estimation of Forest Height Using 
Spaceborne Repeat-Pass L-Band InSAR Correla-
tion Magnitude over the US State of Maine,” Rem. 
Sens., 6(11), 10252-10285, 2014.

• An automated method for mosaicking FSH data 
and minimizing errors

Lei, Y., P. Siqueira, “An Automatic Mosaicking Algorithm for 

the Generation of a Large-Scale Forest Height Map 
Using Spaceborne Repeat-Pass InSAR Correlation 
Magnitude,” Rem. Sens., 7(5), 5639-5659, 2015.

• An article describing the theory behind the ap-
proach

Lei, Y., P. Siqueira, R. Treuhaft, “A physical scattering model 
of repeat-pass InSAR correlation for vegetation,” 
Wvs. Rand. Cmpx. Med., 27(1), 129-152, 2017.

• Application of FSH and Repeat-pass InSAR for 
Forest disturbance detection

Lei, Y., R. Lucas, P. Siqueira, M. Schmidt, and R. Treuhaft, 
“Detection of forest disturbance with spaceborne 
repeat-pass SAR interferometry,” IEEE Trans. Geos-
ci. Rem. Sens., 56(4), 2424-2439, Apr 2018.

• Statistical evaluation of the FSH algorithm over a 
wide area

Lei, Y., P. Siqueira, N. Torbick, M. Ducey, D. Chowdhury, and 
W. Salas, “Generation of large-scale moderate-res-
olution forest height mosaic with spaceborne re-
peat-pass SAR interferometry and lidar,” To be pub-
lished IEEE Trans. Geosci. Rem. Sens., 34 pp., 2019.

4.1.2  PROCESSING TECHNIQUES

InSAR data processing for FSH estimation requires 
either raw satellite data that have been downlinked 
but not processed, or SAR data that have been pro-
cessed into Single Look Complex (SLC) imagery that 
is appropriate for forming interferograms. If the user 
has access to SLCs directly, then it is recommended to 
begin from there. If only the raw data are available, 
then some additional processing is necessary. One 
advantage to beginning with raw data is that the out-
put formats of the interferograms and ancillary data 
are assembled in such a way as to make it easy to 
follow-on the processing with additional steps imple-
mented to estimate FSH. 

Software for processing raw data into SLCs can be 
obtained both commercially and through open source 
licensing agreements. Of the open source licensing 
processors, there are two that have been used for 
processing raw ALOS data into SLCs and then into FSH 
estimates. These are ROI_PAC (Repeat Orbit Interfer-
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ometry PACkage) and ISCE (InSAR Scientific Computing 
Environment). In this document, ROI_PAC is used be-
cause it has completed its development lifetime is and 
is somewhat easier to obtain than ISCE. At the time of 
this writing, ISCE continues to be developed, whereas 
ROI_PAC is not. With this in mind, the scripts that esti-
mate FSH from SLCs have been designed to work with 
both ROI_PAC and ISCE. 

It is important to note that while Python programs 
can be run in Windows, Mac OS X, and Unix environ-
ments, processing raw data into interferograms using 
the methods described requires a Unix or Linux envi-
ronment. For this reason, it is assumed that the reader 
has access to these types of computing capabilities and 
is familiar with operating inside of them. 

The following sections describe three steps: (1) 
downloading and processing ALOS data, (2) staging of 
ground validation data (necessary for establishing em-
pirical relationships between SAR backscatter power 
and interferometric coherence to forest height), and 
(3) running the FSH algorithms. Users starting with SLC 
data may begin at the second step.

4.1.2.1  Processing ALOS Data

To understand SAR data processing for FSH estima-
tion, it is helpful to refer to a particular software so that 
the user can conceptualize the steps necessary to pro-
cess SAR data. This section begins with a short descrip-
tion on how to obtain and install the ROI_PAC software.

4.1.2.1.1  Installing and Testing ROI_PAC

In this work, the ROI_PAC processing software can 
be obtained in TGZ (i.e., gzipped TAR) format at http://
www.openchannelfoundation.org/projects/ROI_PAC. 
To fully install the ROI_PAC software, it is also necessary 
to have available a Fortran compiler (e.g., gfortran) and 
the FFTW library. Additional details for the installation 
of ROI_PAC software can be found at http://roipac.org/
cgi-bin/moin.cgi/Installation.

The ROI_PAC software distribution comes with 
a test dataset that can be processed by ROI_PAC to 
test the software installation. The details of this test 
processing can be found in the ROI_PAC installation 
subdirectory fullpath/contrib/multtest.sh, where full-
path refers to the folder that the ROI_PAC installation 
archive is unzipped. 

4.1.2.1.2  SAR Processing

Processing SAR data from raw digital values 
retrieved from the satellite into what ultimately be-
comes SAR imagery can be a detailed and complex 
process. In the processing of SAR data, corrections 
are made to account for the motion of the satellite 
and for the image projection effects that arise from 
the atmosphere, viewing geometry, and topography 
of the Earth. A summary of the basic steps executed in 
processing are shown in Figure 4.2. An illustration 
of SAR data as they are processed from raw imagery 
into map-projected ground-range (i.e., Level 2.0) is 
shown in Figure 4.3.

4.1.2.2  Staging of Ground Validation Data

FSH ground validation data is an important com-
ponent of the data processing methodology nec-
essary for converting interferometric SAR data into 
FSH estimates. The FSH algorithms are implemented 
such that they can ingest geographically explicit data 
of measured (either ground-based or lidar) forest 
heights through the GeoTIFF format. The following 
subsection provides a review of the ground validation 
data necessary for the running of FSH.

4.1.2.2.1  Types of Ground Validation Input

There are two types of ancillary ground validation 
data that are necessary for completing the specifica-
tion of the empirical models used for the estimation 
of FSH from SAR data: (1) a Forest/Non-Forest (FNF) 

Figure 4.2 Processing chain for SAR data showing the steps that occur in the transition of a SAR image 
from raw data into processed data. Interferometric analysis should be done at Level 1.1. Level 2.0 refers 
to data that have been multi-looked, corrected for terrain effects, etc. Level 3.0 data (not shown) refers 
to data that have been interpreted in some way, either through classification or parameter estimation. 
Note that the different level numbering specified in the headings of the processing steps may vary from 
space agency to space agency.

Downlinked
Satellite Data

Level 1.0
Raw data

Needs “focusing”

Level 1.1
Slant range data

Needs “projection”

Level 1.5
Ground range data
Needs “mapping”

Level 2.0
Corr. ground range data 

in map coordinates

Header Information 
(720 bytes)

IQ A/D samples
(10800 bytes)

Magnitude Phase

a.)

b.)

c.)

d.)

Figure 4.3 The four steps of processing ALOS SAR data beginning from (a) raw samples from the 
satellite, (b) range compression, (c) azimuth compression resulting in an SLC, and (d) projection into 
map coordinates (Level 2.0). Shown in parts (b) and (c) is the signal phase used in interferometry for 
determining topographic height and coherence.

http://www.openchannelfoundation.org/projects/ROI_PAC
http://www.openchannelfoundation.org/projects/ROI_PAC
http://roipac.org/cgi-bin/moin.cgi/Installation
http://roipac.org/cgi-bin/moin.cgi/Installation
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mask that indicates where in the image the estimates 
should be exercised, and (2) a map of locations 
where forest height has been previously determined 
and will be used by the FSH algorithm for the training 
of the empirical models.

The FNF map can be derived from a number of 
sources or created independently by the user. Exam-
ples of external data sources that can be used to de-
rive an FNF mask are (1) JAXA’s FNF mask, (2) the U.S. 
National LandCover Dataset (NLCD), and (3) ESA’s CCI 
Landcover (formerly GlobCover). From datasets such 
as these, a determination can be made where forests 
are situated and hence, where it is desired to esti-
mate FSH. The contents of the FNF mask should be 
such that all regions where FSH should be estimated 
have a value of 0, and all regions where FSH should 
not be estimated have a value of 1. An example of this 
classification is shown in Figure 4.4(a).

4.1.2.2.2  Use of Lidar for Forest Stand Height Model 
Development

To determine values for the empirical models that 
relate radar backscatter power and interferometric co-
herence to FSH, some independent measure of forest 
height is necessary. Because of its ability to acquire 
accurate measurements of vegetation height over an 
extended geographic region, lidar is a preferred meth-
od for determining the coefficients that parameterize 
these models. An example of lidar data for a region 
in Maine, U.S., is shown in Figure 4.4(b), which 
was derived from the Laser Vegetation Imaging Sen-
sor (LVIS) operated by NASA’s Goddard Space Flight 
Center.

The LVIS data in Figure 4.4 show vegetation 
height gridded into 30-m pixels, converted into a 
GeoTIFF format, and visualized using QGIS software. 
A resolution of 30 m was selected for this example be-
cause it is commensurate with the LVIS spot size of 25 
m and the multi-looked resolution of the L-band SAR 
data. An example of the distribution of LVIS-estimated 
tree heights is shown in Figure 4.5.

4.1.2.2.3  Alternative Methods for Estimating Forest Height

If lidar data are not available, then another form 
of independent forest height measurement over the 
training area needs to be identified or created. Since 

the FSH estimator is only accurate to the 3- to 5-m lev-
el, a simple solution would be to perform a land-cover 
classification of a region using optical data. Stands of 
different ages and species composition will have differ-
ent heights, which can be estimated from the ground 
to the same accuracy as the FSH. During the develop-
ment and testing of the FSH algorithm described here, 
this approach was used at times. However, the results 
have been somewhat mixed in terms of success.

As a final approach, it should be noted that freely 
available satellite resources of lidar data are either 

available or soon to become available. Notable 
among these are ICESAT-1 and -2, as well as the up-
coming NASA GEDI mission.

4.1.2.3  Running Forest Stand Height 
Algorithms

In order to run the FSH algorithms, it is assumed that 
the first two steps of the process described in Section 
4.1.2 have been accomplished: (1) the creation or ob-
taining of SLCs and (2) the obtaining of an FNF mask and 
vegetation height ground validation data. Once these 

Figure 4.4  Examples of ground validation input for the FSH algorithm: (a) Optical image overlain with the 
FNF mask (green areas indicate regions that will be estimated for FSH), and (b) image of Laser Vegetation 
Imaging Sensor- (LVIS-) derived vegetation height, where blue indicates zero height, and dark red indicates 
the maximum height of 25 m. Data such as these are used for determining coefficients for the empirical 
models that relate the radar backscatter and interferometric coherence to vegetation height.

a.) b.)

Figure 4.5 Histogram of 
lidar-derived tree heights 
used for the training of 
empirical models of FSH. 
The spatial resolution of the 
LVIS data used here is 30 m.
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two steps have been accomplished, the data should be 
organized in a file structure such that individual folders 
hold results from individual interferograms between 
two dates (the SLCs and ancillary data for individual 
scenes (frames) and orbit (path) numbers). For any 
one frame and path number, there may exist multi-
ple interferograms, related to multiple repeat-pass 
combinations of data from two different dates. These 
interferograms should be stored in subdirectories with 
the naming convention: int_date1_date2. 
Scenes from differing frames and paths can be interfer-
ometrically processed in order to create an estimate of 
FSH over an extended geographic region.

The interferogram subdirectories will hold all of the 
data and information necessary for creating and doc-
umenting interferograms made for an observation on 
two specific dates (date1 and date2). For ROI_PAC-pro-
cessed data, the most important file looks like geo_
date1-date2_2rlks.cor and geo_
date1-date2_2rlks.cor.rsc. The 
resource (“.rsc”) file is a text file that has information 
on the location and size of the geolocated correlation 
data held in geo_date1-date2_2rlks.
cor. The format of the correlation file is known as 
“sample-interleaved,” or an RMG format file. An image 
of interferometric coherence (color) overlain on a geo-
referenced image of radar backscatter cross-polarized 
power is shown in Figure 4.6.

Because radar data is organized in terms of orbits 
and scenes, in order to make a map of FSH over an ex-
tended geographic region, it is necessary to mosaic the 
images. While the process of mosaicking can be done 
either before or after the estimation of FSH, it is best 
to do so beforehand to take advantage of the overlap 
region between images in adjacent paths. In these re-
gions, while the value of the coherence magnitude may 
vary due to the fact that the observations (and image 
pairs) have occurred from different orbits (and hence 
different dates), the overlap regions can be used to 
correct for these temporal differences and to adjust the 
coefficients for the empirical relationships of the SAR 
products to estimates of FSH. An example of this pro-
cess is shown in Figure 4.7.

Once the data have been organized into directories 
of scenes described by their individual row and path 
numbers, and the interferograms have been examined 

to determine which SLC pairs yield data with the highest 
coherence (i.e., the least amount of temporal decorrela-
tion), there remains the task of creating what is known 
as a “flag file” and a “link file.”

In this context, the flag file is a listing of all of the 
interferograms to be used in creating the region-wide 
mosaic of FSH. In the case discussed here, there are 
three such row/path combinations that will create a 
three-scene mosaic of FSH located in central Maine. The 
middle of the three scenes overlaps with the LVIS data 
discussed in Section 4.1.2, and all scenes are within 

the region where identification of FNF is used for deter-
mining geographic locations where the FSH algorithm 
will be applied. An example of the contents of a flag file 
(in text format) is at the bottom of the page:

In this example, the first column of numbers indi-
cates the interferogram number, the second column 
is the root file name of the data that forms the inter-
ferogram, the third and fourth columns are the dates 
that the data were collected for the interferometric 
pairs, the fifth and sixth columns give the satellite 
path and orbit numbers (respectively), and the last 

Figure 4.6 A combined image of interferometric coherence (color) and cross-polarized backscatter 
power (brightness). The interferometric coherence in this image ranges between 0.1 (magenta) and 
0.6 (cyan). Regions of low interferometric coherence are likely due to the presence of vegetation.

Figure 4.7 Example of FSH/coherence equalization through the use of overlapping image regions: (a) 
optical image in central Maine, (b) an estimate of FSH for this region (color scale on the left extends 
from blue (0 m) to red (35 m)) where lidar data were available from LVIS, (c) an unconstrained estimate 
of FSH from an adjacent satellite pass, and (d) a corrected estimate of FSH for both scenes included in 
the mosaic. Color scale for all figures is the same (from Lei & Siqueira 2014).

a.) b.)

c.) d.)

001   890_120_20070727_HV_20070911_HV   070727 070911   890   120   HV

002   890_119_20070710_HV_20071010_HV   070710 071010   890   119   HV

003   890_118_20070808_HV_20070923_HV   070808 070923   890   118   HV
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column indicates the polarization of the data.
A question that may arise when looking at the flag 

file is if it is possible to use other polarization com-
binations (e.g., HH and/or VV) for the determination 
of FSH. Indeed, such combinations were tested in 
the development stages of the algorithm, and it was 
determined that cross-polarized data worked best 
because of its higher sensitivity to volume scattering 
than co-polarized data. Similarly, other polarization 
combinations that emphasize the volume scattering 
return over surface scattering components (such as 
the circular polarization combination of LR) would be 
equally appropriate for the algorithm. If only co-po-
larized data are available, however, then it is gener-
ally preferable to have HH-polarization over VV, and 
then to move forward with the FSH algorithm, with 
the expectation that both accuracy and sensitivity will 
be reduced. 

The link file mentioned above provides informa-
tion on which files are expected to have some degree 
of geographic overlap and hence be used in propa-
gating the coefficients of FSH. While many files may 
have such a geographic overlap—and that, indeed, 
this overlap can be automatically calculated—a sep-
arate link file is desired so that links can be added 
or broken as necessary in order to account for the 
varying quality of data in the overlap region used to 
estimate the coefficients (e.g., a scene with a partic-
ularly high degree of temporal decorrelation can be 
removed from the link list). A simple example of the 
text-formatted link file is as follows:

2  1

2  3

This indicates that image 2 is connected to image 
1, and that image 2 is also connected to image 3 (and 
also that images 1 and 3 are not connected).

In this context, the high degree of temporal decor-
relation referenced in the previous paragraph indi-
cates those situations in which the temporal decor-
relation is large enough to obliterate any information 
content in the repeat-pass interferogram. Such is the 
case when the average interferometric correlation 
magnitude for a scene falls in the range of 0 to 0.5.

Once these files are created and put into place, the 
FSH set of scripts can be run by calling it in the com-
mand line and passing arguments that indicate the 

various input file names as well as ancillary informa-
tion. An example of a call to the FSH algorithm call is

python  forest_stand_height.py  <# 
scenes> <# edges> <start scene #> 
<# iterations> <link filename> <flag 
filename> <lidar heights file> 
<forest/non-forest file> <directory 
of input/output files> 
<list of output formats> 

--flag_proc=0

In the last line of the FSH algorithm call, the list 
of output formats should be in quotes, and can con-
tain one or all of the following: “tif kml gif 
mat json”. In other words, output formats can 
be created for any of these options. Further, the 
command option  indicates 
that the input data has been processed into SLCs by 
the ROI_PAC algorithm (as opposed to processing by 
ISCE, which should have a value of 1 instead).

4.1.3  ALGORITHM DEVELOPMENT

The FSH algorithm described in Sections 4.1.1 
and 4.1.2 are based on a combination of empir-
ical relationships between cross-polarized radar 
backscatter power and interferometric coherence. 
Through the development of the algorithm, and fol-
lowing analysis such as that shown in Figure 4.1, 
it has been determined that FSH values below 10 
m should be determined by the backscatter power 
relationship, and values above this threshold should 
be determined by interferometric coherence. In or-
der to determine if this threshold has been met, the 
interferometric coherence version of FSH is first com-
puted, and in regions where that is determined to be 
below the threshold value, the backscatter power 
empirical relationship is used.

A block diagram for this approach is given in Fig-
ure 4.8. In the diagram, parallelograms refer to 
inputs and outputs of the algorithm. Rectangles are 
steps in the processing, and a diamond is a point of 
evaluation. Also, in the diagram, the variable hv refers 
to the value of FSH, and ρ = [Sscene   Cscene] is the set 
of two values per scene that parameterize the model 
that relates temporal decorrelation to the vegetation 
height (Sec. 4.1.3.2) (see Lei et al. 2019).

In order to gain some appreciation of the simplicity 
of the relationships described above, it is valuable to 
specify what these equations are. A more detailed ex-

planation of this approach, complete with equations 
and a statistical examination, can be found in Lei et 
al. (2019).

4.1.3.1  Relationship of Backscatter to 
Forest Stand Height

The backscatter power, after correcting for topo-
graphic and other geometric effects, is written as

 γ0 = A 1−e−Bhv
C⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

  ,  (4.1)

where γ0 is the terrain-corrected form of radar 
cross section (e.g., see Small 2011), hv is the vegetation 
height, and the coefficients A, B, and C are determined 
in the FSH algorithm using a least-squares fit between 
the backscatter power and the vegetation height pro-
vided by the ground validation and/or overlap data 
between scenes. Sample values for these coefficients 
that have been automatically determined by the FSH 
algorithm are A = 0.11, B = 0.0622, and C = 1.0143.

A common issue with the relationship of backscatter 
to vegetation characteristics is that above a certain 
threshold of biomass, there is no longer a sensitivity 
of increasing γ0 to increasing biomass. This saturation 
effect is wavelength-dependent. At L-band, an ac-
cepted value for the saturation limit is for 100 tons of 
biomass/hectare. Under the assumption that a rela-
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Figure 4.8 Block diagram for the processing of FSH. 
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tionship exists between vegetation height and biomass, 
whatever that may be, there is a similar saturation effect 
that occurs between γ0 and hv. This is reflected in the 
exponential relationship shown at the beginning of this 
section. While the saturation limits of sensitivity of γ0 
to hv are less well-characterized, nominal estimates for 
these values provided in Table 4.1. 

Note that values listed in the table are nominal val-
ues only and are strongly dependent on the biome, 
stand age, soil moisture and surface roughness.

When working in a specific region, however, the cor-
rect approach for determining these limits is to make a 
plot of radar backscatter as a function of lidar-derived 
vegetation heights.

In this section, backscatter power is referred to as 
γ0. This backscatter power is a measure of the power 
that the radar receives from a particular region on the 
Earth’s surface that is reflecting energy back to the ra-
dar. These values are stored on the satellite or airborne 
platform in digital values that are related to the power 
recorded by the radar. After processing to put the data 
into ground coordinates, and to perform aperture syn-
thesis (a critical part of SAR processing), these values 
are transformed by the processor and provided to the 
user either as Digital Numbers (DN values) or in terms 
of calibrated radar backscatter power, either in units of 
σ0 or γ0, depending on the level of processing employed. 
The term “calibration” refers to correcting the radar 
power returns for gains that are internal to the radar 
system and processing chain and making all measure-
ments proportional to the transmitted power. Values of 
σ0 are calibrated in terms of the range coordinate of the 
radar system and have been normalized for the size of 
the area reflecting the energy back to the system (larger 
areas will reflect more energy). The units of σ0 are in m2/
m2. The radar cross section σ is not normalized for this 
area and is in units of m2. When a DEM is used and the 
value of the radar cross section is adjusted to account 
for the intercepted surface area in the direction of radar 
viewing, this is what is termed γ0 and is the form of radar 
cross section most appropriate for quantitative analysis 
(Small 2011).

4.1.3.2  Relationship of Interferometric 
Coherence to Forest Stand Height

The interferometric coherence is derived from 

the interferometric correlation, which is the nor-
malized geometric average between two complex 
images. Mathematically, the interferometric cor-
relation γ is defined as 

 γ= 
E1E2

*

E1
2

E2
2

  ,  (4.2)

where E1 and E2 are the complex values of radar cross 
sections observed by the SAR satellite and delivered 
as SLCs, the brackets indicate averaging over multiple 
looks, and * indicates a complex conjugation. Note 
that the γ defined in the interferometric correlation 
expression above is not the same as the γ0 specified 
for the terrain-corrected value of radar cross section 
described in Section 4.1.3.1. When an image is 
referred to as an interferogram, it indicates an im-
age of γ as specified previously. This correlation is 
complex-valued, with its magnitude (the coherence) 
varying between 0 and 1, and the phase between 
0 and 2π. A signal with low correlation will have a 
coherence close to 0 and a random phase. A signal 
with a high correlation will have a coherence close to 
1 and a well-determined phase that is related to the 
viewing geometry.

A number of factors contribute to the general val-
ue of the interferometric correlation: 

• The geometric correlation due to incidence an-
gle and projection effects, γgeom 

• The correlation related the proportion of noise 
in the receive system, γSNR 

• The correlation related to the interferometric 
baseline and the volume scattering of the target, γvol

• The temporal correlation (or decorrelation, as 
the case may be), γtemp 

The net effect of all of these sources of decorrela-
tion multiplied by one another make up the total 
observed correlation γ as described previously by 

Eq. (4.2):
γ = γgeom · γSNR · γvol · γtemp  .

(4.3)
When a satellite doing repeat-pass interferometry 

and has an orbital repeat that minimizes the orbital 
distance between repeat-orbits, the condition exists 
known as “zero-baseline interferometry,” which is the 
case for most repeat-pass SAR systems. In such cases, 
the contribution of the volumetric decorrelation γvol to 
the total correlation is minimal; hence, the best way for 
relating interferometric correlation to FSH is through 
the temporal decorrelation signature, which is a statis-
tical-empirical relationship by its nature. 

In the FSH algorithm, the combination of volume 
and temporal correlation (or coherence), |γv&t| = 
|γvolγtemp|, is related to the vegetation height hv by the 
empirical equation:

 γv&t = Sscene ⋅sinc
hv

Cscene

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
  ,  (4.4)

where the coefficients of Sscene and Cscene are scene-
wide coefficients (i.e., have only one value for the entire 
radar scene) determined using a least-squares fit to the 
ground validation data and/or overlap regions between 
neighboring interferograms (e.g., Lei et al. 2019). Typical 

Figure 4.9 Typical values for the model coefficients 
of Sscene and Cscene used by the FSH algorithm for 
relating vegetation height to the interferometric 
coherence. 

BAND WAVELENGTH FSH HV BACKSCATTER SATURATION LEVEL

X- (10 GHz) 3 cm 10 cm -10 dB

C- (5.4 Ghz) 5.6 cm 1 m -12 dB

L- (1.2 GHz) 24 cm 10 m -13 dB

Table 4.1  Nominal estimates for HV backscatter saturation levels for typical SAR wavelengths.
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values of Sscene and Cscene as determined in a 37-scene, 
statewide mosaic of FSH for Maine are shown in Fig-
ure 4.9. Note that values of Sscene and Cscene vary due 
to differing weather and soil moisture conditions that 
happen throughout the year and observing period of 
repeat-pass interferometry.

Once the coefficients for the empirical relationship 
between hv and |γv&t| have been established, it is a sim-
ple matter to invert the relationship (using a lookup table 
or otherwise) to determine FSH over an extended region.

4.1.4  ACCURACY OF FINAL MEASUREMENTS

The accuracy of the estimates of FSH obtained using 
the methods described above is a subject of contin-
ued study. One example of the accuracy assessment 
is shown in Figure 4.1, which shows values for the 
Root-Mean-Square Error (RMSE) (residual) error of 
estimating FSH when compared to lidar data. In these 
cases, the error for FSH is 3.8 m when measured at a 
resolution of 400 x 800 m (32 ha) and using the inter-
ferometric correlation alone (i.e., not including the es-
timation improvement when backscatter power is used 
to estimate FSH for values of FSH < 10 m). When data 
from the coherence are combined with the backscatter 
power, the estimated error is better than 3.5 m when 
measured at a resolution of 6 ha, an improvement of 
more than four times. 

Factors that affect the accuracy of the FSH algorithm 
are:

• The degree that temporal conditions affect the 
interferometric coherence

• The availability of SAR data at wavelengths of 
L-band (or P-band; C-band data from Sentinel-1a 
for instance, is not appropriate for FSH determi-
nation using these methods)

• Availability and quality of ground validation data 

that can be used for determining model coeffi-
cients

• The spatial dimension (area) that the accuracy is 
being assessed.

With respect to this last parameter that affects ac-
curacy, for many remote sensing applications, so long 
as there are no biases in the data, resolution can be 
traded for accuracy. In the case of the FSH algorithm, 
the accuracy is quoted to be 3.5 m at a 6-ha resolution. 
To determine the accuracy of the algorithm at a 1-ha 
resolution, the reporting requirement for REDD+ MRV 
(see Section 4.1.7), the extrapolated accuracy would 
be  6 ha 1 ha×3.5 m=8.6 m.

An example of a wide-area application of the FSH 
algorithm can be found in Lei et al. 2019, with some of 
the salient results shown in Figure 4.10.

A simple method of assessment is to show a spatial 
comparison between lidar-derived heights and those 
obtained from the FSH algorithm. For a transect ex-
tracted from the LVIS data shown in Figure 4.4 over 
the Howland forest in Maine, a comparison is made in 
Figure 4.9 between the lidar-derived height and the 
height determined from the InSAR and SAR backscat-

ter power algorithm discussed here. The plot shows 
excellent agreement between the two measures, but 
may be unsurprising in that the lidar data were used to 
calibrate the scene-wide coefficients used by the SAR/
InSAR FSH algorithm for estimating height. 

A better comparison can be assessed by finding 
a nearby region that is also sampled by lidar but not 
used in determining the model coefficients. Such a site 
exists in the White Mountain National Forest (WMNF) 
in eastern New Hampshire, U.S., more than 300 km 
away and distant from the originally trained SAR/InSAR 
scene by 5 orbits (and equivalently, at least 5 scenes). 
By using the overlap regions between adjacent pass-
es of the satellite, the coefficients determined from 
the Howland Forest can be propagated to the WMNF 
scenes and then compared to the lidar data that are 
available there. This is shown in Figure 4.11 in a qual-
itative sense. Quantitatively, the residual differences 
between the two datasets have a standard deviation of 
3.9 m when measured at a resolution of 6 ha.

A final comparison can be made for forest heights 
assessed at the county level, as shown in Figure 
4.12. In this case, data from the U.S. Forest Service’s 

Figure 4.11 A qualitative comparison of (a) lidar-derived vegetation height from the GRANIT sensor 
and (b) SAR-derived FSH for a site that is more than 300 km away from the location where the LVIS 
lidar was used for determining the model coefficients. The 6-ha RMSE between the two measures of 
FSH is 3.9 m (from Lei et al. 2019)

Figure 4.10  A spatial comparison between lidar-derived tree height (RH100) from NASA’s LVIS instrument, and the FSH approach using either the ALOS-
1 or -2 sensors.

Howland Forest

Distance/km
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Field Inventory Analysis (FIA) program is used for creat-
ing an independent assessment of forest height for each 
county in the region (see Lei et al. 2019). When these 
county-level estimates are compared with the SAR/
InSAR estimates of FSH at the same scale, the RMSE is 
measured to be 1.8 m, as shown in the figure.

In general, as shown in Figure 4.11, the differ-
ences between independently derived measures of 
forest height and those determined using the SAR/
InSAR algorithm for FSH compare very well and have 
residual errors on the order of 4 m for map resolutions 
of 6 ha. Under the assumption that the independently 
derived estimates of FSH are more accurate than the 
SAR/InSAR approach, the dominant contributor to 
this residual error is due to model error related to the 
difficulty in capturing the effect of weather events on 
the InSAR signature. One way to overcome this type of 
error is for the repeat-pass observations to take place 
over shorter timescales than the 46-day repeat period 
of ALOS-1. Initial studies using ALOS-2 data (that has a 
14-day repeat period) have shown that, indeed, the er-
ror is reduced. The observing plan and data distribution 
policies of ALOS-2, however, have not enabled a fuller 
assessment that could be applied over a region as large 
as that shown in Figure 4.4, and so opportune data-
sets where the algorithm can be further tested remain 
to be found.

4.1.5  SOURCES OF ERROR

After presenting the SAR/InSAR algorithm for deter-

mining FSH in Sections 4.1.1–4.1.4, it is important 
to summarize the different sources of error that can 
confound this measurement. These sources of error are:

• Spatially varying degree of temporal 
decorrelation—The empirical models that re-
late SAR backscatter power and InSAR coherence 
to FSH described in Section 4.1.3 rely on coeffi-
cients that are determined on a scene-wide basis 
(one radar scene or interferometric pair at a time). 
When weather affects the temporal signature on 
the radar imagery in a spatially varying manner 
within a single scene, then the scene-wide coeffi-
cients determined for the model, while correct in 
an average sense, will have a spatially varying error 
within the scene. This error can be improved by 
fitting the empirical models to the residual spatial 
variation. Such a fit would depend on the availabil-
ity of ancillary data (e.g., lidar or ground validation) 
and would require a considerable amount of care 
during the fitting stage; hence, this is generally not 
done. A simpler approach to dealing with this type 
of error source would be to discard the data that 
suffer from this effect and substitute with data col-
lected during a different time period.

• Regions that are undergoing significant 
landcover change—The InSAR component of 
the FSH algorithm relies on the temporal decor-
relation signature to estimate vegetation height. 
When temporal decorrelation is due to causes 
other than the motion of vegetation proportion to 

their height, an error in the estimation of FSH will 
occur. An example of such error can occur in ag-
ricultural regions, where the degree of change in 
the landcover and field management is high. Such 
locations show a high degree of temporal decor-
relation and hence will be evaluated by the FSH 
algorithm as having tall forest stands. Similarly, 
urban areas and regions of open water and flood-
ed areas will also display high degrees of temporal 
decorrelation that will cause difficulties for the FSH 
algorithm. A simple approach to dealing with this 
type of error source is to use a landcover classi-
fication converted to an FNF map that eliminates 
these regions from the estimation process.

• Regions undergoing selective logging 
and clearcutting—Similar to the error sourc-
es indicated above, regions undergoing selective 
logging and clearcutting will display a high degree 
of temporal decorrelation, and the estimation 
process will indicate unrealistically large values of 
FSH (40 m and taller in regions where such tree 
heights are not common). In these cases, an ad-
ditional post-estimation step should be exercised 
to identify all of those regions estimated to have a 
large value of FSH by the algorithm, evaluate them 
independently to determine the cause (using op-
tical data or otherwise), and flag the regions as 
being disturbed.

• Topographic effects—The InSAR portion of 
the FSH algorithm works best when the interfer-

Figure 4.12 Comparison of county-level assessments of vegetation height obtained (a) by the U.S. Forest Service using FIA plots and (b) those obtained 
using the FSH algorithm. At right is a quantitative comparison between the two datasets.
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ometric baseline is as close to zero as possible. 
For this reason, the algorithm is not subject to 
significant topographic relief. In regions of large 
topographic variation, the degree of layover and 
shadow is spatially varying and hence should be 
accounted for in the assessment. One way of cor-
recting for topographic effects is to collect the data 
from different aspect angles, such as can be done 
between ascending and descending passes of the 
satellite. Once an evaluation has been made as 
to which regions have errors associated with the 
viewing geometry, these errors can be minimized 
by combining the results from the different orbital 
directions of the satellite.

4.1.6  COMBINATION WITH OPTICAL DATASETS

The SAR/InSAR method for estimating FSH lends 
itself very well to combining with optical datasets, 
whether active (lidar) or passive (e.g., Landsat, MO-
DIS and Sentinel-2). In general, both serve important 
roles in the estimation of FSH. As explained in Section 
4.1.2, lidar is important in the determination of model 
coefficients, and optical data are often used for creating 
landcover classification products to derive forest cover 
maps. These maps are then used to determine regions 
where the FSH algorithm should be exercised.

After calculating FSH using the algorithms de-
tailed here, optical data (especially lidar (as shown 
in Fig. 4.11)) can serve the role of validation, an im-
portant component of the MRV system necessary for 
monitoring natural resources within a county’s borders 
and meeting various United Nations agreements with 
developing countries.

4.1.7  MRV SYSTEMS IN THE CONTEXT OF 
REDD+

The United Nations Framework Convention on Cli-
mate Change (UNFCCC) describes the need for Mea-
surement, Report, and Verification (MRV) of forest 
carbon stocks, implemented through the Reducing 
Emissions from Deforestation and Forest Degradation 
in Developing Countries (REDD+) program. This pro-
gram seeks methods for independently verifying the 
status and change of carbon stocks within developing 
countries, especially as they undergo varying economic, 
population, and climate challenges.

The methods described here, especially as demon-
strated in Figure 4.11, can be used for addressing this 
MRV need. Although in the context of this treatment, 
the methods have been demonstrated for an 11.6-mil-
lion-ha region in the northeastern U.S., the same meth-
ods can be applied elsewhere in the world. What is 
required to achieve this reach are (1) the availability of 
repeat-pass L- or P-band SAR data, (2) an assessment of 
the regions where the FSH algorithms would be applied 
(e.g., a global/regional landcover map), and (3) the col-
lection of ground validation or lidar data over regions 
near where the estimation of FSH would be applied.

4.1.8  LOOKING AHEAD

In recent years, the availability of spaceborne remote 
sensing data—both in terms of data distribution pol-
icy and collection of the data—has been expanding 
considerably. Along with this expanded availability has 
been an increasing need to apply these assets to bet-
ter monitor natural resources on a global basis. Such 
monitoring is important for understanding the effects 
of climate, public policy, and population pressure on a 
changing environment.

Through the launching of NASA’s GEDI and NISAR 
missions in 2018 and 2021, respectively, the monitoring 
of forest structure and FSH through the approach dis-
cussed here is well-positioned to address these needs. 
Figure 4.13 illustrates how this can be accomplished 
using the side-looking mapping capability of NISAR 
and the nadir-looking sampling measures of vegetation 
height that will come from GEDI. The figure also shows 
how GEDI’s 14-beam lidar samples will overlap the 
NISAR data, which will have a 250-km swath, a 12-day 
repeat period, and operate at L-band. 

The baseline NISAR mission will create interfero-
grams over most of the Earth’s landcover surface ev-
ery 12 days at dual-polarization. In this scenario, the 
cross-polarized (HV) interferometric coherence and 
backscatter power from NISAR will be compared with 
forest heights measured from GEDI and used to cal-
culate the coefficients that parameterize the empirical 
equations described in Section 4.1.3. Even though 
the two missions may not be operating concurrently, the 
degree of change in the world forests will not be so large 
as to adversely affect the model parameterization.

Prior to the availability of data from these two mis-

Figure 4.13 Illustration on how NISAR and 
GEDI data can be combined to create a global 
estimate of FSH using the algorithms described 
here.  Viewing geometries of NISAR and GEDI are 
displayed, along with an inset overlap schematic 
of NISAR data (red) with GEDI 14-beam lidar 
data (green) (Lei et al., 2019).

NISAR

GEDI

sions, there are in principal sufficient resources from 
JAXA’s ALOS-1 and -2 satellites as well as CONAE’s SAO-
COM satellite that can be combined with airborne lidar 
for obtaining results similar to those presented here and 
in published papers. The largest caveat at present is the 
availability of L-band SAR data, which is fairly restrict-
ed due to governmental policies, especially in the dis-
tribution of raw data. The larger scientific community, 
consisting of ecosystem and other Earth scientists, have 
been lobbying the governmental agencies of Japan and 
Argentina to free up some of these resources, however, 
and hence there is hope that some of these data will 
become more available, especially over the countries 
where the assessment and monitoring of forest resourc-
es with remote sensing data are critically important.

4.2  Python Scripts
A GitHub website with Python scripts written by Y. 

Lei, the principal developer of the FSH technique, has 
been set up. These scripts can be freely downloaded, 
along with an example-driven tutorial on the process, at 
https://github.com/leiyangleon/FSH.

http://gedi.umd.edu/
http://nisar.jpl.nasa.gov/
https://github.com/leiyangleon/FSH
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APPENDIX C
Estimating Forest Stand 
Height Using L-band SAR  
– Chapter 4 Training Module

Developed by Helen Baldwin and Sarva Pulla with data and 
scripts from Paul Siqueira and Yang Lei

Input datasets: 
• ALOS PALSAR or equivalent L-band 

dual-polarized imagery
• Forest height data (lidar or 

ground collection; GeoTIFF)
• A forest/non-forest mask (optional; GeoTIFF)

Software:
• A Unix/Linux environment required 

to run the Python scripts
• QGIS/ArcGIS/GoogleEarth 

(suggested for visualization)
• Anaconda for Python and packages

In this tutorial, we will estimate forest stand height 
(FSH) using L-band SAR data. The most accurate way to 
estimate FSH with repeat pass interferometry is by using 
a combination of SAR backscatter power and InSAR co-
herence. For this reason, the approach described here 
can be referred to as a combined SAR/InSAR estimation 
of FSH. Since the backscatter power relationship is most 
appropriate to calculate values of FSH below 10 m and 
values above this threshold are best determined by in-
terferometric coherence, this algorithm computes FSH 
from interferometric coherence first, and the backscatter 
power empirical relationship is used if the FSH is below 
that threshold.

1  DATA ACQUISITION

One L-band SAR scene and one ancillary dataset are 
necessary for this tutorial. An additional ancillary data-
set is recommended. To download an example dataset, 
please see section 2.5 of this module.  

1.1  ALOS PALSAR

Since the structure of vegetation is on the order of 
10’s of centimeters, forest vegetation is often best ob-

served with P- or L-bands (~24 cm). At this bandwidth, 
the Japanese Aerospace Exploration Agency (JAXA)’s 
JERS-1 and ALOS-1 & -2 satellites are available, but geo-
graphically limited. This tutorial utilizes ALOS-1. Please 
refer to Marc Simard’s Training Module in Appendix E for 
for an explanation of how to acquire ALOS PALSAR data 
and select the Single-Look Complex (SLC) product. This 
tutorial could also potentially apply to NISAR data in the 
future.

Processing InSAR data to estimate FSH requires either 
raw satellite data that have been downlinked, but not 
processed, or SAR data that have been processed into 
SLC imagery appropriate for forming interferograms. 
If you have access to SLCs, it is recommended that you 
skip section 4 and proceed to section 5. If only raw data 
are available, then the additional processing explained 
in section 4 of this tutorial is necessary. One advantage 
of beginning with raw data are that the output formats 
of the interferograms and ancillary data  make it easy to 
follow on the processing methods with additional steps 
implemented to estimate FSH.

1.2  Ancillary Datasets

FSH ground validation data are an important compo-
nent of the FSH estimation methodology. There are two 
types of ancillary data utilized in the algorithm. Locations 
where forest height has been previously determined are 
required to train the empirical models. A forest/non-for-
est mask indicating where the estimates should be calcu-
lated is an optional dataset. 

1.2.1 Forest Height Data

Independent measurements of forest height are 
necessary to determine values for the empirical models 
that relate radar backscatter power and interferometric 
coherence to FSH. Lidar data are preferred, since they 
acquire accurate measurements of vegetation height 
over an extended geographic region. Freely-available 
satellite resources of lidar data are currently or about to 
become accessible, including ICESAT-1 and -2, and the 
upcoming NASA GEDI mission. This dataset should be in 
a GeoTIFF format and resampled to the same resolution 
as the InSAR image. The margin/NoData values must be 
set to NaN or some number less than zero. Within the 
FSH scripts, this data set is referred to as “ref_file.”

If lidar data are not available, then another form of 
independent forest height needs to be identified or 
created. A simple method is to perform a land cover 
classification of a region using optical data sets. Stands 
of different ages and species composition will have 
different heights, which can be estimated from the 
ground to the same accuracy as the FSH. This approach 
was used during the development and testing of the 
FSH algorithm with mixed results.

1.2.2 Map of Forest/Non-forest

The forest/non-forest map can be derived from 
a number of sources, or made independently by the 
user. Examples of sources that can be used to derive 
a forest/non-forest mask are i. JAXA’s FNF mask, ii. the 
US National LandCover Dataset, and iii. The ESA’s CCi 
Landcover (formerly GlobCover). These datasets are 
used to identify where forests are situated and, hence, 
where to estimate FSH. The forest/non-forest mask 
must be classified so that all regions where FSH should 
be estimated have a value of zero and all regions where 
FSH should not be estimated have a value of 1.This op-
tional dataset should be a GeoTIFF and resampled to 
the same resolution as the InSAR image.  This file must 
be in degrees; e.g., EPSG 4326. The margin/NoData 
values must be set to NaN or some number less than 
zero. Within the FSH scripts, this dataset is referred to 
as “mask_file”.

2  LINUX ENVIRONMENT AND PYTHON SETUP

While Python scripts can be run in the Windows, 
OSX, and Unix environments, the methods in this 
module require a Unix or Linux environment. Please 
follow the instructions in section 2.1 to setup a Linux 
environment on your computer using Oracle Virtual-
Box, section 2.2 to install Anaconda, and section 2.3 to 
install dependencies for the FSH scripts. If you already 
have a Linux environment, or have completed any of 
the other setup steps, please proceed to the next ap-
plicable section. 

2.1  Download and Install VirtualBox

1. First, go to https://www.virtualbox.org/ to 
download Oracle VM VirtualBox. Choose the 
host appropriate for your computer. 

2. Next, go to  https://www.ubuntu.com/down-

https://www.virtualbox.org/
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load/desktop and download the latest version of 
Ubuntu. We will use this later on while setting up 
our virtual machine. 

3. Follow along with the Oracle VM VirtualBox instal-
lation wizard. Once installation is finished, open 
the Oracle VM VirtualBox.

4. Click “New” in the menu located at the top of the 
Oracle VM VirtualBox Manager window to create 
the virtual machine you will use for this exercise. 
This menu bar is shown below.

5. The “Create Virtual Machine: Name and operating 
system” window shown below should pop up. 
Enter a name for your virtual machine. For this ex-
ercise, we chose “FSH”. Browse to a folder where 
you would like to save your machine, select “Linux” 
from the dropdown menu as the type of machine, 
and select “Ubuntu (64-bit)” as your version.

6. Once the name and operating system for your new 
machine are set up as shown in the image above, 
click next. The “Create Virtual Machine: Memory 
size” window should pop up. 

7. Enter the amount of memory you would like to al-
locate to your machine. I chose 8192 MB, as shown 
below. Click next. 

8. Leave the Hard disk selection on “Create a virtual 
hard disk now” and click create, as shown below.

9. Leave the Hard disk file type selection on “VDI 
(VirtualBox Disk Image)” and click next, as shown 
below.

10. Leave the Storage on physical hard disk selec-
tion on “Dynamically allocated” and select next, 
as shown below.

11. Set up the file location and size as shown below. 
Your file name should automatically populate, 
but you can also navigate to a new folder to 
create the file if necessary. I selected 40GB for 
the virtual hard disk size.  Select create, and the 
“Create Virtual Hard Disk” pop up window will 
close. 

12. Notice that your new virtual machine has been 
added to the list of virtual machines along the 
left side of your Oracle VM VirtualBox Manag-
er. As shown below, I have a virtual machine 
named “sar” along with the virtual machine 
“FSH” that I just created.

13. Select your new virtual machine from the list. 
It should appear highlighted, as shown above.

14. Click “Settings” in the menu located at the top of 
the Oracle VM VirtualBox Manager window to 
adjust the settings of your new virtual machine.

15. Within the settings pop up window, navigate to 
the advanced tab.

16. Under “Shared Clipboard,” choose “Bidirection-
al” from the drop down menu. This will allow 
you to copy and paste between your host sys-
tem and your virtual machine.
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17. Navigate to “System” from the left hand menu. 
Choose the processor tab. Increase your num-
ber of CPUs; I chose 4, as that was the maximum 
within the suggested green range.

18. Navigate to “Storage” from the left hand menu. 

19. Select the “Empty” disk icon under the COntrol-
ler IDE option. Under Attributes, click on the 
disk icon next to the optical drive selection “IDE 
Secondary Master.” Navigate to the Ubuntu for 
desktop that you downloaded in step 2 using 
the “Choose Virtual Optical Disk File” option.

20. Navigate to “Shared Folders” from the left hand 
menu.

21. Click the add folder icon            along the right 
of the shared folders window to get to the “Add 
share” pop up window as shown below.

22. Navigate to the folder where your virtual ma-
chine is stored within the Folder Path option. 
The name of the folder will be automatically 
populated. Choose the “Auto-mount” option as 
shown below.

23. Click OK to return to the Shared Folders page. 
Your folder should now appear in the list of Ma-
chine Folders as shown below.

24. To avoid a blank screen after installing Guest 
Additions in a later step, navigate to “Display” 
from the left hand menu. Use the drop down 
menu for the Graphics Controller to select 
“VBoxVGA.”

25. Click “OK” to apply these setting changes and 
return to the Oracle VM VirtualBox Manager. 
Click “Start” in the menu located at the top of 
the Oracle VM VirtualBox Manager window to 
run your new virtual machine.

26. The welcome pop up shown below should ap-
pear. Choose your preferred language from the 
list and click “Install Ubuntu.”

27. Click continue to utilize the default keyboard 
layout.

28. Click continue to utilize the default installation 
and update options. 

29. Click “Install Now” with the default selections 
as shown below.

30. Click continue when the pop up window “Write 
the changes to disk?” appears.

31. Click continue after selecting your time zone.
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32. Fill in your prefered name and password for 
your virtual box as shown below. 

33. Once installation is complete, the window be-
low should appear. Choose “Restart now” to 
use the new installation.

34. After a few minutes, the “What’s new in Ubun-
tu” window shown below should appear. Click 
next.

35. Click next to proceed past the Livepatch window. 

36. Click next to proceed past the “Help improve 

Ubuntu” window after choosing whether or 
not to report information to developers for im-
provement.

37. Click “Done” on the “Ready to go” window.

38. Click “Devices” in the menu on the top of your 
running machine and choose “Insert Guest Ad-
ditions CD Image” from the drop down menu, 
as shown below.

39. The VirtualBox Guest Additions CD (here: 
VBox_GAs_6.0.1) should appear on the desk-
top of your virtual machine and a warning win-
dow may appear as shown below. Click “run” to 
proceed. You may be prompted to enter in your 
password to run the Guest Additions disk.

40. Once the Guest Additions disk has finished 
running, the warning, “This system is currently 
not set up to build kernel modules” may appear 
at the end of the messages in the terminal, as 
shown below. If this is the case, press enter to 
close the window, and follow steps 40 through 
48. If this warning does not appear, you may 

move on to installing Anaconda in section 2.2.

41. Open the terminal using ctr, alt, and t. Then 
type in the command sudo apt-get in-
stall linux-headers-̀ uname -r̀  

dkms build-essential or sudo apt-
get install linux-headers-$(uname 
-r) dkms build-essential 

42. You should be prompted to enter “y” to contin-
ue. The packages identified as missing in step 
39 should now be installed. Press enter to close 
the window.

43. In order to use these packages, you will have 
to restart the virtual machine. Select the arrow 
along the top right menu (shown below).

44. An additional menu, shown below, should 
open.



190 THE SAR HANDBOOK

that appears, choose “Copy Link Location.”

50. Open the terminal using ctr, alt, and t. Type in the the command “wget”, and then 
paste the location of the download for Python 2.7 version, as shown below.

51. The “Welcome to Anaconda” text should display in your terminal as shown below. 
Copy the highlighted “Anaconda2-2018.12-Linux-x86_64.sh.1” text.

52. Enter the command “bash” and paste in the “Anaconda2-2018.12-Li-
nux-x86_64.sh.1” text. Follow the prompts to review the Anaconda license 
information, and enter “yes” to confirm the installation of Anaconda when 
prompted.

53. Enter the location where you would like Anaconda to be saved. I chose the 

45. Click on the power icon to open the Power Off window, and choose “Re-
start”. When the VM restarts, rerun the VirtualBox Guest Additions CD by 
clicking on the file icon in the menu on the left hand side. Click the Guest 
Additions disk in the left hand menu on the pop up window. Then select 
“Run Software”, as shown below.

46. The VirtualBox Guest Additions Installation window should open as shown 
below. Press enter to close the window.

47. Restart the machine as described in steps 42 through 45. 

2.2  Download and Install Anaconda

48. Open your web browser on your virtual machine, and navigate to https://www.
anaconda.com/distribution/#linux or search for “install Anaconda.” Make sure to 
select the tab for the Linux operating system.

49. Right click on the download button for the 2.7 version of Python as shown below, 
as the FSH scripts were developed and tested using this version. From the menu 
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default as shown on the previous page.

54. After the installation is finished, you will be prompted to initialize Anaconda2 
in your .bashrc, as shown below. Enter “yes.”

55. When prompted to proceed with the installation of Microsoft VSCode, as 
shown below, please enter “no.”

56. Close your terminal and open a new terminal (ctr, alt, and t) for your instal-
lation of Anaconda to become active.

2.3  Download and Import Dependencies

1. To create a python environment named “sar” where we will store all the depen-
dencies necessary to run the FSH scripts, enter the command “conda create -n 
sar python=2.7.” You can choose to name your environment something other than 
sar.

2. When prompted, enter “y” to proceed with the installation.

3. To activate this python environment in the future, use the command “conda ac-
tivate sar” to enter the environment and “conda deactivate” to leave it. Notice as 
you use these commands that you will move from “base” to “sar” environments, 
as shown below. 

4. Now, let’s set up our “sar” environment with the required python packag-
es: NumPy, SciPy, SimPy, json, pillow, OsGeo/GDAL, simplekml, mpmath. 
Activate the “sar” environment by entering the command “conda activate 
sar” into the terminal. Install gdal, numpy, pillow, simplekml and scipy by 
entering the command “conda install -c conda-forge gdal numpy=1.15 pillow 
simplekml scipy” as shown below.

5. When prompted, enter “y” to proceed.

6. Enter the command “pip install simpy mpmath” to install additional prereq-
uisites. 

7. To confirm that you have installed all of the Python packages, you can enter 
the command “python.” Then enter “import gdal” or “import” followed by 
any of the other packages. If no errors pop up in your terminal and the ar-
rows that indicate a new line appear, then the packages have been installed 
correctly.

8. Enter the command “exit ()” to leave python. 

9. To view the version and other information about the packages you have in-
stalled, in the “sar: environment of the terminal, enter the command “conda 
list pillow” or “conda list” plus any of the packages, as shown below. 
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3  DOWNLOAD MATERIALS FOR THE TUTORIAL

The Python scripts needed for this tutorial, written by Y. Lei the principal developer 
of the FSH technique, and an example dataset can be freely downloaded from GitHub 
or from the SERVIR Global website. The example data are preprocessed, and using 
these data allow you to skip sections 4 and 5 and proceed to section 6. 

3.1  Obtaining the Scripts from GitHub

1. Navigate to the GitHub page https://github.com/leiyangleon/FSH using FireFox 
or another internet application on your virtual machine. 

2. Click the green “Clone or download” button and copy the link shown under the 
“Clone with HTTPS” pop up window, as shown below. 

3. Open a terminal, and if you are not already in the “sar” environment created in 
section 2.3, navigate to the “sar” environment by entering the command “conda 
activate sar.”

4. Enter the command, “git clone” followed by pasting in the link you copied from 
the GitHub:  https://github.com/leiyangleon/FSH.git, as shown below.

5. If git does not exist on your virtual machine, follow the prompts to install it using 
the command “sudo apt install git,” followed by your virtual machine’s password.

6. If you navigate to “Home” under the “Files” tab from the menu on the left hand 
side, you should be able to see the “FSH” folder that you downloaded with all of 
the scripts necessary for this tutorial.

7. Within your  FSH folder, there should be three folders (scripts, test_exam-
ple_ISCE, and test_example_ROIPAC) and three files (LICENSE, preview.jpg, 
README.md) inside, as shown below.

8. While there are two folders that seem like they should contain data (test_ex-
ample_ISCE and test_example_ROIPAC), if you open these folders than you 
will find that they only include a text file, and no SAR data or other required 
files, as shown below.

9. To download the example data, please proceed to the next section (3.2).

https://github.com/leiyangleon/FSH
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3.2  Downloading Example Data

The example data consists of three scenes, including a central scene with overlap-
ping NASA LVIS LiDAR data and two adjacent scenes. 

1. You can access the link to download the example data by opening the 
text document within the test_example_ROIPAC and test_example_ISCE 
folders respectively. See below for the location of the link within the text 
file for the ROIPAC data. 

2. You can also navigate to this link through the GItHub, following the same 
folder tree, as shown below.

3. Either way you choose to find the link to the data, copy and paste this link 
into the web browser on your virtual machine. While both datasets are 
compatible with the FSH scripts, we will use the ROI_PAC as our example 
for this tutorial.

4. Choose the download icon to download the dataset from the Google 
Drive link. When prompted for confirmation due to the large size of the 
file, select “download anyway”. When prompted to open the file, choose 
“save file” and press “OK.”

5. Within “Files,” navigate to “downloads.” Right click on the example data 
zip, and from the pop up menu, choose “Extract to..”

6. Navigate to “Home” and press the green “Select” button to extract the 
example data there.

7. Within the “test_example_ROIPAC” folder , you will find “flagfile.txt” 
(referred to as the flag_file in the scripts),“linkfile.txt” ( link_file ), “How-
land_LVIS_NaN.tif” (ref_file), and “Maine_NLCD2011_nonwildland.tif” 
(mask_file). All of the associated files for the three ALOS PALSAR HV-pol 
InSAR coherence scenes are grouped by their ALOS (“f$frame_o$orbit”) 
and their acquisition dates (under the subfolder “int_$date1_$date2”). 
For each scene, there are seven associated files outputted by the ROI_
PAC software: “$date1_$date2_baseline.rsc”, “$date1-$date2_2rlks.
amp.rsc”, “$date1-$date2-sim_SIM_2rlks.int.rsc”, “$date1-$date2.amp.
rsc”, “geo_$date1-$date2_2rlks.amp”, “geo_$date1-$date2_2rlks.cor”, 
“geo_$date1-$date2_2rlks.cor.rsc”. Finally, “ROI_PAC.jpeg” shows the 
final output of 3-scene mosaic map (GeoTiff format) overlaid on Google 
Earth in a QGIS window. Please see below for the file layout.
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4  PROCESSING RAW SAR DATA

When processing SAR data, corrections are made for the motion of the satellite 
and image projection effects that arise from the atmosphere, viewing geometry and 
topography of the Earth. The steps of processing of ALOS SAR data from raw samples 
for the satellite include range compression, azimuth compression resulting in an SLC, 
and finally projection into map coordinates. Software for processing raw data into SLCs 
can be obtained both commercially and through open-source licensing agreements. Of 
the open source licensing processors, there are two that have been used for process-
ing raw ALOS data into SLCs and then into estimates of FSH. These are the ROI_PAC 
(Repeat Orbit Interferometry PACkage) and ISCE (InSAR Scientific Computing Envi-
ronment). In this tutorial, we focus on ROI_PAC as it has completed its development 
lifetime and is somewhat easier to obtain than ISCE. At the time of this writing, ISCE 
remains under development. With this in mind, the preprocessing scripts in section 3.2 
and the scripts in section 4 that estimate FSH from SLCs have been designed to work 
with outputs from both ROI_PAC and ISCE. 

4.1  Obtaining the Scripts from GitHub

1. Obtain the  ROI_PAC processing software in tgz (gzipped tar) format from: http://
www.openchannelfoundation.org/projects/ROI_PAC

2. Download and install a fortran compiler (e.g. gfortran) and the fftw library. See 
http://roipac.org/cgi-bin/moin.cgi/installation for additional details on the in-
stallation of ROI_PAC software.

3. Utilize the test data set that comes with the ROI_PAC software distribution to test 
the software installation. You can find the details of how to test the software in 
the ROI_PAC installation subdirectory: fullpath/contrib/multtest.sh where full-
path refers to the folder where you unzipped the ROI_PAC installation archive.

4.2  Processing ROI_PAC/ISCE outputs with Python scripts

1. To open the terminal within your virtual machine, press ctr, alt and t.

2. Crop the ROI_PAC/ISCE output and eliminate the image margins by running the 
standalone python scripts CROP_ROIPAC.py and CROP_ISCE.py respectively. 
Please note that the amount cropped is hard coded based on the dimensions of 
the ALOS SAR image. The code would need to be adjusted for ALOS-2 and future 
NISAR images.

• For ROI_PAC processed results enter the command python directo-
ry_of_scripts/CROP_ROIPAC.py dirname date1 date2 

• For ISCE-processed results, run the following command within the execution 
of insarApp.py python directory_of_scripts/CROP_ISCE.py

You will need to replace three parameters in these commands:

• Replace directory_of_scripts with the location of the ROI_PAC amp/cor files

• Replace date1 with the date for the 1st SAR acquisition

• Replace date2 with the date for the second SAR acquisition

For information on how to geocode the ROI_PAC/ISCE output, please see the 
Chapter 2 training module. 

5  FILE CREATION & ORGANIZATION

5.1  File Structure

The data should be organized in a file structure such that the individual fold-
ers hold results from individual interferograms between two dates (the SLCs and 
ancillary data for individual scene (frame) and orbit (path) numbers). For any 
one frame and path number, there may exist multiple interferograms, related to 
multiple repeat-pass combinations of data from two different dates. These inter-
ferograms should be stored in sub-directories that have the naming convention: 
int_date1_date2. Scenes from differing frame and paths can be interferometrical-
ly processed in order to create an estimate of FSH over an extended geographic 
region. 

The interferogram subdirectories will hold all of the data and information nec-
essary for creating and documenting interferograms made for an observation on 
two specific dates (date1 and date2). For ROI_PAC-processed data, the most im-
portant file looks like geo_date1-date2_2rlks.cor and geo_date1-date2_2rlks.cor.
rsc. The resource “.rsc” file is a text file that has information the location and size of 
the geolocated correlation data held in geo_date1-date2_2rlks.cor. The format of 
the correlation file is known as sample-interleaved, or an rmg-format file. 

Since radar data are organized in terms of orbits and scenes, in order to make 
a map of FSH over an extended geographic region it is necessary to mosaic the 
images. While the process of mosaicking can be done either before or after the 
estimation of FSH, it is best to do this beforehand to take advantage  of the overlap 
region between images in adjacent paths. In these regions, while the value of the 
coherence magnitude may vary due to the fact that the observations (and image 
pairs) have occurred from different orbits (and hence, different dates), the overlap 
regions can be used to correct for these temporal differences and to adjust the co-
efficients for the empirical relationships of the SAR products to estimates of FSH. 

For each ROI_PAC-processed scene, the following files should be located in a 
directory with the format “f$frame_o$orbit/int_$date1_$date2”:

$date1_$date2_baseline.rsc
$date1-$date2.amp.rsc
$date1-$date2_2rlks.amp.rsc
$date1-$date2-sim_SIM_2rlks.int.rsc
geo_$date1-$date2_2rlks.amp
geo_$date1-$date2_2rlks.cor 
geo_$date1-$date2_2rlks.cor.rsc

Please note that the ROI_PAC’s process_2pass.pl should be run with 2 range looks 
and 10 azimuth looks in both coherence estimation and multi-looking (equivalent to a 
30m-by-30m area for JAXA’s ALOS), with the following lines added to the process file:

Rlooks_int = 2
Rlooks_sim = 2

http://www.openchannelfoundation.org/projects/ROI_PAC
http://www.openchannelfoundation.org/projects/ROI_PAC
http://roipac.org/cgi-bin/moin.cgi/installation
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Rlooks_sml = 2
pixel_ratio = 5

A 5-point triangle window is hardcoded in ROI_PAC, which is equivalent to a 
2-point rectangle window. For further details on running ROI_PAC, refer to the 
ROI_PAC manual. For each ISCE-processed scene, the following files should be 
located in a directory with the format “f$frame_o$orbit/int_$date1_$date2”:

isce.log
resampOnlyImage.amp.geo
resampOnlyImage.amp.geo.xml
topophase.cor.geo  
topophase.cor.geo.xml

Please note that ISCE’s insarApp.py should be run with 2 range looks and 10 
azimuth looks in both coherence estimation and multi-looking (equivalent to a 
30m-by-30m area for JAXA’s ALOS), with the following lines added to the process 
file:

<property name=”range looks”>1</property>
<property name=”azimuth looks”>5</property>

A 5-point triangle window is hardcoded in ISCE, which is equivalent to a 2-point 
rectangle window. The .amp/.cor images then need to be multilooked by a factor 
of two. For further details on running ISCE see the ISCE manual. 

The location of the output files depends on whether they are related to the 
overall processing of the entire dataset, or are directly associated with a single 
scene. Examples of each would be the SC iteration files as a general output, and 
a single forest stand height image as a scene-specific output. The general outputs 
will be stored in a directory named “output” located within the main file directory 
(file_directory). The scene specific outputs will be stored with the other scene 
data as described earlier.

5.2  Create Flag File

Once the data have been organized into directories of scenes described by 
their individual row and path numbers, and the interferograms have been ex-
amined to determine which SLC pairs yield the data with the highest coherence 
(i.e. least amount of temporal decorrelation), there remains the task of creating 
what is known as a “flag file” and a “link file.” In this context, the flag file is a listing 
of all the interferograms that will be used in creating the region-wide mosaic of 
FSH. In the example dataset, there are three such row/path combinations that will 
create a three-scene mosaic of FSH located in central Maine. The middle of the 
three scenes overlaps with the forest height data (ref_file) discussed in Section 
1.2, and all scenes are within the region where identifications of forest/non-forest 
(mask_file) is used for determining geographic locations where the FSH algorithm 
will be applied. An example of the contents of a flag file in text format is:

In this example, the first column of numbers indicates the interferogram num-
ber, the second is the root file name of the data that forms the interferogram, the 
third and fourth are the dates that the data were collected for the interferometric 
pairs, the fifth and sixth are the satellite path and orbit respectively, and the last 
indicates the polarization of the data.

5.3  Create Link File

The link file provides information on which files are expected to have some 
degree of geographic overlap, and will be used in propagating the coefficients of 
FSH. While many files may have such a geographic overlap, and that indeed this 
overlap can be automatically calculated, a separate link file is desired so that links 
can be added or broken as necessary in order to account for the varying quality 
of data in the overlap region used to estimate the coefficients (e.g. a scene with a 
particularly high degree of temporal decorrelation can be removed from the link 
list). A simple example of the test-formatted link file is:

This indicates that image 2 is connected to image 1, and that image 2 is also 
connected to image 3 (and also that images 1 and 3 are also not connected).

6  ESTIMATE FOREST STAND HEIGHT

Once the SLC, forest/non-forest mask, vegetation height, link file, and flag files 
are created and put into place, you can run the FSH scripts by calling them in the 
terminal and passing the input file names and ancillary information as arguments. 
You can run each script one at a time, or call the main script. For this tutorial, 
we will run the FSH scripts from Anaconda in the virtual machine we set up. All 
five possible final output data types are produced. Please note that runtime does 
not increase linearly with each additional scene. Runtime for most of the steps 
are linear in the number of scenes; however, the core part of the inversion and 
mosaicking depends on the number of edges, which increases a bit faster as the 
number of scenes increases.

6.1  Access the Anaconda Environment

1. Press the green arrow to run your virtual machine. 

2. To open the terminal press ctr, alt, and t.

3. Type in the command  “conda activate sar” to access the Anaconda environ-
ment and dependencies that you installed in section 2.2. Notice that your 
terminal should change from “base” to “sar” environment as shown below. 
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6.2  Find the Directory of Scripts and Example Data

1. In order to run the scripts from your terminal, you will need the directory to your 
scripts and the directory to your example data. To get to the directory of your files, 
right click within the folder that they are stored. 

2. From the popup menu that appears, choose “Properties.”

3. You can then copy and paste the Parent Folder plus the folder name from the 
properties window into your script. Below is the properties window for the folder 
that holds my scripts.

6.3  Run Main FSH Script

1. Now let’s call the first script! For the ROI_PAC processed example files, enter 
the command into the terminal “python .../forest_stand_height.py 3 2 2 5 
“linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif” “Maine_NLCD2011_non-
wildland.tif” .../test_example_ROIPAC/ “gif json kml mat tif” --flag_proc=0” 
into the terminal, where “...” is the path to your forest_stand_height script 
and your example ROI_PAC data respectively, as shown below. For the ISCE 
data this would look like “python /home/dev/FSH-master/scripts/forest_
stand_height.py 3 2 2 5 “linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif” 
“Maine_NLCD2011_nonwildland.tif” /home/dev/Downloads/test_exam-
ple_ISCE/test_example_ISCE/ “gif json kml mat tif” --flag_proc=1”

2. Let’s review what each of these inputs mean:

• First, we call “python” in order to run the python scripts within the ter-
minal. The following parameters for the FSH scripts listed in brackets are 
optional, while the other parameters require input. 

• file_directory/forest_stand_height.py calls the main FSH script that in 
turn calls the rest of the scripts necessary to calculate FSH. You must pro-

vide the appropriate file directory to this script. For this example, the file 
directory is “/home/fsh/FSH/scripts/forest_stand_height.py.”

• Scenes - enter the number of scenes in the dataset. This must be an in-
teger. If using a single radar scene, enter 1. In this example, we have 3 
scenes.

• Edges - enter the number of scene to scene borders. If using a single 
radar scene, enter 0. In this example, we have 2 scene to scene borders.

• start_scene (int) - flag value of the central scene that overlaps the forest 
stand height ground truth (e.g. LiDAR, field) data. In this example, the 
central scene is 2.

• iterations (int) - number of iterations to run the nonlinear least squares 
part of the model. In this example, we want to run the nonlinear least 
squares part of the model 5 times. 

• link_file - a text file that lists all the edge scene pairs. Each line consists 
of the two numbers that correspond to the flag numbers for those two 
scenes. (e.g. “2 1” would be the line for the edge of the above scenes 001 
and 002). If using a single ALOS scene, this file is unneeded, and input “-” 
instead of the file name for the terminal arguments. For this example, the 
file name is “linkfile.txt.”

• flag_file - a text file that lists all the flags and corresponding full file 
names and associated file information (dates, scene location (frame#, 
orbit#), polarization). In this example, the file name is “flagfile.txt.” Ex-
amples of what this text file would contain are:

001 890_120_20070727_HV_20070911_HV 070727 070911 890 120 HV
002 890_119_20070710_HV_20071010_HV 070710 071010 890 119 HV
003 890_118_20070708_HV_20070923_HV 070708 070923 890 118 HV

• ref_file - reference tree height data (lidar or field inventory) in raster 
format. Currently the code is set up to use a GeoTIFF file, but other ref-
erence data in raster format could potentially be used with some code 
adjustments. In this example, the reference tree height data is “How-
land_LVIS_NaN.tif.”

• mask_file - land cover mask that excludes all water areas and areas of 
human disturbance (urban, agriculture). This is currently set up to be a 
GeoTIFF file. Other reference data in raster format could potentially be 
used with some code adjustments. File must be in degrees (i.e., EPSG 
4326). This file is recommended, but optional. If unused, put “-” in place 
of the file name for the terminal arguments. For this example, the fine 
name is “Maine_NLCD2011_nonwildland.tif.” 

• file_directory - the root directory to folders containing the individual SAR 
scenes. Each scene should have a directory named “f$frame_o$orbit” 
(e.g. “f890_o120” for the above scene 001). This directory contains ei-
ther the input ROI_PAC processed or ISCE processed files and is also the 
output location for all files that are associated with that scene. For this 
example, the directory is: /home/fsh/test_example_ROIPAC/test_ex-
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6.5  Overview of Scripts

Let’s review the scripts in the general order that they are called, including their main 
purpose, inputs, outputs, and terminal commands.

1. forest_stand_height.py is the main script, which  in turn calls nine other 
scripts with a total runtime of around 23 minutes 22 secs for the example 
data. Some of the other scripts call additional scripts. 

The command line call is:

• python file_directory/forest_stand_height.py scenes edges start_scene 
iterations link_file flag_file ref_file mask_file file_directory “output_
file_types” [--Nd_pairwise] [--Nd_self] [--N_pairwise] [--N_self] 
[--bin_size] [--flag_sparse] [--flag_diff] [--flag_error] [—numLooks] 
[—noiselevel] [--flag_proc] [--flag_grad].”

The inputs for this script in the order entered into the terminal are:

• scenes (int) - number of scenes in the data set

• edges (int) - number of edges (aka scene-scene borders)

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth (e.g. LiDAR, field) data

• iterations (int) - number of iterations to run the nonlinear least squares 
part of the model

• Link_file (string) - file name of the file that lists all the edge scene pairs or 
‘-’ if processing a single scene

• flag_file (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• ref_file (string) - filename of reference data raster file (ground truth data, 
e.g. LiDAR, field)

• maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable; if no mask is a available input ‘-’ as the 
filename)

• file_directory (string) - directory path of where the input and output files 
are located

ample_ROIPAC/. Please note that no quotes are used in the terminal for 
this parameter.

• Output file types - the list of output formats should be in quotes, and can 
contain one or all of the following:  “tif kml gif mat json”.  In other words, 
output formats can be created for any of these options. For this example, 
all options are listed.

• The command option --flag_proc 0 indicates that the input data has been 
processed into SLCs by the ROI_PAC algorithm. If the data was processed 
by ISCE, please use 1 instead. For this example, we use a 0 to indicate that 
the data was processed by ROI_PAC.

3. The scripts are also able to be run with a single radar scene. To do this use “-“ 
instead of a link_file name, and in the input have 0 edges. 

• For example: python .../forest_stand_height.py 1 0 1 5 - “flagfile.txt” 
“Howland_LVIS_NaN.tif” “Maine_NLCD2011_nonwildland.tif” /directo-
ry_of_files/ “gif json kml mat tif” --flag_proc=1

4. In the case that you are running the FSH scripts on your own data, or would 
like to call each FSH script individually in the command line, please find the 
inputs, outputs, and terminal command lines in section 6.5. Please note that 
there are additional, unrequired parameters for the forest_stand_height.
py that are explained in section 6.5 that are not included in the example. 
Otherwise, proceed to section 6.4 to generate a mosaic of your forest stand 
height estimation.

6.4  Generate Mosaic

1. To create a mosaic of the generated forest height maps for all the scenes in 
GeoTiff format, run the following command “python directory_of_scripts/
create_mosaic.py directory mosaic_file list_of_files” in the terminal. You 
will need to replace three parameters.

• Replace  directory_of_scripts with the location of the scripts.

• Replace mosaic_file with the name you would like to give your final mo-
saic of forest stand heights. 

• Replace list_of_files with paths to each map that you would like to be 
combined within the mosaic in the format “file1 file2 file3.” 

2. For example: 

/home/dev/test_example_ROIPAC/test_example_ROIPAC//
create_mosaic.py /home/dev/test_example_ROIPAC/test_ex-
ample_ROIPAC/ “3sc_mosaic.tif” “.../test_example_ROIPAC/
f890_o118/890_118_20070808_HV_20070923_HV_fsh.tif 
.../test_example_ROIPAC/f890_o119/890_119_20070710_
HV_20071010_HV_fsh.tif .../test_example_ROIPAC/
f890_o120/890_120_20070727_HV_20070911_HV_fsh.tif”

3. Following is a snapshot of the expected mosaicked forest stand height re-
sults using the example dataset.
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a. filetypes (string) - list of the desired output file types formatted as a single 
string with quotation marks (e.g. “kml json tif”)

b. [--Nd_pairwise] (int) - optional pixel-averaging parameter for edge fitting 
(default=20)

c. [--Nd_self] (int) - optional pixel-averaging parameter for central scene fitting 
(default=10)

d. [--N_pairwise] (int) - optional pixel-averaging parameter for edge error met-
rics (default=20)

e. [--N_self] (int) - optional pixel-averaging parameter for central scene error 
metrics (default=10)

f. [—-bin_size] (int) - optional bin size for density calculation in sparse data 
cloud fitting (default=100)

g. [--flag_sparse] (int) - optional flag for sparse data cloud filtering (choose 0 or 
1, default=0)

h. [--flag_diff] (int) - optional flag for exporting differential height maps 
(choose 0 or 1, default=0)

i. [--flag_error] (int) - optional flag for exporting .json error metric files (choose 
0 or 1, default=0)

j. [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

k. [--noiselevel] (float) - sensor thermal noise level (ALOS’s value hardcoded as 
default if no value provided)

l. [--flag_proc] (int) - flag for InSAR processor selection (choose 0 for ROI_PAC 
or 1 for ISCE, default=0)

m. [--flag_grad] (int) - flag for correction of large-scale temporal change gradi-
ent (choose 0 or 1, default=0)

There are no direct outputs from this script, as all the file outputs are created within the 
scripts that are called by this main script.

The scripts called by forest_stand_height.py are: auto_tree_height.py, read_linkfile.
py, intermediate.py, intermediate_self.py, auto_mosaicking_new.py, write_deltaSC.
py, write_mapfile_new.py, write_diff_height_map.py, and cal_error_metric.py

2. auto_tree_height_many.py is called by the forest_stand_height. This script ex-
tracts data from ROI_PAC/ISCE output files and formats them for use in the rest 
of the scripts. For each scene, this script runs auto_tree_height_single.py, and 
then saves the output correlation magnitudes, kz, and coordinates in a .mat file, 
and geo data (lines, samples, corner latitude and longitude, and latitude and 
longitude step size) in a text file.

The command line call for this script is python directory_of_scripts/auto_tree_height_
many.py scenes flagfile directory

The inputs for auto_tree_height_many.py are:

• scenes (int) - number of scenes in the data set

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• directory (string) - directory path of where the input and output files are 
located

• [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

• [--flag_proc] (int) - flag for InSAR processor selection (input 0 for ROI_
PAC or 1 for ISCE, default=0)

• [--flag_grad] (int) - flag for correction of large-scale temporal change 
gradient (input 0 or 1, default=0)

The outputs for this script are:

• scenename_orig.mat - .mat file that stores correlation map, kz value, and 
corner coordinates

• scenename_geo.txt - text file that stores the geodata (width, lines, corner 
lat and lon, and lat and lon step values)

Auto_tree_height_many.py calls auto_tree_height_single_ROIPAC and auto_tree_
height_single_ISCE.

3. auto_tree_height_single_ROIPAC.py  calls the script read_rsc_data.py in order 
to read the value of the given parameter from the rsc file produced by ROI_PAC 
processing of SAR data. This script also calls remove_corr_bias.py to remove cor-
relation bias associated with ROI_PAC. This script is called by auto_tree_height_
many.py and cannot be run in the terminal on its own as it needs to be iterated 
for each scene in the analysis.

The inputs for this script are:

• directory (string) - directory path of where the input and output files are 
located

• date1 (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

• date2 (string) - date of the second image of the interferogram (same for-
mat as date1)

• numLooks (int) - number of looks in the correlation estimation

• noiselevel (float) - sensor thermal noise level (ALOS’s value hardcoded 
as default)

• flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (input 0 or 1)
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The outputs for this script are:

• corr_vs (numpy array) - aray of the correlation magnitudes

• kz (float) - kz parameter

• coords (numpy array) - array of max lat and lon values in the format 
[north, south, west, east]

• geo_width (int) - number of columns of image data

• geo_nlines (int) - number of rows of image data

• corner_lat (float) - max latitude value (north)

• corner_lon (float) - min latitude value (west)

• step_lat (float) - latitude pixel size in decimal degrees

• step_lon (float) - longitude pixel size in decimal degrees

4. read_rsc_data.py reads a parameter from the ROI_PAC.rsc text output file. This 
script is called by auto_tree_height_single_ROIPAC.py and is not meant to be 
run in the terminal.

Inputs for this script are:

•  filename (string) - file name of the ROI_PAC text output file containing 
the desired parameter (may include subdirectories containing the ROI_
PAC output files - everything lower than the main file directory)

• directory (string) - directory path of where the input and output files are 
located

• param (string) - name of the desired parameter

Outputs for this script are the parameter values as floats (result)

5. auto_tree_height_single_ISCE.py calls remove_corr_bias.py  to remove correla-
tion bias associated with ISCE. This script is called by auto_tree_height_many.py 
and cannot be run in the terminal on its own since it needs to be iterated for each 
scene in the analysis.

The inputs for this script are:

• directory (string) - directory path of where the input and output files are 
located

• date1 (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

• date2 (string) - date of the second image of the interferogram (same for-
mat as date1)

• numLooks (int) - number of looks in the correlation estimation

• noiselevel (float) - sensor thermal noise level (ALOS’s value hardcoded as 

default if no value provided)

• flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (input 0 or 1)

The outputs for this script are:

• corr_vs (numpy array) - aray of the correlation magnitudes

• kz (float) - kz parameter

• coords (numpy array) - array of max lat and lon values in the format 
[north, south, west, east]

• geo_width (int) - number of columns of image data

• geo_nlines (int) - number of rows of image data

• corner_lat (float) - max latitude value (north)

• corner_lon (float) - min latitude value (west)

• step_lat (float) - latitude pixel size in decimal degrees

• step_lon (float) - longitude pixel size in decimal degrees

6. intermediate.py calculates the overlap between each pair of images. This script is 
called by forest_stand_height.py.

To run in the terminal, enter the command: python directory_of_scripts/intermediate.
py edges start_scene linkfile maskfile flagfile ref_file directory

The inputs for this script are:

• edges (int) - number of edges (aka scene-scene borders)

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth forest height data

• linkarray (numpy array) - array of the scene pairs that correspond to each 
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

• maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable)

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• ref_file (string) - filename of the reference data raster file

• directory (string) - directory path of where the input and output files are 
located

There’s no direct output for this script since all file outputs are created in subprocesses.

Intermediate.py calls intermediate_self.py and intermediate_pairwise.py.
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7. remove_corr_bias.py removes the correlation bias associated with processing by 
ROI_PAC or ISCE.

The inputs for this script are:

• C (numpy array) - correlation magnitude array

• numLooks (int) - number of looks in the correlation estimation

The output for this script is YC (numpy array) - correlation magnitude array (with bias 
removed)

8. intermediate_pairwise.py calculates the overlap between each pair of scenes, 
reading the data directly from auto_tree_height_single rather than from an in-
termediary file. This script in turn calls flag_scene_file.py and remove_nonfor-
est.py. This script is called by auto_tree_height_single.py and is not meant to be 
run from the terminal.

The inputs for this script are:

• flag1 (int) - flag value of one scene in the pair

• flag2 (int) - flag value of the other scene in the pair

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

•   maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable)

•   directory (string) - directory path of where the input and output files 
are located

•   filename1_orig.mat: correlation map and associated parameters for the 
first scene (generated in previous steps)

•   filename2_orig.mat: correlation map and associated parameters for the 
second scene (generated in previous steps)

The outputs for this script are link files: one for each overlapping edge region, with the 
filename format flag1_flag2.mat

9. intermediate_self.py calculates the overlap between the forest height validation 
data and central scene.  This script in turn calls flag_scene_file.py and remove_
nonforest.py. This script is called by intermediate.py and is not meant to be run 
from the terminal.

The inputs for this script are:

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth data

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• directory (string) - directory path of where the input and output files are 
located

• filename_orig.mat: correlation map and associated parameters for the 
central scene (generated in previous steps)

• reference data raster file (already exists; main input)

The output for this script is self.mat, a link file for the central scene-ground truth over-
lap region

10. flag_scene_file.py associates flag numbers with the name, dates, ALOS location 
(frame and orbit), and polarization of each scene. This script is called by inter-
mediate_pairwise.py, write_deltaSC.py, and write_mapfile_new.py and is not 
meant to be run from the terminal.

The inputs for this script are:

• flagfilename (string) - file name of the file that lists all the flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• flag (int) - flag of the desired scene

• directory (string) - directory path of where the input and output files are 
located

The output for this script is a  data_array (list) - list of the data associated with the given 
flag number.

11. remove_nonforest.py removes all non-forest areas from the image based on 
the non-forest mask_file. This script is called by intermediate_pairwaise.py and 
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:

• I (numpy array) - the image data

• func_coords (numpy array) - array of corner coordinates

• maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable)

• directory (string) - directory path of where the input and output files are 
located

The output for this script is O (numpy array) - image without the non-forest sections.

12. auto_mosaicking_new.py calculates the S and C parameters automatically by 
iterating through all the scenes in preparation for forest height estimation. This 
script is called by forest_stand_height.py. auto_mosaicking_new.py calls ls_del-
taSC.py and read_linkfile.py

To run in the terminal, enter the command: python directory_of_scripts/auto_mosa-
icking_new.py scenes edges start_scene N linkfile directory
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The inputs for this script are:

• scenes (int) - number of scenes in the data set

• edges (int) - number of edges (aka scene-scene borders)

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth data

• N (int) - number of iterations to run the nonlinear least squares part of 
the model

• Linkfile - the filename of the file that lists all the edge scene pairs.

• linkarray (numpy array) - array of the scene pairs that correspond to each 
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

• directory (string) - directory path of where the input and output files are 
located

• [--Nd_pairwise] (int) - pixel-averaging number for image fitting between 
two overlapped radar scenes (default=20)

• [--Nd_self] (int) - pixel-averaging number for image fitting between sin-
gle radar scene and the overlapped ground truth data (default=10)

• [--bin_size] (int) - bin size for density calculation in scatter plot fitting 
when ground truth data are sparse (default=100)

• [--flag_sparse] (int) - flag for sparse data cloud fitting (input 0 or 1, de-
fault=0)

The outputs produced by this script are iteration files (.json format; e.g. “SC_#_iter.
json” for “#”th iteration) that store the increment steps of S and C parameters and the 
residual; no values are returned by the function.

13. ls_deltaSC.py runs least squares on the change in S and C parameters. This script 
in turn calls cal_KB.py. This script is called by auto_mosaicking_new.py and is 
not meant to be run from the terminal.

The inputs for this script are:

• dp (numpy array) - array of increment steps of S and C parameter values

• edges (int) - number of edges (aka scene-scene borders)

• scenes (int) - number of scenes in the data set

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth data

• linkarray (numpy array) - array of the scene pairs that correspond to each 
edge in the format array([[scene1, scene2], [scene1, scene3], etc])

• directory (string) - directory path of where the input and output files are 
located

• Nd_pairwise (int) - pixel-averaging number for image fitting between 
two overlapped radar scenes 

• Nd_self (int) - pixel-averaging number for image fitting between single 

radar scene and the overlapped ground truth data 

• bin_size (int) - bin size for density calculation in scatter plot fitting

• flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)

The outputs for this script are:

• changeSC (numpy array) - updated S and C parameters as referenced to 
the average S (=0.6) and C (=13)

• res (float) - residual k and b error compared to k = 1 and b = 0

14. cal_KB.py calculates the K and B parameters. This script in turn calls cal_KB_
pairwise_new.py and cal_KB_self_new.py. This script is called by ls_deltaSC.py 
and is not meant to be run from the terminal.

The inputs for this script are:

• R (float) - R parameter for this edge

• RSME (float) - RSME parameter for this edge

• R_RSME_files: one for each edge with the filename format scene1_
scene2_I1andI2.json

The output for this script is YY (numpy array), an array of k and b values.

15. cal_KB_pairwise_new.py calculates K and B between image pairs. In turn, this 
script calls arc_sinc.py, mean_wo_nan.py, extract_scatterplot_density.py, and 
remove_outlier.py. This script is called by cal_KB and is not meant to be run in 
the terminal.

The inputs for this script are:

• scene1 (int) - flag value of one scene in the pair

• scene2 (int) - flag value of the other scene in the pair

• deltaS1 (float) - change in S value for one scene in the pair

• deltaC1 (float) - change in C value for one scene in the pair

• deltaS2 (float) - change in S value for the other scene in the pair

• deltaC2 (float) - change in C value for the other scene in the pair

• directory (string) - directory path of where the input and output files are 
located

• Nd_pairwise (int) - pixel-averaging number for image fitting between 
two overlapped radar scenes

• bin_size (int) - bin size for density calculation in scatter plot fitting

• link files: one for each overlapping edge region, with the filename format 
scene1_scene2.mat (generated in previous steps)

The outputs for this script are:

• k (float) - k parameter for this edge

• b (float) - b parameter for this edge
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16. cal_KB_self_new.py calculates K and B between the central image and the for-
est height validation data. In turn, this script calls arc_sinc.py, mean_wo_nan.
py, extract_scatterplot_density.py, and remove_outlier.py. This script is called by 
cal_KB and is not meant to be run in the terminal.

The inputs for this script are:

• deltaS2 (float) - change in S value for the central scene

• deltaC2 (float) - change in C value for the central scene

• directory (string) - directory path of where the input and output files are 
located

• Nd_self (int) - pixel-averaging number for image fitting between single 
radar scene and the overlapped ground truth data

• bin_size (int) - bin size for density calculation in scatter plot fitting

• flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)

• self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The outputs for this script are:

• k (float) - k parameter for this edge

• b (float) - b parameter for this edge

17. arc_sinc.py calculates the inverse sinc function as part of calculating K and B val-
ues. This script is called by cal_KB_pairwise and write_mapfile_new.py and is 
not meant to be run in the terminal. 

The inputs for this script are:

• X - A numpy array of x values for the inverse sinc function

• c_parama - C parameter (float) from the Forest Stand Height model

The outputs for this script are:

• y - a numpy array of y values of inverse sinc function satisfying x=sinc(y/C)

18. mean_wo_nan.py calculates and returns the mean of all number values in an 
array as part of calculating K and B values. This script is called by cal_KB_pair-
wise_new.py and is not meant to be run in the terminal.

Inputs for this script are:

• A (numpy array) - input array of values

Outputs for this script are:

• mean of B (A excluding NaN values) (float)

19. extract_scatterplot_density.py calculates the 2D histogram of the scatterplot 
between pairs of forest height and returns the forest height pairs with relatively 
large density. This script is intended to replace remove_outlier.py in order to dis-
tinguish between forest disturbance and forest height estimation. This script is 
called by cal_KB_pairwise and is not intended to be run in the terminal.

The inputs for this script are:

• x (numpy array) - array of x values of points

• y (numpy array) - array of y values of points

• bin_size (int) - bin size for density calculation in scatter plot fitting (de-
fault = 100)

• threshold (float) - density threshold (default = 0.5)

The outputs for this script are:

• Hm_den (numpy array) - array of x values of the points with densities 
above the inputted threshold

• Pm_den (numpy array) - array of y values of the points with densities 
above the inputted threshold

20. remove_outlier.py this script is called by cal_KB_self_new.py, cal_KB_pair-
wise.py, cal_KB_pairwise_new.py, cal_error_metric_pairwise.py,  and cal_er-
ror_metric_self.py to remove outliers, and is supplemented by the function of 
extract_scatterplot_density.py.

The inputs for this script are:

• x (numpy array) - array of x values of points

• y (numpy array) - array of y values of points

• win_size (float) - window size to search for neighboring points (defaults 
to 0.5)

• threshold (int) - number of neighboring points needed within the win-
dow to not count as an outlier (defaults to 5)

The outputs for this script are:

• XX (numpy array) - array of x values of the points excluding those counted 
as outliers

• YY (numpy array) - array of y values of the points excluding those counted 
as outliers

21. read_linkfile.py reads in a text file containing a list of all the scene pairs and 
returns a 2D array of the pairs. This script is called by auto_mosaicking_new.py

To run this script in the terminal, use the following command: python directory_of_
scripts/read_linkfile.py edges filename directory
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The inputs for this script are:

• edges (int) - number of edges (aka scene-scene borders)

• filename (string) - file name of the file that lists all the edge scene pairs

• directory (string) - directory path of where the input and output files are 
located

The outputs for this script is linkarray (numpy array) - array of the scene pairs that 
correspond to each edge in the format array([[scene1, scene2], [scene1, scene3], etc])

22. write_deltaSC.py calculates the temporal change parameters (S and C) as refer-
enced to the average values: S=0.6, C=13 based on the final iteration. This script is 
called by forest_stand_height.py. write_deltaSC.py in turn calls flag_scene_file.
py.

To run in the terminal, enter the command: python directory_of_scripts/write_del-
taSC.py scenes N flagfile directory

The inputs for this script are:

•  scenes (int) - number of scenes in the data set

•   N (int) - number of iterations to run the nonlinear least squares part of 
the model

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• directory (string) - directory path of where the input and output files are 
located

• SC_#_iter.json: final iteration file (generated in previous steps)

The output for this script is one file per scene that contains delta S and C. The file name 
format is “scenename_tempD.json”

23. write_mapfile_new.py calculates and writes the tree height map to a file. This 
script is called by forest_stand_height.py. This script calls flag_scene_file.py, 
arc_sinc.py, remove_nonforest.py and write_file_type.py.

The inputs for this script are:

• scenes (int) - number of scenes in the data set

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

•  maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable) (optional - if no mask available use ‘-’ 
as an input to forest_stand_height.py)

• directory (string) - directory path of where the input and output files are 
located

• output_files (string) - list of the desired output file types formatted as a 
single string (e.g. “kml json tif”)

• scenename_orig.mat: correlation map and associated parameters for the 
central scene (generated in previous steps)

•  scenename_tempD.json: delta S and C files produced (generated in pre-
vious steps)

There’s no direct output (all file output created in write_file_type.py).

24. write_file_type.py writes the input array from the tree height map or the diff_
height map to a file, with the file type depending on input parameters: gif, json, 
kml, mat, or tif. In turn this script calls  read_geo_data.py. This script is called by 
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:

• data (numpy array) - array to be written to the file

• outtype (string) - string to signify which input (tree height “stand_height” 
or differential height “diff_height”) is being output

• filename (string) - scene file name

• directory (string) - directory path of where the input and output files are 
located

• filetype (string) - file extension for the desired output file type (.gif, .json, 
.kml, .mat, and .tif accepted -> input without the “.” (e.g. “kml” instead 
of “.kml”)

• coords (numpy array) - array of max lat and lon values in the format 
[north, south, west, east]

• reffile (string) - reference filename containing ground truth data (option-
al; only needed for differential height map)

The outputs for this script are output files(s) of the array image saved in the file type 
specified in the input.

25. read_geo_data.py reads in latitude, longitude, pixel size, and image size from a 
GeoTIFF or text file based on ROI_PAC output. This script is called by write_file_
type.py and is not meant to be run in the terminal.

Inputs for this script are:

• coord_file (string) - file name of the input data file with the location infor-
mation (lat/long, step size, image size)

• directory (string) - directory path of where the input and output files are 
located
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Outputs for this script are:

• width (int) - width/number of columns of the image

• nlines (int) - lines/number of rows of the image

• corner_lat (float) - latitude of the upper left corner

• corner_long (float) - longitude of the upper left corner

• post_lat (float) - latitude step size

• post_long (float) - longitude step size

26. write_diff_height_map.py writes the forest differential height map between SAR 
and overlapping forest height ground truth images. This script is called from for-
est_stand_height if the parameter --flag_diff is entered.

Inputs for this script are:

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth data

• reffile (string) - reference filename containing ground truth data

• flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location 
(frame#,orbit#), polarization)

• maskfile (string) - filename of the mask file that excludes all non-forest 
areas (mask excluding water and human disturbed areas such as urban 
and agriculture is also acceptable) (optional; if no masks are available, 
use ‘-’ as an input to forest_stand_height.py)

• directory (string) - directory path of where the input and output files are 
located 

• output_files (string) - list of the desired output file types formatted as a 
single string (e.g. “kml json tif”)

There is no direct output for this script, as all file output is created in write_file_type.py.

27. cal_error_metric.py calculates the R and RMSE error metrics for the model. This 
script is called from forest_stand_height.py if the parameter --flag_error is en-
tered. This script calls cal_error_metric_pairwise.py and cal_error_metric_self.
py. 

The inputs for this script are:

• dp (numpy array) - array of increment steps of S and C parameter values

• edges (int) - number of edges (aka scene-scene borders)

• start_scene (int) - flag value of the central scene that overlaps the ground 
truth data

• link (numpy array) - array of the scene pairs that correspond to each edge 
in the format array([[scene1, scene2], [scene1, scene3], etc])

• directory (string) - directory path of where the input and output files are 

located

• N_pairwise (int) - pixel-averaging number for scatter plot

• N_self (int) - pixel-averaging number for scatter plot

The output for this script is YY, a numpy array of R and RMSE values.

28. cal_error_metric_pairwise.py calculates the R and RMSE error metrics. This 
script calls arc_sinc.py, mean_wo_nan.py and remove_outlier.py. It is called by 
cal_error_metric.py and is not meant to be run in the terminal.

The inputs for this script are:

• scene1 (int) - flag value of one scene in the pair

• scene2 (int) - flag value of the other scene in the pair

• deltaS1 (float) - change in S value for one scene in the pair

• deltaC1 (float) - change in C value for one scene in the pair

• deltaS2 (float) - change in S value for the other scene in the pair

• deltaC2 (float) - change in C value for the other scene in the pair

• directory (string) - directory path to where the input and output files are 
located

• N_pairwise (int) - pixel-averaging number for the scatter plot

• link files: one for each overlapping edge region, with the filename format 
scene1_scene2.mat (generated in previous steps)

The outputs for this script are:

• R (float) - R parameter for this edge

• RSME (float) - RSME parameter for this edge

• R_RSME_files: one for each edge, with the filename format scene1_
scene2_I1andI2.json

29. cal_error_metric_self.py calculates R and RMSE between the central image and 
the forest height ground validation data. This script calls arc_sinc.py, mean_wo_
nan.py, and remove_outlier.py. This script is called by cal_error_metric.py and is 
not meant to be run in the terminal.

The inputs for this script are:

• deltaS2 (float) - change in S value for the central scene

• deltaC2 (float) - change in C value for the central scene

• directory (string) - directory path of where the input and output files are 
located

• N_self (int) - pixel-averaging number for scatter plot

• self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The output for this script is YY (numpy array) - array of R and RMSE values.
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5.1  Background
5.1.1  GLOBAL DISTRIBUTION OF FOREST 
BIOMASS

Vegetation in terrestrial ecosystems takes up a 
significant fraction (~30%, or 3 PgC year–1) of carbon 
released to the atmosphere from fossil fuel and de-
forestation (LeQuere et al. 2018, Schimel et al. 2015) 
and creates the land residual sink with a destiny 
dependent on future climate conditions and human 
activities (Ciais et al. 2013, Bonan 2008). Almost all 
of this sink is in forests, covering about 3.8 billion ha 
(FAO 2015) of the land surface (~30%) and storing 
large reservoirs of carbon, approximately double 
the amount in the atmosphere (Canadell & Raupach 
2008, Sabine et al. 2004). Together, the carbon stored 
and sequestered in these ecosystems are major con-
tributors to mitigating climate change and the eco-
nomic benefits of emission Reductions from Defor-
estation and Degradation (REDD) (IPCC 2007, Gibbs 
et al. 2014). There are, however, large uncertainties 
surrounding the magnitude of the carbon stored in 
forests, particularly at landscape scales (1–100 ha) 
where mitigation benefits and ecosystem services 
are evaluated (Gibbs et al. 2007). A recent attempt to 

put together the information from different types of 
measurements on a global scale captures the overall 
distribution of forest Above Ground Biomass (AGB) 
and carbon stored in global ecosystems (Fig. 5.1).

The structure of forests (i.e., the three-dimension-
al arrangement of individual trees) is a direct indica-
tor of how much carbon is stored in the ecosystem. 
Carbon stored in an ecosystem has a profound effect 
on how the ecosystem functions (i.e., how it cycles 

carbon, water, and nutrients). Additionally, there is 
an increased need to understand local to global stor-
age and dynamics of carbon in ecosystems, as carbon 
storage is a prerequisite to understanding the cou-
pling of the biosphere to other components of Earth 
systems. For example, the amount of carbon in a sys-
tem determines how much is eventually emitted to 
the atmosphere (as CO2, CO, and CH4 through burning 
and decay) when ecosystems are disturbed due to 

Sassan Saatchi, Senior Research Scientist, Carbon Cycle and Ecosystems Section, Jet Propulsion Laboratory, California Institute of Technology

CHAPTER 5
SAR Methods for Mapping and Monitoring Forest Biomass 

Forests play a major role in the global carbon cycle, sequestrating more than 25% of the carbon emitted to the atmosphere from fossil fuel consumption and land-
use changes. The accumulation of carbon in forests has therefore become an effective strategy for mitigating climate change and an important mechanism for 
countries to meet their emission requirements under many international protocols and agreements. Remote sensing techniques are considered the most promis-
ing approach for providing up-to-date information on the status of forest cover and carbon stocks at different scales. Among remote sensing techniques, Synthetic 
Aperture Radar (SAR) sensors at long wavelengths have the advantage of strong sensitivity to the forest Above Ground Biomass (AGB) and the ability to quantify 
and monitor carbon stocks at the scale in which human activities occur. This chapter provides a summary of the methodologies and techniques for estimating 
forest AGB and monitoring changes from existing and future SAR satellite systems. The material in this chapter is designed to help both practitioners and remote 
sensing students and experts use SAR imagery for mapping and monitoring forest biomass. The examples and the bibliography capture the state of the art in SAR 
remote sensing of vegetation structure and biomass, and provide resources for enthusiasts to follow future developments in the technology and the methodology.

ABSTRACT

Figure 5.1 Distribution of forest AGB density in global ecosystems showing the high biomass in tropical 
rainforest regions and relatively lower biomass in extratropics extending to temperate and boreal 
regions with vast areas of forest cover. Map is produced at 1-km spatial resolution using a combination 
of ground, lidar, and radar measurements by Saatchi’s team at the Jet Propulsion Laboratory, California 
Institute of Technology.
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deforestation and degradation or from climate-driv-
en stress and fire. The amount of carbon stored in the 
system can be estimated from AGB, which is estimat-
ed from measurements of structure (e.g., the size and 
density of trees) and the mass of trees. As such, AGB 
is considered a crucial variable for a range of applica-
tions, including forest fire assessment, management 
of the timber industry, monitoring land-use change, 
and other ecosystem services such as biodiversity 
and production of food and fiber, as well as green-
house gas accounting. 

Although many of these applications may be 
accounted for by using operational satellite obser-
vations of forest cover change, the understanding 
of changes in terrestrial AGB remains rudimentary 
(Saatchi et al. 2011). For example, it is known that 
changes in land use, largely from tropical deforesta-
tion and fire, are estimated to have reduced biomass 
globally, while the global carbon balance suggests 
that terrestrial carbon storage has increased; albe-
it the exact magnitude, location, and causes of this 
residual terrestrial sink are still not well quantified 
(Schimel et al. 2015a, Sellers et al. 2018). There is 
strong evidence that the residual sinks are spread in 
different forest ecosystems with locations that may 
change due to climate change and anomalies. Yet 
the magnitude and fate of these terrestrial sinks are 
crucial to future climate projections, and any uncer-
tainties in the spatial locations or the temporal be-
havior of them directly influences the current status 
of global carbon cycle and climate (Houghton et al. 
2018, Schimel et al. 2015a).

5.1.2  GROUND INVENTORY OF FOREST 
BIOMASS

Knowledge of the distribution and amount of 
AGB is based almost entirely on ground inventory 
measurements over an extremely small (and possibly 
biased) set of samples, with many regions left un-
measured (Fig. 5.2). Conventional forest inventory 
data known as the National Forest Inventory (NFI) 
are based on systematic sampling of forests and are 
mainly designed for monodominant, evenly aged 
forests in managed temperate and boreal regions. 
Although the basic statistical techniques can be used 
for tropical forests, there are differences in terms of 

plot size, number of plots, and plot locations that 
have not been worked out for tropical forests.

• Conventional NFI can provide accurate estimates 
of forest carbon density at the national and po-
tentially subnational levels depending on the 
density of the plots. However, they cannot pro-
vide spatial maps unless combined with remote 
sensing data.

• In tropical and unmanaged forests, implementa-
tion of NFI is extremely difficult, because of limit-
ed access to the site and the cost of establishing 
and monitoring plots over time. Using the proto-
cols of the U.S. or northern Scandinavian NFI to 
the tropics requires a large number of plots.

• Conventional NFI data include 5–10 years of 
repeated measurements, and the timing of the 
measurements is not coordinated among the 
countries, making it difficult to conduct a global 
assessment for any period. For Greenhouse Gas 
(GHG) emissions, the use of a national inventory 
along with remote sensing estimation of forest 
cover change can provide national-level emis-
sions estimates, but those estimates may involve 
uncertainty due to the lack of forest estimates in 
areas where deforestation occurs.

At large scales, robust AGB estimates are acquired 

from ground-based forest censuses that are based 
on labor-intensive fieldwork (plot inventories) con-
ducted by trained operators. As such, these plot in-
ventories cannot be repeated frequently or at a low 
cost everywhere. Thus, plot inventories are limited to 
managed forests in a number of developed countries 
in the Northern Hemisphere where systematic sam-
pling of forest inventories are performed on a regu-
lar basis (5- to 10-year cycles). Information on most 
carbon-rich global forests is missing, particularly in 
developing and tropical countries, even though this is 
where most living biomass is located (63% of carbon 
in intact tropical forests versus 15% in boreal forests 
and 13% in temperate forests, according to a recent 
and comprehensive estimate (FAO 2015)). Further-
more, land-use activities, along with increasing dis-
turbances from climate and human stresses, are rap-
idly changing plot inventory requirements to include 
more frequent observations of forest ecosystems.

5.1.3  REMOTE SENSING OF FOREST BIOMASS

There is a strong synergism between ground and 
remote sensing measurements for quantifying AGB 
(Fig. 5.3). Ground data (generally consisting of 
all tree diameters above a threshold, a sampling of 
tree heights, and species identification that permits 

Figure 5.2 The distribution of woody (forest and shrubland) area and biomass derived from a 
variety of sources from field and remote sensing data. The red histogram shows forest inventory 
plot density in 1,000 km2 grid cells (Schimel et al. 2015b), suggesting an uneven distribution 
of inventory plots in the Northern Hemisphere and a lack of data in tropical regions.

Latitude

Ve
ge

ta
tio

n 
ca

rb
on

 s
to

ra
ge

 (P
gC

)
To

ta
l f

or
es

t/
sh

ru
b 

ar
ea

 (k
m

-2
 x

 1
0-5

) Inventory density (plots/1000 km
-2)

Ground inventory density
Total forest/shrub area
Vegetation carbon



THE SAR HANDBOOK 209

inference of wood densities) are more comprehen-
sive locally than remote sensing data that generally 
measure aggregate canopy height (in the case of li-
dar sensors) or some indicators of forest height and 
volume (in the case of radar sensors). In contrast, 
airborne or satellite remote sensing-based data are 
far more extensive, with millions of measurements 
over regional or continental scales compared to 
plots and providing a more spatially comprehensive 
measure of forest biomass variations. However, both 
ground inventory and remote sensing observations 
focus on measuring some physical properties (e.g., 
height or diameter, volume, etc.) that are not forest 
biomass (Clark & Kellner 2012). Both efforts rely on 
statistical techniques to estimate biomass, using 
single-tree allometry in the case of field plots and 
plot-aggregate allometry in the case of satellite data. 
Furthermore, both approaches are subject to several 
measurement and algorithmic errors.

A variety of remote sensing sensors provide mea-
surements of biophysical and structural character-
istics of forests based on the interaction of light or 
microwave energy with forest canopy and woody 
components. These sensors are typically categorized 
into passive sensors, such as spectrometers or ra-
diometers that measure reflected or emitted radia-
tion from the Earth’s surfaces, and active sensors, 
which internally generate and emit energy and then 
measure different attributes of the returned ener-
gy bouncing back from the surface. Passive remote 
sensors measure different ranges of wavelengths of 
reflected solar radiation (optical and microwave), 
providing two-dimensional information that can be 
indirectly linked to biophysical properties of vegeta-
tion (Rosette et al. 2012, Shugart et al. 2010). Exam-
ples of passive systems include Landsat (measuring 
the visible spectrum), QuickBird (visible to near-in-
frared), AVIRIS, and MODIS, with the latter two mea-
suring from visible to infrared (Hyde et al. 2006). 
On the other hand, active sensors are designed to 
work at limited wavelengths, such as lidar in visible 
or near-infrared wavelengths (Drake et al. 2002) 
or radar in microwave long wavelengths (Shugart 
et al. 2010). For more details on remote sensing 
techniques for forestry applications, see Zhang & 
Ni-meister (2013), Wulder & Franklin (2012), Zolkos 

et al. (2013), Saatchi et al. (2011b), and LeToan et 
al. (2011). Here, for the sake of brevity, the remote 
sensing techniques for forest structure and biomass 
are divided into two categories:

(1) The first category refers to remote sensing ob-
servations that provide the most direct mea-
surements of forest structure, such as canopy 
height from lidar sensors on either airborne 
or spaceborne platforms. Lidar sensor mea-
surements must be treated similarly to ground 
measurements such as tree height measure-
ments using a laser ranger or clinometers in 
the field. In both cases, the measurements are 
relatively direct. Height is measured from laser 
altimetry from air or space, and from distance 
and angle measurements in the ground. There 
is strong evidence that tree height can be mea-
sured as accurately if not better than ground 
measurements using small-footprint (<1 m) 
lidar systems (Asner et al. 2010). Here, the 
measurement errors can be treated the same 
as measurement errors in the field (Dubayah et 
al. 2000, Lefsky et al. 2002, Lefsky 2010).

(2) The second category refers to active remote 
sensing observations that provide indirect 
measurements of forest structure, such as 
active radar sensors for forest volume or bio-
mass and height. In this case, radar backscatter 

measurements provide strong sensitivity to 
forest structure and biomass. This sensitivity 
may be asymptotically reduced when biomass 
increases to a range of more than 100 to 150 
Mg/ha at L-band wavelengths (~25 cm) (Saatchi 
et al. 2011b, Mitchard et al. 2011, Mermoz et 
al. 2015), and more than 200 to 300 Mg/ha at 
P-band wavelengths (~70) (Saatchi et al. 2011b, 
LeToan et al. 2011, Sandberg et al. 2011). By 
adding interferometric radar techniques as in 
PolInSAR and TomoSAR measurements, the 
sensitivity of radar sensors may increase over 
the entire biomass range in tropical forests 
(Hajnsek et al. 2009, Minh et al. 2015, Neu-
mann et al. 2012). The high-resolution, two-di-
mensional radar measurements (backscatter 
power) have provided separation of tropical 
forest biomass based on their canopy gaps, 
structure, and spatial heterogeneity (Hoekman 
et al. 2000), and have been used as an import-
ant deforestation and degradation monitoring 
tool.

Lidar and radar remote sensing techniques are 
currently recognized as the best approaches for 
quantifying and monitoring forest AGB changes 
globally. Therefore, numerous space agencies are 
attempting to improve the presence of these tech-
niques for spaceborne observation of forest bio-

Figure 5.3 
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and AGB.
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mass, with NASA and the European Space Agency 
(ESA) having already approved plans to develop and 
launch lidar and radar sensors in the near future 
(Fig. 5.4). 

NASA’s GEDI (launch 2018) and NISAR (launch 
2021) missions, and ESA’s Biomass (launch 2022), 
share similar objectives for developing regional or 
global estimates of forest structure and AGB. These 
missions will address one of NASA’s key strategic 
goals for understanding changes in the Earth’s cli-
mate by focusing on the most uncertain component 
of the global carbon cycle related to terrestrial car-
bon sources and sinks. All missions providing active 
remote sensing measurements of forest structure 
must be converted to AGB using algorithmic models 
and validated by ground-estimated AGB distributed 
globally in different forest types. These missions have 
significant overlaps in terms of science objectives and 
products, but each focuses on different observations, 
employs different algorithms, and retrieves different 
AGB ranges at different spatial and temporal scales. 
The success of these missions strongly depends on 
how their science products can advance scientific and 
societal benefits.

Biomass observations at P-band will be par-
ticularly useful for high biomass density forests in 
tropical regions where there is a large uncertainty in 
quantifying forest biomass due to the lack of national 
inventory data and low efficacy of existing radar and 
optical remote sensing techniques. ESA’s Biomass 
mission’s unique contribution to the global carbon 
cycle is to provide annual carbon stocks and changes 

for old growth, secondary, and degraded tropical for-
ests. It is expected that the Biomass mission’s mea-
surement sensitivity will allow for the estimation of 
high-biomass forests (>100 Mg/ha). However, for ar-
eas of low biomass density (<100 Mg/ha), NASA’s NI-
SAR mission at L-band frequency will perform better 
in terms of accuracy and spatial resolution (<100 m). 
GEDI lidar sampling measurements of forest height 
will be acquired approximately 12 to 18 months prior 
to Biomass and NISAR data acquisitions, allowing GE-
DI-derived forest structure to integrate with Biomass 
and NISAR algorithms for improving the radar esti-
mations of forest structure and biomass. 

5.2  Forest Biomass – 
Ground Inventory

In this section, forest inventory is discussed as the 
most reliable approach for quantifying AGB at the 
local scale, as well as using airborne small-footprint 
lidar measurements as the state-of-the-art remote 
sensing technique for most accurately estimating 
AGB at landscape scales. Currently, both techniques 
are used extensively in quantifying forest carbon 
stocks at the local, regional, and national scales and 
are considered the most reliable for integrating with 
radar observations to estimate AGB. Particularly, 
airborne lidar data will allow upscaling inventory 
measurements from small plots to a scale that can be 
useful in calibrating radar measurements and devel-
oping radar-based models and algorithms for AGB. 
This section will also be considered as the first step 

toward understanding how AGB is quantified and to 
what extent knowledge gained from ground and lidar 
AGB estimates could improve the radar techniques 
for AGB estimation. This section provides general 
information about ground and lidar quantification of 
AGB and also provides an example discussed during 
the SAR tutorial for demonstration.

5.2.1.  FOREST INVENTORY SAMPLING

Forest inventory measurements include both the 
direct measurement of biomass of individual trees 
from destructive harvesting, or indirect estimation 
through measurements of tree size and inference us-
ing allometric relationships (Gibbs et al. 2007, Brown 
1997, Chave et al. 2005, Keller et al. 2001). However, 
before an allometric equation can be used, ground-
based forest inventory data must be collected using 
standard techniques at local, regional, or national 
scales. Systematic or random sampling designs (ei-
ther of the entire forest area or stratified segments) 
are two broad techniques used to collect data that 
allow mean biomass to be estimated with low uncer-
tainty. 

Stratification of sampling with broad forest types 
can greatly increase the efficiency of surveys by en-
suring that major variations are captured. These 
approaches are well established within the forestry 
community in most developed countries and can be 
readily adopted in tropical regions if access, cost, and 
institutional infrastructure issues are resolved. How-
ever, despite the availability of numerous methodolo-
gies for quantifying forest biomass in tropical regions 
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from ground sampling, there are still fundamental 
problems associated with sampling, measurement, 
and allometric uncertainty that must be addressed by 
the research community (Chave et al. 2014, Saatchi 
et al. 2015, Ngomanda et al. 2014, Lima et al. 2012, 
Chen et al. 2015, Katerrings et al. 2001).

5.2.1.1  Statistical Sampling 

The conventional methodology for estimating 
the forest AGB in any location relies on statistical 
sampling approaches and is recommended by var-
ious protocols and guidelines for GHG inventory in 
forestlands (IPCC Chapter 4 2006). These sampling 
techniques have been used in most NFI systems in 
developed countries and include systematic random 
sampling approaches, as in examples of U.S. forest 
inventory data (Fig. 2.1) (Heath et al. 2011), Swedish 
NFI (Reese et al. 2003), Finland NFI (Tomppo et al. 
2011), Canada NFI (Stinson et al. 2011), and China 
NFI (Zeng et al. 2015). A concise summary of the sam-
pling designs in European countries can be found in 
the literature (Tomppo et al. 2011, Lawrence et al. 
2010). Most of these countries use either detached 
field sample plots or clusters of plots, and there are 
variations in sampling density and the associated 
uncertainty. The forest area represented by one plot 
varies from 50 ha in the Walloon region in Belgium to 
about 2,500 ha in the U.S. and 267,700 ha in Canada. 
There is also quite a high level of diversity in estima-
tion methods and the use of tree allometry based 
on the measurements. The reports in Tomppo et al. 
(2010) present more detailed descriptions of these 
countries’ inventory methods and changes in the de-
signs (Zeng et al. 2015).

An approach similar to the NFI systems for bore-
al and temperate forests can be applied to tropical 
countries with the additional consideration of diver-
sity of species, structure, and requirements for preci-
sion of estimates. The sample size and the shape and 
the configuration of the samples will be an important 
element in creating a probabilistic sampling design 
at the national or regional scale. Large plots and a 
higher number of samples provide more precise AGB 
estimates at the national or subnational scales. How-
ever, other factors such as the degree of difficulty in 
establishing large plots in complex terrains, costs, 

and the time associated with field surveys signifi-
cantly contribute to the choice of sampling size and 
configurations (McRoberts et al. 2013). 

5.2.1.2  Inventory Measurements and 
Biomass Allometry

 Inventory has a long history from tree-based 
size and density measurements for harvesting and 
timber extractions. In general, trees are constrained 
in their geometry and display striking regularities 
in their structures. These regularities allow tree 
diameter measurements to be transformed into 
other variables of interest. There are two preva-
lent explanations for these regularities: One in-
volves the mechanical strength required to support 
standing wood structures, and the other involves 
the constraints of transporting water up through 
a tall structure composed of hollow tubes. Trees 
essentially respond to both of these constraints by 
developing a complex but regular architecture that 
can be characterized in either case by the use of sta-
tistically calibrated equations known as “allometric 
equations.” Also, tree diameter can be related to 
other attributes such as total tree mass, the area of 
a tree’s foliage, etc., by allometric equations (West 
& Brown 2005, Chave et al. 2005).

Most trees do not grow symmetrically over 
their lifespans. Small trees have a disproportion-
ally larger amount of leaves and less woody tissue 
than large trees (Hallé & Oldemann 1975, Hallé et 
al. 1978). Structural models based on tree size and 
mechanical strength were derived for engineering 
problems for constructing ships where diameter, 
height, and type of wood were used to calculate 
the mass. In forestry, similar type measurements 
have been used to quantify the size of trees and the 
density of the wood for logging and commercial use 
of wood. An allometric relationship can be found 
between tree height and sapwood area that scales 
isometrically, on average, with the tree trunk cross 
section. This relationship varies as a consequence 
of morphological and ecophysiological species-spe-
cific responses to different habitats and hydraulic 
constraints. However, it will ultimately converge on 
an approximately two-thirds scaling rule as the size 
of the tree increases (McMahon 1973). 

The allometric models are developed for each 
forest type and are based on empirical relationships 
between mass and tree diameter and height. Howev-
er, these empirical relationships are difficult to obtain 
logistically, particularly for remote locations and trop-
ical forests. Most calibrations are sparse with respect 
to data on larger diameter trees. Since the equations 
are fitted to the data using a log-transformed model, 
the errors associated with the larger diameter trees 
are very large (Chave et al. 2005, Chambers et al. 
2001). In mature natural forests, a large percentage 
of the total mass is associated with the largest trees, 
so this is potentially a significant source of error and 
bias (Shugart et al. 2010).

5.2.2  PRACTICAL GUIDE FOR PLOT DESIGN 
AND SAMPLING 

Several guidelines exist for designing plots for 
forest or general vegetation inventory and for struc-
ture and biomass characterization. It is recommend-
ed that interested readers consult with documents 
such as the RAINFOR protocols for plot design and 
measurements and Winrock International. The doc-
uments can be downloaded from the following links:

• http://www.rainfor.org/upload/ManualsEn-

Figure 5.5 Trees with complex structure 
associated with tree buttress. Photo by 
Sassan Saatchi, Costa Rica, 2007.

http://www.rainfor.org/en
https://www.winrock.org/
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
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gl ish/R A INF OR _ f ield _ manual _ver s ion _
June_2009_ENG.pdf

• ht tps://www.winrock.org/wp-content/up-
loads/2016/03/Winrock_Terrestrial_Carbon_
Field_SOP_Manual_2012_Version.pdf

The following guidelines are designed to help in 
establishing plots for remote sensing, specially SAR 
biomass estimation applications: 

(1) Location. Select the general area of the plot loca-
tions for the study area. Depending on the remote 
sensing applications, the general location may be 
selected from an area with the following criteria:
• Reasonably homogenous soil parent material 

and soil type
• Adequate access
• Reasonably slopped or flat terrain to avoid 

complex plot establishment and difficult of 
relating it to radar or lidar data

• Sufficient long-term security from human dis-
turbance

• Sufficient long-term institutional support in 
case of permanent and monitoring plots

• Avoid areas that have not had frequent dis-
turbance, particularly if the plots are used for 
developing models for remote sensing map-
ping, or calibration and validation of remote 
sensing products

(2) Sample design also depends on the application. 
For most inventory applications, the landscape 
is divided based on some stratification of vege-
tation type, soil, or topography; and the samples 
are designed to represent the structure of each 
strata. Within strata, plots should be random-
ly located, to avoid ‘majestic forest’ bias and 
provide statistically unbiased estimate of the 
structure and biomass for each strata. If maps 
are available, plot location should be randomly 
assigned prior to going to the field. If not, in the 
field, the position of the plot starting point can be 
randomized by locating it in a random direction at 
a random distance of the original location.

(3) Plot Size, Shape, and Orientation. Sample plots 
can be designed in a variety of size, shape, and 
orientations depending on some trade-off be-
tween accuracy, time, and cost of measurements. 
In addition, the vegetation type and the terrain 

may also influence the choice of plot charac-
teristics. Different requirements for plots were 
discussed and presented earlier. The guidelines 
here will cover the plot size and shape for both 
the ground-estimation of biomass and for remote 
sensing data analysis. 
• Plots can be circles, squares, or rectangles. 

Experience has shown that small circular plots 
are more efficient because the actual bound-
ary around the plot does not need not to be 
marked. But these plots are often used for na-
tional inventory and may not be used to repre-
sent remote sensing pixels. Circular plots are 
easy to establish when they are small. Large 
circular plots are difficult to establish on the 
ground because of uncertainty in delineating 
the boundary. Rectangular plots are also easy 
to establish and depending on the size of the 
rectangle and its orientation, the plot can be 
easily matched with pixels. If the rectangular 
plots are elongated in shape when laid out on 
the ground, they may significantly longer edg-
es than circular plots that may introduce errors 
in number of trees.

• The choice of plot size also depends on the 
application or remote sensing data, the ac-
curacy of biomass estimation, and the type 
of forests. For SAR studies, large plot size 
>0.25 ha or >1-ha depending on the SAR pixel 
size and speckle noise is recommended. It is 
possible to calculate the appropriate plot size 
specifically for each project; however, this 
adds an additional complication and an addi-
tional effort to the process. The size of trees 
and the diameter threshold of trees may also 
influence the plot size. It is possible to calcu-
late the size of the plot based on precision and 
effort and the application. Prior to initiation 
of plot measurement, it is recommended that 
limited sampling take place to determine the 
size of the largest trees. In a land cover stra-
tum with few trees greater than 50 cm dbh, 
the minimum stem diameter measured within 
the largest nest may need to be adapted. For 
non-forest, savanna, and woodland strata, 
nest plot sizes, and stem diameter sizes will 

need to be delineated. 
• There are also nested plots that may help to 

have large plots and a cost efficient approach 
in collecting tree measurements. Nested plots 
are composed of several plots (typically 2 to 
4, depending upon forest structure) plots 
and each plot in the nest should be viewed 
as being a separate plot. According to Winrock 
guidelines, in ecosystems with low structural 
variation, such as single species, even-aged 
plantations, or in areas where trees do not 
exist, a single plot can be effectively used.

• For orientation, N/S and E/W directions for 
the principal axes of the plot are the most 
convenient and also most compatible with the 
remote sensing pixel comparison. Note that 
when establishing plots using GPS, record the 
true or magnetic north to be able to accurately 
delineate the boundaries of the plot in the re-
mote sensing imagery. 

(4) Topography may impact the plot size and orienta-
tion in the field. It is important to record the planar 
distance if used to set up the plot and the angle of 
the slope. These values will allow calculating the 
area of the plots established on slopped terrains. 

(5) Measurements in the plots also depends on the 
size of trees and the type of vegetation. However, 
in general the measurements should include:
• The size of trees (diameter, height, crown size, 

etc.), identification of tree species for quantify-
ing their wood density or specific gravity from 
existing data or measurements of wood den-
sity (see for example measurement protocols 
by Jerome Chave: http://www.rainfor.org/
upload/ManualsEnglish/wood_density_en-
glish[1].pdf).

• Plot dimensions and location by using GPS 
units. Latitude/longitude, among other mea-
surements for the plot geometry and location 
will be elevation, bearings of plot boundaries, 
and local landmarks to assist plot relocation. 
It is recommended that GPS measurements 
include several plots along different axis of the 
plots (e.g., GPS for every 20 m within the plot 
for a 1-ha plot (100 m x 100 m) to increase the 
accuracy of plot location, size, and orientation. 

http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
https://www.winrock.org/wp-content/uploads/2016/03/Winrock_Terrestrial_Carbon_Field_SOP_Manual_2012_Version.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
http://www.rainfor.org/upload/ManualsEnglish/wood_density_english%5b1%5d.pdf
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5.3  Forest Biomass – Lidar 
Remote Sensing Inventory

5.3.1  LIDAR FROM AIR AND SPACE

Airborne lidar measurements can be used for both 
mapping and sampling inventory of forest structure, 
as in most national inventory techniques (Figure 
5.6). This is mainly due to the accuracy of high-reso-
lution airborne lidar measurements for measuring tree 
height, vertical structure, and horizontal distribution 
of tree crowns and gaps (Ferraz et al. 2016). For air-
borne sensors, a significant area over the landscape 
(100–10,000 ha) can be readily mapped at about 1-m 
spatial resolution (Asner et al. 2010). 

Capable of acquiring elevations with centimeter-lev-
el accuracy, small-footprint airborne lidar has had a 
revolutionary impact on 3D imaging of the Earth’s sur-
face and forest structure. More commonly, small-foot-
print airborne lidar sensors have been employed to 
detect vegetation and describe the canopy structure 

for applications such as habitat modeling, forest in-
ventory, and biomass studies. Airborne small-footprint 
(<1 m) lidar measurements are mainly discrete-return 
or waveform sensors working in near-infrared (1,064 
nm) wavelengths and flying at low altitudes, depend-
ing on the presence of cloud and lidar measurement 
requirements. Other new lidar technologies working 
in different optical wavelengths and photon counting 
capabilities are available for a combination of appli-
cations (Moussavi et al. 2014). Small-footprint lidar 
records multiple of points for each unit area (1 m2) 
with high precision of the altitude of each point within 
the canopy, allowing a detailed measurement of the 
forest vertical profile. The airborne sensors are widely 
available in tropical regions and can be used to acquire 
data over significant areas either for wall-to-wall cov-
erage (Mascaro et al. 2011b, Meyer et al. 2013) or as 
inventory samples for regional and national carbon 
assessments (e.g., BioREDD in Colombia, the World 
Wildlife Fund (WWF) program in the Democratic Re-
public of the Congo (DRC), lidar inventory in Brazil, and 
the NASA Carbon Monitoring System (CMS) program 

in Kalimantan). These airborne lidar inventory samples 
are all based on a Verified Carbon Standard (VCS) 
VT0005 methodology tool developed by Sassan Saat-
chi in Colombia and certified by Terra Global Capital 
(Tittmann & Saatchi 2015).

Existing spaceborne lidar technology works at only 
large-footprint (25- to 80-m radius) elliptical or circular 
plots over the landscapes along orbital tracks or sen-
sor beams, providing a systematic sampling of forest 
structure (Lefsky 2010). In this case, the density of sam-
ples will increase as the satellite’s orbit drifts along the 
Earth’s surface. Large-footprint lidar measurements 
have the advantage of being treated as a plot includ-
ing a large number of trees and being matched with 
ground measurements for relating the sensor forest 
height measurements to AGB.

Data acquired over global forests in 2003–2008 
from the Geoscience Laser Altimeter System (GLAS) on 
board the Ice, Cloud, and land Elevation Satellite (ICE-
Sat) provided millions of footprints that can be treated 
as inventory samples (Fig. 5.7). 

These footprints have an average size of approxi-

h

~64m 

Figure 5.6 Example of forest canopy height 
measured by airborne lidar over old growth, 
degraded, and swamp forests of the Congo Basin 
in Democratic Republic of Congo (data from WWF/
UCLA Carbon Map and Model Project).

TROPICAL FOREST VERTICAL PROFILE

AIRBORNE LIDAR CANOPY HEIGHT MODEL

Swamp Forest

Terra firme 
Forest

Logged Forest

20km

> 60m 

0m

Figure 5.7 GLAS lidar measurements across tropical forests showing systematic sampling of 
forest vertical structure at large footprints suitable for estimating AGB for each sample location.
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mately 0.25 ha (0.16–0.5 ha) spaced at about 172-
m intervals along the orbits over the landscape (see 
Fig. 5.7). The GLAS lidar samples do not follow any 
a priori design, as they randomly capture different 
forest types and provide a reasonable set of data to 
be treated as forest inventory. A series of studies us-
ing GLAS data have successfully demonstrated GLAS 
data capabilities for estimating forest canopy heights 
(Lefsky et al. 2007, Rosette et al. 2008) and forest bio-
mass (Lefsky et al. 2005, Nelson et al. 2009, Neigh et 
al. 2013). The studies consider the statistical nature 
of GLAS shots and the potential spatial correlations of 
samples for estimating regional mean and variance of 
forest structure or biomass (Neigh et al. 2013, Næsset 
et al. 2011, Saatchi et al. 2011a, Baccini et al. 2012). 

5.3.2  LIDAR BIOMASS MODELS

Allometric models for converting lidar measure-
ments of forest height or vertical structure into AGB 
have been developed for different forest types glob-
ally (Næsset et al. 2010, Nelson et al. 2010, Asner 
& Mascaro et al. 2014). These models are often in 
the form of power law and based on one or sever-
al lidar height metrics (Drake et al. 2002). The most 
common models use the mean top canopy height 
from small-footprint lidar or a height metric such 
as the height of the median energy (HOME) or per-
centile height from large-footprint lidar from air and 
spaceborne sensors (Asner & Mascaro 2014, Drake 
et al. 2002). Similar to ground estimation of AGB, 
the allometry models may vary from location to lo-
cation, capturing differences in the tree growth and 
diameter height allometry of forests. Some exam-
ples of allometric model variations show significant 
variations in height to biomass models (Fig. 5.8). 
The use of multiple height metrics derived from the 
pseudo-waveforms from either small-footprint lidar 
or large-footprint lidar sensors can contribute to im-
proving biomass estimation uncertainty over larger 
regions (Meyer et al. 2013, Saatchi et al. 2011, Neigh 
et al. 2013, Andersen et al. 2014). However, so far 
there is no universal model to convert the lidar height 
measurements into AGB on a continental scale, and 
by acquiring data in different forest types and cali-
brating the lidar data with ground forest inventory 
plots, new models are being developed. 

5.3.3  PRACTICAL GUIDE FOR PRODUCING 
LIDAR AGB MAPS

Lidar-biomass models are developed from 
ground plot level estimates of biomass and lidar 
height metrics. The following six steps must be 
considered in the model development:

(1) Relation between ground estimation of 
biomass and lidar height metrics depends 
strongly on the plot size. For developing mod-
els, the plots sizes have to be large enough 
to include a large number of trees (50–100) 
such that the mean biomass density estimate 
of the plot from the allometric model has low 
uncertainty. 

(2) Depending on the forest types and size of 
trees, the plot size may vary. For boreal for-
ests dominated by conifers, plots of >0.1 ha 
may contain enough trees and have accurate 
ground estimates of biomass. For tropical 
forests, plot sizes must be larger than 0.25 
ha to guarantee the presence of enough trees 
for ground estimates of biomass with low 
uncertainty and lidar metrics that represent 
forest structure at a scale much larger than 
the crown of a large tree. 

(3) The shape of the plots may also influence the 
accuracy of the lidar-biomass models. Square 
plots are recommended as the best options 
for most forest types, because square plots 

of any size are easy to establish and have 
smaller edge lengths compared to rectan-
gular plots. Circular plots are difficult to es-
tablish unless they are small, particularly in 
tropical forests. 

(4) Models developed from small plots may in-
troduce large bias in biomass estimation (see 
Fig. 5.9) due to edge effects and large vari-
ations of biomass at small scales that cannot 
be explained by forest height only. This is 
particularly the case in unmanaged forests in 
temperate and tropical regions (Chave et al. 
2004, Meyer et al. 2013). 

(5) The height metrics used in developing a li-
dar-biomass model are important in large-
scale applicability of the model. It is recom-
mended that models are developed with 
height metrics that remain strongly related 
to AGB across the landscape when the for-
est structure varies due to variations of soil 
type and moisture, topography, and various 
levels of successional stages. For example, 
the mean top canopy height (MCH) is shown 
to be a robust metric for capturing the bio-
mass variations across the landscape (Asner 
& Mascaro 2014, Meyer et al. 2013, Lefsky 
2010). MCH from small-footprint lidar has 
not only information about the height of 
trees within the plot but also carries infor-

Figure 5.8 Examples of lidar biomass allometric models used in converting airborne lidar data to 
AGB. Variation across models suggests that the lidar models focused on one parameter only may vary 
significantly for different forest types, similar to ground allometric models

Asner and Mascaro et al., 2013
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mation about gaps and spatial extent of tree 
cover. Theoretically, MCH includes the aver-
age of tree heights or crown areas within an 
area and therefore shows strong correlation 
to basal area, and hence AGB. The equiva-
lent of MCH in ground measurements is not 
the mean height of trees but the basal area 
weighted height of the trees within the plot, 
the so-called “Lore’s Height of forest plot” 
(Lefsky 2010, Saatchi et al. 2011a).

(6) The form of the model may also become im-
portant in biomass estimation and error as-
sessment. In most applications, the use of a 
power-law between the AGB and the height 
metrics provides the most reliable model 
for converting forest structure to biomass. 
A power-law or model also appears to be 
used extensively in allometric models devel-
oped from tree harvesting (Chave et al. 2005, 

Brown et al. 2001). The use of a power law or 
logarithmic model between AGB and forest 
height metrics derived from airborne lidar 
data is recommended.

5.4  SAR Remote Sensing of 
Forest Biomass

SAR backscatter measurements are sensitive to 
vegetation AGB. Observations from a spaceborne 
SAR can thus be used for mapping AGB globally. 
However, radar sensitivity to AGB values changes 
depending on the wavelength and geometry of the 
radar measurements and is influenced by surface to-
pography, structure of vegetation, and environmental 
conditions such as soil moisture and vegetation phe-
nology or moisture. All algorithms or models used to 
estimate AGB from SAR measurements must account 
for all variables that impact SAR measurements. This 

section provides a discussion of the overall sensitivity 
of radar backscatter to AGB to assist users in choosing 
the best combination of frequency, polarization, and 
incidence angles to develop AGB estimation models 
or algorithms. The impacts of forest structure spatial 
variation and errors associated with the geolocation 
of the plots used to relate the backscatter to biomass, 
the radar measurement geometry, and speckle noise 
all are important factors that influence radar sensitiv-
ity to forest structure and AGB.

5.4.1  RADAR SENSITIVITY TO FOREST 
STRUCTURE AND BIOMASS

Radar observations of vegetation have been stud-
ied for more than four decades, both theoretically 
and experimentally (Ulaby et al. 1982, Tsang et al. 
1985, Ulaby & Dobson 1989, Cloude 2014). These 
studies have shown that the radar measurements 
depend strongly on the structure, dielectric proper-

Figure 5.9 Ground plots of different size and lidar-derived models with MCH in tropical forests of Barro Colorado Island in Panama. The plots under the 
1-m resolution lidar data suggest that at scale of 20 m x 20 m, (a) there is large bias in the model but gradually at areas of 50 m x 50 m, (b) 100 m x 100 
m, and (c) the model improves, and the estimate of biomass can be done without significant bias.
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ties of vegetation components, and underlying soil 
surface depending on the frequency of the operation 
(Saatchi et al. 1994, Saatchi & McDonald 1997, Ulaby 
et al. 1990). The soil is most commonly described as 
a homogeneous medium having a complex dielec-
tric constant that is a function of the volumetric soil 
moisture, as well as the soil texture, temperature, 
and bulk density; several empirical models exist for 
this relationship (Dobson & Ulaby 1986, Hallikainen 
et al. 1985, Mironov et al. 2004, Peplinski et al. 1995). 
Studies of soil surface scattering and soil moisture 
remote sensing at L-band have shown that surface 
scattering can be expressed in terms of soil dielectric 
constant at the top 5 cm and the surface roughness 
characteristics in terms of Root Mean Square (RMS) 
roughness height and spatial correlation length 
(Fung et al. 1992). In most SAR-related models for 
the remote sensing of soil surfaces, it is assumed 
that the effect of the spatial correlation is reduced 
significantly during the SAR azimuthal processing and 
multi-looking, and that the radar signature sensitivity 
to soil surface RMS height variation remains as the 
dominant surface structure influencing the surface 
scattering (Oh et al. 1992, Shi et al. 1997, Dubois et 
al. 1995, Baghdadi et al. 2002, Bryant et al. 2007). 
Other landscape features such as directional row or 
tillage may impact radar cross sections at 100-m spa-
tial resolution but are assumed irrelevant in natural 
vegetation such as forests and shrublands. 

In general, the radar-transmitted energy, in the 
form of an electromagnetic pulse, penetrates into the 
forest canopy and reflects back from forest compo-
nents such as leaves, branches, stems, and underly-
ing soil. Knowing the magnitude of transmitted and 
received energy, a physical relationship based on 
electromagnetic theory has been developed to relate 
the ratio of these energies to properties of the forest. 
The radar measurements are performed in different 
frequencies or wavelengths, each providing a differ-
ent penetration into the vegetation and soil and sen-
sitivity to vegetation biomass. 

The measurements are performed in a combina-
tion of transmit and receive polarizations (Horizontal 
(H) and Vertical (V)) at an off-nadir incidence angle 
and at a spatial resolution projected on the radar 
range direction. Therefore, radar backscatter sensi-

tivity to AGB at any frequency and polarization com-
bination (e.g., HH, HV, VV) depends on two sets of 
parameters: (1) measurement geometry (such as inci-
dence angle and location and size of the image pixels 
with respect to the size and the orientation of ground 
plots) and (2) forest structural parameters (such as 
the size (volume) and density of trees (number per 
resolution cell), orientation of forest components 
(leaves, branches, stems), underlying surface condi-
tions (moisture, roughness, and slope)); and (3) the 
dielectric constant that in turn depends on the vege-
tation water content or specific gravity (i.e., the wood 
density) (Dobson et al. 1995, Saatchi & Moghaddam 
2000). In the following subsections, the sensitivity of 
SAR measurements to these parameters are briefly 
examined, and examples and references for further 
reading are provided.

This section focuses on radar frequencies that are 
either operational or will be operational in future, 
and have strong sensitivity to vegetation AGB. Exam-
ples of SAR imagery are provided at C-band, L-band, 
and P-band frequencies. Among these frequencies, 
C-band (Sentinel, RadarSAT) and L-band (ALOS, PAL-
SAR) are operational satellites and will be continued 
in the future for forest biomass monitoring in the 
L-band NISAR system (launch 2021). In 2022, ESA 
will launch a P-band SAR mission dedicated directly 
to monitoring forest structure and biomass globally. 

5.4.2  RADAR WAVELENGTHS AND FOREST 
STRUCTURE

Usually SAR data are acquired at X-, C-, and L-band 
frequencies for remote sensing of the environment 
from airborne and spaceborne platforms. Other fre-
quencies such as P-band and S-band have also been 
used for remote sensing applications but only on air-
borne platforms, with plans to be implemented for 
space observations in near future. A P-band sensor 
has been designed for ESA’s future Earth Explorer 
Biomass mission, and an S-band sensor is ISRO’s 
contribution to the NISAR mission. A summary for 
typical radar frequencies and wavelengths is shown 
in Chapter 2, Table 2.3. 

Excellent studies have been previously conduct-
ed on examining radar backscatter properties from 
forest areas (e.g., Freeman & Durden 1998, Dobson 

et al. 1992, Ranson et al. 1997). Most scattering oc-
curs when the particles are on the scale of the radar 
wavelength. Thus, in the case of forests, L-band back-
scatter arises more from the trunk and the branches 
of trees, whereas X-band backscatter arises more 
from their leaves and needles. Also, microwave pen-
etration depth in forests varies depending on the 
frequency. While L- and P-band can penetrate deep 
into forests, X-band can get reflection from the cano-
py level. The backscatter sensitivity to forest compo-
nents as seen by SAR systems operating at different 
frequencies is shown in Figure 5.10. For biomass 
estimation, L-band and P-band sensors are therefore 
preferred over higher frequencies and smaller wave-
lengths for two reasons: (1) at these bands, the radar 

Figure 5.10 Sensitivity of SAR measurements to 
forest structure and penetration into the canopy 
at different wavelengths used for airborne or 
spaceborne remote sensing observations of the 
land surface.

X-BAND 3 cm

C-BAND 6 cm

L-BAND 24 cm

P-BAND 65 cm
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waves or energy can penetrate the tree canopy and 
scatter from larger woody components of the forest, 
and (2) the scattering from larger tree components, 
unlike leaves, are more stable temporally and re-
main highly coherent over the acquisition period 
in the case of repeated measurements for change 
detection or interferometric applications (Le Toan 
et al. 1992). 

At higher X- and C-band frequencies, SAR pen-
etration will be limited to the upper forest canopy 
dominated by leaves and smaller branches unless 
used in very sparse forest covers such as woodlands 
and savannas. High-frequency radar systems such 
as Sentinel and RadarSAT operating at C-band and 
Terra-X SAR operating at X-band provide measure-
ments that are more sensitive to the biomass in 
low-density forests (e.g., sparse savannas), shrub-
lands, grasslands, or agricultural crops (Wigneron 
et al. 1999, Saatchi et al. 1994). 

Recent studies have focused on the relationship 
between AGB and radar typically use spaceborne 
SAR data from ALOS PALSAR (L-band, λ = 23.62 cm), 
and airborne SAR data from both P-band and 
L-band frequencies (LeToan et al. 2011, Saatchi et 
al. 2011b). 

The radar scattering forest stem and large 
branches at low frequencies or large wavelengths is 
considered the main reason radar sensors are used 
for estimating forest volume and biomass. to trunk 
and crown biomass and moisture content [16,25]. 
Past studies have found that the radar backscat-
ter increases with increasing forest AGB from low 
to medium levels of AGB, but gradually loses its 
sensitivity to higher AGB levels and asymptotes to 
a saturation level, resulting in a logarithmic or sig-
moidal relationship between AGB and backscatter 
(Dobson et al. 1992, LeToan et al. 1992, Saatchi et al. 
2011). The asymptotic or the saturation level varies 
based on the radar wavelength and forest type and 
structure. Results from the airborne AIRSAR (Fig. 
5.11) and E-SAR data suggest that saturation may 
vary between 80 and 150 Mg·ha−1 for L-band radar 
(15–30  cm wavelength) and 200–350  Mg·ha−1 for 
P-bands, with a wavelength of ~70 cm (Saatchi et 
al. 2011, LeToan et al. 2011, Mitchard et al. 2009, 
Bouvet et al. 2018, Villard et al. 2015).

5.4.3  RADAR SCATTERING AND FOREST 
STRUCTURE

The impact of vegetation structure and biomass 
on SAR data can be investigated by modeling the 
dominant scattering mechanisms controlling the SAR 
measurements. A variety of approaches exist for mod-
eling vegetation media, including the characterization 
of forest vegetation structure, known as scatterers or 
scattering components such as stems, branches, and 
leaves in terms of canonical dielectric cylindrical or 
disk shapes with specified size and orientation distri-
butions. The dielectric constants are assigned to each 
scattering component to reflect the live wood of trees 
and leaf material as well as their water content (Saatchi 

et al. 1994, Saatchi & McDonald 1997, Saatchi & Mogh-
addam 2000, Yueh et al. 1992, Lang et al. 1983, Karam 
et al. 1992, Ulaby et al. 1990). The total SAR backscatter 
from vegetation arises from a combination of scattering 
and attenuation of individual scattering components 
that can be represented as a sparse scattering medium 
(Lang 1981, Saatchi et al. 1994, Chauhan et al. 1994). 
This approach requires knowledge of tree structure 
(size, orientation, and density; or equivalently species 
and biome), dielectric constant, and ground charac-
teristics (RMS height, correlation length, and dielec-
tric constant of soil surface). Figure 5.12 provides a 
general schematic of the three dominant SAR scattering 
mechanisms in the forest ecosystems.

Figure 5.11  Examples of SAR imagery at C-, L-, and P-band frequencies from the AIRSAR system 
over tropical forests along the Ja River in Papua New Guinea showing differences of penetration and 
impacts of forest structure and underlying moisture on SAR false color composite (HH, HV, VV) imagery. 

R: HH
G: HV
B: VV

C-BAND L-BAND P-BAND

R: P-BAND, G: L-BAND, B: C-BAND

Figure 5.12 Dominant scattering mechanisms of L-band SAR measurements of forest ecosystems 
contributing to polarimetric backscatter observations.
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The backscattering coefficient measurement by 
SAR systems can be expressed as the combination 
of three scattering components (Fig. 5.12): (1) 
volume (vol ) scattering, (2) volume and surface 
interaction (vol-surf ), and (3) surface scattering 
(surf ):

   σpq
o =σpq−vol

o +σpq−vol−surf
o +σpq−surf

o   ,  (5.1)

where p and q denote polarization of transmitted 
and received radar signals, respectively, that can 
be assigned either vertical (V) or horizontal (H) for 
a linear polarization radar system. The three dom-
inant scattering terms are derived from basic elec-
tromagnetic theory by solving Maxwell’s equations 
in a discrete random media (Saatchi & Lang 1989, 
Lang 1981, Tsang & Kong 1988, Saatchi & McDonald 
1997, Chauhan et al. 1991). 

There are simpler approaches that only use 
the Vegetation Water Content (VWC) to provide 
analytical forms for attenuation and scattering ef-
fects. The most common model used in microwave 
frequencies is the Water Cloud Model, which in-
cludes two scattering components from vegetation 
volume and its underlying ground but ignores the 
volume-ground interaction (Attema & Ulaby 1978) 
that becomes dominant in forest ecosystems and 
for longer wavelength radar observations. There-
fore, the Water Cloud Model is mainly applicable at 
shorter wavelengths (C-band and above) (Matzler 
1994, Ulaby & El-rayes 1987) fails to represent the 
SAR vegetation interaction at longer wavelengths. 

5.4.4  SAR POLARIZATIONS AND FOREST 
STRUCTURE

Transmitted and received radar signals propa-
gate in a certain plane of polarization. Most radars 
are designed to transmit microwave radiation ei-
ther horizontally polarized (H) or vertically polar-
ized (V). Similarly, the radar antenna can receive 
either the horizontally or vertically polarized back-
scattered energy, and some radars can receive 
both. Different combination options for radar po-
larization (listed below) will provide different im-
age characteristics:

• Single-polarization—the radar system 

operates with the same polarization for trans-
mitting and receiving the signal

• Cross-polarization—a different polariza-
tion is used to transmit and receive the signal

• Dual-polarization—the radar system op-
erates with one polarization to transmit the 
signal and both polarizations simultaneously 
to receive the signal

• Quad-polarization—H and V polariza-
tions are used for alternate pulses to transmit 
the signal and with both simultaneously to 
receive the signal (Fig. 5.13). 

Among the quad-polarization configurations, 
there are also several variations as in the fully pola-
rimetric measurements that include all components 
of amplitude and phase of the scattering matrix, 
and quasi-quad-polarization that includes only the 
amplitudes and not the phase due to switching the 
polarizations on different SAR transmit and receive 
pulses separating the HH/HV measurements from 
VV/VH (Raney 2007, Hensley et al. 2014). 

Polarization is therefore the key characteristic of 
radar signals propagating into tree canopies or veg-
etation volume and scatter from individual vegeta-
tion components that collectively contribute to the 
backscatter energy measured by the radar receiver 
system. Polarization as the orientation of radar 
wave vectors (at H, V, or any other polarization) in-
teract with vegetation components and backscatter 
according to the size and orientation of scatterers. 
For example, a standing live tree with near-verti-
cal orientation depolarizes the incoming waves 
with different strengths than branches or leaves. 
Using radars that provide measurements in differ-
ent polarizations allows separate vegetation with 
different structures to be reflected in the average 
size and orientation of different components. The 
best way to demonstrate this effect is by examin-
ing the radar imagery over agricultural landscapes 
with distinct crop types with uniform shapes and 
orientations (Fig. 5.14). 

5.4.5. CONFOUNDING FACTORS IN RADAR 
SENSITIVITY TO BIOMASS

The confounding variables that impact SAR mea-
surements and make interpreting those measure-

ments ambiguous can be divided into two catego-
ries: (1) environmental and (2) geometrical. 

5.4.5.1  Environmental Factors

• Two radar backscatter measurements of 
vegetated surfaces taken from the same in-
strument using exactly the same character-
istics and observational geometry may be 
significantly different without any changes 
of the vegetation structure or biomass. The 
differences may be attributed to surface con-
ditions or environmental changes (Fig. 5.15) 
between the two radar measurements and 
must be considered when analyzing the data 
(Table 5.1). 

5.4.5.2  Geometrical Factors

Unlike optical passive and lidar sensors, SAR 
measurements are performed at an off-nadir 
look direction, and being an active sensor, both 
the geometry of the observations and the geom-
etry of the targets (including both vegetated and 
non-vegetated surfaces) impact these measure-
ments. The surface topography and the orienta-
tion of slopes and aspects of the observed surface 
are perhaps the most dominant effects on the 
radar measurements. However, other factors such 
as the orientation of trees, branches, leaves, and 

Figure 5.13 Electromagnetic waves radiated 
to the landscape in horizontal and vertical 
orientations providing different linearly polarized 
measurements.

HH Horizontal transmit, horizontal receive

VV Vertical transmit, vertical receive

HV Horizontal transmit, vertical receive

VH Vertical transmit, horizontal receive

V

H
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Figure 5.14 JPL UAVSAR image acquired by L-band radar showing three backscatter 
polarizations and the false-colored composites over an area in California’s Central Valley 
covered by orchards and different crops. The strength of each polarized backscatter is 
shown, relatively suggesting how certain crops are relatively higher in one of the HH, HV, 
and VV polarizations. 

HH, HV, VV

VVHH

HV

Figure 5.15 Changes of SAR backscatter in wetland forests acquired during the 
dry and wet seasons showing large backscatter difference due to inundation and 
an increase in the surface-volume scattering interaction in HH polarization.

JERS-1 HH (Dry Season) JERS-1 HH (Wet Season)

Dry Season Wet Season Table 5.1 Summary of environmental impacts on SAR measurements. 

VARIABLE IMPACTS BACKSCATTER CHANGES

Soil
Moisture

SAR backscattered measurement 
of forests is sensitive to underlying 
moisture condition and any 
changes of soil moisture due to 
precipitation events or irrigation 
can influence backscatter values. 

HH and VV backscatter, 
significantly and HV to a smaller 
degree, change with soil moisture 
depending on the density of 
vegetation cover. The volume-
surface scattering mechanism 
and direct surface scattering 
are responsible for changes 
in backscatter.  Similarly, SAR 
coherence between the data 
takes is impacted by changes of 
moisture. 

Surface
Inundation

Vegetated surfaces, particularly 
near rivers or in low elevation 
areas in wetlands, may be inun-
dated seasonally or permanently 
due to the rise of the water level 
creating a smooth water body 
submerging the vegetation at 
different levels into the water. 

Forest inundation increase the 
backscatter power by a large 
factor. The increase in power is 
significant in HH and VV due to 
volume-surface interactions.  HV 
backscatter may also change due 
to inundation due to geometry 
and forest canopy density and the 
SAR wavelength. 

Wind Presence of wind may change the 
orientation of the leaves, twigs 
and small branches with respect to 
radar observational geometry.  

The effects of wind often show up 
as random differences in the SAR 
backscatter between observations, 
introducing noise in backscatter, 
and reduction of coherence 
between two SAR observations. 

Intercepted
Water

After any rain events or early in the 
morning due to development of 
dews, there are water droplets on 
the leaves, causing both scattering 
and attenuation of the SAR signal.

Depending on the amount of 
intercepted water or the size 
of water droplets, and the 
wavelength, the radar backscatter 
may increase (at X-band and 
C-band) or reduce (at L-band 
and P-band) causing enhanced 
scattering or attenuation 
respectively. 

Water
Content

Changes of water content in trees 
and leaves from either stress, or 
diurnally and seasonally due to 
water loss and recharge of soil 
moisture impact radar backscatter.

Radar backscatter responds to 
dielectric constant of vegetation 
components and therefore the 
water content. Changes in water 
content can create significant 
changes (1-2 dB) in backscatter 
in all polarizations. Observations 
of the same time of the day and 
season can reduce this effect in 
SAR observations.
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other structures with the respect to the SAR obser-
vational geometry may also impact SAR measure-
ments (Outlined in Fig. 5.16, Table 5.2).

5.5  SAR Processing Steps 
for Biomass Estimation

Before biomass estimation from SAR measure-
ments, SAR data must be processed such that the 
pixel size and geometric attributes and environ-
mental effects are all normalized and radiomet-
rically calibrated. Although it may be possible to 
include all the SAR processing steps within the 
biomass estimation algorithm, preparing SAR im-
agery before algorithm implementation allows for 
separating the biomass estimation process from 
the data quality and calibration process. 

5.5.1 SPECKLE AND IMAGE MULTI-
LOOKING

One of the significant differences between 
active or coherent sensor imagery such as SAR 
(or laser) to passive sensors (such as that used 
in Landsat) is the effect of speckle in the spatial 
resolution of the sensor. Images obtained from 
coherent sensors are characterized by speckle. 
This is a spatially random, multiplicative noise 
due to coherent superposition of multiple back-
scatter sources within a SAR resolution element. 
In other words, speckle is a statistical fluctuation 

associated with the radar reflectivity (brightness) 
of each pixel in the image of a scene. The spatial 
resolution of a SAR sensor defines the minimum 
separation between measurements the sensor is 
able to discriminate and determines the amount 
of speckle introduced into the system. The high-
er the spatial resolution of the sensor, the more 
objects on the ground can be discriminated. The 
term “spatial resolution” is often confused with 
the pixel size, which is the spacing of the pixels in 
the azimuth and ground range direction after pro-
cessing the data. A first step to reduce speckle—
at the expense of spatial resolution—is usually 
performed during the multi-looking, where range 

and/or azimuth resolution cells are averaged. The 
more looks used to process an image, the less 
speckle there is.

The SAR signal processor can use the full 
synthetic aperture and the complete signal data 
history in order to produce the highest possible 
resolution, albeit very speckled. The data often 
received from SAR data are in different formats: 
Single-Look Complex (SLC) or Multi-Look Complex 
(MLC). SLC image data are calibrated single-look 
complex files for each polarization (HH, HV, VH, 
and VV) that are often in floating point format, 
whereas MLC files are calibrated multi-looked 
cross products that may be in either amplitude or 

Table 5.2 Summary of geometrical impacts on SAR measurements. 

VARIABLE IMPACTS BACKSCATTER CHANGES

Incidence 
angle

SAR measurements are acquired at off-nadir geometry. For 
each look direction, the radar beam scans the surface over a 
range of incidence angles. The range of incidence angles is 
larger for airborne systems (~ 20-70 degrees) but remains 
confined to only 6 to 10 degrees for spaceborne sensors.

The backscatter of vegetation surfaces vary by a factor of 2 
or more from near range (e.g. 20 degrees) to far range (e.g. 
70 degrees).  If the terrain is topographically complex, the 
impacts of incidence angle variations will be larger. Often at 
near range angles the radar backscatter return is larger than 
at far range, due the larger path length of radar waves into 
the vegetation and stonger attenuation. 

Surface
Topography

SAR’s side-looking geometry introduces displacements for 
tall objects and relief structures. The impacts of surface 
topography in radar imagery are of three kinds: shadows, 
foreshortening, and layover (Elachi et al. 1988). Radiometric 
Terrain Correction (RTC) techniques will help removing/
reducing the effects of topography.

The changes of backscatter from surface topography can be 
significant depending on the slope and aspect of the surface 
and the incidence angle. Shadows appear dark in the image 
with very low backscatter.  As the incidence angle of an 
image increases from near-range to far-range, shadowing 
becomes more prominent toward far-range. Foreshortening 
can cause compression of features in radar imagery. In the 
case of layover, the reflected signal from the upper portion 
of a surface feature is received before the return from the 
lower portion causing backscatter distortion. 

Figure 5.16 Fundamental arrangement and geometry of SAR measurements over the landscape showing (a) the radar look direction, imaging swath and 
near- and far-range locations, (b) radar pulses and returns across the slant range and the location of targets in the radar image, and (c) a UAVSAR image 
over mixed boreal forests of northern Maine at L-band polarizations showing the impact incidence angles on backscatter image.
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power for each polarization and may be provided 
either as an integer (scaled amplitude) or floating 
point (backscatter power). 

5.5.2  SAR PIXEL SIZE CHARACTERISTICS

For this application, the focus is on the multi-
looked SAR imagery at pixel sizes that are square and 
can be readily projected on the ground using the local 
incidence angle. The user may improve the SAR image 
quality by further removing the speckle with spatial 
or temporal averaging at the expense of spatial and 
temporal resolution of the data. Speckle reduction is 
particularly important when using SAR data for es-
timating forest biomass or performing other opera-
tions such as classification and image segmentation. 

When developing models with SAR backscatter and 
ground-estimated biomass from plots, the relation 
is significantly improved when speckle is reduced in 
SAR imagery. Examples of speckle reduction in imag-
ery and SAR backscatter are shown in Figure 5.17.

The speckle reduction from spatial averaging im-
pacts the radar backscatter measurements and im-
proves the relationship between the SAR pixel and 
the ground or lidar measurements. The differences 
between side-looking SAR pixels and ground plot 
and lidar pixel are shown in Figure 5.18. SAR col-
lects data along a slant range that samples only a slice 
of the forest medium under the pixel. For bare sur-
faces without a volume of vegetation, the projection 
of the pixel on the ground can readily relate the SAR 
measurements to the surface characteristics. How-
ever, in forest ecosystems, the sampling across the 
volumes always covers a sliced region into the canopy 
different from the footprint of lidar and the location 
of the ground plots. 

5.5.3  SAR RADIOMETRIC CORRECTIONS

For a correct interpretation of backscatter signa-
tures, correcting for the effects of local incidence an-
gle due to topography and normalization for the true 
pixel area are necessary steps before biomass re-
trieval. Many studies have shown that uncompensat-
ed topographic effects induce a 2- to 7-dB dispersion 
of the L-band backscatter, which is about the same 
order of backscatter range used to distinguish forest 
and non-forest contrast in SAR imagery. The RTC, in-
cluding the incidence angle normalization, will mod-
ify the backscatter values from σ0 (sigma-nought) to 
γ0 (gamma-nought). As the process of performing 
terrain correction is covered in other chapters, this 
section covers the basic information on how to con-
vert σ0 to γ0 according to:

 γ0= σ0 Aflat
Aslope

cosθref
cosθloc

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

n

  ,  (5.2)

where θref and θloc respectively represent the refer-
ence angle for the normalization of the backscatter 
(e.g., the incidence angle at the midswath of the SAR 
image) and local incidence angle derived from the 
geometry of radar with respect to the surface topog-

raphy (slope and aspect). Aflat and Aslope represent the 
local pixel area for a theoretically flat terrain and the 
true pixel area due to the slopped terrain, respective-
ly. The power n represents the power of the fit of the 
angle correction due to radar backscatter variations 
across incidence angles. For a bare surface, the ex-
ponent is equal to 1, but for vegetated surfaces, it can 
be less than 1 due to variations in scattering mech-
anisms (volume over slope) originating from canopy 
gaps and different radar penetration into the canopy. 
The value of n may also vary with polarization. How-
ever, for simplicity, n may be considered to be 1 for all 
polarizations and for most practical cases. 

All existing RTC algorithms are based quantifying 
the local incidence angle and Aslope over terrain with 
significant topography. These approaches are based 
on estimating the local illuminated area Aslope through 
either (1) the estimation of the local incidence angle 
or the projection angle (Ulander 1996) or (2) the in-
tegration of the Digital Elevation Model (DEM) (Small 
2011, Small et al. 1998). While methods based on 

Figure 5.17 Speckle reduction of SAR imagery from 
(a) 25-m (5-look) resolution ALOS PALSAR image to 
(b) 45-look (effective 75-m) spatial filtering to (c) 25-
look (5 ALOS images) temporal filtering.
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Figure 5.18 Schematic showing the SAR volume 
sampling of a forest ecosystem within a pixel 
in comparison with the ground plot and lidar 
samples. Differences between the volumes of each 
sensor are also shown. The difference in sampled 
area is much larger between SAR and ground or 
lidar when the pixel or plot size is small or over 
the topographically complex terrain due to edge 
effects and sampled areas. At larger pixels (~1 ha), 
the difference becomes small, and the relation 
between SAR measurements and ground- or lidar-
estimated forest structure and biomass improves. 
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local incidence angle have the advantage of being 
simpler, methods that include DEM integration have 
been shown to be more accurate, particularly in 
steep terrain (e.g. Fig. 5.19). The DEM integration 
approach involves determining the number of DEM 
pixels belonging to each radar range and azimuth 
pixel through knowledge of the geocoding process. 
It is recommended that users of SAR imagery consult 
with existing tutorials on terrain correction available 
on NASA and ESA websites.

5.5.4  SAR Polarimetric 
Indices

The following section contains a brief discussion 
on how polarimetric signatures or indices can be 
used for monitoring forest cover or biomass in dif-
ferent landscapes. Use of signatures or indices are 
important because they are developed from a com-
bination of radar measurements, which can improve 
the sensitivity for estimating or monitoring a surface 
characteristic and can reduce other impacts. For 
monitoring forest biomass, radar backscatter mea-
surements can be impacted by variations in forest 
type and structural form (type and orientation), envi-
ronmental conditions (e.g., moisture and phenology), 
or radar imaging geometry (e.g., incidence angle and 
topography). Choosing a combination of polarimetric 
or radar measurements that can reduce these effects 
and increase a radar image’s sensitivity to forest cover 
or biomass can be regarded as a reliable monitoring 
index or parameter. Though there are more complex 
types that can be developed from either airborne 
polarimetric systems or from polarimetric interfero-
metric measurements, two simple polarization indi-
ces—the Radar Vegetation Index (RVI) and the Ra-
dar Forest Degradation Index (RFDI)—are proposed 
below for monitoring forest types and which can be 
readily produced from existing satellite SAR systems:

RVI= 
8γHV

0

γHH
0 +γVV

0 +2γHV
0( )

  ,

where γ0 represents the radiometrically and geomet-
rically corrected SAR backscattering coefficient for 
each polarization combination in linear units (m2/
m2). RVI is a ratio of cross-polarization to approxi-
mate the total power from all polarization channels; 

it generally ranges between 0 and 1 and is a measure 
of the randomness of scattering. The RVI is near 0 
for a smooth bare surface, increases with vegetation 
growth, and has an enhanced sensitivity to vegeta-
tion cover and biomass. By being a ratio, the RVI has 
less sensitivity to radar measurement geometry and 
topography and remains insensitive to absolute cal-
ibration errors in radar data. 

The RFDI is calculated as

RFDI= 
γHH

0 −γHV
0

γHH
0 +γHV

0
  ,

where the terms are all radiometrically corrected 
imagery. However, the ratio can also be used before 
any radiometric or geometric correction of the SAR 
imagery. The value of RFDI varies between 0 and 1 
because in almost in all conditions, even in most 
topographically complex terrain, HH remains larger 
than HV. However, the values of RFDI remain mainly 
at >0.3 for dense forests, to values of about 0.4 or 
more for degraded forests, and >0.6 for deforested 
landscapes (e.g. Fig. 5.20). RFDI can be used with 
dual-polarization imagery such as the ALOS PALSAR 
Fine Beam Dual (FBD) datasets. 

Figure 5.19 Examples of SAR imagery (a) before and (b) after RTC over a test site in mountains of 
Bolivia. A Sentinel SAR image before RTC (left) shows areas that are stretched and compressed due 
to the topography and geometry of image acquisition. These areas are shown corrected (right) as 
unstretched and adjusted for backscatter values after applying the RTC from the Gamma algorithm.

Figure 5.20 UAVSAR L-band polarimetric images and polarization indices over the La Selva Biological 
Station in tropical forests of Costa Rica showing: (a) three polarized channel color composite showing 
areas of relatively intact rainforest across a mountain range and low-biomass areas in the northern and 
southern parts of the image, (b) RVI image showing higher forest biomass areas in red and crops and 
agroforestry and secondary forests in green and blue, and (c) RFDI image showing more intact forests in 
dark blue and degraded, secondary, and low-biomass values in lighter blue, green, and red.
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Using data from the same satellite orbits, the geom-
etry and incidence angle do not vary over SAR pixels, 
allowing temporal analysis of RFDI without concerns for 
changes in geometry and incidence angle. In fact, RFDI 
from satellite imagery such as ALOS PALSAR or Sentinel 
can be computed without any correction for incidence 
angle and topography. The main application of RFDI is 
defined as an index to monitor changes in forest cover 
due to deforestation and degradation. The low values 
refer to forests where the effect of volume-surface in-
teraction is either small (e.g., forests with shorter stems 
and dense canopies) or relatively equal in both chan-
nels (e.g., forests over slopes). The high values refer 
to forests with large differences between HH and HV, 
suggesting they are open or recently degraded forests, 
or inundated forests. Theoretically, RFDI can be used at 
any radar resolution; however, the best spatial resolu-
tion for developing RFDI depends strongly on the speck-
le noise in radar backscatter and the natural heteroge-
neity of forest structure and gap size variations over the 
landscape where the contribution of volume-surface 
interaction is larger in HH compared to HV backscatter. 
In general, RFDI can be used to detect both the loss of 
forest cover and its recovery from disturbances resulting 
from logging or other types of natural or anthropogenic 
events. 

5.5.5  PRACTICAL SAR IMAGE PROCESSING FOR 
BIOMASS ESTIMATION

Five practical approaches for SAR processing before 
the data analysis for biomass estimation are be summa-
rized as follows:

(1) Download the SAR intensity imagery in any format 
and create imagery in linear power (not in dB). 
Linear power data, which are often provided in 
floating point, are considered the calibrated radar 
imagery that can be used to relate to any surface 
parameter or integrated in the models. Note that 
working with backscatter values in dB may intro-
duce large statistical errors in the analysis because 
all mathematical equations and algebraic relations 
must consider the logarithmic quantities. 

(2) SAR images can be multi-looked (simple averag-
ing) to create images at coarser spatial resolution 
with reduced speckle. Speckle in SAR imagery can 
also be reduced by using various SAR filters (Lee 

et al. 1999). 
(3) All SAR images acquired from satellite or airborne 

datasets must be georeferenced such that each 
ground-projected pixel has geographic coordi-
nate. Note that multi-looked SAR images with re-
duced speckle improve the relationship between 
ground measurements and SAR backscatter. De-

pending on SAR data, the multi-looked imagery 
can have different resolutions. For example, for 
ALOS PALSAR data (originally at 20 m with 3 looks), 
a 100-m image can be regarded as an image of 
about 75 looks with significantly reduced speckle. 

(4) If the data downloaded do not include RTC, use 
any commercially or freely available software to 

Landsat ETM ALOS PALSAR (HH, HV, HV/VH) RFDI

Figure 5.21 Satellite imagery over three tropical study areas, with Braulio Carrillo National Park in 
the top row; Rondônia, Brazil in the middle row; and Ebolowa in Cameroon in the bottom row. Images 
include false color Landsat ETM (RGB:543 bands) (left column), false color ALOS PALSAR images (RGB: 
HH, HV, HV/HH) (middle column), and RFDI (right column)

INDEX APPLICATION INTERPRETATION

Radar 
Vegetation Index 
(RVI)

Monitoring vegetation cover, water content, and 
aboveground biomass with quad-pol or quasi-quad-
pol data.

Range (0-1): low values refer low vegetation cover and water 
content. The low threshold can be used to separate forest 
and nonforest. 

Radar Forest 
Degradation Index 
(RFDI)

Detecting forest degradation and deforestation, bio-
mass loss and gain with dual-pol or quad-pol data. 

Range (0-1): Low values refer to high biomass and 
intact forests. Values change gradually to higher values 
for degraded and nonforest areas.  The values remain 
independent of topography. 

Table 5.3 SAR vegetation indices used with dual- and quad-polarized SAR measurements.
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perform terrain correction. NASA’s Alaska SAR 
Facility provides several software applications for 
SAR processing, including MapReady for terrain 
correction. RTC can be applied on multi-looked 
imagery given the geometry of the SAR observa-
tions and the terrain model (such as the Shuttle 
Radar Technology Mission (SRTM) data). This pro-
cess includes finding the local incidence angle and 
the area normalization factors in map (in the final 
radar ground projection) coordinates for projec-
tion angle corrections.

(5) Develop color composite images from SAR polar-
izations and SAR polarimetric indices to identify 
different features of landscape and vegetation 
covers in color without the impacts of topography 
and or SAR geometry.

5.6  SAR Biomass Estimation 
Algorithm

Performing all necessary SAR processing results in 
SAR imagery that has been corrected for terrain effects 
through RTC techniques and projected on the ground 
and multi-looked to a certain pixel spacing (e.g., 25 
m–100 m) depending on the original image resolution. 
Basic techniques are presented here to develop a ra-
dar-biomass model or algorithm for estimating vegeta-
tion/forest AGB. This section is designed to show: (1) 
the general relationship between vegetation biomass 
and radar measurements, (2) development of site-spe-
cific statistical models from either airborne or satellite 
radar data, (3) development of a physically based mod-
el that includes different scattering matrix components, 
and (4) use of machine-learning algorithms for large-
scale biomass mapping. 

5.6.1  GENERAL RADAR-BIOMASS 
RELATIONSHIP

To demonstrate the relationship between radar 
measurements and AGB, this section concentrates on 
low-frequency (large-wavelength) radar systems at 
the L-band frequency due to its availability from space 
through ALOS PALSAR and due to its strong backscatter 
sensitivity to biomass at low- to mid-ranges. However, 
some results are shown and examples given from C- and 
P-band SAR imagery, as they are available from Sentinel 
series and, in the future, from ESA’s Biomass mission. 

As discussed previously, the dominant scattering mech-
anisms as well as the size (volume) and dielectric con-
stant (moisture or wood density) of forests determine 
the magnitude and behavior of the backscatter at each 
polarization to AGB. As a result, the backscatter radar 
energy at linear polarizations is related to the volume 
and biomass of forest components (Fig. 5.22). 

The radar backscatter biomass relationships shown 
in Figure 5.22 for both L-band data from ALOS PAL-
SAR (Mitchard et al. 2009, Saatchi et al. 2011b) and 
airborne P-band data (Le Toan et al. 2011) from several 
study sites are based on a direct comparison of radar 
measurements and AGB from ground plots. The form 
of the relationship suggests that there is a rapid rise of 
backscatter with biomass for low-biomass plots, and 
then a slower increase to an asymptote value at higher 
biomass values. For L-band, the asymptote may arrive 

at values of about 100 Mg/ha or more depending on 
forest types (Yu & Saatchi 2016), and for P-band, the 
asymptote may reach 300 Mg/ha or higher. Note that 
both the form of the relationship and the asymptote or 
saturation values may change significantly depending 
on the data quality and analysis:

(1) The plot data used for comparison of radar im-
agery are small; therefore, the backscatter pow-
er may be noisy due to the presence of speckle 
noise in radar measurements. The noisy data 
may introduce a false saturation at lower biomass 
values. Large plots >100 m in size will readily im-
prove the relationship.

(2) Geolocation errors in both SAR and ground 
plot locations will introduce noise in the data 
when comparing the ground plots and the radar 
backscatter (Fig. 5.23). Similar to the plot size, 

Figure 5.22 Sensitivity of radar backscatter measurement at L-band and P-band frequencies and HV polarization 
to forest AGB over sites distributed in boreal, temperate, and tropical ecosystems (Shugart et al. 2010).
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the geolocation error can introduce false sat-
uration. The use of larger plots and averaging 
SAR pixels (multi-looking) reduces geolocation 
errors.

(3) Changes in SAR geometry across the plots may 
also introduce noise in the data, impacting 
the relationship and the saturation level of 
the radar-biomass relationship. If the image 
is not corrected radiometrically (RTC) and for 
incidence angle variations, plots with similar 
biomass may have significantly different back-
scatter (Fig. 5.24).

(4) Environmental differences and changes in soil 
moisture on radar backscatter can introduce 
noise in the relationship. Using multitemporal 
SAR imagery will allow averaging out the mois-
ture effects and will improve the backscatter 
values, allowing them to become more stable 
spatially and temporally for biomass estimation 
(Fig. 5.24).

(5) Differences in the time of image acquisition and 
plot data can also introduce noise in the rela-
tionship. If the inventory plots are established 
a long time before or after the SAR acquisition, 
changes in biomass and forest structure from 
both disturbance and recovery during this 
period will influence the SAR backscatter. It is 
recommended that the dates between ground 
and radar acquisitions are minimized. 

5.6.2  RADAR-BIOMASS STATISTICAL 
MODELS

Depending on the wavelength of the measurement, 
the radar backscatter from a forest can be related to 
scattering from live stems, branches, and foliage based 
upon their abundance and moisture content within a 
resolution cell as:

 γpq
0 ∝ fpq ni , Vi , εi( )  ,  (5.3)

where fpq is a function averaged all possible orientation 
and size distributions, p and q represent the transmit 
and received polarizations (H, V), ni represents the 
density of trees, Vi represents the volume of trees, 
and εi represents the moisture or dielectric constant of 
forest components (stems, branches, and leaves). This 
equation symbolically represents the radar backscat-
ter relationship to forest structure and wood density 
that, along with orientation and tree size distributions, 
can be used to generate a model for estimating forest 
volume or biomass. In addition to forest structure and 
biomass, other parameters such as soil moisture and 
surface structure (slope and roughness) impact the 
function. The most important task in radar biomass 
estimation is the development of the model fpq.

The analogy of this model in forestry applications is 
a parametric or regression-type relationship designed 
to directly estimate AGB with respect to forest struc-
ture. Here, some options of statistical models are pro-

vided that are developed by fitting a regression-type 
equation to backscatter relation to AGB. The following 
is the starting point in the analysis of data: 

(1) The radar backscatter is radiometrically corrected 
and normalized for incidence angle (γpq), and is 
converted into the linear unit and not in logarith-
mic scale (dB). To convert radar backscatter to a 
linear unit, 10^(0.1 dB) is used, where dB refers 
to the backscatter value in dB, which is often a 
negative number. 

(2) The plot size is large enough and has good geolo-
cation and shape to match the radar pixels.

(3) Radar backscatter data are from multi-looked 
imagery for large enough pixels with reduced 
speckle noise. 

(4) Plot-level radar backscatter at each polarization 
or for radar vegetation indices are derived from 
averaging pixel-based backscatter at the linear 
unit. 

Here, a statistical model is introduced based on the 
nonlinear combination of radar backscatter for the es-
timation of biomass. Based on previous studies, the re-
gression model is between an unknown power of AGB 
and a linear combination of backscatter measurements 
at three polarizations (Ranson & Sun 1994, Saatchi et 
al. 2007, Saatchi et al. 2011b):

 AGBλ=  a0+a1γHH
0 +a2γHV

0 +a3γVV
0   , (5.4)

Figure 5.24 Radar backscatter and biomass relationship influenced by geometry and environmental conditions: (a) radar backscatter and AGB from ground 
plots acquired over different local incidence angles and different times, (b) correction of radar backscatter for the local incidence angle reducing the noise in 
the data, and (c) multitemporal averaging of backscatter (over five dates) reduce the noise due to environmental factors and moisture and improve the radar-
biomass relationship (data from UAVSAR and ground plots in region of Howland, Maine, U.S.)
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where the unknown coefficients (λ, a0, a1, a2, and a3) 
will be determined statistically by using radar mea-
surements and field data. The above model has the 
advantage of being flexible and can be used either 
for a single polarization, such as γHV

0  (Le Toan et al. 
2011), or multiple polarization. It can also use other 
information such as the interferometric height esti-
mation from radar or any other spectral information 
to improve the prediction of the model. The power λ 
for AGB is designed to adjust for the asymptote in the 
model (Saatchi et al. 2011b). 

There are other options for AGB estimation from 
backscattering coefficients that have been used both 
in temperate and tropical forests (Saatchi et al. 2007):

loglog AGB( )=a0+a1γHH0 +  a2 γHH0( )
2 

  (5.5)

+b1γHV
0 +  b2 γHV

0( )
2
+  c1γVV

0 +  c2 γVV
0( )

2
  

These equations have a larger number of coeffi-
cients to determine but may perform better in ensur-
ing that the asymptote in the radar backscatter-bio-
mass relationship is well-represented in the model. 
Figure 5.25 shows the model fit of Eq. (5.4) for 
L- and P-band data over tropical forest of Costa Rica, 
and Table 5.4 shows the coefficients derived from 
the model fit. 

The power-law relationship defined in Eq. (5.4) is 
the optimum fit to the normalized backscatter data 
with respect to the aboveground dry biomass in all 
cases. At both frequencies, the scale of analysis did 
influence the form of the model between AGB and 
backscatter; however, as the scale of analysis in-
creased from 0.25 to 1.0 ha, the r-squared correlation 
between backscatter and AGB improved, largely due 
to the spatial averaging of the radar data and the re-
duction of speckle noise. The improvement from 0.25 
to 0.5 ha is due to both the reduction in speckle noise 

and the errors due to geolocation and orientation of 
the plots, whereas the improvement from 0.5- to 1.0-
ha plots is mostly due to averaging a larger number of 
pixels, hence the reduction of speckle noise. Although 
all polarizations show similar trends with respect to in-
creasing AGB, there are clear distinctions among them 
in terms of backscatter level and sensitivity to biomass. 
In both frequencies, the HV sensitivity to biomass is 
much higher, and the relationship improves much 
higher than other channels as the scale of measure-
ment increases. However, at L-band, the sensitivity to 
biomass decreases rapidly at 100 Mg ha–1 at 0.25 ha 
and with slightly higher values of 100–150 Mg ha-1 at 
the 1-ha scale. 

The P-band results show a very strong relationship 
to AGB over the entire range with gradual loss of sensi-
tivity at AGB > 200 Mg ha–1. The r-squared correlation 
between P-band channels and AGB is almost above 0.7 
in all cases and improves with the spatial scale. 

Figure 5.25 Model fits for the backscatter relationship with AGB for both L- and P-band at three polarizations of HH, HV, and VV at three different plot sizes 
of 0.25, 0.5, and 1.0 ha (Saatchi et al. 2011b).
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5.6.3  RADAR-BIOMASS PHYSICALLY BASED 
MODELS

Physically based models are often complex in 
formulation and include a large number of variables 
covering the remote sensing sensor characteris-
tics, the geometry of measurements, and the forest 
characteristics. There are several types of physically 
based models that are used to simulate the radar 
measurements from forest canopies (Saatchi & Mc-
Donald 1997, Saatchi & Moghaddam 2000, Ulaby et 
al. 1990, Sun & Ranson 1995, Karam & Fung 1983, 
Karam et al. 1992, Oh et al. 1992). As discussed pre-
viously, the model is based on formulating the three 
dominant scattering mechanisms or radar backscat-
tering power from vegetation layers. These include 
volume, volume-surface, and surface scattering:

     γ0= γvol
0 + Γsurf γvol−surf

0 + Γvolγsurf
0   , (5.6)

where γvol
0  is the volume backscattering from veg-

etation, γvol−surf
0  is the volume forward scatting from 

vegetation, γsurf
0  is scattering from the soil surface, 

Гvol = exp exp (–B × AGB) is the volume attenuation 
(absorption), and Гsurf is the soil surface reflectivity.

The above equation and terms can be repeated 
for each polarization separately. Here, the model 
fits for only one polarization is represented, and the 

methodology for developing semi-empirical models 
that include the physical formulation is provided. The 
HV polarization typically has better sensitivity to for-
est AGB than the HH or VV polarizations and has less 
sensitivity to the soil surface scattering and moisture. 
Therefore, for demonstration, this chapter focuses on 
the HV polarization. Another focus is on the L-band 
data as it appears to be the widely used data from 
space from the ALOS PALSAR data. However, the 
methodology can work for both L-band and C-band 
over different ranges of biomass depending on the 
sensitivity of each sensor (Fig. 5.26).

In forests where the canopy is not as dense, such 
as the temperate conifers and boreal forests, the 
magnitude, sensitivity to biomass, and the contribu-
tions of each scattering component may be different. 
For example, in boreal forests, L-band backscatter 
can possibly have significant contributions from the 
surface-volume term with potentially enhanced sen-
sitivity to forest biomass and soil moisture (Sandberg 
et al. 2011). This possibility is explored by fitting a 
functional form that includes both volume and the 
volume-surface scattering term: 

 γ0= AWα 1−e−BW( )+ CW β+D( )Se−BW   , (5.7)

where A, B, C, D, α, and β are fitting coefficients, and 
the unknowns are W (as the AGB) and S (as the soil 
surface condition). The term S includes the reflectivity 
of the surface which depends primarily on soil sur-
face moisture. The temperate/boreal mixed conifer 
forest was selected as an example to demonstrate 
the effect of other scattering contributions, as obser-
vations from ALOS PALSAR HV and AGB from ground 
data are available from the site in Howland, Maine 
(Table 5.5). 

After developing the model for the study site, the 
next step is to estimate AGB from the model. The 
biomass estimation process from the model relies 
on a least-squared approach such that the function 
can be inverted to estimate W and S. If the only data 
available are from ALOS PALSAR, which provides du-
al-polarization imagery in HH and HV over most of 
the world, the least-squared method can be readily 
written as: 

 Loss= ηHH fHH W ,St( )−γHV ,t( )⎡
⎣
⎢

⎤
⎦
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2⎧
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  ,

where η = 1 for HH, or 3.5 for HV. The Loss function 
will be minimized in a least-squared approach to es-

RADAR CHANNELS a0 a1 a2 a3

0.25 ha Scale

LHH, LHV, LVV -4.36 -41.68 ± 2.56 45.71 ± 6.05 2.08 ± 2.53

PHH, PHV, PVV -1.23 64.11 ± 6.05 235.41 ± 22.80 119.41 ± 8.73

0.5 ha Scale

LHH, LHV, LVV -1.91 16.49 ± 3.32 63.76 ± 11.28 39.26 ± 3.93

PHH, PHV, PVV -0.31 57.96 ± 6.36 313.29 ± 30.79 81.22 ± 11.07

1.0 ha Scale

LHH, LHV, LVV -0.67 -7.35 ± 4.87 106.63 ± 21.96 48.11 ± 6.72

PHH, PHV, PVV 0.73 42.13 ± 13.49 323.02 ± 64.41 71.51 ± 18.74

Table 5.4 Parameters of the model fit to Eq. (5.4) using airborne radar backscatter at L-band P-band 
with three polarization combination and three spatial scales.

Figure 5.26 Relationship of backscatter in HV 
polarization at three frequencies of C-, L-, and P-band 
based on ground and backscatter data over Howland 
forest in Maine using biomass estimates from 0.1-ha 
plots AIRSAR data from one image. The backscatter 
values are different in magnitude and sensitivity, and 
the fit is based on a logarithmic model.

Aboveground Biomass (Mg/ha)

Ga
m

m
a0

 (m
2 /

m
2 )

Model Parameters A B C D α β

γ 0
HV 0.04  ± 0.01 0.06 ± 0.03 0.04 ± 0.1 0.00001 0.14 ± 0.05 0.019 ± 0.02

Table 5.5 Fitting coefficients and unknowns for a temperate/boreal mixed conifer forest site in Howland, 
Maine.
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timate W and S at each pixel. Note that with multi-
ple SAR imagery acquired at different times t, the 
above equation is used by allowing the soil term S 
to change through time, but W (AGB) remains con-
stant to improve the estimation approach. This as-
sumes that for a period of a season or few months 
to stack multitemporal radar data, AGB remains 
constant or has some undetectable change unless 
a major disturbance occurs.

The above formulation was designed to demon-
strate that a semi-empirical or physically based 
algorithm can be derived for an ecoregion or 
forest type and applied over large areas. This is 
mainly due to the fact that statistical models de-
veloped based on field data over a small region 
may have large errors when applied over areas far 
from the original test area due to potential varia-
tions in landscape topography, soil moisture and 
roughness, and vegetation structure. However, the 

semi-empirical algorithm relies more on the physics 
of the problem and compensates for the landscape 
and regional variation. In a more rigorous implemen-
tation of the problem, the Loss function can also be 
optimized locally by updating the coefficients of the 
model (A, B, C, D) over a local window of pixels (3×3 
or 5×5 or larger) to allow for the model to be better 
adjusted to local variations of the forest structure 
within an ecoregion. 

A simpler version of the physically based algorithm 
has been applied in few cases. Yu and Saatchi (2016) 
use a model that weights more on the volume scat-
tering and combines the surface effect in both vol-
ume-surface interaction and surface scattering as an 
unknown term: 

 γ0= AWα 1−e−BW( )+C   ,  (5.9)

where W is AGB in Mg/ha; and A, B, C, and α are fit-
ting coefficients. The above equation has been used 

to model ALOS PALSAR variations over global vegeta-
tion biomass (Yu & Saatchi 2016). Bouvet et al. (2018) 
used a slightly simpler version of the model that can 
be inverted analytically, though with less flexibility 
for adjusting for the asymptote. In their version, the 
model is fit to the decibel values of the backscattering 
coefficient:

 γ0= A 1−e−BW( )+Ce−BW   . (5.10)

This formulation ignores the volume-surface scat-
tering and only considers the volume and surface scat-
tering. The formulation corresponds to the modified 
Water Cloud Model (Santoro et al. 2002), an adapta-
tion of the original Water Cloud Model (Attema & Ula-
by 1978) that has been widely used for vegetation bio-
mass estimation at higher frequencies such as C-band. 
The above model has already been used for L-band 
data by several authors (Cartus et al. 2012, Mermoz et 
al. 2014, Michelakis et al. 2014, Mitchard et al. 2011).

Figure 5.27 Application of the semi-empirical model on the ALOS PALSAR HH and HV images over Howland, Maine forests and comparison with the lidar-
derived AGB as a reference map. The results shows using multi-temporal ALOS imagery, the SAR estimation of biomass approaches the Lidar estimation. With 
6 ALOS images, over 75% of the image pixels are estimated within 20 Mg/ha of the reference values. The accuracy increases to 86% after using 9 images. 
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5.6.4  RADAR-BIOMASS MODEL VARIATION 
ACROSS GLOBAL FORESTS

Radar-biomass algorithms will vary globally de-
pending on the forest types. In order to provide a 
basic set of algorithms globally for rapid estimation 
of forest biomass in the absence of any reliable 
ground or lidar data, the development of preliminary 
algorithms for global vegetation ecoregions is sum-
marized here. The primary objective of this section 
is to show how many different models can, on the 
average, represent the L-band radar sensitivity or re-
lationship to biomass, starting with several datasets 
to develop the models:

• The radar backscatter data from ALOS/PALSAR, 
from the Japan Aerospace Exploration Agency 
(JAXA). JAXA has released the 2007–2010, 2015, 
2016, and 2017 annual mosaics of ALOS/PALSAR 
data at fine-beam mode and dual polarization 
(HH, HV). The global mosaic is corrected for 
geometric distortion and topographic effects, 
with potentially significant residual distortions 
in areas of high slopes. HH and HV backscatter 
values from the 2007 mosaic have been used 
for this study. To achieve this, the backscatter 
digital numbers (DN) from the PALSAR product 
were converted to values of backscattering coef-
ficient  in units of linear power then 
aggregated to a 50-m resolution using simple 
averaging within a 2-×-2-pixel window. The ALOS 
PALSAR data and instructions for converting the 
DN values to backscatter power are given here.

• The GLAS, onboard the ICESat (2003–2008), 
can be used to make global estimates of forest 
height and vertical structure. In turn, these data 
are used to derive estimates of forest biomass at 
the GLAS effective footprint size of approximately 
50 m (0.25 ha). All GLAS waveform data were fil-
tered depending on the signal-to-noise ratio and 
cloud flag in the GLAS GLA14 dataset to develop 
more than 7 million clean waveforms distributed 
over the global forests. GLAS data can be down-
loaded from the NASA DAAC website.

• Starting with 22 global ecoregions from the WWF 
biome map (Fig. 5.28), these were reduced to 
15 regions that are vegetated and have significant 
structural diversity to affect the radar signature 
(Olson et al. 2001). These data were used as the 
main source for separating the ecoregions glob-
ally. This WWF-derived map is based on a suite 
of datasets such as climate, topography, and sea-
sonality, separating the key global vegetation life-
forms that have distinct structure, landscape, and 
climate features. Additional separation of ecore-
gions across continents was allowed because of 
distinct biogeography and plant distributions, as 
well as other factors including history of climate 
and human impacts. 

The ICESAT GLAS waveform data provide vege-
tation vertical structure and different height met-
rics that were converted to AGB for each waveform 
(Lefsky 2010, Yu & Saatchi 2016). The ALOS PALSAR 
pixel values for HH and HV from the global mosaics 
of 2007 will be, and the associated ecoregions from 

the WWF-based map were extracted for all latitude/
longitude center coordinates of the GLAS footprints. 
Each AGB value was then associated with two ALOS 
polarized backscatter and one ecoregion class from 
WWF map. To demonstrate the relations between 
radar measurements and AGB, the AGB values were 
placed into 5 Mg/ha bins and the corresponding 
backscatter values were averaged. For every bin 
within each forest category, the mean and standard 
deviation of the ALOS-HH and HV backscatter values 
within the bin were calculated. The mid-AGB value 
was used to represent each bin. The extreme end of 
this bin distribution was terminated once the number 
of points within the bin fell below 500. The biomass 
values were also limited to 200–300 Mg/ha, a factor 
of 2–3 beyond the sensitivity limits of the L-band data 
with respect to the biomass to allow for developing 
the backscatter-biomass models and detecting the 
saturation region for each ecoregion (Fig. 5.29).

Using the models developed for HV-polarized 
backscatter for all 22 global ecoregions, a statistical 
F-test to compare the models between two or three 
models depending on each ecoregion using a pair-
wise statistical test was developed based on the 
statistical significance of extra sum-of-the-squares 
F test and the AIC approach. This analysis allows for 
the definition of a p-value to be small enough to give 
criteria necessary to separate statistically and signifi-
cantly different models from other possible models. 
The process was first performed on models with 
similar ecoregions such as boreal forests of the two 
continents and then between the boreal forest mod-

Figure 5.28 Global ecoregions derived from the WWF ecoregion map (Olson, et al. 2001) by separating the ecoregions in different continents. 
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els and other ecoregions. The results of the statistical 
tests provided 15 distinct models across the global 
ecoregions (Fig. 5.30). 

Both of the models in Eqs. (5.7) and (5.9) were 
used to fit the data and both performed well. Here, 
for simplicity and easier application of the model to 
the backscatter for biomass estimation, the coeffi-
cients for the global forests are provided for inter-
ested researchers or practitioners to apply on radar 
imagery to develop the biomass. The next sections 
provide specific instructions for practical implemen-
tation of the algorithms for different regions. 

Note that because of the highly complex nonlinear 
nature of Eqs. (5.7) and (5.9), and the small number 
of fitting data points, the fitted coefficients may have 
large uncertainties for some ecoregions, as shown by 
the one-standard-deviation values of the fitted coef-
ficients. While the more complex functional form of 
Eq. (5.7) may be closer to the physical representation 
of the full backscattering mechanism, caution must 
be taken in using these fitted coefficients to make 
physical interpretations because of the limited num-
ber of observational diversities. It is recommended 
that interested researchers develop more site-spe-
cific and regional models with improved ground or 
lidar data. 

5.6.5  RADAR-BIOMASS NONPARAMETRIC 
MODELS

There are multiple ways of extrapolating samples 
of forest biomass data from ground or lidar measure-
ment to a gridded map. These include parametric 
approaches such as the use of statistical regression 
models and semi-empirical models described previ-
ously that can be applied on individual radar pixels. 
However, maps of biomass have also been developed 
using a set of spatial environmental data from remote 
sensing and climate, and nonparametric approaches 
such as interpolation, co-kriging, classification, color-
ing by numbers, decision rule techniques, and ma-
chine-learning approaches as in the Random Forest 
(Xu et al. 2015), Maximum Entropy (MaxEnt) (Xu et 
al. 2015, Saatchi et al. 2011b), Super Vector Machine 
(Garcia et al. 2017), or Neural Networks (Del Frate & 
Solimini 2004). In some cases, the parametric models 
are not suitable for estimating biomass because the 

models are developed with limited data over small 
regions and are used for large-scale biomass esti-
mation. Factors such as landscape variability, forest 
structure, and variations of moisture and other envi-
ronmental variables impact the applicability of a sim-
ple statistical model developed with limited data in 
and over a relatively non-representative landscape. 
Nonparametric models are found to be more suitable 

in large-scale geospatial and geostatistical analyses 
because they are not affected as much by noise in the 
model or issues associated with multivariate normali-
ty. Nonparametric models can also integrate variables 
with different statistical distributions and provide 
more stable and relevant information. Furthermore, 
forest structure and biomass often exhibit complex, 
nonlinear variations, autocorrelation, and variable in-

Figure 5.29 Sensitivity of L-band HV backscatter to AGB of boreal forests of North America dominated 
by conifers. The sensitivity is high up to 100 Mg/ha and starts declining for AGB >100 Mg/ha.
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Figure 5.30 Distinct L-band HV models for 15 ecoregions globally. The models are derived from binned 
backscatter and AGB data derived from GLAS lidar data. 
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teraction across temporal and spatial scales. In these 
cases, nonparametric approaches often greatly out-
perform the parametric methods. Proposed here are 
nonparametric and machine-learning approaches for 
mapping forest biomass over large areas using SAR 
imagery or fusion with other datasets such as topo-
graphical data from SRTM or even Landsat imagery 
for regional and national-scale biomass mapping for 
the improvement of biomass estimation.

Among nonparametric models, two common ap-
proaches used extensively for large-scale mapping 
were selected (Saatchi et al. 2011, Baccini et al. 2012, 
Xu et al. 2015): the MaxEnt estimation algorithm and 
the Random Forest estimation model. To apply these 
methods, two sets of data are required: 

(1) Training data—the model or machine-learn-
ing training data can be selected from AGB esti-
mated from inventory plot data or lidar measure-
ments. The training data must be widespread 
to cover the range of landscape and biomass 
variations over the region of interest, with the 
number of samples covering the biomass range 
and representative of areas similar or compatible 
with the pixel size of the remote sensing imagery.

(2) Spatial data layers—Here, the spatial layer 
is SAR imagery from any airborne or satellite data 
such as Sentinel and ALOS. However, spatial data 
can be selected from a range of imagery such as 
SRTM to represent the topography or Landsat 
imagery to allow data fusion and improvement 
of estimation. In the case of SAR, the images are 
preferred to be terrain corrected, multi-looked, 
or speckle filtered and projected at the spatial 
scale compatible with the ground plots or lidar 
estimated biomass.

5.6.5.1  MaxEnt Model

MaxEnt is a probability-based algorithm that 
seeks the probability distribution by maximizing the 
information contained in the existing measurements 
(Berger et al. 1996, Phillips et al. 2006). The method 
is used as a classification approach, and each class 
has some probability of occurrence p(Ak), where A is 
a measurement event of the response variable, while 
the measurements are from training samples that be-
long to class k. The following constraint assumes that 

probabilities of all p(Ak) must sum to 1.

 p(Ak )=1
k
∑   .  (5.11)

From information theory, the most uncertain 
probability distribution is the one that maximizes the 
entropy term:

 E=− p Ak( )
k
∑ lnlnp Ak( )  .  (5.12)

This process will ensure that the distribution is 
estimated by keeping the randomness of samples 
for the largest entropy. Equation for E naturally gives 
the maximum value for the entropy when all prob-
abilities are equal (randomness) assuming no other 
constraints are applied to the system except for the 
equation where the sum of the probabilities are 1. If 
additional information is available (i.e., some known 
AGB observations and corresponding measurements 
in X as in ALOS PALSAR or any SAR data; these are 
referred to as the training set), the probability dis-
tributions are “conditioned” on the available obser-
vations:

 p(Ak|X) = pk(X)p0(Ak)/p(X)  . (5.13)

The right part of Eq. (5.13) follows the Bayes’ the-
orem, meaning that the posterior probability p(Ak|X ) 
depends on the distribution of X and equals to the 
product of prior probability p0(Ak) and the proba-
bility distribution pk(X ) that finds X to be in the class 
k, and normalized by the probability distribution of 

X for the entire domain of measurement variables 
(here, satellite images). The maximization of the en-
tropy term in Eq. (5.14) is equivalent to finding the 
probability distribution pk(X ) closest to p(X ), and the 
maximum entropy procedure gives the “raw” output: 
pk
raw (X )= pk (X ) p(X ) (Elith et al. 2011). The prior 

probability p0(Ak) is often unknown, as this quantity 
is the proportion of all observations over the entire 
scene that belongs to class k. Assuming that the train-
ing set is sampled randomly, p0(Ak) can be estimated 
as p0(Ak) = Nk/Ntotal, where Nk is the number of sam-
ples in the training set labeled as class k, and Ntotal is 
the total number of samples in the training set. 

For the interested variable AGB, the numeric val-
ues can be categorized into a set of classes: k1, k2, k3, … 
kn, , where 0 < k1 ≤ AGB1 < k2 ≤ AGB2 < … < kn ≤ AGBmax. 
And each class has a nominal value of AGB—usually 
the mean value of each class AGBk. To predict the AGB 
value for any pixel i with known measurements Xi, it is 
calculated as the expectation of all classes given the 
MaxEnt results retrieved from the training set:

〈AGBi 〉=
p Ak |X i( )⎡
⎣⎢

⎤
⎦⎥
m
p Ak |X i( )AGBkk=1

N∑

p Ak |X i( )⎡
⎣⎢

⎤
⎦⎥
m

k=1
N∑

  .  (5.14)

Empirical tests have found that the model per-
forms better by assigning higher weights to more 
probable classes. Therefore, an extra exponential 

GLOBAL VEGETATION TYPE A B C α

Africa Tropical Moist 0.056492 0.064689 0 0.038247

Asia Tropical Moist 0.045409 0.060518 0 0.060518

America Tropical Moist 0.040546 0.068784 0 0.098841

Temperate Conifer 0.0092565 0.057336 0.04 0.27162

Temperate Broadleaf/Mixed 0.041469 0.034296 0.026406 0.012282

Tropical Shrubland 0.016429 0.11013 0 0.2675

Tropical Dry Broadleaf 0.021563 0.042324 0.027519 0.1117

North America Boreal 0.018911 0.019744 0.029106 0.15723

Eurasia Boreal 0.0091605 0.038506 0.04 0.26141

Fresh Water Flooded 0.047845 0.045581 0.022164 0.0058592

Saline Water Flooded 0.013682 0.051846 0.02192 0.21116

Table 5.6 Proposed coefficients for simple ALOS PALSAR HV-based model as in Eq. (5.9) for several 
global ecoregions as examples for rapid estimation of forest biomass.
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parameter is added to the raw output in the above 
equation that is determined to be approximately 3 
(Saatchi et al. 2011a)

5.6.5.2  Random Forest Model

The Random Forest model is an ensemble mod-
el of decision trees trained from randomly selected 
subset features and random sampling of the training 
set using the bagging method (Breiman 2001). Ran-
dom Forest can be a regression method when using 
regression trees, and for the jth regression tree, the 
regression model can be built as 

 AGB = fj(x) + ε  , (5.15)

where x, ε, and X are the bagged samples of the 
training set, and fj(•) is the nonparametric function 
determined by the jth regression tree. The final pre-
diction of Random Forest regression is the unweight-
ed average of the collection of trees:

 AGB! (X )= 1
J

f j (x )
j=1

J

∑   . (5.16)

This averaging process inevitably creates results 
biased towards the sample mean, and large/small 
values of AGB are often underestimated/overesti-
mated. Various bias correction methods have been 
proposed to post-Random Forest results. Intro-
duced here is a simple regression method on the 
Random Forest RF prediction to correct the biases, 
so that every 5 percentiles of the training data are 
grouped to have its own bias correction:

AGB=α+βAGB!(X )+ γm
m=1

M
∑ (AGB!(X )−bm )Dm+ ε  .  (5.17)

Here, the results of Random Forest prediction 
AGB! (X ) are further compared with the true AGB in 
the training set using segmented regression. Pa-
rameters α, β, and γm are all regression coefficients, 
bm is the location of break points for the 5-percen-
tile, 10-percentile, …, and 95-percentile of AGB in 
the training set, and Dm is the dummy variable that 
equals to 1 when , and 0 otherwise. The 
bias-corrected Random Forest prediction is shown 
to have less underestimation of high AGB, which is 
important for biomass and carbon estimations. 

To evaluate the performance of the ma-
chine-learning algorithms, recommend three statis-
tical measures are recommended: (1) the coefficient 
of determination (R2), (2) the Root-Mean-Square 

Error (RMSE), and (3) the Mean Signed Deviation 
(MSD). Once all of these measures are applied to 
an independent test set where the original AGB is 
obtained from ground data or airborne lidar, while 
the predicted AGB is derived using the SAR and other 
remote sensing data layers and the model trained 
from the training set. In addition, it is recommended 
to use the Moran’s I statistics to quantify the spatial 
autocorrelation in the data. The local Moran’s I index 
confirms the need to select more spatial samples in 
heterogeneous areas like forests, as it can identify 
spatial clusters and outliers (see Xu et al. 2015, Xu 
et al. 2017). 

5.6.6  PRACTICAL CONSIDERATION FOR SAR 
BIOMASS ESTIMATION

The following is recommended for practical use 
of SAR imagery for biomass estimation:

(1) Choice of SAR data—Depending on the 
vegetation type and the scale of analysis and 
biomass range, the choice of radar data may be 
different. For all areas covered with low-vege-
tation biomass such as grasslands, shrublands, 
sparse woodlands, young secondary regener-
ation, and low-density wetlands, the C-band 
data from the Sentinel satellites are the most 
suitable datasets. If airborne SAR data are 
available for the study site, use of polarimetric 
C-band data at high spatial resolution is recom-
mended. From low to moderately high biomass 
up to 100–150 Mg/ha, the use of L-band po-
larimetric or dual-pol data are recommended. 
ALOS-2 PALSAR imagery is the most suitable 
dataset because of its frequent observation 
(every 14 days), resolution (~20 m), and sensi-
tivity to biomass. For all forests >150 Mg/ha of 
biomass, use of P-band data that are currently 
mainly from limited airborne sensors are rec-
ommended. P-band data can be used for esti-
mating and monitoring tropical forest biomass.

(2) InSAR observations—Although, the sub-
ject was not covered in this chapter, the use 
of Interferometric SAR (InSAR) for measuring 
the forest structure across some vertical depth 
may help with improving the biomass estima-
tion particularly beyond the saturation level 

in some forests. Unfortunately, reliable InSAR 
data are not readily available. The future Bio-
mass mission (and to some extent the NISAR 
mission) may provide some InSAR data. How-
ever, the use of Sentinel, ALOS, and Terra-X 
SAR data have been used in InSAR models in 
different studies to explore the use of vertical 
structure derived from radar for biomass esti-
mation. 

(3) Multitemporal observations—Due to 
the sensitivity of radar imagery to soil mois-
ture, and to some extent variations of vege-
tation moisture seasonality, the use of time 
series images for reducing the effect of envi-
ronmental factors for biomass estimation is 
recommended. The SAR biomass model often 
performs poorly if it is developed based on 
one SAR image and applied on an image ac-
quired at a different season or date. One prac-
tical approach is to collect as many SAR images 
over the study areas as possible and average 
the data temporally to reduce the effect of 
the moisture before developing the model as 
shown in Figure 5.25.

(4) Map unit and pixel size—Choose map 
units of 100 m or more for improved results 
from the biomass estimation. It is recommend-
ed that SAR biomass models are developed 
with plots of at least 1 ha in size for a relatively 
unbiased estimate of the biomass within the 
range of biomass allowed for the SAR data. If 
reliable models are developed at smaller pix-
els or plot sizes (e.g., 0.25 ha) for some forest 
types (dry forests, woodlands, boreal), it is 
recommended to estimate the biomass at 0.25 
ha and aggregate the result to 1 ha or more for 
applications. The error of biomass estimation 
will reduce with a factor of slightly less than n
, where n is the number of pixels for averaging 
(Weisbin et al. 2014). 

(5) SAR measurement diversity—Most 
models shown in this section were based on 
L-band HV backscatter measurements due to 
its improved sensitivity to biomass and moder-
ate effects of moisture or other environmental 
factors. However, use of models that include 
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several polarizations or even measurements 
of two or three frequencies improve the model 
performance and the accuracy of the biomass 
estimation. In most practical studies, access 
to some ALOS PALSAR and Sentinel satellite 
imagery is possible. Combining the datasets in 
a statistical model as shown in this section can 
improve the accuracy of the biomass across dif-
ferent ranges. 

5.7  Uncertainty Analysis
Uncertainty analysis has become an important 

ingredient of forest biomass estimation from both 
ground and remote sensing data due to Intergovern-
mental Panel on Climate Change (IPCC) guidelines 
(IPCC 2006). This section provides a summary of 
different types of uncertainty analysis from simple to 
more complex inferences of mean or total biomass 
(carbon stocks) of forests at regional or national 
scales. According to the IPCC (Chapter 3) and the 
Carbon Fund Methodological Framework, all forest 
biomass and carbon assessments at the project, 
jurisdictional, and national levels must address the 
uncertainty related to the biomass estimation and all 
derived products such as emissions from deforesta-
tion and degradation by:

(1) Identifying and assessing sources of uncertainty
(2) Minimizing uncertainty where feasible and cost 

effective
(3) Quantifying remaining uncertainty

The sources of uncertainty are identified in both 
the land-use or activity data and the biomass esti-
mations for different land use and land cover classes 
and emission factors. Once the sources are identified, 
their relative contribution to the overall uncertainty 
of the biomass estimation at the regional for land 
cover types and hence emissions and removals can 
be quantified and reported. Here, the uncertainty 
analysis is summarized in three steps: (1) Cross Val-
idation (CV) approach for developing uncertainty for 
SAR-biomass models and local area estimation of 
biomass when ground or reference data are avail-
able, (2) error propagation approach showing how 
uncertainty from different sources of errors can be 
combined to provide total uncertainty on the biomass 
estimation at the biomass map units or on the aver-

age for a region, and (3) inference of forest biomass 
at regional scales by calculating both the mean and 
the variance or uncertainty around the mean using 
uncertainty of sources of errors and spatial correla-
tion of map units or derived biomass pixels. 

5.7.1  CROSS VALIDATION

Cross validation is a modeling technique used to 
check the statistical learning consistency with inde-
pendent data from the training set itself. Not only can 
it be used to check the performance of the SAR bio-
mass model or spatial modeling by making predic-
tions on new data that are never used in the training, 
but it is also often used as a technique of parameter 
tuning to avoid “overfitting.” For regression-based 
analysis, the mean-squared-error (MSE) is normal-
ly used as the scoring parameter in the CV process. 
There are several ways of cross validation commonly 
used to evaluate the performance, including k-fold 
approach, leave-one-out CV, repeated random sub-
sampling (or Monte Carlo CV), and so on. Interested 
readers can consult several references for the use of 
validation approaches for quantitative remote sens-
ing products (Browne 2000, Hawkins et al. 2003, 
Arlot & Celisse 2010).

5.7.2 ERROR PROPAGATION

The overall sources of uncertainty for estimating 
forest biomass from SAR or any remote sensing data 
can be summarized as follows:

• Measurement Errors—This error can be 
either random or systematic and results from 
errors in measuring, recording, and transmitting 
the information.

 – In ground data, there are several sources of the 
error that can impact the biomass estimation at 
the plot level (Chave et al. 2005). In addition, 
in measurements of trees, the size and location 
of the plot can introduce significant errors in 
biomass estimation as a reference data to be 
compared to the SAR measurement. 
 – SAR measurements also may have errors asso-
ciated with the absolute calibration of the sys-
tem, the RTC method for removing topography 
and incidence angle effects, and geolocation 
of pixels when using the data to compare with 

ground plots. Together these effects can cause 
bias and random errors in estimation of emis-
sions. Discussion has already been presented 
as how to improve the errors associated with 
the SAR data processing and radiometric cor-
rections.

• Statistical and Sampling Errors—To de-
velop models of SAR backscatter with ground 
reference data or airborne lidar-derived biomass 
may also have errors associated with the sampling 
and the statistical representation of the plots and 
pixels. In general, plot data need to represent the 
landscape variations of biomass from low to high 
biomass and must follow the requirements of the 
size, orientation, and geolocation and number of 
samples. 

• Lack of representativeness of data—This 
source of uncertainty is associated with a lack of 
complete correspondence between ground and 
SAR data. In addition, to develop the SAR bio-
mass models, the pixels must be spatially repre-
sentative in the SAR image and not all are from a 
certain incidence angle, at a certain elevation and 
slope in order to make sure that the relationship 
developed between the SAR data and ground 
are representative. Any errors in sample size and 
sampling characteristics can introduce both sys-
tematic and random errors.

• Models—Models developed from SAR data 
and biomass often have uncertainty due to both 
the choice of the model function and the fit of the 
model parameters. If data are noisy, the model 
fits may have large errors that include both the 
systematic (choice of wrong model equation) and 
random errors. 

• Statistical Random Error—This source of 
error often appears in inventory data that are 
supposed to be a random sample of a finite size 
depending on the variance of the population. 
Here, the sample size is a key source of uncer-
tainty.

• Misclassification and missing data—
This uncertainty is due to incomplete, unclear, or 
faulty definition of data, and allometric models 
leading to bias in estimation of biomass. This will 
often occur when working with the ground plots. 

https://www.forestcarbonpartnership.org/carbon-fund-methodological-framework
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For example, using biomass data from plots 
with different type of measurements, lack of 
availability of allometric models to estimate 
biomass (e.g., allometry for tropical wetland 
forests).

• Missing data—This uncertainty may result 
when measurements are below the detection 
limit causing a nondetected data that can, in 
turn, introduce both bias and random errors. 
By assuming that there are several sources 
of errors that introduce uncertainty in the 
pixel-level estimation of biomass, the total 
uncertainty associated with estimating AGB at 
the pixel level can be calculated by assuming 
all errors are independent and random, by 
using

   εAGB = εmeasure
2 +εmodel

2 +εsampling
2 +εprediction

2   , (5.18)

where each of the terms are the relative errors 
at that pixel scale. Using the above equation, the 
errors at the pixel level will be propagated and a 
map of the uncertainty at the pixel level will be cre-
ated. The main requirement for a pixel-level map 
of uncertainty is to be able to have a pixel-level 
prediction error from the model. The prediction 
error for SAR estimation of biomass at the pixel 
level is often developed through a boot-strapping 
approach where the model errors are simulated to 
generate different predictions for the pixel scale 
AGB and to produce the mean and use the variance 
as the prediction uncertainty or error.

5.7.3  REGIONAL INFERENCE OF BIOMASS

The goal of regional estimate of biomass and for-
est carbon stocks is to be able to develop emission 
factors for calculating emissions and removals from 
different types of human-induced disturbances in 
the forest such as deforestation, degradation, re-
generation, or agroforestry. The problem then is to 
be able to use the estimates of biomass at the map 
units (pixel scale) from SAR data to estimate the 
mean and variance (uncertainty) of the biomass at 
large scales. The mean is estimated by the average 
of the biomass of all pixels for a region. However, 
for estimating the variance several components of 
errors must be included in the calculation, such as 
the errors associated with the spatial correlation of 

biomass estimates at the pixel level.

5.7.3.1  Spatial Autocorrelation

To demonstrate the existence of spatial autocor-
relations among the biomass estimates at the pixel 
level, the use of semivariogram analysis (Isaaks & Sri-
vastava 1990) is recommended. The variogram-based 
approaches assume that the spatial autocorrelation 
of variables only depends on the distance h, while it 
has no other directional or locational dependence. 
The variogram γ(h) is defined as

 γ(h)= 1
2
E y xi

− y x j
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where ||(xi – xj)||= h and C(h) is the covariagram 
depending on the distance h. In addition to above 
uncertainty at the pixel scale, to calculate the uncer-
tainty at the regional level for forest biomass, the spa-
tial correlation of the errors at the pixel level much 
be considered. The spatial correlation derived from 
semivariogram analysis will provide the variance to 
the estimate of the error using the following model 

(see VT0005) (Weisbin et al. 2014). 
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and

 ρ(d )=exp −d
cr

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟
  ,  (5.21)

where
• P = 1 (representing the size of the pixel as 1 ha)
• i, j are the generic indices representing pixels in 

the biomass map
• n is the number of pixels within each LULC or 

stratum
• r is the range from semivariogram estimating the 

spatial correlation of errors associated with the 
AGB pixel level errors

• c is the parameter of fit for exponential spatial 
correlation function derived from semivariogram 
analysis. c = 1/3 is the default value (Chilès & Del-
finer 2012) (unitless)

• d is the distance between pixels i and j within m 
(pixels)

Figure 5.31 Schematic showing the main sources of uncertainty in SAR estimation of AGB and the 
process of error propagation for total uncertainty assessment.
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• p(d) is the spatial correlation function in terms of 
distance d based on exponential semivariogram 
model (unitless)

• σL
2 is the variance derived from a priori RS data, 

a pilot study, or default values of AGB density for 
the LULC class

• m is a dummy large number representing pixels 
in the map for each LULC. The number can be 
arbitrarily large or at least twice the default value 
of range r

• σui , j
2  is the estimated variance associated with 

AGB values for each 1-ha pixel of the map
By assuming a pixel level uncertainty that is derived 

from the boot-strapping approach of SAR-biomass re-
lationship or from the machine-learning algorithm of 
(σε) at each pixel, the uncertainty of the mean biomass 
at the regional scale can be evaluated using:
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where N is the total number of pixels, σε, σf, and σz are 
the pixel-level errors from (1) spatial mapping uncer-
tainty, (2) allometric equation uncertainty, and (3) un-
certainty of predictor variables from SAR backscatter, 
respectively. The three sources of errors are assumed 
independent, so that the overall uncertainty of regional 
estimates comes from the three covariance terms.

The first covariance using spatial autocorrelation is 
modelled
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where ρij is the correlation coefficient between pixels i 
and j, and it can be approximated from the variogram 
(Eq. (5.19)) normalized C(h) under the assumption that 
spatial autocorrelation only changes with distance h. 

The second covariance is related only to the allome-

tric model coefficients and can be reformulated as
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where gp=
1
N i=1

N
∑

∂ f
∂φp

 is the mean of first deriva-
tive with respect to the allometric model coefficient 
фp, and m is the total number of coefficients in the 
allometric model—or in lidar-AGB model, m equals 
to 2. In the case that the biomass values used to cal-
ibrate the SAR data are from ground plots and not 
the lidar-AGB model, one can assume a certain fixed 
value as the uncertainty of the biomass from the tree 
allometry (Chave et al. 2014, Chave et al. 2005), or 
assume the value is 0. 

The third covariance is related to the measure-
ment errors. In the case of the lidar-AGB model, σz 
is the error associated lidar mean canopy height. 
Without in-situ validation of height measurements, it 
is impossible to evaluate this type of error. Discus-
sion in the main paper has shown that at least the 
model-based height interpolation is very accurate 
and the error in 1-ha resolution is negligible. In the 
case of SAR, this error may be related to backscatter 
error associated with the radiometric calibration. This 
uncertainty can be a fixed value (1 dB for all pixels) 
or a value that varies depending on the SAR range 
and azimuth or the local incidence angle as a result of 
the terrain topographical complexity. Calculating the 
measurement errors of terrain-corrected SAR back-
scatter may be difficult and beyond the scope of this 
chapter. Therefore, the use of a calibration error rec-
ommended by the SAR processing team or available 
in the literature is recommended. For further read-
ings on the uncertainty of inference of biomass at the 
regional level see McRoberts et al. (2017), Ene et al. 
(2017), Naesset et al. (2016), and Xu et al. (2017).

5.7.4  PRACTICAL CONSIDERATION FOR 
UNCERTAINTY CALCULATION

For validation of SAR-derived biomass maps, 
methodologies that can help improve the uncertainty 

estimates or reduce the uncertainty are identified as 
part of the IPCC good practice guidelines. The bio-
mass map can be distributed to the community to be 
used for land use planning, REDD+ projects, and the 
Emission Reduction (ER) programs; and in all applica-
tions, formal uncertainty assessments are required. 
Regional evaluation of the map can be performed 
by using inventory plots or airborne lidar data and 
site-specific lidar biomass allometry that together 
allow the estimation of the potential bias and the 
evaluation of the spatial consistency of the map. The 
methodology to develop regional estimates of forest 
biomass must follow one of the many standard pro-
tocols established by forest inventory techniques or 
the IPCC guidelines. For lidar sampling, a certified 
methodology that can be used for regional forest 
biomass estimation has already been developed. 
The methodology was developed by Sassan Saatchi 
and recently developed as a VCS tool with the collab-
oration of Terra Global Capital as VT0005 (see the 
attached appendix). At the time of releasing the map, 
ground data was too limited to have a comprehensive 
evaluation of the map regionally or locally. Here, a 
set of protocols is recommended for those who are 
interested in evaluating the map further at the local 
or regional scale. 

• The biomass map derived from SAR is considered 
to have both systematic and random errors. The 
uncertainty of the map depends strongly on the 
input biomass data used for training and eval-
uating the results. Any errors in ground-based 
allometry and the lidar derived biomass as ref-
erence can impact the estimation and the map’s 
accuracy. 

• The biomass estimates in the map can be read-
ily updated and improved when more data 
becomes available. Increasing the number of 
ground-estimated forest biomass, use of forest 
specific models, use of multitemporal SAR im-
ages for biomass estimation are critical steps to 
improve the accuracy of the map. 

• For evaluating the map at regional scales (>10,000 
ha), samples of lidar and plot data can be used. 
Any plots that are designed statistically to esti-
mate the mean biomass with a high confidence 
interval (90%) can be used to compare with the 
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map pixel values. At the scale of parks, conces-
sions, and communities, the biomass map can be 
used along with any land cover map to develop 
mean biomass density and can be compared 
with independent inventory data available for the 
same region. 

• The map can also be evaluated at the pixel scale 
(e.g., 1 ha). However, for the comparison, the fol-
lowing precautions must be considered:

 – The plots have to be a minimum of 1 ha or larg-
er. Using smaller plots is not recommended, as 
the biomass of the forest is extremely hetero-
geneous, particularly at scales of less than 1 ha. 
 – The 1-ha plots chosen for comparison with 
the map have to be aligned with the map pixel 
orientation. Any plots with different orientation 
may have large uncertainty when compared to 
the map because of the variations of the bio-
mass at the 1-ha scale.
 – The map also includes an uncertainty num-
ber associated with the biomass of each 
pixel. Any comparison with the pixel value 
biomass should consider the error provided 
for the pixel. 
 – The number of plots must be larger than a few. 
Comparison only makes sense when it is statis-
tically designed. Using one or a few plots will 
not provide any realistic and fair comparison of 
the map. It is recommended that at least 20–30 
plots be used in statistically evaluating the map 
and comparing the results with the uncertainty 
provided. 

5.8  Future Biomass 
Missions
5.8.1  GEDI (LAUNCH 2018–2019)

The scientific goal of GEDI is to characterize the ef-
fects of changing climate and land use on ecosystem 
structure and dynamics to enable improved quantifi-
cation and understanding of the Earth’s carbon cycle 
and biodiversity. Focused on tropical and temperate 
forests from its vantage point on the International 
Space Station (ISS), GEDI uses a lidar sensor (near 
infrared 1,064-nm wavelength) to provide the first 
global, high-resolution (25 m) sampling observations 

of forest vertical structure. GEDI addresses three core 
science questions: (1) What is the aboveground car-
bon balance of the land surface? (2) What role will 
the land surface play in mitigating atmospheric CO2 
in the coming decades? (3) How does ecosystem 
structure affect habitat quality and biodiversity? An-
swering these questions is critical for understand-
ing the future path of global climate change and the 
Earth’s biodiversity.

GEDI informs these science questions by collect-
ing ~12 billion cloud-free land-surface lidar wave-
form (vertical profile) observations over a two-year 

Figure 5.32 Methodology to evaluate the forest biomass map locally or at the pixel level using field 
inventory plots. For local evaluation, inventory plots must follow a statistical design to allow accurate 
mean AGB values. For pixel-level evaluation, plots must be equal to or larger than the pixel and must 
be oriented to maximize the overlay of the best spatial match between the pixel and the plot biomass.

Regional mean level validation

Plot level validation

Figure 5.33 Distribution of GEDI footprints across the landscape from the three lasers and multiple 
beams (left panel) and the typical distribution of forest vertical structure captured by the GEDI footprint 
level waveforms.
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mission lifetime. The instrument uses three laser 
transmitters split into five beams that are dithered to 
produce 10 parallel ground tracks of 25-m footprints 
(Fig. 5.33). GEDI will produce estimates of canopy 
height, elevation, and vertical canopy profile mea-
surements. The 25-m (~0.0625 ha) footprint mea-
surements are used to model AGB and then used to 
derive mean AGB and variance on a 1-km grid.

5.8.1.1  GEDI CAL/VAL Requirements 

From its vantage point on the ISS, GEDI is focused 
on tropical and temperate forests between 51.5°S 

25m laser footprint
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and 51.5°N. The GEDI biomass calibration strategy is 
to develop globally representative pre-launch mod-
els for footprint AGB using near-coincident airborne 
laser scanning (ALS) data and plot inventory data. 
Mean and standard error of AGB for 1-km grid cells 
are then estimated from the modelled footprint AGB 
via statistical inference. The baseline requirement 
for GEDI is that the standard error of AGB estimates 
within 80% of Level 4B gridded product at 1-km cells 
will be <20 Mg ha–1 or 20%, whichever is greater. 
The GEDI science products are developed using a se-
ries of airborne lidar and ground plots globally and 
models to estimate biomass from GEDI waveforms. 
These datasets are sampled globally to be represen-
tative of major forest types.

5.8.2  NISAR MISSION (LAUNCH 2021)

NISAR is a joint project between NASA and ISRO 
to co-develop and launch the first dual-frequency 
SAR satellite. NASA will provide the L-band (24-
cm wavelength), and ISRO will provide the S-band 
(12-cm wavelength). The mission will acquire po-
larimetric and interferometric observations at an 
unprecedented coverage in space and time, which 
is optimized for studying changes of the global Earth 
surface.

NISAR will focus on the most dynamic ecosystems 
such as disturbed and recovering forests, inundat-
ed wetlands, and croplands. NISAR will measure 
aboveground woody vegetation biomass and its dis-
turbance and recovery globally at the hectare scale; 
biomass accuracy shall be 20 Mg/ha or better for ar-
eas of woody biomass ≤100 Mg/ha over at least 80% 
of these areas. Therefore, the mission will focus on 
areas of low biomass, covering a significant portion 
of boreal, temperate, and savanna woodlands. It will 
provide seasonal to annual observations of biomass 
change in the most dynamic forests impacted by AGB 
disturbance and recovery. The NISAR mission will be 
able to provide L-band dual pol (HH, HV) observa-
tions every 12 days in ascending and descending 
orbits covering global forests every 6 days. These 
observations will be used to produce maps of the 
distribution of forest biomass at 1-ha grid cells. The 
NISAR radar is designed for global InSAR measure-
ments, but the science products produced do not 

include direct information on the vertical structure 
of forests. Rather, AGB is estimated from backscatter 
measurements and exploits either empirical statisti-
cal approaches or inversion of physically-based scat-
tering models that must be calibrated over study sites 
globally to capture the structural and composition 
differences of forests in different ecoregions. 

The NISAR algorithm is based on an analytical 
semi-empirical model with coefficients that are cal-
ibrated with structure and biomass information from 
ground measurements. The forest inventory data 
available in a network of calibration plots distribut-
ed globally in different ecoregions (15 ecoregions as 
discussed in Sec. 5.6) and accompanied by airborne 
lidar observations to extend the ground observations 
and enable validation of the spatial variations of AGB. 
The size of plots used for calibration of the NISAR al-
gorithm must be either >1 ha if used directly with the 
SAR data or smaller (~0.25 ha) if used in conjunction 
with the ALS observations. In addition, forest inven-
tory data can be used to evaluate and report the 

Figure 5.34 Schematic showing a typical northern conifer forest (a) simulated to an ensemble of trees 
with stems, branches, and leaves (b) exposed to L-band radar energy with dominant scattering from 
forest components, (c) suggesting the combined influence of structure and soil moisture on radar 
backscatter with reduced sensitivity to biomass at higher AGB values. The last panel (d) shows the 
sensitivity of radar backscatter at L-band HV polarization showing the sensitivity to biomass values < 
100 Mg/ha with sample data from the entire northern coniferous forests (Yu & Saatchi 2016). 
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uncertainty of NISAR AGB at the national or regional 
scale and for carbon accounting and assessments. 

5.8.3  BIOMASS (LAUNCH: 2022)

Biomass, the ESA’s seventh Earth Explorer mission 
will be launched in the 2020–2021 timeframe and 
has the aim of providing crucial information about 
the state of the forests and how they are changing 
globally. The mission goal is to provide estimates of 
height and AGB in the world’s forests. The science 
case on which Biomass was selected is based on 
its ability to provide estimates of AGB within dense 
tropical forests to monitor their storage and changes 
from disturbance at seasonal and annual frequency. 
The requirement for the Biomass mission is to esti-
mate forest biomass with an accuracy of ≤20% for 
more than 67% of areas with biomass >50 Mg/ha 
on a 4-ha spatial grid cell (200-m x 200-m pixels) 
every six months for a period of five years of the mis-
sion duration. This requirement is achieved by using 
a P-band (70 cm wavelength) SAR sensor, because 

https://en.wikipedia.org/wiki/NASA
https://en.wikipedia.org/wiki/ISRO
https://en.wikipedia.org/wiki/S-band
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of its unique capabilities to penetrate even dense 
tropical forest. The measurements will provide radar 
polarimetric backscatter (HH, HV, VH, VV) and inter-
ferometric observation with PolInSAR capability for 
forest height estimation and TomoSAR capability for 
backscatter vertical profile measurements.

In addition, the Biomass mission will provide 
global maps of forest height at the same 4-ha spa-
tial scale for all forests >10-m height with 30% ac-
curacy and include a 50-x-50-m deforestation map 
globally every six months. These measurements 
together, will significantly improve the ability to re-
duce the uncertainty in the global carbon cycle by 
providing spatially refined and temporally frequent 
observation of carbon fluxes in forest ecosystems. 

The coverage of Biomass is global with a restric-
tion, imposed by the U.S. Department of Defense 
Space Objects Tracking Radar (SOTR) stations, over 
Europe and the North and Central Americas. Under 
these restrictions, only 3% of AGB carbon stock cov-
erage is lost in the tropical forest biome, which con-
stituted 66% of global AGB carbon stocks in 2005. 
The loss is more significant in the temperate (72%), 
boreal (37%), and subtropical (29%) biomes. The 
calibration/validation (CAL/VAL) requirements of 
Biomass are primarily focused in tropical forest 
ecosystems, where the bulk of mission observations 
are located. The biomass and structure algorithms 
require large ground plots (>4 ha) or lidar-derived 
AGB estimates from airborne observations. These 
measurements must represent the variations of 
tropical forest structural types and allometric char-
acteristics and must be repeated during the mis-
sion to allow validation of both biomass stocks and 
changes from disturbance and recovery. 

5.8.4  CROSS-MISSION SYNERGISM 

All three missions have significant overlaps in 
science objectives and products but focus on dif-
ferent observations, covering different regions, and 
retrieving different components of AGB at different 
spatial and temporal scales. The cross-mission syn-
ergism is based on the following observations and 
assessments from the breakout sessions:

• Area coverage and the science products 
from the space missions are immediately rec-

Figure 5.35 Biomass mission P-band SAR measurements showing the configuration of space 
measurements and the sensitivity of backscatter power and interferometry to forest structure. 
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ognized as complementary such that without the 
data from all the missions, wall-to-wall cover-
age, and estimation of the global forest biomass 
are impossible. Biomass focuses on tropical and 
subtropical woodlands at 4 ha, while NISAR is 
global but limited to areas of low forest biomass 
at 1 ha, and GEDI not limited by AGB, but with 
limited coverage collecting sample footprints 
within ±50 degrees latitude.

• Differences in biomass components 
retrieved by each space mission suggest that a 
synergistic global AGB product cannot be mech-
anistically produced by combining the maps, 
but rather requires a systematic data fusion 
approach. For reference, BIOMASS will esti-
mate AGB when woody biomass is > 50 Mg/ha, 
NISAR will estimate AGB  when woody and leafy 
biomass is < 100 Mg/ha, and GEDI will estimate 
AGB for the entire range from height measure-
ments within each 25 m footprint.

• Leverage the sensitivities of each mea-
surement approach to cross-calibrate 
space mission products can be achieved by 
using the measurements and products of one 
mission to CAL/VAL the algorithm or products 
of other missions. Although every space mission 
has a different method for estimating AGB, thus 
making it difficult to directly compare between 
products, an approach could be used that 
compares either similar lower level products or 
leverages different algorithm sensitivities (e.g., 
NISAR can provide more robust estimates for 
forests with 20 Mg/ha than for grasslands with 
≤5 Mg/ha). For example, GEDI forest height may 
be used to develop and verify algorithms for the 
Biomass tomography-derived tree height. Simi-
larly, height or backscatter products from NISAR 
and Biomass missions can provide information 
on the spatial variability of forest structure and 
biomass to improve the algorithm and resolu-
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tion of GEDI height and biomass gridded prod-
ucts.

• NISAR and Biomass measurements 
spatially overlap, thus enabling data fu-
sions such as (1) the combined measurements 
of L-band P-band for improving the estimates 
of low-biomass forests, (2) the use of higher 
temporal frequency NISAR observations to re-
duce the effects of soil moisture and vegetation 

phenology on the BIOMASS estimation ap-
proach, (3) the deployment of a two-frequency 
algorithm to enable estimation of leaf, branch, 
and stem biomass, and (4) the use of combined 
measurements to increase sensitivity of the ob-
servations for detecting low-impact forest deg-
radation and slow recovery.

• Additional ecological science products 
may be produced from synergistic integration 

of data that enables exploration of the physical 
characteristics of each measurement. For exam-
ple, other forest variables such as basal area, 
volume, branch, leaf, and stem biomass, and 
forest stand wood density may be derived using 
the combined sensitivity of radar observations 
to dielectric constants and tree stem and crown 
volumes, and ability of lidar waveforms to mea-
sure the vertical distributions and canopy gaps. 

Table 5.7 Overall characteristics of the NASA and ESA missions to quantify the global forest structure and biomass that can be used to develop synergistic 
biomass products 

MISSION Measurement Product Area Coverage Grid Cell Accuracy Pre-launch 
Cal/Val Mission Cal/Val needs Post-launch 

Cal/Val Sites

GEDI

Height Height Metrics 50 deg. Latitude 25m footprint; 
500m grid

~1m (canopy top 
footprint level)

ALS & LVIS flights RT 
modeling

LVIS samples 
globally

No validation 
requirement

International; 
crowd-sourced

Waveform
Aboveground 

biomass 
(entire range)

50 deg. Latitude 25m footprint; 
1 km grid

20 Mg or 20% at 
1km, 80% px std. 

err.; mission

Footprint 
calibration equa-
tions; sampling 

simulations, ALS & 
LVIS flights

ALS-derived bio-
mass from ground 
plot at 1 km grids

No validation 
requirement

NFI data supersites 
with ALS-derived 
biomass > 100 ha

BIOMASS

HH, HV, VH, VV 
Backscatter

Aboveground 
biomass 

(entire range)

Global (excluding 
North/Central 

America, Europe)
200 m (4 ha)

20% or 10 Mg/ha 
for biomass < 50 
Mg/ha annual

Combined radar 
backscatter and To-
moSAR & POLinSAR 

algorithm

Plots > 4 ha & ALS; 
across ecoregions

NFI & regional 
samples NFI data CTFS; 

ForestGeo
ALS & plots > 4 ha

POLinSAR Forest Height
Global (excluding 

North/Central 
America, Europe)

200 m (4 ha) 20% of total height POLinSAR height 
algorithm

ALS & LVIS data 
distributed across 

ecoregions

Same approach as 
pre-launch

Distributed large 
plots

TomoSAR Vertical 
Profile TBD

Global (excluding 
North/Central 

America, Europe)
200 m (4 ha) TBD TomoSAR vertical 

structure

ALS & LVIS data 
distributed across 

ecoregions

Same approach as 
pre-launch ALS and LVIS data

Time Series Forest Disturbance
Global (excluding 

North/Central 
America, Europe)

50 m (0.25 ha) 90% of pixels, 
annual

Optical imagery 
time series over 

selected sites

Landsat time series 
data, high-resolu-

tion imagery

Same approach as 
pre-launch

Distributed globally 
at deforestation hot 

spots

NISAR

HH & HV 
Backscattter

Aboveground 
biomass 

< 100 Mg/ha

Global low biomass 
areas 100 m (1 ha) 20 Mg/ha, 80% px 

< 100 Mg; annual

Radar biomass 
equations, 
algorithm

Plots > 1 ha & 
ALS data across 

ecoregions

NFI & regional 
samples

NFI data 
Distributed large 
plots & ALS dataALS & plots > 1 ha

Time Series
Disturbance 

> 50% change in 
canopy cover 

Global forests 100 m (1 ha) 80% of pixels, 
annual

High-res optical 
& ALOS/SAOCOM 
time series over 

selected sites

Landsat time series 
data, high-resolu-

tion imagery

Same approach as 
pre-launch

Distributed globally 
at deforestation hot 

spots
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APPENDIX D
Mapping Forest Biomass 
with Radar Remote Sensing 
– Chapter 5 Training Module

1  SOFTWARE AND DATA SOURCES

Software: 
• QGIS, Microsoft Excel

Remote Sensing Data:
• ALOS 2 / PALSAR -2 RTC annual mosaic product 
• Lidar data that overlaps with some of the ALOS 

2 / PALSAR -2 data 
• Forest inventory plot data that overlaps with 

some of the lidar data.

Note: All of the data to run the tutorial is included in the 
data.zip file for this chapter hosted on the SAR Hand-
book website. If you would like to do the same process-
ing on your own data, you will need a SAR RTC product 
(steps for downloading from ASF or JAXA can be found 
in the tutorial for Chapter 6), lidar data covering part of 
your area of interest, and forest inventory data that over-
laps with the lidar data.

2  AIRBORNE LIDAR AND INVENTORY PLOT 
DATA

Download the Data.zip file for Chapter 5 from the SAR 
Handbook website and unzip it in the desired location. 
The zipped file consists of three folders: Lidar, Ground_
Plots, and ALOS with example data from Nepal. 

Step 1: Open QGIS and add the shape file D:\NepalDa-
ta\Lidar\Lidar_boundary. Add Google Aerial with Labels 
as the background (Web > OpenLayers plugin > Google 
Maps). Examine the location of the Lidar_boundary file 
to understand the study site location and the landscape 
across Western Nepal.

Step 2: Add the LIDAR DTM (Lidar > dtm_5m.tif) and 
DSM (Lidar > dsm_5m.tif) files to QGIS (Layer > add 
Layer > add Raster Layer). The images are provided as 
geotiffs with 5 meter spatial resolution.

Figure 1.1 QGIS interface displaying the study area in western Nepal. The white line represents the 
lidar boundary.

Step 3: In this step, we will produce a Canopy Height 
Model (CHM) by subtracting the DTM from DSM. Us-
ing the raster calculator tool in QGIS (Raster > Raster 
Calculator), enter the following equation: 

“Dsm _ 5m” – “Dtm _ 5m”
Since will be using this file multiple times, you may 
want to create a results folder and save the CHM to 
this new folder under the file name chm_5m.tif. 

Step 4: Double click the CHM image name (chm_5m) 
in the layers panel of QGIS and explore the Layer 

Properties, including projection, display, and other 
image characteristics. The projection is in UTM Zone 
44 N, Datum: WGS-84.

Step 5: From here you can also apply a color scale to 
the CHM that will highlight short to tall forests in the 
study region. With Layer Properties still open, go to 
Style > Render type > Singleband pseudocolor > Load 
min/max values > Min/max > Load > Color > Spectral 
(or any other color scale you like) > Apply. Your result 
should look similar to Figure 1.2.  

Figure 1.2 Canopy Height Model created using the lidar-derived DSM and DTM. The image shows the 
Spectral color band stretched using min/max values.
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Step 6: Use the Profile Tool to explore height distri-
bution in the data. The Profile Tool is a Plugin and 
needs to be installed by going to Plugins > Manage 
and Install Plugins > Profile Tool > Install Plugin. After 
installation, the Profile icon             will appear in 
the toolbar. Click on the Profile icon > Select the CHM 
image in the Layers Panel > Click Add Layer > Draw a 
line at any place over the image (double click to end 
the line). Depending on where you draw your line, 
your result should look something like Figure 1.3.

Note: This image shows a typical example of a 
CHM profile which can be achieved drawing a line. 
The profile image can be saved for future use. Also be 
careful in interpreting your profile chart. It will start 
wherever you draw your line and move in whatever 
direction you ended your line. If you draw your line 
from east to west (instead of west to east), your pro-
file will start in the east and move toward the west. 
In Figure 1.3, the line was drawn from east to west; 
therefore, the right part of the profile starts in the 
east and moves westward. 

Step 7: Play around with drawing different lines 
across different parts of the scenes. Where do you 
see the highest canopy height? The lowest? How does 
this pattern change across the landscape? 

3  LIDAR BIOMASS MODEL DEVELOPMENT

Step 1: Add the shapefile containing the ground plot 
data (Ground_Plots  > plot.shp) to the QGIS (Layer > 
Add Layer > Add Vector Layer). There are 47 small plots 
available for the study area. Each plot represents a 20 m 
radius ground footprint.

Step 2: In this step we use the Zonal Statistics Tool to 
extract the lidar-derived mean canopy height from each 
plot. Go to Processing > Tools > Search for Zonal Statis-
tics. Once you open up the Zonal Statistics Tool, set your 
raster layer to chm_5m.tif and your vector layer to plot.
shp and run the tool. 

Step 3: A new shapefile (named Zonal Statistics) will 
be added to your Layers Panel. You can right click the 
new layer and select Open Attribute Table to view the 
data associated with each plot. If you scroll all the way 

Figure 1.3 Results of the profile tool showing canopy height variation across the red line drawn in the 
center of the scene.

Figure 1.4 Distribution of field plots (denoted by black dots) across the study area.

Figure 1.5 A zoomed view of one set of field plots. 
Later in the exercise, we will compute the average 
of the pixel values that fall within the field plot set 
using the zonal histogram tool.

to the right of the attribute table, you will see the zonal 
statistics you just calculated. Most important for the next 
steps is the _mean column, which contains the average 
canopy height for each plot. 

Step 4: Next, you want to create an Excel spreadsheet 
from the Zonal Statistics attribute table. One method 
you can use is to to install the XYTools plugin (Plugins 
> Manage and Install Plugins > search for XYTools > In-
stall Plugin. Next, make sure the Zonal Statistics layer is 
highlighted in your Layers Panel. Go to Vector > XYTools 
> Save attribute table as Excel file. Check the following 
fields: Object ID, AGB, _std, and _mean. Alternatively, 
you can right click the Zonal statistics layer in the Layers 
Panel and select Save As to save the data as a csv file,
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which can be opened in Excel. The values in your table 
should look similar to those in Table 1.

Step 5: Open your Zonal Statistics data in Excel. Here 
we want to plot the aboveground biomass (AGB) of the 
plots with respect to the MCH (_mean) values. You can 
do this by selecting the data in the AGB and _mean col-
umns and creating a scatterplot using the scatterplot tool 
(Insert  >  Scatterplot                                     )

Step 6: Now we want to fit the best model to present the 
data. You can do this by right clicking one of the points 
in the scatterplot and selecting add trendline. From the 
format trendline pane, you can evaluate various trend-
line options for the best fit and display the equations 
that go with each trendline. In this case, the best model 
is a power-law. However, as the plots are small and the 
sensitivity of height to capture the high biomass values 
of small plots may saturate, use other functions such as 
exponential (as shown in the inset graph on this page). 
During the training given at SERVIR-HKH, there was a 
consensus among the participants with local knowledge 
for limiting the maximum biomass in the study site to 
1000 Mg/ha.

Step 7: Here we create a CHM image of 40 m pixel reso-
lution by performing an 8x8 resampling of the chm_ 5m 
image (There are many ways to do this in QGIS, but one 
is to go to Processing > Toolbox > SAGA > Raster tools 
> Resampling, select chm_5m as your Grid, leave up-
scaling and downscaling method as Nearest Neighbor, 
make the Cellsize 40, and run the tool). Save this file as 
chm_40m. This process will produce a 40 m average 
MCH (mean top canopy height) image.  

Step 8: Now we are going to create an AGB map for 
the entire area covered by LiDAR data by using the re-
lationship we identified between the plot AGB and the 
LiDAR canopy height. Using Raster Calculator (Raster > 
Raster Calculator) apply the best fit equation you de-
rived in step 6: 47.151 * exp(0.0994*MCH) to the 40 m 
resolution LiDAR MCH data to develop AGB map from 
the Lidar image as shown below. Save the result as Li-
DAR_agb_40m.tif

OBJECTID _mean _std AGB

1 7.85 7.49 97.77

2 16.91 10.45 290.54

3 18.54 9.26 263.21

4 18.09 8.51 163.86

5 9.73 9.12 172.78

6 14.20 8.93 210.74

7 10.09 11.72 68.58

8 19.36 5.97 176.68

9 18.65 4.99 277.04

10 16.30 7.34 146.01

11 15.67 10.48 268.26

12 14.44 11.25 250.54

13 23.47 4.73 693.69

14 12.61 10.09 103.73

15 20.79 5.25 325.56

16 12.06 9.66 109.76

17 19.56 7.90 810.71

18 23.26 3.70 687.63

19 19.08 6.65 293.98

20 17.72 7.76 399.16

21 20.73 4.74 258.01

22 23.15 7.44 591.53

23 24.49 2.96 579.44

24 24.98 5.60 530.78

25 18.08 5.29 344.34

26 25.93 5.96 657.66

27 21.93 6.20 764.19

28 21.94 5.97 441.79

29 25.34 6.43 582.33

30 16.16 8.53 238.40

31 23.44 5.13 674.51

32 10.39 7.11 196.14

33 20.86 8.31 249.41

34 17.41 9.66 209.03

35 17.85 6.91 243.84

36 11.23 11.06 257.55

37 29.32 4.51 858.85

38 20.25 5.90 139.54

39 22.96 5.01 412.32

40 21.82 5.74 667.84

41 21.78 4.40 287.50

42 19.47 1.95 233.49

43 19.46 4.95 330.82

44 20.05 1.84 395.18

45 3.88 3.39 63.51

46 8.17 4.75 138.14

47 3.11 2.41 80.94

Table 1 Plot values for _mean, _std, and AGB.

a.  Note: MCH is the resampled lidar map created in 
step 6 (chm_40m). 
b.  Note: The Raster Calculator tool in QGIS does not 
have an “exp” function; therefore, you can replace 
the equation with: 47.151 * (2.718282 ^ (0.0994 * 
MCH)). 

Step 9: The output of step 8 will be a AGB map that cov-
ers the same area as your LiDAR data. Now we want to 
resample the LiDAR AGB map from 40 m to100 m (1-
ha) spatial resolution (There are many ways to do this 
in QGIS, but one is to go to Processing > Toolbox > SAGA 
> Raster tools > Resampling, select LiDAR_agb_40m as 
your Grid, leave upscaling and downscaling method as 
Nearest Neighbor, make the cellsize 100, and run the 
tool). Save the output as LiDAR_agb_100m.

Step 10: Display the final image and apply a color scale 
as part of QGIS color ranges from dark red to green from 
low to high biomass (below).

Step 11: Refer to Chapter 5 for forming the LiDAR bio-
mass models and the uncertainty depending on the 
plot size and LiDAR pixel size.  In this exercise, a simple 
method was used to develop the model. The sources of 
uncertainty and the quantification and propagation of 
errors are discussed in more detail in the chapter. 
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4  ALOS BIOMASS MAPPING (NEPAL)

In this exercise, the LiDAR estimated biomass map 
will be used to train the SAR ALOS image to develop AGB 
map from the ALOS data for the larger study area. 

4.1  Radar Processing

Step 1: In this exercise, we use the LiDAR derived bio-
mass map (lidar_agb_100m) as the reference data to 
develop a model for radar estimation of biomass.  The 
inventory plot data are small and are not suitable to ex-
tract data from ALOS PALSAR data. Therefore, we use the 
1-ha resolution LiDAR based AGB map for both develop-
ing model and testing the results. 

Step 2: For this exercise, the ALOS 2/PALSAR 2 annual 
mosaic for 2015 is provided in the folder Data.zip folder 
(ALOS). Data are in HH and HV polarizations. For prac-
tice, you may want to download the ALOS PALSAR data 
for 2015, 2016, 2017 directly from the JAXA website. See 
steps for downloading in the Chapter 6 Training Appen-
dix. 

a. Note: If you download the imagery directly from 
JAXA, the website provides data in a grid of 1-degree 
tiles; you will need to select N29E080 for this site. 
b. Note: If you compare the images for 2015 – 2017, 
you will notice some temporal variability in the back-
scatter due to variations in environmental conditions 
such as soil moisture or phenology. In this exercise, 
we will use data for 2015.

Step 3: Open the N29E080_15_sl_HV_F02DAR and 
the N29E080_15_sl_HH_F02DAR files ( Data > ALOS) 
in QGIS. Note that these ALOS RTC annual mosaics 
are ready to use at source. Radiometric terrain correc-
tion and precise geometric corrections have already 
been performed. 
Step 4: The backscatter data in the ALOS RTC annual 
mosaic comes as a digital number (DN) and needs to 
be converted to gamma naught dB for analysis. To 
convert the DN to dB values apply the following 
equation using Raster Calculator (Raster > Raster 
Calculator): 

Gamma_dB = 10 * log10 [(DN)2] – 83.0 

Next, convert the dB values to power backscat-
ter by applying the following equation using Raster 
Calculator (Raster > Raster Calculator): 

Gamma_pw = 10^(0.1*Gamma_dB)

You will need to do this step for both the 
HV (N29E080_15_sl_HV_F02DAR) and HH 
(N29E080_15_sl_HH_F02DAR) images. 

Save the Gamma_pw result as gamma_pw_HV 
(or gamma_pw_HH for the HH polarized data). At 
the end of this step, you should have created two 
new files, gamma_pw_HV and gamma_pw_HH.  
Step 5: Now we will create an RGB image for vi-
sualizing the backscatter power in color. You may 
consider a three-band composite, where R: HH 
(gamma_pw_HH), G: HV (gamma_pw_HV), B: HH 
(gamma_pw_HH). You could also use a ratio of 
HV/HH as the blue band (Calculate the HV/HH ra-
tio using Raster Calculator). To create a multiband 
image, go to Raster > Miscellaneous > Merge >  Edit  
>  Type.  Another option is to copy and paste follow-
ing gdal command into the Edit box. Note that your 
data folders may be different: 

gdal_merge.bat -ul_lr 80.0 29.0 81.0 28.0 
-separate -of GTiff -o D:/Data/Results/RGB_hh_
hv_hh_15.tif D:\Data\Results\hh_2015pw.tif D:\
Data\Results\hv_2015pw.tif D:\Data\Results\
hh_2015pw.tif

Figure 1.6 SAR RGB image (HH, HV, HH) derived from ALOS PALSAR data. 

Since the HV polarization is most sensitive to forest 
structure, areas that have high backscatter in HV 
(showing up as green in Figure 1.6 are likely to 
have higher AGB values as well. 

4.2  Radar Biomass Model

Next, we produce samples from Lidar data to 
compare with radar measurements and develop a 
best-fit model.  Refer to Chapter 5 for more detail 
on how to choose the appropriate LiDAR samples 
and issues related to the differences in date and 
the changes that occur between radar and LiDAR 
data.  Any changes of landscape can easily intro-
duce large discrepancies between LiDAR derived 
biomass and radar backscatter measurements.   

Step 1: Open the resampled LiDAR biomass map at 
1-ha (lidar_agb_100m). We can create a random or 
systematic sample dataset. To facilitate a system-
atic sample, we created a shapefile with horizon-
tal and vertical polygons (lidar_100m_polygons.
shp) which we used to create a systematic sample 
of points (lidar_systematic_sampling.shp). Open “li-
dar_100m_polygons.shp” (Data > Lidar) in QGIS.

Step 2: Use the lidar_systematic_sampling points to 
extract all of the 1-ha values from the LiDAR biomass 
map(lidar_agb_100m) (Processing > Toolbox > SAGA > 
Vector > Raster > Add Raster values to points) and save 
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the data as a shapefile with the file name lss_100m_
agb. This sampling strategy produces 1822 sample 
points that we will use to develop the model and quan-
tify the uncertainty. 

Step 3: Since the LiDAR based biomass data represent 
plot size of 1-ha, now we are going to resample the pow-
er backscatter radar data into 1-ha (100m) pixel size to 
match. In QGIS, resample the gamma_pw_HV and 
gamma_pw_HH files to 100m (Processing > Toolbox > 
SAGA > Raster tools > Resampling). Save these files as 
gamma_pw_HV_100m and gamma_pw_HH_100m.

Step 4: Next, we extract the resampled HH and HV 
power backscatters (gamma_pw_HV_100m and 
gamma_pw_HH_100m) from the radar images to the 
sampling points (lss_100m_agb) (Processing > Toolbox 
> SAGA > Vector > Raster > Add Raster values to points). 
Save this result as lss_100m_agb_sar. When you save 
the shapefile, it will also create a .dbf file, which easily 
can be opened in Excel.  

Step 5:  In Excel, open the lss_100m_agb_sar.dbf file. 
Before doing any analysis, we need to clean our data 
by removing all rows that have lidar AGB values that are 
negative or equal to zero (likely representing water pix-
els or erroneous data) from the spreadsheet. We also 
need to eliminate any rows where the lidar AGB value 
has missing data or no data (NAN, -9999, or 9999). After 
all cleaning (removing rows where AGB is zero or bad 
points), you should have a spreadsheet with 1649 data 
points. 

Step 6: Now create two scatterplots, one that shows 
HH vs. AGB and a second that shows HV vs. AGB. You 
can use the same methods described in Section 3, step 
5. Note that you should see a large spread of values, 
in part due to differences between the lidar and ALOS 
PALSAR acquisition times. Since the data collection did 
not occur on the same date, there may be some land 
cover or soil moisture change that could cause error in 
your model. Additional issues could include georefer-
encing discrepancies, topographical effects, errors due 
to speckle, and potential incidence angle variations. Be 
sure to consider these limitations as you work to im-
prove your model and interpret your results. 

Figure 1.7 Horizontal and vertical polygons (pink) used to create the systematic sample points (dark 
blue) as inputs to generate the AGB model are displayed.

Figure 1.8 An example of a best fit model 
between AGB and HV backscatter.

Step 7: Fit a logarithmic or a power-law to the both HH 
and HV SAR data to see the strength or weakness of the 
relationship between radar backscatter and lidar de-
rived biomass (See section 3, step  6). 

4.3  Radar Biomass Mapping

Step 1: In the previous section, we looked at the relation-
ship between AGB and HH and HV backscatter. In this 
section, we focus on the relationship between AGB and 
HV backscatter only, as HV polarization has the strongest 
sensitivity to biomass. However, other radar polarization 
measurements and model fits are discussed in the text 
of Chapter 5. 

Step 2:  In section 4.2, step 7, we generated a best-fit mod-
el based on a power-law: AGB = 57696*(HV^2.0042). 
We will use this equation to model biomass from back-
scatter. Using Raster Calculator (Raster > Raster Calcula-
tor), apply this equation to the HV backscatter image at 
100 m spatial resolution (gamma_pw_HV_100m). Save 
this file as HV_biomass_100m. Note that the equation 
is developed from 1-ha (100m) LiDAR derived map and 
should only be applied at the same resolution radar im-
age.  One cannot apply this equation to any other resolu-
tion (smaller or larger) radar image without introducing 
additional uncertainty.

Step 3: Evaluate the saturation in this model.  Although 
the fit shows no saturation, however, the data shows 

that HV backscatter has almost no sensitivity to biomass 
above 200 Mg/ha for these forests (See Saatchi et al. 
2011, or Saatchi et al., 2007 for other alternative equa-
tions and saturation of the radar data). 

Step 4: Display the map of forest biomass from the 2015 
ALOS PALSAR 2 image (HV_biomass_100m) using a color 
range to show the variation of biomass across the image. 
Step 5: Read values of the biomass from the image and 
visually compare it to the reference biomass map de-
rived from the lidar image (lidar_agb_100m). 

Step 6:  Mask out all pixels above 200 Mg/ha to show 
that the map has large uncertainty over areas of above 
200 Mg/ha and cannot be trusted (Raster > Raster 
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Calculator > “HB_agb_100m >=200” to create mask).  
Although you can leave the map untouched by explain-
ing the fact that the map has large uncertainty in areas 
where AGB is > 200 Mg/ha. 

Step 7:  Clip the radar AGB map (HV_agb_100m) to the 
same extent as the LiDAR AGB map (lidar_agb_100m) 
using Raster > Extraction > Clipper in QGIS. Save this file 
as HV_agb_100m_clp. 

Step 8:  Here we are going to calculate the percent dif-
ference between the clipped radar-derived AGB map 
(HB_agb_100m_clp) and the lidar AGB map (lidar_ag-
b_100m) using the raster calculator (Raster > Raster Cal-
culator).  Note that the lidar and backscatter AGB maps 
should be the same size for this step. Use the following 
equation in Raster Calculator to calculate the percent 
difference in AGB:

Diff = 100* (b1-b2)/b1

Where b1 is the LiDAR map (lidar_agb_100m) and b2 is 
the radar map (HV_agb_100m_clp). 

Step 9:  Display the difference map in percentage and 
provide a color range to show the range of values and 
include the color range on the side for presentation of 
the results (Figure 1.10).

4.4  Improving the AGB Map

Here, we improve the radar biomass model and 
AGB mapping by using multi-temporal radar imagery. 
In an ideal scenario, ALOS PALSAR data from different 
seasons and over time from the same or multiple years 
can be downloaded and used to reduce the effects of 
soil moisture and phenology and improve biomass 
mapping. 

Step 1: Download the ALOS PALSAR mosaic data for 
2015, 2016, and 2017 from JAXA website (You can use 
the data included in Data > ALOS or see the Chapter 
6 training appendix for information on downloading 
ALOS PALSAR data from the JAXA website). 

Step 2:  Using the steps provided previously, for each 
year, calculate the gamma power of the HV backscatter 
(Section 4.1, step 4) and resample each image to 100m 
(Section 4.2, step 3). At the end of this step, you should 

Figure 1.10 An example of an AGB percent difference map between lidar-derived AGB and backscatter 
(HV)-derived AGB.

Figure 1.9 Example results showing variation in biomass derived from HV backscatter.

have three HV backscatter images resampled to 100m: 
one for each year. 

Step 3: Use the lidar systematic sample points 
(lss_100m_agb) to extract the HV backscatter values for 
each year (See Section 4.2, step 4).  Save the output as 
lss_100m_agb_sar15_17. 

Step 4: Open the lss_100m_agb_sar15_17.dbf in Excel. 
Remember to clean the data as described in Section 4.2 
step #5). Next, create a new column where you average 
the backscatter values from 2015, 2016, and 2017 to cre-
ate a mean backscatter value in the spreadsheet.
Step 5: Create a scatterplot with the lidar-derived AGB 
and the three year HV mean in the spreadsheet. De-
velop a new model using the power-law function for 
simplicity.

Step 6: Before we apply the model we created in step 
5, first we need to average the three backscatter imag-

es to create one single image of HV. Remember to use 
your gamma power images that have been resampled 
to 100m. You can use Raster Calculator to average the 
three images in QGIS. 

Figure 1.11 An example of a best-fit model between 
AGB and a 3-year average of HV backscatter.
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ing all errors were independent and random, by using:
where each of the terms are the relative errors at that 
pixel scale.  Detailed description of error analysis and 
uncertainty assessment of the map are given in the 
Chapter 5. Here we examine three steps for evaluating 
the uncertainty of the map. 

Step 1: For pixel level prediction, use model fit param-
eter uncertainty to simulate several biomass maps by 
bootstrapping the coefficients using the range of pa-

Step 7: Based on your results from step 5, apply the best-
fit equation AGB= 116690*(HV^2.2364) to the averaged 
HV image using Raster Calculator. Display the results with 
an appropriate color scale. 

Step 8: Develop a percent difference map between Li-
DAR AGB and the new HV AGB map and color the range 
of biomass difference in percentage and display it (See 
Section 4.3 steps 7 and 8). 

Step 9: Compare the new percent difference map with 
the earlier version derived just from the 2015 backscat-
ter. Where do you notice differences in the overall nega-
tive and positive percent differences? 

4.5  Evaluating Uncertainty in the AGB Map

By assuming that we have several sources of errors 
that introduce uncertainty in the pixel level estimation 
of biomass, we can calculate the total uncertainty asso-
ciated with estimating AGB at the pixel level by assum-

Figure 1.12 Example of an AGB percent difference map between lidar AGB and a three-year average of HV

rameter uncertainty. 

Step 2: Generate several maps (100 if the image is small 
as in the Nepal case) or about 20-30 if the image is large. 

Step 3: Calculate the mean and variance of the boot-
strapping approach and show the variance as a new 
map.  
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Mangrove forests are highly productive ecosystems providing critical ecosystem services. It is estimated that about a third of mangrove forests have been lost 
during the last century and are still being decimated at a rate of about 0.4% per year. Mangrove forests are thin strips of forests living along tropical coasts. 
These environments are generally cloudy; optical remote sensing instruments provide limited temporal coverage to ensure consistent monitoring of man-
grove health and status. Radar remote sensing enables all-weather monitoring of mangrove forest gain and loss in extent. In addition, it can observe several 
parameters related to vertical canopy structure and biomass. The first part of this chapter introduces mangrove forests and the state-of-the-art radar remote 
sensing techniques to measure and monitor mangrove forest structure. The second part of this chapter presents a step-by-step tutorial on the use of radar 
remote sensing to make these measurements. After this chapter, the reader will be able to perform analysis of radar images of mangrove forests and more.

6.1  Introduction to 
Mangrove Forests

Mangrove forests are some of the most productive 
ecosystems in the world. They thrive within the inter-
tidal zone along the coasts of tropical and subtropical 
regions (Fig. 6.1). Mangrove trees can sustain salt 
water and soils with low oxygen availability through 
root adaptations. They were recently included in the 
Intergovernmental Panel on Climate Change (IPCC) 
climate mitigation strategy through the Wetland 
supplements. While mangrove forests cover a small 
land area (<1%), they may be responsible for 10% of 
global carbon export to oceans (Jennerjahn and V. 
Ittekkot 2002). Most importantly, mangrove forests 
provide numerous ecosystem services that sustain 
the livelihood of millions of people (Barbier et al. 
2011). Some of these services, in addition to carbon 
sequestration, include protection of coastline and 
infrastructure against severe storms and tsunamis, 
nursery of fish and crustaceans, and the production 
of lumber and charcoal.

Mangrove forests occupy terrestrial and marine 
environments, enabling them to support a very broad 
range of biodiversity. This biodiversity ranges from 
organisms within the soil to high numbers of fish spe-

cies to terrestrial species including reptiles, mammals, 
birds, and insects. Mangroves provide both direct and 
indirect services to local populations that inhabit the 
coastal zone. Several products can be directly sourced 
from the mangrove that have both a subsistence 
use and economic value. Primary benefits include 
sediment trapping; the production of nutrients and 
organic matter through detritus; a sink for carbon, 
nitrogen, and phosphorus; maintaining water quali-
ty; provision of food and habitat for biodiversity; and 

providing shoreline protection from storms and rising 
sea levels (e.g., Quoc Tuan et al. 2012). Mangroves 
have been demonstrated to provide greater long-term 
economic benefits to local households through their 
preservation, compared to the short-term economic 
gains through their destruction for products (McNal-
ly et al. 2011). An important reason for conversion of 
mangroves is shrimp farming, driven by economic in-
centives as mangrove is often regarded as wasteland 
(Primavera 2000). The level of services often depends 

Figure 6.1 Mangrove forests occupy the intertidal zone between approximately mean water to high tide. 
Assuming a flat ground at sea level is generally a good approximation (Image credit: Maria Raykova).

Marc Simard, Senior Scientist,Radar Science and Engineering Section, Jet Propulsion Laboratory, California Institute of Technology
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on forest structure and, therefore, structural parame-
ters such as height and basal area. For example, tall 
forests provide more protection against strong winds, 
store more carbon, and can provide more lumber and 
coal. Mangrove structure should therefore be consid-
ered when mangrove economical value is assessed.

Mangroves can exceed 60m in height and are 
subsequently able to attain high values of above 
ground biomass (AGB) around the 800 Mg ha-1 mark 
(Simard et al. 2019). These values rival observations 
in other types of tropical forests. Their elevated Net 
Primary Productivity (NPP) contribute large amounts 
of organic carbon inputs into the underlying soil. 
Thanks to slow anaerobic decomposition, mangrove 
forests store disproportionate amounts of carbon in 
their soils. Mangrove ecosystems are estimated to 
be amongst the most carbon rich ecosystems within 
the tropics, storing an average of 1,023 Mg C ha-1 in 
shallow soil depth ranging from 0.5–3 m (Donato et 
al. 2011). At current mangrove loss rates, between 
0.02–0.12 Pg per year is released to the atmosphere, 
that is 10% of total carbon emissions from deforesta-
tion despite accounting for less than 1% of tropical 
forest area (Donato et al. 2011). Hamilton et al. (2016) 
estimate current global loss between 0.16 and 0.39%. 
Thus, they play a significant role in the carbon cycle 
and consequently are becoming economically viable 
to protect (Murray 2012, Jerath 2012, Pendleton et al. 
2012). Initiatives, such as the Reducing Emissions from 
Deforestation and forest Degradation plus (REDD+) 
are carbon accrediting programs, whereby the carbon 
stored within natural ecosystems is valued by its abili-
ty to offset anthropogenically produced CO2. This pay-
ment for ecosystem services (PES) initiative extends 
beyond the worth of carbon to other services such as 
their resilience to hazards and role in maintaining fish 
biodiversity and water quality (Locatelli et al. 2014). 
The inclusion of mangroves in such initiatives can 
make them profitable environments, enhancing the 
socioeconomic benefits of mangrove forests beyond 
subsistence use to an asset for all global citizens.

There are several environmental drivers of man-
grove structure, mainly, precipitation and tempera-
ture (Simard et al. 2019) and the availability of nutri-
ents and salinity (Castañeda-Moya et al. 2013). Local 
geophysical characteristics such as microtopography 

and freshwater availability strongly control salinity 
and hydroperiod, and thus mangrove NPP (Castañe-
da-Moya et al. 2013). However, microtopography is 
very difficult to estimate at the landscape scale and 
cannot be observed directly from spaceborne remote 
sensing. On the other hand, remote sensing can mea-
sure the ecosystem response to these geophysical 
variables, reflected in observed canopy height, spe-

cies distribution, and spatial patterns. 
Despite their importance for carbon storage, bio-

diversity, and supporting indigenous local commu-
nities, mangrove forests are threatened across their 
entire range (Thomas et al. 2017). Mangrove areal 
extent for the nominal year 2000 was 13.7 million 
ha, far below the previous 1980 estimate of 18.8 mil-
lion ha (FAO 2007) (Fig. 6.3). The rate of mangrove 

Figure 6.2 Global distribution of mangrove forests (From Giri et al. 2010).

Figure 6.3 Radar imaging, whether airborne or spaceborne, is performed by transmitting a microwave 
pulse ‘sideways’ that scatters with land features such as forest branches, trunks roots, and ground. The 
imaging swath illuminated by one pulse determines the image size in the cross-track (or range) direction. 
(Background image credit: Maria Raykova) Additional information on how SAR images the world can be 
found in Chapter 2. 
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loss throughout the 1990s was estimated as 1% yr–1; a 
rate twice that of terrestrial rainforest over the same 
period (Mayaux et al. 2005). Recently, Hamilton and 
Casey (2016) found the yearly loss of mangrove extent 
between 2000–2012 varying between 0.16 and 0.39%. 
Comparatively, 30% of total tropical terrestrial forest 
has been lost as a consequence of anthropogenic ac-
tivity since monitoring began, while it is estimated that 
one third of total mangrove forest has been lost over 
the last half-century alone (Alongi 2002). Unfortunate-
ly, the loss of mangroves across the globe is deemed 
critical enough that 11 of the true 70 mangrove species 
have met the criteria of the Red List categories of threat 
(Polidoro et al. 2010).

The largest driver of this loss has been the conver-
sion of mangrove forests to aquaculture. In an assess-
ment of mangrove forest extent and loss at a variety 
of locations in the Americas, Africa, Asia, and Austra-
lia, the greatest cause of mangrove loss was evalu-
ated to be due to mariculture practices. 52% of 36 x 
103 km2 of the estimated loss from within countries 
containing 66% of the total area of mangrove forests 
was caused by shrimp cultivation (Valiela et al. 2001). 
Aquaculture is the fastest growing animal-food sector 
in the world. In 2011, fish from aquaculture practices 
accounted for nearly half of the total fish consumed 
worldwide (45.6%). Aquaculture has a plethora of 
direct and indirect detrimental impacts upon a man-
grove forest. These include the immediate loss of 
mangroves for pond construction alongside the alter-
ation of natural tidal flows, release of toxic wastes, re-
duced water quality and alterations to sedimentation 
rates, and turbidity. Additional pressures upon man-
groves include the development of the coastal zone 
that causes the direct replacement of mangrove and a 
suite of associated environmental problems, such as 
pollutants in runoff. Furthermore, the coastal zones 
of the world are becoming increasingly populated, 
and the current trends of increasing global popula-
tion will put further demands upon mangrove forests 
(FAO 2013, FAO 2012).

As we move increasingly through an era of unprec-
edented climate change, Earth’s climate will undergo 
changes that are currently not known with certainty. 
Sea level rise is expected to continue and accelerate 
over the coming century, with an increase in mean 

sea level by as much as 1 m by 2100 (CITATION). Al-
though sea level rise will not be uniform throughout 
the oceans, 70% of the world’s coastlines are estimat-
ed to experience sea level rise within 20% of the glob-
al mean (IPCC AR5). Mangroves are known to accrete 
sediment (Cheong et al. 2013) by trapping sediment 
suspended when inundated or through the build-up 
of peat through the decomposition of organic matter 
(Krauss et al. 2014). The survival of mangrove forests 
in the face of sea level rise is therefore dependent on 
whether sediment is accreted at the same rate as sea 
level rise (McKee et al. 2002, Hashimoto et al. 2006). 
Should sea levels rise above the rate of the terres-
trial surface, mangroves will either face periods of 
longer inundation or will migrate landwards into new 
areas. It is not currently known how climate change 
will affect the atmosphere and subsequent terres-
trial processes, making the extrapolation of all the 
effects of climate change on mangrove forests diffi-
cult. Precipitation is expected to be spatially variable, 
with increasing climate change and growing contrast 
between wet and dry regions and between seasons 
(IPCC AR5). The impact of increasing precipitation is 
expected to have a positive effect on growth rates, 
biodiversity, and mangrove extent as they migrate 
into previously drier environments (Eslami Andar-
goli et al. 2009). An increase in precipitation will 
also decrease the salinity of the environment and is 
expected to lead to an increase in species richness 
and diversity (Asbridge et al. 2015). In contrast, a 
decrease in precipitation will increase the salinity 
of mangrove environments and cause an overall de-
crease in mangrove area as freshwater influxes be-
come too saline to support growth (Duke et al. 1998, 
Gilman et al. 2008). Decreases in precipitation are 
also likely to cause a reduction in photosynthesis as 
a consequence of increased aridity (Arreola Lizarraga 
et al. 2004). Atmospheric temperatures will increase 
by as much as 2o C by the end of 2100 and are forecast 
to increase further thereafter (IPCC AR5). Changes in 
atmospheric temperature can be expected to cause 
an expansion of mangroves into higher latitudes and 
change the species composition and distribution of 
mangrove forests (Soares et al. 2012, Wilson and 
Saintilan 2012, Saintilan et al. 2014). The effects of 
climate change on mangrove forests are difficult to 

accurately predict due to the complexity of the nat-
ural system and complex feedbacks.

Traditionally, large-scale mangrove mapping was 
limited to sketch maps, fieldwork maps, and the dig-
itizing of digital datasets (Spalding et al. 1997). Yet 
over the past years, the number of studies on man-
grove extent, change, ecosystem structure, ecosys-
tem services, and vulnerability derived from remote 
sensing have proliferated (Kuenzer et al. 2011). The 
first global map exclusive to mangrove forests that 
used remotely sensed data alone was that of Giri et 
al. (2011). This work processed over 1,000 Landsat 
scenes gathered over the period 1997–2000, and es-
timated the total mangrove extent to be 13,776,000 
ha despite the methodology suffering from a num-
ber of limitations. Since then, changes have occurred 
and been detected at global scales (Lucas et al. 2014, 
Thomas et al. 2017, and in maps by Hansen et al 
2013). Products that incorporated annual estimates 
of mangrove extent followed, such as the CGMFC-21 
(Hamilton and Casey 2016, Hutchison et al. 2014), 
with a much higher temporal resolution. In addi-
tion, there have been many regional, country-scale, 
and project-scale assessments of mangrove extent, 
change, and three-dimensional structure using both 
optical and passive remotely-sensed data (Fatoyinbo 
and Simard 2008, Fatoyinbo et al. 2013, Spalding et 
al. 2010, Simard et al. 2019). 

There is a plethora of remotely sensed data avail-
able for mapping mangrove extent and change, which 
has the potential for long-term monitoring of land-
use change and the identification of proximate driv-
ers of change. These include the Landsat time-series, 
now enhanced by the European Space Agency (ESA) 
Sentinel-2 platforms, that, when combined, offer an 
unprecedented quantity of data. Similarly, radar data 
is available from ESA via the Sentinel-1 satellites and 
annual mosaics from the Japan Aerospace Explo-
ration Agency’s (JAXA’s) Advanced Land Observing 
Satellite 2 (ALOS-2) platform. Historic radar imagery 
to aid in time-series mapping is freely available via 
ALOS and Japanese Earth Resources Satellite 1 (JERS-
1) mosaics (See Table 2.5, Chapter 2). These will 
soon be followed by the joint NASA-ISRO Synthetic 
Aperture Radar (NISAR) mission planned for launch 
in December 2021. It is therefore timely to develop 
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new remote sensing algorithms that combine optical 
and radar data for long-term monitoring of man-
groves forests in Southeast Asia. 

6.2  Radar Remote Sensing
A radar instrument generates its own electro-

magnetic signal by transmitting a microwave pulse 
that enables observation of Earth’s surface (or other 
planets and moons) day and night. In order to gen-
erate an image, the pulse is focused in a direction 
away from nadir (Fig. 6.3). When the pulse is 
transmitted at nadir, the instrument is called a ra-
dar altimeter. The microwave pulse typically illumi-
nates ground areas of tens of kilometers, and only 
the portion of energy reflected toward the radar is 
measured. The angular reflection pattern depends 
on the target properties such as roughness (differs 
greatly between plants, water surface, urban struc-
tures) and geometry. The geometry is determined 
by the look angle and the terrain slope. The former 
is the angle subtended by the line of sight between 
the radar and a target on the ground. Thus, it varies 
greatly across an image. The look angle and terrain 
slope can be combined into the incidence or projec-
tion angle. These angles are often used to perform 
terrain radiometric corrections (sometimes called 
‘terrain flattening’), which is intended to remove 
image artifact due to geometry. In mangroves, topo-
graphic effects are generally neglected due to their 
unique setting of very flat areas.

6.2.1  MICROWAVE BANDS

Radars are active instruments with a definite ad-
vantage over optical sensors: they can see through 
clouds, day and night. This is a particularly prized 
attribute along the tropical coastlines, and its free 
public availability is continuously rising. They trans-
mit a microwave pulse and measure the portion of 
the energy that is reflected back. The measured re-
turn is called “backscatter” and is generally present-
ed in decibels (10log10(Intensity)). Some Radar in-
struments come in several “colors” (i.e., wavelength 
bands): Ka and Ku-bands, X-, C-, S-, L-, and P-bands. 
Those are denominations introduced during the de-
velopment of radar during World War II, and they 
simply refer to a range of frequencies as defined by 

the Institute of Electrical and Electronics Engineers 
(IEEE). See Table 2.3 in Chapter 2 to see com-
mon applications of SAR bands.

6.2.2  SCATTERING MECHANISMS IN 
MANGROVES

There are three types of scattering mechanisms: 
(1) direct (or single bounce), (2) double-bounce, and 
(3) volume scattering (see Fig. 6.4). In mangrove 
forests, the “double-bounce” term that strongly im-
pacts the HH channel (see Chapter 2, Table 2.3, 
relative scattering strength by polarization, and the 
subsequent section) may be reduced by the presence 
of aerial roots as microwaves are scattered and at-
tenuated (Fig. 6.5). The dominant scattering mecha-
nism in mangrove forest strongly depends on canopy 
structure. Trends in volume and double-bounces’ 
signatures vary much more than in other types of 
forests. In particular, in mangroves the volume 
scattering decreases and double-bounce scattering 
increases in closed and open canopies, respectively 
(see following section on polarimetry). Inundation at 
the time of data acquisition impacts radar signals in 
open mangrove forests. 

6.2.3  POLARIMETRY

The radar measurement can also be characterized 
through polarimetry. Generally, radar instruments 
are enabled for several orthogonal polarimetric 
modes, transmitting horizontal (H) or vertical (V) po-
larization, and receiving either H or V. For example, an 
L-band radar transmitting a horizontally polarized mi-
crowave and receiving its vertical polarization would 
be identified as L-HV. A single instrument can collect 
data in several polarimetric mode by alternating puls-
es. A quad-pol L-band radar collects four channels: 
L-HH, L-HV, L-VH, and L-VV (e.g., Fig. 6.6). Upcoming 
instruments like the Radarsat constellation suite of 
instruments will provide circular polarization, indicat-
ing that polarization state changes in time. Each pola-
rimetric configuration can be considered as an image 
band in the radar dataset, each sensing various char-
acteristics of the forest canopy through the variety of 
scattering mechanisms. While the HV measurement 
is dominated by the volume scattering reflections, the 
HH and VV contain a significant ground contribution. 

Figure 6.4 Radar scattering mechanisms. In 
mangrove forests with aerial roots (Rhizophora), 
the microwave signal is attenuated, decreasing 
backscatter at high biomass.
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Figure 6.5 Radar backscatter at L-HH, acquired 
by ALOS-2 over the Gabon Estuary, Gabon. Bright 
areas to the North West result from strong double-
bounce effect in urban structures of the city of 
Libreville. Large medium backscatter (mid-gray 
tones) are due to volume scattering in forests. Water 
was easily masked based on darker backscatter 
(in particular at LHV). Interestingly, due to strong 
attenuation from roots, tall mangrove forests with 
red mangrove trees reaching several tens of meters 
exhibit lower backscatter along the South Eastern 
portion of the Estuary.
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In particular, the HH polarization is strongly impact-
ed by the occurrence of double-bounce scattering, 
which is greatly enhanced by the presence of water. 
As such, it is important to note the contribution from 
double-bounce scattering in mangrove forests can be 
greatly reduced by the presence of aerial roots. More 
about polarimetry in Chapters 2 and 3.

Early work on polarimetry at C-, L-, and P-band 
(e.g., Mougin et al. 1999, Proisy et al. 2002) has 
shown that the relative impact of the scattering 
mechanisms changes significantly with radar wave-
length, with ground and double-bounce contribu-
tions increasing wavelength. Polarimetry has been 
demonstrated as a powerful method to classify 
wetland types, including mangroves at X-band (e.g., 
Hong et al. 2015), and mangrove species and struc-
ture at L-band (e.g., Brown et al. 2016) and C-band 
(e.g., Kovacs et al. 2013, Cougo et al. 2015). There 
are several models to obtain the relative contribution 
of the three scattering mechanisms. A popular one 
is the Freeman-Durden decomposition (available 
in SNAP and PolSARpro software) used in Proisy et 
al. (2002). Figure 6.7 shows the decomposition 
of a fully polarimetric radar image acquired by the 
UAVSAR’s L-band airborne radar instrument. In the 
top left image of Figure 6.7, the brown areas repre-
sent low double interaction found in tall Rizhophora 
mangrove forests, and shades of blue are found in 
more open and shorter shrub mangroves. Green 
tones, representing dominance of volume scattering, 
are found in inland forests. Otherwise red tones, 
representing dominance of single bounce, occur over 
open land surfaces. The individual contribution of 
each scattering mechanism is shown in grey-scale 
images in Figure 6.7. Contrary to inland forests, 
the volume component is reduced in tall mangrove 
forests and increased with shorter ones. While the 
volume component (or even at HV polarization) may 
become similar to that of inland forests, the apparent 
texture of mangrove forests is much smoother, in part 
due to inland topography and to overall homogene-
ity of mangrove canopy structure. Thus, polarimetric 
signature can be used to identify mangrove forests 
from other landcover types, particularly at longer 
wavelengths (e.g., L-band), and also differentiate 
mangrove structural attributes and species. 

Figure 6.6 Color composite images of mangrove forests of the Guayas Estuary in Ecuador from: a) ALOS-
PALSAR-1 HH, HV, and VV in RGB, respectively; b) Sentinel-1 VV, VH, and VV in RGB, respectively. Volume 
scattering dominates at all polarization and at both L- and C-band. Lower backscatter is observed for the 
younger, low-density forest (<100t/ha) found along the coast at the bottom of the images. Figure 6c) shows 
a color composite (HH, HV, VV) of a 6-m resolution L-band airborne UAVSAR image acquired in the Gabon 
Estuary showing the distinct signature of mangrove forest whether tall (east) or short shrub forest (west). 
Green indicates the dominance of HV in inland forest is more significant than in mangrove forest where all 
polarization configurations (HH, HV, and VV) behave similarly, resulting in the observed grey level intensities. 

a.) b.)

c.)

Figure 6.7 Polarimetric 
representation of mangrove 
forests in Akanda, Gabon. 
Top left image shows 
an RGB color composite 
image of single, volume, 
and double-scattering 
components based on 
the Freeman-Durden 
decomposition. The 
yellow polygons show 
the mangrove extent.

SINGLE VOLUME

DOUBLE
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6.2.4  INTERFEROMETRY

Radars can operate in interferometric mode, which 
means the measurement is obtained from several in-
dividual observations of the same target, viewed from 
different radar antenna positions. These individual ob-
servations can be collected simultaneously with pairs of 
radar antennas, or with a single antenna operating in re-
peat-pass mode. When observations are from a slightly 
different point of view, as in the pairs of radar antennas 
formation, the elevation can be estimated through 
geometry. The latter technique involves repeating an 
observation using the same instruments and combin-
ing measurements through interferometry (complex 
multiplication) to obtain coherence (a measure of the 
similarity of two images) and phase (relative location 
of scattering phase center between the two images). In 
addition, a pair of repeat-pass observations obtained 
from the same location (same instrument from same 
location but different time) enables measurements of 
changes in elevation or displacement of targets such as 
glacial flows, landslides, ground subsidence, etc. In the 
case of forest, zero-baseline repeat-pass interferom-
etry is strongly impacted by ‘temporal decorrelation,’ 
which is a result of the motion of branches, changes in 
moisture, or growth. The zero-baseline interferometric 
measurement has been used to classify forest-age and 
structure of other types of forests (Simard et al. 2012, 
Pinto et al. 2012) as it strongly depends on forest height 
(Lavalle et al. 2012). Temporal decorrelation can impact 
repeat-pass non-zero baseline observation and must 
be compensated to obtain canopy height (Denbina et 
al. 2018). 

Single-pass, non-zero baseline radar interferometry 
has been used to map mangrove canopy height (Si-
mard et al. 2006, Simard et al. 2008, Fatoyinbo et al. 
2013, Lagomasino et al. 2015, Lee et al. 2015, Simard 
et al. 2019). These maps express mangrove forest 
height using single-pass interferometric data obtained 
by the Shuttle Radar Topography Mission (SRTM) and 
TanDEM-X data (e.g., Fig. 6.7). The mangrove canopy 
height can then be translated into above ground bio-
mass through in situ allometry relating biomass to can-
opy height (see section on mapping mangrove forest 
structure). On the other hand, repeat-pass interferom-
etry can be used to identify structural attribute such as 
canopy stature and closure (e.g., Fig. 6.9).

6.2.5  RADAR DATA FORMAT

The availability of freely available radar data has in-
creased significantly in the last decade (refer to Table 
2.5, Chapter 2). Some datasets are calibrated and 
georeferenced science-ready products, and others are 
distributed at various levels of processing. There are 
multiple approaches to prepare the radar data, which 
depends on the original format of the data that has 
been downloaded. Generally, data is distributed with 
processing levels 1.0, 1.1, 1.5, or 2.0. The 1.0 and 1.1 for-
mat refer to backscatter in the radar geometry. That is, 
the images are not yet projected to geographic coordi-

nates and represent the signal as seen by the radar (i.e., 
given by time of travel of microwaves). Level 1.5 and 2.0 
have been projected into geographic coordinates, such 
as UTM, or geographic latitude and longitude. The level 
1.X data are used for radar interferometry: two images 
are complex-multiplied to obtain the interferogram. 
The latter is typically expressed as А–iф, with amplitude 
A and phase ф. Level 1.5 and 2.0 are expressed as the 
radar backscatter σ0. The georeferenced interferogram 
is seldom distributed and the user is expected to per-
form the processing. For backscatter, the user has a 
wide choice of processing level, and can perform radar 

Table 6.1 General trends in radar backscatter for mangroves (Lucas et al. 2007, Proisy et al. 2002, 
Mougin et al. 1999). The trends are not constant and may exhibit increase for low biomass stands (shrubs) 
up to the standing forest where backscatter may decrease. Thus, the relationship between backscatter 
and biomass or height are not reliable biomass estimators. 

RADAR BAND SHRUB MANGROVES TALL MANGROVES

P-HH Around -17dB Around -8dB (may increase with AGB)

P-HV and P-VH Around -22dB Around -14dB (may increase with AGB)

P-VV Around -10dB Around -7dB (may increase with AGB)

L-HH -25dB to -15dB Reduces from -5dB to -18dB with AGB

L-HV and L-VH -25 to -20dB Reduces from -15 dB to -22dB with AGB

L-VV -20dB to -12 dB Reduces from -8 to -16dB with AGB

C-HH About -12dB Varies about -7dB (no relationship to AGB)

C-HV -20 to -15dB varies about -14dB (no relationship to AGB)

C-VV About -12dB Varies about -6dB (no relationship to AGB)

Table 6.2 Microwave penetration depth and dominant scattering mechanisms in mangrove forests. 
Note this is in the mean sense as microwaves interacts with the entire canopy, all the way to the ground. 

BAND MANGROVE FOREST PENETRATION DEPTH TYPE OF SCATTERING CAUSED BY MANGROVE FORESTS

K Unknown; most likely a few tens of centimeters. Single direct bounce and volume from top of canopy.

X
Interferometric measurement indicate penetra-
tion reaches, in the mean sense, Lorey’s height 
(~1/3 of top forest height).

Single direct bounce and volume from top of canopy, with a small surface and 
double bounce component.  The latter increase dramatically in open forests 
and at low biomass.

C
Comparison of SRTM C- and X-band show it is 
similar to C-band. Down to the equivalent of 
Lorey’s height (~1/3 of top forest height)

Single direct bounce and volume from upper canopy, with a small surface and 
double bounce component.  The latter increase dramatically in open forests 
and at low biomass.

L Microwave penetration into canopy is as large 
as half the canopy height.

Single direct bounce dominates in tall forests, with volume dominating with 
shorter shrub mangroves. The contribution of double bounce increases 
significantly at low biomass and in open forests.  In large red mangrove forest, 
with large aerial roots, microwaves will get absorbed and volume dominates 
again, although diminished.

P
Similar to L-band, where microwave penetra-
tion into canopy is as large as half the canopy 
height.

Single direct bounce dominates in tall forests, but the contribution of double 
bounces increases significantly at low biomass.  In large red mangrove forest, 
with large aerial roots, microwaves will get absorbed and volume dominates 
again at biomass slightly larger than at L-band.
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processing to specifically enhance or retrieve specific 
image features. Processing details and analysis to ob-
tain science-ready backscatter images are described 
in the tutorial. 

6.2.6  MAPPING MANGROVE CANOPY 
STRUCTURE

Forest structure can be described in terms of its 
spatial extent, spatial heterogeneity, tree cover, can-
opy height profile, and AGB. However, what can be 
expected from radar observations of mangrove forest 
landscapes?

Tree cover, canopy height, and AGB are correlat-
ed. However, different radar parameters are used 
to estimate AGB and forest canopy height. A generic 
formulation relating radar backscatter to AGB is the 
following, where a and b are determined by the user 
from in situ data:

σ0(dB) = a + b × log(AGB)  .
In wet tropical forests, values are about –22.5 and 

3 for a and b, respectively, at L-band. Other equations 
have also been published, and may require slightly 
more complex calculation (Yu and Saatchi 2016):

σ0(linear) = Axα + (1 – e{–Bx}) + C  ,

where x is the AGB, and A, B, C, and a are coefficients 
that can be fitted empirically through iteration until x 
results in the observed σ0 (linear). For wet tropical for-
est, the coefficient values are α = 0.013682, A = 0.21116, 
B = 0.051846, C=0.02192. The coefficient a should be 
fitted locally. In either case, the fitting parameters can 
change significantly for mangroves given the variation 
in structure for a given species and the inundation 
state. Several authors found radar backscatter de-
creased significantly with AGB, attributing increased 
double-bounce scattering at low AGB (e.g., Lucas et al. 
2007, Cohen et al. 2013). Nonetheless, one may expect 
σ0 to increase with forest AGB up to a saturation value 
that depends on the radar frequency (i.e., P, L, C, X, K) 
before it decreases. The longer the wavelength (equiva-
lent to lower frequency), the larger the biomass satura-
tion point (Mougin et al. 1992, Proisy et al. 2002). While 
general literature is not definite on the backscatter sig-
nature of mangrove forests, the upper biomass level 
detectable with radar is similar to other forests, about 
200, 100, 50, and 25 for P, L, C, and X, respectively. After 
this point, the observed σ0 reduces due to absorption 

by the dense aerial root system found in mangroves 
(Lucas et al. 2007). This holds for HV; however, obser-
vation of scrub mangroves at HH and VV sometimes 
also display high σ0 due to increased penetration within 
the canopy and double-bounce interaction with the 
water surface or water-saturated ground. While these 
effects imply estimation of mangrove AGB from back-
scatter alone is generally difficult and strongly site-de-
pendent, these polarimetric trends (i.e., volume versus 
double-bounce) can be used to classify mangrove type 
and also structure (e.g., Hong et al. 2015, Brown et al. 
2016), itself related to AGB. For additional information 
on SAR for biomass estimation, see Chapter 5.

It is difficult to map the extent of mangrove forests 
using radar alone, in particular when the adjacent in-
land landcover is another forest type. This can also be 
difficult with optical sensors, as ‘color’ (e.g., greenness) 
may not suffice to distinguish mangroves from other 
vegetation types. Therefore, it is  recommended to 
use a combination of datasets obtained from different 
sensing technologies (also discussed in Chapter 3, 
Sec. 3.5.4). Landcover classification can generally 
be performed with the radar backscatter as one of the 
layers along with data from optical instruments such 
as Landsat. One can also build upon existing glob-
al maps of mangrove extent (e.g., Giri et al. 2011) to 
extract the area of mangrove forests from the radar 
data. It is more efficient to start with reliable remote 
sensing products and improve them rather than rein-
vent the wheel. Classification can be performed with 
supervised methods (e.g., maximum likelihood, deci-
sion trees, neural network) or unsupervised methods 
(e.g., ISODATA). Implementations for these algorithms 
can be found in all major commercial remote sensing 
software (e.g., ENVI) and also in open source software 
(QGIS or Python libraries). Training of supervised 
classifiers requires knowledge of mangrove forest 
locations that can be easily interpreted by an experi-
enced photo-interpreter or from in situ field surveys. 
It is important that the training set be representative 
of the entire range of spectral signature observed with 
remote sensing. Otherwise, pixels with an untrained 
spectral signature in radar and optical data, will be 
thrown into the wrong classes, potentially classified 
as mangroves. To avoid these issues, an initial  unsu-
pervised classification method can be used, followed 

by manual merging of ‘unsupervised classes’ into rele-
vant mangroves classes. 

To generate a landcover classification of mangrove 
forests and type, it is recommended to use radar in 
combination with different sensing technologies (Na-
scimento et al. 2013). Discrimination of mangroves 
against other types of forests inland with L-band data 
given a priori environmental information (e.g., digital 
elevation model and water mask) and other sources 
of optical data such as Landsat (Lucas et al. 2014, Bun-
ting et al. 2018). However, classification results can 
vary greatly due to availability of polarimetric layers 
and instrument wavelength and technique. For exam-
ple, Fonteh et al. (2016) found Sentinel-1 (dual-pol 
C-band) data did not provide significant improvement 
over Landsat-based landcover classification, while 
Zhen et al., found increased accuracy over 10% using 
fully polarimetric Radarsat-2 data. Aslan et al., 2016, 
began with a spatial segmentation of an L-band HH 
and HV dataset, with subsequent Landsat-8 spe-
cies-specific classification refinement. There exist 
global maps of mangrove extent derived from optical 
data (e.g., Giri et al. 2011) that can be used to extract 
the area of mangrove forests from the radar data. 
These have recently been improved with L-band radar 
data from ALOS-1 (Bunting et al. 2018). The authors 
found it more efficient to start with existing but reli-
able remote sensing products from Giri et al. (2011) 
and improve the maps with radar. 

There have been significant advances in the use 
of Radar interferometry to map mangrove canopy 
height (Simard et al. 2006, Simard et al. 2008, Fatoy-
inbo et al. 2013, Lagomasino et al. 2015). Data from 
the SRTM acquired in February 2000, was the first 
dataset to enable measurement of mangrove canopy 
height. SRTM was designed to measure elevation, but 
due to the interaction of the radar microwave with 
the canopy volume, the SRTM elevation measure-
ment is biased by forest height and density. That is, 
a forested hill top will appear higher than it is. As-
suming mangroves are located at mean sea level with 
negligible topography, the SRTM elevation measure-
ment is directly related to mangrove canopy height. 
While this may be a gross assumption in mangrove 
regions with high tides (>3m), it provides a robust 
method to determine patterns of mangrove height at 
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the landscape to global scales in the 2000 epoch. 
New elevation measurements derived with inter-
ferometric data was acquired with TanDEM-X in 
~2015, providing a second and more recent dataset 
(Lee et al. 2015). The TanDEM-X elevation datasets 
are currently available through a proposal process 
or can be purchased. An example, calibrated with 
in situ data, is shown in Figure 6.8. Coarser reso-
lution data may soon become available. 

It is interesting to note that such priori remote 
sensing products provide a powerful tool to select 
the location of the in situ plots and optimize cam-
paign logistics. Such stratified methods, based on 
remotely-sensed canopy height, were successfully 
used in mangrove forests (Trettin et al. 2016, Fatoy-
inbo et al. 2018). A similar stratified methodology 
could also be adopted to train and validate land-
cover classification of mangrove structure.

6.3  Conclusions
Radar remote sensing is a powerful tool to mon-

itor mangrove extent and map general structure 
attributes (e.g., trees versus shrubs, aerial root). 
It enables detection of forest cover changes re-
gardless of cloud cover. Used in combination with 
optical remote sensing observations, radar can 
improve distinction of mangrove from other types 
of inland forest. However, the estimation of AGB 
is limited with radar backscatter alone. Instead, 
it is recommended to use radar interferometry to 
accurately map mangrove forest structural attri-
butes, including canopy height and aboveground 
biomass. While fully polarimetric L-band data are 
freely available (e.g., UAVSAR and ALOS), such 
datasets at P-,  C-, and X- band that span a wide 
range of mangrove types are rarely accessible. 
More research on the application of radar remote 
sensing to study mangrove forests is needed to 
understand the polarimetric and spectral signa-
ture of mangrove forest structure. Nonetheless, 
recent progress in global mapping and monitoring 
of mangrove extent (Bunting et al. 2018) and glob-
al assessment of AGB (Simard et al. 2019) clearly 
illustrates the power of radar remote sensing of 
mangrove forests. 

Figure 6.8 Map of mangrove canopy height in the Akanda National Park obtained from TanDEM-X 
elevation data (similar to SRTM). Same region as shown Figure 6.7.
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Figure 6.9  Interferometric radar coherence obtained from ALOS-2 LHH. The bright areas represent 
coherence close to 1, indicating strong similarity between images collected successively after 24 days. High 
coherence is observed in open shrub mangroves, as well as in urban areas. Tall mangrove trees exhibit low 
coherence due to temporal decorrelation caused by scattering in the canopy, which changes between the 
two radar acquisitions (i.e., 24 days in this case). Open water surface also displays low coherence due to 
waves constantly changing surface scattering.
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APPENDIX E
Mapping and Monitoring 
Mangrove Forests with 
Radar Remote Sensing – 
Chapter 6 Training Module

Required open-source software and libaries: 
• QGIS, SNAP, GDAL 

Freely-available sources of radar data:
• ALOS PALSAR -1 (images and mosaics)
• ALOS PALSAR -2 (mosaic only; images available 

via proposal)
• JERS-1 Mosaics
• Sentinel-1 a/b (images)

In this tutorial, we will process and analyze radar 
images, monitor land use change, and estimate abo-
veground biomass in mangrove forests.  There are a few 
steps required before we can proceed, which include in-
stalling the necessary software and finding data sources.  

1  INSTALLING STEP/SNAP SOFTWARE 

First, we need to find, download and install the Sen-
tinel Application Platform (SNAP) software, which is the 
main tool used for this tutorial.  SNAP is distributed free-
ly by the European Space Agency (ESA) and can be used 
to process various types of data including Sentinel-1 and 
-2, Radarsat, TerraSAR-X, ALOS/PALSAR-1 and -2, among 
others.   Data can be processed from level 1 (i.e. Single 
Look Complex data) to level 2 (e.g. terrain projected) to 
level 3 (e.g. land cover classification) and polarimetric 
decomposition. 

The SNAP software can be found here: http://
step.esa.int/main/download/ and it is recommend-
ed to read info as the software is regularly updated. 
The page should look like Figure 1.1. Find more in-
formation here: http://step.esa.int/main/toolboxes/
snap/ and here: STEP: http://step.esa.int/main/. Se-
lect the binary installer appropriate to your operating 
system (i.e. Windows, Mac OSX or UNIX).

Figure 1.1  ESA browser page with access to SNAP software downloads.

2  FIND AND OBTAIN ALOS DATA 

We will begin this tutorial with science-ready 
radar data which were processed by the Japanese 
space agency ( JAXA).   JAXA produced radar mosaics 
for each of its spaceborne radar missions: JERS-1 
(1996), ALOS-1-PALSAR (2007-2010) and ALOS-2 
(2014-20170). The data is science-ready and has 

already been radiometrically calibrated, terrain cor-
rected and ground projected.  JAXA also produces 
forest/non-forest maps for each year that can be 
used to monitor forest disturbances. The steps be-
low show where to find the data and register as a 
user.   The following section explains how to select 
and download the data.

http://step.esa.int/main/download/
http://step.esa.int/main/download/
http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/
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2.1  JAXA Website Registration

The radar mosaics can be obtained from the JAXA 
website; however, it is first required to register in order 
to access and download data.  It is free to register. Follow 
the steps below:

1. Access JAXA website and register here:  http://www.
eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm, then 
follow the instructions, including confirming your email.

2. Once registered, click on "Dataset" on the left-hand 
side: http://www.eorc.jaxa.jp/ALOS/en/dataset/data-
set_index.htm

• Click on “Global PALSAR-2/PALSAR/JERS-1 Mosaic 
and Forest/Non-Forest map." Scroll down to “4. 
Download” and click on http://www.eorc.jaxa.jp/
ALOS/en/palsar_fnf/data/index.htm, and log in 
using your email and password created during the 
registration process.

2.2  Downloading JAXA ALOS Mosaics

In this section, we will select and download radar 
mosaics from the JAXA website (Figure 1.2).  You will 
find global mosaics from JERS-1 for year 1996.  JERS-1 
was an L-band, HH-only instrument that collected data 
from 1992-1998. However, in order to obtain global cov-
erage JAXA had to use data from the full lifetime of the 
mission to produce a ~1996 mosaic.  This dataset pro-
vides the oldest L-band radar-based global observation 
of the Earth, serving as a baseline for temporal analysis 
of land use. 

For the most recent spaceborne L-band radar 
missions (ALOS-1 and ALOS-2), JAXA generates yearly 
PALSAR mosaics for 2007, 2008, 2009 and 2010 and 
PALSAR-2 mosaics for 2015, 2016, 2017, and soon 2018. 
The ALOS mosaics are distributed with dual polarization, 
HH and HV, which are ideal for monitoring wetlands and 
forests respectively.  Indeed, the HH polarization exhib-
its a strong double-bounce effect in inundated wetlands, 
while HV is the best polarization configuration to map 
and monitor forest cover and above ground biomass. 
It is important to note the mosaic tiles are constructed 
from multiple radar images that were not acquired at the 
same time.  As such, the mosaics will not represent, for 

Figure 1.2  Desktop version of the JAXA website 
with access to mosaic downloads.  You must 
first register as a user to access the data. 

example, the state of inundation at its maximum annual 
extent.  However, they provide a useful snapshot.

Click on http://www.eorc.jaxa.jp/ALOS/en/palsar_
fnf/data/index.htm to see a page (Figure 1.3) showing 
all available mosaics.

For example, we can select the ALOS/PALSAR-1 Mo-
saic for 2017.  Clicking on the link will lead you to another 
page (Figure 1.4) in the browser with a large-scale 
grid.  You can reach your region of interest by clicking on 

its grid cell location until the cell is 1ox1o.  The mosaics 
are distributed by 1ox1o tiles.  To generate a larger mosa-
ic, you must download several 1ox1o tiles which can be 
merged using gdal tools or QGIS.  Here are the steps:

1. Click on your region of interest. (In this work-
shop, this will be Kenya’s coast)

2. Click until you end-up at the desired location. 
Note that all mosaic grid-cells are 1ox1o.

Figure 1.3  JAXA page with access to all available 
yearly radar mosaics.

Figure 1.4  Large scale grid cells of the 2017 ALOS-2 mosaic are displayed. Clicking on a given cell zooms 
in to a finer grid.  Only the 1ox1o cells can be downloaded.

http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/fnf_index.htm
http://www.eorc.jaxa.jp/ALOS/en/dataset/dataset_index.htm
http://www.eorc.jaxa.jp/ALOS/en/dataset/dataset_index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
http://www.eorc.jaxa.jp/ALOS/en/palsar_fnf/data/index.htm
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2.3  Downloading 1-degree cells

For PALSAR-1 and PALSAR-2, there are 3 mosaics 
(see Figure 1.5).

1.1 FNF: Forest vs. Non-Forest map (See M. 
Shimada, T. Itoh, T. Motooka, M. Watanabe, T. 
Shiraishi, R. Thapa, and R. Lucas, “New global 
forest/non-forest maps from ALOS PALSAR data 
(2007-2010),” Remote Sens. Environ., vol. 155, 
pp. 13–31, 2014.)
1.2 HH: Mosaic of Horizontal-transmit and Hor-
izontal-receive polarization. Sensitive to both 
volume and surface.  Excellent for monitoring 
wetlands, forest-inundations, urban infrastruc-
ture and expansion. 
1.3 HV: Mosaic of Horizontal-transmit and Ver-
tical-receive polarization. Sensitive to volumes 
such as vegetation density.  Excellent to distin-
guish and monitor forests. 

Download a file by clicking on the “Download” 
icon. The file will automatically download to com-
puter as zipped file; for HH and HV this will be about 
65MB. Then you can unzip the files, typically with a 
double-click on file.  The 1ox1o tiles are in an ENVI 
format that can be opened in ENVI or QGIS.  To view 
in QGIS, you can simply drag-and-drop the file in 
the main QGIS window.  As an alternative, you can 
also use the “gdal_translate” command in a termi-
nal window to convert in any format using option 
“-of  Gtiff“.  

3  DOWNLOAD RAW ALOS/PALSAR-1 DATA

In this section, we will find and download raw 
images from the ALOS/PALSAR-1 instrument.  To 
date (2018), the ALOS/PALSAR-2 data is only avail-
able via a proposal process or purchase.  Other ra-
dar datasets, such as ALOS-1, are available through 
the ASF Vertex interface (Figure 1.6).  

3.1  3.1 Searching for radar images in a 
specific location and within a time period

The steps below describe how to obtain data from 
the Alaska Satellite Facility (ASF) website; specifically, 
we can find ALOS/PALSAR-1 data acquired between 
2007 and 2010.  We will select a small region of interest 

Figure 1.5  JAXA’s website showing selected 1ox1o tiles over Kenya’s coast.

over Kenya’s coast. The list of data found by ASF’s Vertex 
tool  matching your selection criteria will appear in the 
right-hand side of the interface, with clickable thumbnail 
images to help in the selection of data. Here is how to 
search for data:

1. Go to the Alaska Satellite Facility Vertex interface: 
https://vertex.daac.asf.alaska.edu/

2. Click on “Geographic Search,” and follow the in-
structions to register to create a (free) account.

3. Go back to the site and log in. Click and drag your 
cursor from the top left of your study site to the bot-
tom right. A box will be drawn around your selected 
area. These coordinates will be written automatically 
in the “Geographic Region” tab. 

4. Enter range of dates for which you seek data. For 

PALSAR-1, this will be between 2007 and 2010. The 
“Path” and “Frame” are optional.

5. Click “Search” at the bottom.

Once we have clicked on the “Search” button, the 
Vertex tool will search for data matching the select-
ed criteria. A list of files will appear on the right with 
low-resolution thumbnail preview images (Figure 1.7).  
You will notice that files with different imaging modes 
will be available:

1.1  “WB1” is (ScanSAR) Wide-Beam #1 
1.2  PLR is a fully polarimetric dataset with HH, 
HV and VV
1.3  FBD is Fine-Beam Dual polarization includ-
ing HH and HV.
1.4  FBS is Fine-Beam Single polarization (HH)
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Figure 1.6  The ASF Vertex interface.

More details on the characteristics of ALOS/PAL-
SAR imaging modes can be found in Table 1. In our 
example, high resolution ascending-orbit images are 
available, along with WB1 descending-orbit images. 
Ascending and descending mean the targets are seen 
from the West and East respectively.  A single-click on 
the thumbnail images will highlight the location of each 
image within the Vertex’s maps.

3.2  Select Data

To obtain additional information for each image, 
click on the “Details” button below any thumbnail. 
To download an image, click on the “Queue” button.  
A dropdown menu will appear with options of Lev-
el 1.0, 1.1, 1.5, or radiometrically terrain-corrected 
(RTC). The available options depend on the radar 
imaging mode (Table 1). Try it out. The option to be 
selected (Table 2) depends on your objectives and 
your level of expertise.  Typically, for most processing 
performed in SNAP, you will need the SLC project-
ed images, which SNAP can convert to geographic 
projections.  If you plan to use a radar image into 
a GIS system or as an additional band used in your 
analysis, you should consider using images with the 
highest level of processing (radiometrically corrected 
(RTC) and science-ready), similar to the JAXA mosaics 
but with a given date of acquisition.

It is possible to see if images processed at a given 
level are available for your region of interest.  The 
ASF website allows you to see data availability as a 
function of processing level.  Access this information 

Table 1  Summary of ALOS/PALSAR-1 imaging mode characteristics.

WB1 FBD FBS PLR

Swath
(i.e. image width) 240 km 70 km 70 km 30 km

Resolution 100 m 20 m 10 m 30 m

Incidence angle 
(i.e. viewing geometry) 18-43o(27.1) 34.3o 34.3o 21.5o

1.0 1.1 1.5 RTC

Geographic projection Radar (SLC) Radar (SLC) Geographic Geographic

Radiometric format Single look pixel
Equally-spaced single 

look pixel in radar 
coordinates

Multilook and calibrated 
but with topographic 
features; data equally 
spaced on the ground

Science-ready

Figure 1.7  The Vertex interface from ASF displays remote sensing data matching your search criteria.  A 
list of images with low-resolution thumbnails appear on the right-hand side. A single-click on the latter 
produces the image footprint blue polygon on the map. 

Table 2  Radar image processing levels. The radar single look complex (SLC) projection means “as the 
radar” sees it (i.e., time of return of radar echoes), as opposed to a geographic coordinate projection.
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by clicking on https://www.asf.alaska.edu/sar-data/
palsar/alos-acquisition-maps/.  You will be led to the 
page shown in Figure 1.8.  If you are interested in 
ALOS/PALSAR-1 images that have been corrected for 
the effect of terrain (radiometric terrain correction), 
click on the last map icon to reach the page shown 
in Figure 1.9.

4  RADAR DATA PROCESSING WITH SNAP

IIn this section, we will use the SNAP software to 
open and display radar images, perform radiomet-
ric calibration, and filter the images to reduce speck-
le noise (for more information on speckle, refer to 
Chapter 2 of this Handbook, section 2.1.5).  We will 
then manipulate data with GDAL and load, display 
and perform analyses on the images in QGIS.

4.1  Read and Calibrate Data

To read in the images, let’s begin processing with 
Level 1.1 data. The 1.5 and RTC product data are 
already processed.  Can you do better using SNAP, 
bringing Level 1.1 to RTC?  

To display the image, first, drag and drop the Level 
1 file (either downloaded using the above steps or 
use the included images in the data.zip file for this 
training: ALPSRPO733337100-L1.1-->VOL-ALPSR-
PO73337100-H1.1__A) into the “Product Explorer” 
window. Double click the file in “Product Explorer”, 
then double click ”Bands”, then click any “Intensity” 
band. At this point, you should see your image within 
the SNAP window as shown in Figure 1.10.

To calibrate the images: 

• Go to the “Radar” menu at the top of the 
screen. Click “Radiometric,” and then “Cali-
brate.”  

• A window will pop up. Here, specify the in-
put band and output file location.

• In the same window, click the “Processing 
Parameters” tab. Select any “intensity” 
band. Select beta0 band in order to obtain 
radar backscatter as seen by the radar (i.e. 
in its geometry).

Figure 1.8  ASF coverage maps indicating the availability of ALOS-1 imagery for different processing levels.

Figure 1.9  Global availability of ALOS-1 radiometrically terrain corrected (RTC) imagery. The color ramp 
indicates the number of available processed scenes. 

https://www.asf.alaska.edu/sar-data/palsar/alos-acquisition-maps/
https://www.asf.alaska.edu/sar-data/palsar/alos-acquisition-maps/
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4.2  Apply Terrain Correction

The previous step calibrated the radiometry of the 
images, given the instrument parameters. Now, we seek 
to remove the impact of topography from the radar im-
age.  This is often called “radiometric terrain flattening”.

• Go to the “Radar” top menu and select “Radio-
metric” > ”Radiometric Terrain Flattening.”

In the “Processing Parameters” tab, select “Beta0” 
(See Figure 1.11). Click “Run”

• Note this brings the image from Beta0 to Gam-
ma0 by removing topographic effects on the 
backscatter.

4.3  Project Image to Ground Range

Up to this section, the images have been in radar 
viewing geometry (often called “slant range”). We need 
to convert this geometry to a geographic projection in 
order to use the images for scientific analysis and other 
applications. To perform the geographic projection:

• Click “Radar” > ”Geometric” > ”Terrain Correc-
tion” > ”Range-Doppler Terrain Correction”. A 
window will pop up.

• Select the input filtered band (the image you 
want to reproject) and specify the output.

• In “Processing parameters”, select Gamma0_
HH or Beta0.  If you want to get Gamma0 at this 
step, it is time efficient and provides a terrain 
flattened image. 

• Select the spatial resolution of output file (the 
default is radar sampling), and save useful 
bands, e.g., “Selected source band”, “DEM”, 
“projected local incidence angle”

• If after visual inspection, you realize that 
ground projection is incorrect, use the “Ra-
dar” > ”Geometric” > ”Terrain Correction” > 
”SAR-Simulation Terrain Correction” instead of 
the “Range-Doppler Terrain Correction”. This 
method uses a digital elevation model (DEM) 
to simulate a radar image that is subtracted 
from the observed image. The DEM is automat-
ically downloaded.

Figure 1.10  Viewing an intensity image in SNAP

Figure 1.11  Radiometric Terrain Flattening (sometimes called “Radiometric Terrain Correction”) in SNAP.
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Figure 1.12  Projecting a radar image from slant range to ground range in SNAP.

4.4  Converting from Linear Amplitude to 
Decibels (dB)

Radar images consist of a wide range of values, with 
more pixels at lower values.  To compress this range, 
improve image display, and reduce the impact of mul-
tiplicative noise, it is often preferred to represent image 
values in decibels.  To convert from linear (amplitude or 
intensity) values to decibels (dB), click in the top menu: 
“Raster” > ”Data Conversion” > ”Converts bands to/from 
dB” and select the input band and output files. To write 
the output, click ”File” > ”Export” > ”Geotiff”.

5  USING QGIS TO ESTIMATE MANGROVE 
BIOMASS

We will discuss two methods to estimate man-
grove biomass. The first will use canopy height 
derived from a Digital Elevation Model (DEM).  The 
second method uses the radar backscatter images 
generated in the previous exercise. As discussed in 
Chapter 6 of the SAR Handbook, radar backscatter 
is not a reliable indicator of biomass. Nonetheless, 
it is worth learning about the technique. Mangrove 
canopy height is well-estimated with digital eleva-
tion models derived from radar interferometry (e.g. 
SRTM and TanDEM-X). We can obtain the Shuttle 
Radar Topography Mission (SRTM) DEM from the 
USGS Explorer website (Figure 1.13):

• Go to: https://earthexplorer.usgs.gov/ and cre-
ate an account to download data

• In ”Search Criteria”, click “Use Map”

• Click “Clear Coordinates”, and generate a poly-
gon for an area of interest (see Figure 13)

• Go to the ”Data Sets” tab, and select the type of 
data needed. The SRTM DEM will be found in 
“Digital Elevation” > “SRTM”. Use the “SRTM 1 
Arc-Second Global”.  Note the upcoming NASA-
DEM will not work for this purpose.

• Click “Results” and select files for download. 
Alternatively, instead of downloading the DEM 
from earthexplorer.usgs.gov, you can use the 
DEM_SRTM file in the data.zip folder provided 
for this training. 

Figure 1.13  The USGS EarthExplorer interface

https://earthexplorer.usgs.gov/
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5.1  Reading in and Displaying SRTM DEM 
Data in QGIS

To visualize the DEM in QGIS, simply drag and drop 
the DEM file (by default in .tif format) into QGIS (Figure 
1.14). To adjust the colors, go to “properties” by right 
clicking on DEM file name in QGIS under ”Transparen-
cy” > ”Additional value” = 0. You can set the background 
to the Google Satellite image layer using the “XYZ Tiles“ 
setup, which is a QGIS plugin. Drag and drop available 
bands on the left-hand side in QGIS to set the layer or-
der, with the basemap below the band information lay-
ers. Finally, to select an area with mangroves, open the 
mangrove shapefile that can be found in the data.zip file 
(Mangroves > africa_mangrove.shp).

5.2  Loading in polygons to clip a raster in 
QGIS

This section explains how to use existing polygons 
(e.g. shapefiles) to extract values from a raster image. 
Follow the steps below:

• Drag and drop the mangrove shapefile into 
QGIS (Figure 1.15). You can change the polygon 
display color via a right click > “Properties”

• Cut the SRTM DEM with a polygon: Via the top 
menu: “Raster” > ”extraction” > ”Clip Raster by 
Mask Layer”

If QGIS fails to clip the SRTM DEM, you may need to 
use the command line. Copy and paste this text into a 
terminal window: 

gdalwarp -ot Float32 -of GTiff -tr 
0.00027778 -0.00027778 -tap -cut-

line /YourDirectoryWithShape-

File/africa_mangrove_withindem.

shp -crop_to_cutline -dstno-

data 0.0 / YourDirectoryWithS-

RTM /s05_e039_1arc_v3.tif / 

YourDirectoryWithOutputs /

s05_e039_1arc_v3_mangroves.tif 

You now have a canopy height map. With SRTM, el-
evation corresponds to basal area weighted height (also 
called Lorey’s height). The maximum height is generally 
1.6X this value. (Simard et al., 2019).  See the results in 
Figure 1.15.

Figure 1.14  View of the SRTM DEM overlaid on the Google Satellite baselayer in QGIS.

Figure 1.15  View of mangrove extents from an existing polygon (left) and via corresponding canopy 
height (right). 
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5.3  Applying the Generic Height-Based 
Allometric Equation

In this section, we will estimate mangrove biomass 
using canopy height estimates from SRTM DEM.  This 
can be easily achieved applying the allometric equation 
directly to the DEM.  There are several generic equations 
relating SRTM to canopy height and aboveground bio-
mass (Simard et al., 2019):

• Basal area weighted height: Hba ~ 1.08*SRTM

• Maximum canopy height: Hmax ~ 0.93*1.7*SRTM

• Aboveground Biomass: B ~ 3.25*Hba 
1.53 

To apply the allometric equation, follow these steps:

In QGIS, click on “Raster” in the top menu, then ”Ras-
ter Calculator” (see Figure 1.16)

• Define the output layer filename, location and 
format (Geotiff is a favorite)

• Enter the allometric equation for SRTM: 
B=3.25*Hba 

1.53, where Hba = 1.08*SRTM, and 
the equation becomes 3.25*(1.08*SRTM)1.53

5.4  Applying the Generic Backscatter-Based 
Allometric Equation

In this section, we will estimate mangrove biomass 
from radar backscatter. Keep in mind this method does 
not work very well for mangrove forests, as site-specific 
allometry may be required.  Here are generic (i.e. tai-
lored to tropical forests) equations relating aboveground 
biomass B in tons per hectare (t/ha) to backscatter in 
decibels (dB):

• so
HV(dB)~ -22.5 + 3.0 * ln(B)

• so
HV(linear)~a.Ba' (1-e-B.b) + c, where 

a=0.013682, a'=0.21116, b=0.051846, 
c=0.02192 (Yu & Saatchi, 2016). To 
simplify, use B(t/ha) = 0.5x10(40.2xs) 
with so

HV in linear units (m2/m2)

Note: There is no definitive relationship for mangroves 
because of their intermittent inundation and increased 
root absorption at high biomass levels. However, the 
logarithmic geometry remains.  To apply these equations 
to the science-ready radar images:

Figure 1.16  The results of performing band math within QGIS to obtain estimates of mangrove biomass.
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1. Upload either your SNAP-processed 
radar images (in dB), or the ALOS-PAL-
SAR mosaic (found in the data.
zip folder provided for this training: 
ALOS_Mosaic-20190325T215536Z-001) 
into QGIS (Figure 1.17).

Note: For simplicity and efficiency, let’s use the JAXA 
ALOS mosaics for this exercise. Remember to convert 
the mosaics’ digital number (DN) value to dB using the 
following JAXA-provided formula:

 so
HV(dB) = 20*log10(DN) – 83

2. In the top menu, click ”Raster”, then “Raster 
Calculator”.

3. Enter the formula in ”Raster Calculator Expres-
sion”.  Double-click on the band name to insert 
an expression.

4. The JAXA formula to convert DN to dB results in 
images that are in dB. However, the allometric 
equation that we used is in linear units.  Always 
be aware of units used, as biomass allometry 
could also be using dB.

5. In top menu, click on ”Raster” and then “Ras-
ter Calculator”. Enter the allometric equation 
via the “Raster Calculator Expression”, i.e.  
0.5*10(40.2*”RasterImage”) with “RasterIm-
age” in linear units (m2/m2). That means that 
if using a dB image, the equations become: 
0.5*10*(40.2*10^(”RasterImage”/10)) 

1. 6. Use the same mangrove shapefile you used 
in the SRTM DEM portion of the exercise to ex-
tract the mangrove extent from the image.  Use 
an older version of QGIS (currently not working 
in 3.0 and 3.2) or copy/paste the following into 
your terminal window to obtain Figure 1.18: 

gdalwarp -ot Float32 -of GTiff -tr 
0.0002222 -0.0002222 -tap -cut-

line /DirectoryWherePolygonLocat-

ed/africa_mangrove_withindem.shp 

-crop_to_cutline /DirectoryWhere-

BiomassTransformedImageIsLocated/

S04E039_07_sl_HV_bcksctr_AGB.tif /

YourOutputDirectory/S04E039_07_

sl_HV_bcksctr_AGB_mangroves.tif

Figure 1.17  ALOS-1 JAXA mosaic using HV polarization. 

Figure 1.18 Aboveground biomass obtained from the backscatter curve. Clearly, the retrieved biomass 
is much lower than that obtained with SRTM.  Backscatter is known to be limited in mangrove forest, 
changing with water level and mangrove types, sometimes decreasing at biomass above 100t/ha in red 
mangroves.  You may have to derive your own site-specific allometric equation relating biomass to either 
height or backscatter (See the next section for further information).
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5.5  Deriving Your Own Allometric Equations

To derive site-specific allometric equations relating 
canopy height or radar backscatter to in situ biomass, we 
must obtain field data with latitude, longitude and bio-
mass values, which can be formatted into columns of a 
.csv (comma-separated values) delimited text file.  Once 
the data is formatted as a .csv, it can be taken into QGIS 
to extract radar image or interferometric height values:

1. Save the data as a .csv file.

2. Read into QGIS: In the top menu: click “Layer” > 
”Add Layer” > ”Add Delimited Text Layer”. Then 
navigate to your CSV file and follow the instruc-
tions.  You may need to specify the projection 
in “Geometry”.

3. If you have installed the QGIS “Point Sampling 
Tool” plugin, click on its icon and select your 
CSV layer. 

4. Select the attributes you want to preserve in the 
output file. These must include, for example, 
biomass and backscatter. 

5. Define your “Output point vector layer”. Via the 
pop-up window, select “Comma Separated 
Values (*.csv)” as the output format.

6. Open your new CSV file in Excel and fit an equa-
tion.

7. In QGIS, apply the new equation to the radar 
backscatter image using the “Raster Calculator”, 
as explained in section 5.4.

8. At this point, you can independently generate 
your own biomass map.

9. Using this same method, you can also validate 
your biomass maps using available field data.

5.6  Monitoring Mangrove Forest Loss and 
Gain

While radar backscatter is not the best variable for 
estimating biomass in mangrove forests, one can use 
it to monitor mangrove forest loss and gain over time. 
To do this, you need to open several images into QGIS 
and use either band math to subtract images and detect 
change, or a 3-image color composite to visualize chang-
es.  Let’s try the latter first:

1. Load 3 images from different times into 
QGIS, e.g. JERS-1 (1996), ALOS-1(2007) and 
ALOS-2 (2017) mosaic tiles.

2. From the top menu, click “Raster” > ”Miscel-
laneous” > ”Build Virtual Raster”. A window 
pops-up (See Figure 1.19)

3. Select the output parameters, for example, 
“resolution”=highest. In the “Advanced pa-
rameters” tab, select “Bilinear” (note that 
this may decrease resolution slightly). Select 
bands by clicking on “Input layers”.

Note the default band order.  To change the order, 
use the temporary file called “buildvrtInputFiles.
txt” generated by QGIS, which is shown in the 
“GDAL/OGR console call” frame.  Copy and edit 
that file.  You can relaunch the virtual raster from 
the command line using your newly-edited file. 

4. Be sure to select the “Place each input file 
into a separate band” box, and click “Run”.

You can load the virtual raster into QGIS and change 

Figure 1.19 Generating a “virtual raster” from 3 bands to make a color composite image representing 
change over time.

colors using the “Properties” menu by right clicking on 
the virtual raster. Then, set all bands to the same range 
of values. In dB, this should be around -20 and -5, and 
-25 and -10 for HH and HV respectively. You now have 
a picture where colors represent change between im-
ages (Figure 1.20).  If red, change occurred between 
the first input band and the others. If green, change 
occurred only for the 2nd band. (i.e. change occurred 
between band 1 and 2; however, change again may be 
returning to original land cover between image 2 and 
3.) If blue, there may have been some regeneration. 
Note: because we used HH (1996 mosaic only has HH), 
the radar signal is strongly impacted by soil moisture 
and inundations.  Overall, the color changes seen 
here are in agricultural areas and observed changes 
may be due to crop maturity at the time of imaging. 
To accurately monitor changes, generate your time-se-
ries from either ALOS or Sentinel-1 time-series data via 
SNAP.  You can choose acquisition dates corresponding 
to plant phenology and climatic trends.  We found no 
significant changes in mangrove forests for the study 
region. Did you?



THE SAR HANDBOOK 277

Figure 1.20 RGB  image composite of 1997, 2007 and 2017.
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5.7  Determining change areas with simple 
thresholds

While a more thorough statistical analysis will pro-
vide additional insight on gain and loss uncertainty, the 
extent of change (e.g. loss) can be determined by a sim-
ple threshold. In QGIS, use ”Raster” > ”Raster Calculator” 
to compute the difference image between two datasets 
from different years.  We will use ALOS 2007 minus 1996 
as a test of a small area of change in a forest.   To deter-
mine a threshold that will indicate whether an area has 
changed or not, we can begin with a visual analysis.  If 
you find an area that has changed, you can draw a poly-
gon around it and used the observed statistics of the dif-
ference image to determine the appropriate threshold.  

To draw the polygon of observed change, follow these 
steps:

• In the top menu, click “Layer” > ”Create Layer” > 
”New Shapefile Layer”

• Define the “Geometry Type” as “polygon”.

• Define the output filename in “File Name” and 
in “New Field”, use whole numbers. We’ll use 
1 for change.

• In the “Layers” window, click on this new layer.

• In the top menu, click ”Layer” > ”Toggle Edit-
ing”. You can now add features within the file 
by clicking in the top menu: “Edit” > ”Add poly-
gon feature”.

• Draw a polygon around observed changes in 
the difference map with a mouse click on the 
vertices of the polygon. To finish the polygon 
geometry, right click. Don’t forget to save your 
changes by clicking “Toggle Editing” again.

To populate the polygons with attribute values 
containing statistics from the difference image, use 
“SAGA” in the toolbox.  To see the toolbox, click “Pro-
cessing” in the top menu and then “Toolbox”. Navi-
gate to “SAGA” > ”Vector-Raster” > ”Raster Statistics 
for polygons”.  

• Select the difference image for “Grids”, then 
your change polygon for “Polygons”, and select 
your favorite statistical parameters (include 
mean and standard deviation).  You should use 
these values to select the threshold that deter-

mines if a change has occurred or not.

You can also train areas that have not changed to 
improve performance and prepare for an accuracy 
assessment.

• A new polygon band is created with the stats as 
an attribute.  Right click on the new band and 
select view “Attribute table”.

Then, use “Raster” > ”Raster Calculator” to make a 
change map. The equation can, for example, have the 
following form: ("S04E039_07minus96@1"<-7.0) and 
("S04E039_07_sl_HH_dB@1">-15).  The logical opera-
tors (<, >, and, etc) select all values smaller than -7 (i.e. 
change) that are above -15 in 2007.  The latter condition 
removes some water surfaces when using HH. Optional-
ly, you can build your own water mask and use it instead. 
To clean up the change map, use the “Majority Filter” 
found in “SAGA” > ”Raster Filter”.  A filter of radius 1 is 
sufficient to remove false changes that may results from 
radar speckle noise.  Try again, but filter the radar images 
with the “Multidirectional Lee Filter” found in “SAGA” > 
”Raster Filter”.

Figure 1.21 shows the resulting change map over-
laid on Google Earth imagery.  In this case, a road seems 
to have been constructed between 1996 and 2007, 
which may have led to further forest disturbance after 
2007.

6  TRAINING MODULE SUMMARY

After completing this training module, you have suc-
cessfully:

1. Processed raw level 1.1 ALOS images using the 
ESA Sentinel toolbox (SNAP):

• Opened, displayed, and calibrated images

• Radiometric terrain flattening

• Ground registration

• Performed image filtering

2. Identified archives of radar datasets:

• ASF (ALOS and Sentinel), JAXA (ALOS mosaics), 
NASA/USGS (SRTM DEM, etc)

3. Performed data processing and analysis in QGIS:

• Cut images to mangrove polygons

• Manually generated polygons delineating 
features of interest

• Derived statistics to populate polygon attri-
butes

• Converted radar images to dB

• Filtered raster images

• Performed computations with raster layers

• Displayed resultant color-composite images

4. Estimated biomass

• Used SRTM DEM to estimate canopy height 
and biomass of mangrove forests (Note: 
You can also use DEMs from other sensors, 
such as TanDEM-X)

• Used ALOS backscatter to estimate man-
grove biomass (with limited accuracy) 

5. Used radar backscatter from different time peri-
ods (e.g. 1996, 2007 and 2017) to map land cover 
change

• We did not find significant loss in the man-
grove forests examined, but did test the 
methodology on inland forests

Figure 1.19 Land use change (disturbance map) 
produced with threshold calculations on time-
series imagery.



THE SAR HANDBOOK 279



280 THE SAR HANDBOOK

Funding for this project was provided by the NASA-SERVIR program. The author would also like to 
thank reviewers for the help in improving this chapter.

DR. HANS-ERIK ANDERSEN received the Ph.D. degree in quantitative resource 
management from the University of Washington, Seattle, WA, USA. He was a Research Scientist 
with the University of Washington Precision Forestry Cooperative from 2003 to 2006, where he 
developed applications of airborne lidar and interferometric SAR for forest inventory and wild-
fire fuels assessment. He joined the USDA Forest Service Pacific Northwest (PNW) Research 
Station as a Research Forester in 2006, based in Anchorage, AK, USA, where he worked on the 
development of multi-level forest inventory designs for remote regions utilizing both field and 
remote sensing data. Since 2011, he has been a Team Leader of the Vegetation Monitoring and 
Remote Sensing (VMaRS) team within the PNW Resource Monitoring and Assessment Pro-
gram, based in Seattle, WA, USA

Andersen, Hans-Erik. “Sampling Designs for SAR-Assisted Forest Biomass Surveys.” SAR Handbook: Comprehensive Methodologies 
for Forest Monitoring and Biomass Estimation. Eds. Flores, A., Herndon, K., Thapa, R., Cherrington, E. NASA 2019. DOI: 
10.25966/3k0h-8908



THE SAR HANDBOOK 281

7.1  Background 
International efforts to reduce carbon emissions 

from the forest sector have created increased de-
mands on the capabilities of national and regional 
forest monitoring systems to provide timely, accurate 
information on forest carbon stocks and changes due 
to deforestation and degradation (GFOI 2016). At the 
same time, it is recognized that traditional forest inven-
tory sampling designs, which typically rely heavily on 
large numbers of field plot measurements distributed 
over a region, are difficult or impossible to implement 
in many remote, underdeveloped regions of the world 
(e.g., high latitudes, tropics) due to logistical complexity 
and/or high costs. For this reason, there is increasing 
interest in the development of new sampling designs 
for the monitoring of forest biomass/carbon that can 
efficiently utilize the low-cost mapped information on 
forest structure (biomass/carbon), at the global scale, 
that is increasingly available with the recent and future 
launches of several satellite SAR missions, such as Ad-
vanced Land Observation Satellite (ALOS) Phased Array 
type L-band Synthetic Aperture Radar (PALSAR) (Hoek-
man et al. 2010) and  ALOS-2 PALSAR-2 (JAXA 2014). 
For this reason, sampling designs and statistical mod-
elling/estimation frameworks are increasingly sought 
with the following properties: 

(1) Provide the basis for sound, statistically-rigorous as-
sessment of uncertainty (e.g., Gregoire et al. 2016)

(2) Use a fewer number of expensive field plots and 
more extensive, efficient use of less-expensive 
remotely-sensed information (including airborne 
light detection and radar (lidar), satellite-based 
L-band SAR)

(3) Provide flexibility to accommodate a variety of 
field plot configurations and remote sensing data 
acquisition strategies/resolutions

This chapter discusses several important consider-
ations in the assessment of uncertainty in forest bio-
mass surveys and how these considerations should fac-
tor into the design and implementation of a sampling 
design for biomass inventory and monitoring using 
L-band spaceborne SAR in remote regions. 

7.1.1  SOURCES OF UNCERTAINTY IN A 
CARBON INVENTORY AND MONITORING 
PROGRAM

There are three primary sources of variability in the 
context of a forest carbon inventory and monitoring 
system: (1) measurement error, (2) modelling error, 
and (3) sampling error. In making the choice of a field 
measurement protocol, sampling design, and infer-
ential framework, all three types of errors should be 
considered. In the context of carbon monitoring pro-

grams, measurement error—or discrepancy between 
a recorded field measurement and the expected value 
of the measurement as defined by documented proto-
col—is often introduced through inadequate training 
or lack of adherence to protocol. In practice, measure-
ment error is usually assessed and mitigated (if possi-
ble) through quality assurance/quality control (QA/QC) 
procedures (that can be quite costly to implement), and 
otherwise is assumed to be minimal in comparison to 
the measurement itself (Gregoire & Valentine 2008). 

In the context of forest carbon monitoring using 
remote sensing, modelling error is introduced in two 
ways: (1) the use of allometric models to estimate 
tree-level biomass/carbon using various tree measure-
ments (diameter at breast height, height, etc.), and (2) 
the use of models relating the remotely-sensed mea-
surement (SAR backscatter, air photo-derived canopy 
height and cover, etc.) to the plot-level biomass/carbon. 

7.1.2  ALLOMETRIC MODELS FOR BIOMASS

Given the difficulty of measuring aboveground 
tree biomass directly, virtually all carbon monitoring 
programs rely upon allometric models to convert tree 
measurements obtained in a forest inventory (e.g., 
height, stem diameter) to aboveground biomass (or 
carbon) estimates. Due to the relatively small samples 

Sampling designs that efficiently integrate information from plot data and a variety of remote sensing systems, including spaceborne SAR, are required 
to support cost-effective monitoring of forest biomass/carbon at regional and global scales. In particular, sampling designs and statistical modelling/
estimation frameworks are desired that provide sound, statistically-rigorous assessments of uncertainty and make efficient use of expensive field 
plot data and more extensive use of less-expensive remotely-sensed information. In addition, these designs should also provide the flexibility to 
accommodate a variety of field plot configurations and remote sensing data acquisition strategies/resolutions. This chapter discusses several important 
considerations in quantifying uncertainty in multi-level sampling designs, including both the model-assisted and model-based inferential frameworks, 
and use simulation to illustrate the statistical properties of the estimators associated with these designs, with the goal of informing the design of forest 
inventory and monitoring programs in remote regions.

Hans-Erik Andersen, Research Forester/Vegetation Monitoring and Remote Sensing (VMaRS) Team Leader, USDA Forest Service
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used to develop these models, and the wide range of 
variability in wood density and height/diameter re-
lationships across the geographic range of trees, it is 
widely acknowledged that lack-of-fit in the allometric 
models used to estimate biomass can contribute sig-
nificantly to the true overall error budget for carbon 
monitoring—although national forest inventory pro-
grams often do not explicitly account for this error in 
official reports. While several recent efforts have made 
progress in improving the quality of allometric models 
used in national- or regional-scale carbon monitoring 
programs (Chojnacky et al. 2014, Chave et al. 2014) and 
the emergence of new technologies, such as terrestrial 
laser scanning (Calders et al. 2015) hold promise for 
improving the efficiency of field measurements, uncer-
tainty due to allometric modelling remains the most dif-
ficult source of error to account for in large scale carbon 
monitoring programs (Duncanson et al. 2017). 

7.1.3  ESTIMATION OF BIOMASS USING SAR 

Due to its sensitivity to forest biomass, global 
coverage, and capability to penetrate cloud cover, 
L-band satellite radar has been used extensively as 
an auxiliary source of data to support forest moni-
toring programs across a range of biomes (Ryan et al. 
2011, Hoekman et al. 2010). L-band dual-polarization 
(HH, HV) backscatter has been shown to be well-cor-
related with forest biomass up to approximately 150 
Mg/ha, lending it particular utility in assessing forest 
biomass levels in low-biomass forests character-
istic of high-latitude boreal forest biome as well as 
semi-arid, savanna forests of the tropics (Atwood et 
al. 2014, Tanase et al. 2014). However, it has been 
noted that generalizing relationships between L-band 
radar backscatter and biomass across forest types 
is inadvisable since radar backscatter from a forest 
scene is a function of numerous forest structural 
characteristics (stem density, height, stem diame-
ter), as well as other scene properties (soil moisture, 
slope, etc.) with varying correlation to tree biomass 
(Woodhouse et al. 2012). Although the L-band back-
scatter signal saturates at higher biomass levels (>150 
Mg/ha), limiting its usefulness as a stand-alone cor-
relate for biomass in high-biomass forests, there is 
evidence to suggest that including additional forest 
structure information, perhaps obtained from lidar 

or repeat-pass interferometry (Treuhaft and Sique-
ira 2000), can help to decouple the complex rela-
tionships between backscatter and forest structural 
attributes that can obscure the biomass-backscatter 
signal at higher biomass levels (Joshi et al. 2017). 

Once the measurement protocols and modelling 
frameworks have been established in a forest carbon 
monitoring system, the next step is determining the 
proper sampling design to obtain the required pre-
cision for carbon estimators within the limitations 
of the available resources. Although it is typical to 
only be able to directly measure trees (and estimate 
biomass via allometry) on a very limited portion of 
the landscape—leading the third source of variabil-
ity in carbon estimates, sampling error—the use 
of remote sensing provides a means of obtaining a 
much more comprehensive picture of forest structure 
across an area of interest. This chapter explores sam-
pling approaches that utilize a combination of field 
data and auxiliary information—including wall-to-
wall satellite SAR imagery and sampled high-resolu-
tion (e.g., lidar) in multilevel inventory designs—to 
estimate support forest monitoring programs. 

7.2  Use of Remote Sensing 
to Support Carbon Surveys
7.2.1  MODES OF INFERENCE

Traditionally, forest inventory and monitoring 
programs have been based on the principles of de-
sign-based inference, where field plots were distribut-
ed as a probability sample, and each unit in the pop-
ulation of interest has a positive probability of being 
selected in a sample. In design-based sampling, the 
population is considered fixed, and all uncertainty 
in the estimation of a population parameter (total 
biomass, volume, etc.) is due to variability between 
randomly drawn samples from the population. 
Depending on the objectives of the study or inven-
tory, probabilities of selection can vary across the 
population to reduce costs or increase the statistical 
precision of the estimates. For example, in stratified 
sampling, the units of the population can be grouped 
into homogeneous strata and the population-level 
estimate is calculated as a weighted average of the 
stratum-level estimates with the weights based on 

stratum sizes. Model-assisted inference is a means of 
using lower-cost auxiliary data (e.g., maps, imagery, 
photo plots) and a model describing the relationship 
between auxiliary measurements and inventory pa-
rameters to improve precision of estimates within the 
design-based inferential paradigm. In model-assist-
ed approaches, data at every level are still collected 
as probability samples, but the number of field plots 
required to achieve a given level of precision can be 
reduced significantly (compared to designs using only 
field plots) if there is a strong correlation between 
auxiliary data and inventory parameters. 

In contrast, model-based inference is usually based 
on the so-called superpopulation model, where each 
value from an element in the population is con-
sidered a realization of a random variable with a 
specific probability distribution. Therefore, all pop-
ulation-level values (e.g., total or mean biomass, 
etc.) are also considered random variables. In the 
model-based inferential paradigm, the uncertainty in 
the estimation of a population parameter is due to 
randomness in the values observed for each popu-
lation element. Because the validity of inferences in 
the model-based paradigm are not dependent upon 
a random (probability) sample, it can be applied in 
situations where collecting a sufficiently large proba-
bility sample of field plots is either too expensive or 
logistically difficult, such as estimation within small 
areas or remote regions lacking transportation infra-
structure. 

Due to very different underlying assumptions, 
the results from model-based and model-assisted 
approaches are difficult to compare directly. The ad-
vantage of model-based approaches is that there is 
no requirement that the field plots be a probability 
sample, while this is a requirement of model-assisted 
approaches. However, inferences in the model-based 
context are conditional on the model and may pro-
duce severely biased estimators in cases where the 
model is developed using an unrepresentative sam-
ple. In contrast, design-based (including model-as-
sisted) estimators can, from a practical standpoint, 
be considered unbiased (for reasonably large sample 
sizes) regardless of the model that is used. Obviously, 
in a regional or national forest inventory and moni-
toring context—where estimates are often used to 



THE SAR HANDBOOK 283

support forest policy decisions and fulfill Reducing 
Emissions from Deforestation and forest Degradation 
(REDD+) and Net Green House Gas (NGHG) moni-
toring and reporting requirements—the quality of 
unbiased data is critical and the model-assisted ap-
proach may be more appropriate. Model-based ap-
proaches may be more appropriate for assessment of 
remote, or small, inadequately sampled areas, or to 
support tactical-level forest management decisions. 

7.3  Exercise 1: Simulating 
an Artificial Population 

Simulation can be a useful approach to gain in-
sight into the statistical properties of various survey 
estimators, especially in the case of somewhat com-
plex, multi-level sampling designs (Ene et al. 2016, 
Saarela et al. 2017). Here, simulation implemented in 
the R statistical software package is used to demon-
strate the implementation of several SAR-assisted, 
multi-level sampling designs. Proficiency in R pro-
gramming is not required to carry out the exercises, 
since the scripts can be run by simply copying and 
pasting the code at the R command line. 

When generating a simulated population, it is de-
sirable to include realistic correlations between the 
response variable (e.g., biomass) and the predictor 
variables used in the inventory. While a multivariate 
normal distribution can be used to model correlation 
between several variables, it may also be important 
for the purposes of gaining insight into the properties 
of the point and variance estimators, as well as im-
plications for sample size and modelling effort, that 

these variables have more realistic marginal distribu-
tions (gamma, exponential, etc.). A copula function is 
a useful mathematical tool to simulate a population 
with specified multivariate correlation structure and 
marginal distributions (Ene et al. 2012, Nelsen 2006). 
While an in-depth discussion of copula models is out-
side the scope of this chapter, they essentially allow for 
expressing multivariate distributions in terms of their 
corresponding univariate marginal distributions and a 
copula function. In this exercise, a copula function is 
used to simulate a large population where each ele-
ment has a value for forest/nonforest classification, 
biomass (Mg/ha), a lidar-based measurement (func-
tion of lidar-derived height and cover), and a SAR-
based measurement (function of HH and HV backscat-
ter). Realistic marginal distributions and correlation 
structure between remote sensing measurements 
and field-based biomass were developed based on an 
analysis of airborne lidar, SAR, and field biomass data 
from a site in interior Alaska (Andersen et al. 2013). In 
order to introduce realistic spatial heterogeneity across 
the simulated area, a binary random field (150 × 150 
grid cells) generated an image with a realistic simulated 
spatial distribution of “forest” and “nonforest” areas. 
The grid cells within the simulated forest/nonforest im-
age were then populated with elements from the simu-
lated population generated using the copula function. 
In this way, each element in the image had a value for 
forest/nonforest, biomass, lidar, and SAR, and the sim-
ulated population had realistic marginal distributions, 
correlation structure, and long-range spatial heteroge-
neity (Figs. 7.1 and 7.2).  

7.3.1  DESIGN-BASED ESTIMATION

7.3.1.1  Simple Random Sampling

Simple random sampling (SRS) represents the 
most fundamental type of design-based sampling 
and is often used as the basis of comparison for more 
complex sampling designs. Given a probability sam-
ple of elements of size n from a population of size N, 
where a forest attribute of interest (Yi) is obtained for 
each element i, the SRS estimator of the population 
mean is given by the sample mean:

 µ̂SRS = µ̂ma ,1=Y =
1
n

Yij=1
n∑  (7.1)

and the variance estimator is given by

 V̂ µ̂SRS( )= 1
n n−1( )

Yi−Y( )2i=1
n∑  (7.2)

7.3.3  POST-STRATIFICATION

The precision of an SRS estimator can be increased 
at the estimation stage if the population can be strat-
ified in such a way that plots with similar values for 
an inventory parameter are grouped together in the 
same class or stratum, a technique called post-strat-
ification. In post-stratification, the estimator of the 
population mean is given by

 µ̂PS = Wh yhh∑  (7.3)

with a variance estimator:

V̂ µ̂PS( )= 1
n

( WhnhV ( yhh∑ )+ 1

n2
1−Wh( )nhV ( yh )  ,h∑  (7.4)

where Wh is the proportion of the population in 
stratum h (i.e., Wh = ) and V ( yh )) is the variance of 
the mean of plots in stratum h. 

Table 7.1 Description of strengths, weaknesses and main applications of the models addressed in this chapter.

INTERFERENCE TYPE DESCRIPTION STRENGTHS WEAKNESSES APPLICATION

Design-based

All data collected as a probability sample, 
Population is considered fixed; uncertainty 
is due to variability between randomly-
drawn samples

Simple, well- documented designs and 
formulae for point and variance estimators; 
design-unbiased estimation; reliable 
confidence intervals 

Requirement of probability sample may be 
logistically infeasible to cost-prohibitive in 
some cases; Less efficient if strongly-
correlated auxiliary data is available

National forest inventories, 
National Greenhouse Gas inventories

Model-assisted

Uses lower-cost auxiliary data and models 
to improve precision of estimates within the 
design-based paradigm; data at every level 
are still collected as probability samples

Increased efficiency (fewer field plots for 
given level of precision) and lower cost 
if there is a strong correlation between 
auxiliary data and inventory parameters

Probability samples required at every level 
of the design; Form of estimators potentially 
very complex; Only design-unbiased for 
large samples;  confidence intervals less 
reliable for small samples

REDD+ applications,
NFI in remote regions

Model-based

Population values and parameters are 
random variables. Uncertainty due to 
randomness in the values observed for each 
population element. 

Probability sampling not required; 
potentially much less expensive to 
implement than design-based approaches

Not design-unbiased; Estimators based on 
models developed with unrepresentative 
samples can be severely biased

Small area estimation; Tactical forest 
management; Inventory over large, remote 
regions lacking transportation infrastructure



284 THE SAR HANDBOOK

7.4  Exercise 2: Properties of 
Estimators via Simulation

The statistical properties of the various estimators 
can be assessed using the simulated population de-
veloped previously. At each iteration, a simple ran-
dom sample of n elements is drawn from the pop-
ulation, and the point estimator μ and the variance 
estimator V(μ) are calculated.

Given that we know the actual population mean 
μ, we can then calculate the mean percent bias of the 
point estimator

 µ̂iterations−µ( ) µ×100%  , (7.5)

the relative standard error of the point estimator 

 SD µ̂iterations( ) µ̂iterations×100%  , (7.6)

and the empirical coverage probability of the 95% 
confidence interval for the point estimator: 

  Prob µ̂−t 0.025,n2−2p( ) V̂ µ̂( )<µ<µ̂+ t 0.975,n2−2p( ) V̂ µ̂( )⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
×100%  . (7.7)

The empirical coverage probability provides an in-
dication of how reliable (i.e., unbiased) the variance 
estimator is for a parameter. An empirical coverage 
probability (95% CP) near 95% is an indicator that the 
95% confidence intervals (CIs) calculated using this 
estimator are reliable. Empirical coverage probabili-
ties of less than 95% indicate that the calculated 95% 
CIs are giving a falsely precise estimate of uncertainty, 
while coverage probabilities greater than 95% indi-
cate that the 95% CIs obtained from this estimator are 
overly conservative. 

When the SRS estimator is assessed via simula-
tion, the results indicate the increase in precision due 
to increasing sample size, as well as the improvement 
in 95% coverage probability with increasing sample 
size (it is well-documented that variance estimators 
can be biased for small samples drawn from high-
ly-skewed populations). 

When using a forest/non-forest layer for 
post-stratification of the SRS sample, the precision is 
increased a small amount. 

7.4.1  REGRESSION ESTIMATORS

Model-assisted estimators essentially provide a 
means to use models based on auxiliary data (e.g., 
remote sensing) to improve inferences within the 

Forest/Nonforest Lidar-based Data

SAR-based Data Tree Biomass

Figure 7.2 Simulated marginal distributions of biomass, lidar-based measurements, SAR-based 
measurements, and forest/nonforest classification. Exponential distributions used to model 
biomass, lidar, and SAR variables; Bernoulli distribution used to model forest/non-forest class. 

Table 7.2 Correlation matrix for a simulated population

Biomass Lidar-based SAR-based Forest/Nonforest

Biomass 1.00 0.88 0.66 0.36

Lidar-based 0.88 1.00 0.56 0.30

SAR-based 0.66 0.56 1.00 0.15

Forest/Nonforest 0.36 0.30 0.15 1.00

Figure 7.1 Simulated population with biomass, forest/nonforest, lidar-based measurements, and 
SAR-based measurements. Simulated plots (red) are shown overlaid on tree biomass image.
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design-based inferential framework (McRoberts 
et al. 2014). In other words, random (probability) 
sampling at all levels in the design is the basis for all 
inference. Model-assisted regression estimators are 
based on a model of the relationship between the 
forest attribute of interest (e.g., biomass/carbon), Y, 
and a vector X, of auxiliary variables, formulated as,

 Yi = f(Xi ; β) + εi  , (7.8)

where f(Xi;β) expresses the mean of Y given observa-
tion of X, β are the parameters to be estimated, and 
εi is a random residual term. In practice, the entire 
population is not observed, but the parameters of 
the regression relationship β̂  based on a sample 
of the population is estimated. Then this regression 
model and observed vector of auxiliary variables are 
used to predict the inventory attribute for a particular 
unit of the population:

 Ŷi = f X i ;β̂( )  . (7.9)

A regression estimator for the population mean, 
µ̂ma ,1  when a single source of wall-to-wall auxiliary 
information (e.g., satellite SAR or spectral imagery) is 
given by the following expression:

     µ̂ma ,1=
1
N

Ŷi+
1
n

Yi−Ŷi( )i=1
n∑j=1

N∑   , (7.10)

where N is the population size, n is the sample size, 
and Ŷi  is obtained from Eq. 7.9 (Särndal et al. 1992). 
The first right-hand term in this equation is the sum 
of the model predictions for the entire population, 
and the second right-hand term is a correction term 
which, when added to the first term, compensates 
for model bias. The regression estimator can be 
expressed in different forms, but the above formu-
lation is the easiest form to interpret in our context, 
since the model predictions Ŷi  are based on remotely 
sensed imagery or measurements and the second 
term is the mean of the residuals observed at the 
field plots. For n much smaller than N, an approxi-
mately unbiased estimator of the corresponding vari-
ance is formulated as:

 V̂ µ̂ma ,1( )= 1
n n−1( )

Yi−Ŷi( )2i=1
n∑   . (7.11)

The advantage of the regression estimator over the 
SRS estimator is that the variance estimator is based 
on residuals, Yi−Ŷi  rather than differences,  Yi−Y , 
between observations and their mean. Therefore, it 
can be seen that the degree to which the relationship 
with X explains variability in Y will determine the gain 
in precision from using the regression estimator as 
opposed to the SRS estimator. It should be noted that 
post-stratification—where population-level stra-
ta proportions are used to improve precision of an 
estimate in the estimation (rather than the design) 
stage—is a special case of regression estimation 
where the predictors are categorical variables (for 
example, satellite image-based landcover classes). 

7.5  Exercise 3: Simulation-
Based Assessment of 
Model-Assisted Estimator 
With a Single Source Of 
Auxiliary Data

The statistical properties of the model-assisted 
estimator with one source of auxiliary data (assumed 
to be collected wall-to-wall, such as SAR imagery) 
and various sample sizes for field plots (Table 7.5). 
It is evident from these results that there is a small 
reduction in the standard error (in comparison to the 
SRS estimator) through including a single auxiliary 

that is moderately correlated with biomass (Man-
dallaz et al. 2013). It is noted that the sampling distri-
bution of this variance estimator is bell-shaped, but 
with heavier tails than a normal distribution. There-
fore, this approach was followed and confidence in-
tervals calculated using a student’s t-distribution with 
n2 – 2p degrees of freedom. 

7.5.1  MODEL-BASED APPROACHES

Following McRoberts et al. (2010) and Saarela et al. 
(2016) if Y is the random variable (Above Ground Bio-
mass (AGB)) with a mean μ and standard deviation σ, 
the observed AGB value at the ith pixel (yi) can be rep-
resented as 

 yi = μi + Єi  , (7.12)

where Єi~N(0,σ2). The mean AGB at the ith pixel is then 
given by

 μi = f(Xi;β)  ,  (7.13)

which is estimated by

 µ̂i = f Xi ;β̂( )  , (7.14)

where Xi is the lidar-based predictor variable at the ith 
pixel, and β̂ is the vector of p predicted regression co-
efficients. The model-based estimate of mean AGB over 
the entire areas is:

 µU
!
= ′ιUXUβ̂   , (7.15)

where ′ιU is an N-length column vector where every 
element equals 1/N, XU is an N × (p + 1) matrix of satel-
lite auxiliary variables available for each element in the 
population U. The variance of the model-based mean 

Table 7.3 Statistical properties (bias, relative 
standard error, and 95% coverage probability) 
for SRS estimator (based on 1,000 iterations).

Table 7.4 Statistical properties (bias, 
relative standard error, and 95% 
coverage probability) for post-stratified 
estimator (based on 1,000 iterations).

Bias (%) SE (%) 95% CP

n

25 0.4% 20.1% 92.1%

50 -0.3% 15.1% 92.4%

100 -0.3% 10.6% 93.2%

200 0.4% 7.0% 95.2%

Bias (%) SE (%) 95% CP

n

25 0.0% 19.2% 91.5%

50 -0.5% 13.3% 94.7%

100 0.2% 9.8% 93.1%

200 0.3% 6.7% 94.2%
Table 7.5  Statistical properties of a model-assisted 
regression estimator with single-auxiliary (bias, 
relative standard error, 95% coverage probability) 
for four different phase-1 sample sizes (250, 500, 
1,000, 2,000) and four different phase-2 sample 
sizes (25, 50, 100, 200), based on 1,000 iterations.

Bias (%) SE (%) 95% CP

n2

25 0.3% 16.1% 90.6%

50 0.4% 11.5% 92.7%

100 -0.1% 7.8% 93.5%

200 0.1% 5.5% 94.4%
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AGB estimate is given by

 V µU
!⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= ′ιUXUVβ̂ ′XUιU   , (7.16)

where Vβ̂ is the variance-covariance matrix for the re-
gression model parameter estimates β̂. For example, in 
the case of p = 2, Vβ̂ is given by:

 
V̂ β̂0( ) Cov! β̂0,β̂1( )

Cov! β̂1,β̂0( ) V̂ β̂1( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

  . (7.17)

It should be noted that when using internal mod-
els developed from an SRS sample at all levels of the 
sampling design, the model-based estimator will yield 
virtually the same point estimate and variance estima-
tor as the model-assisted estimator. However, as noted 
above, the assumptions behind these estimators differ 
and provide more flexibility in the application of the 
model-based estimator (e.g., application to nonprob-
ability samples). Care must be taken to ensure that 
models are based on a representative (if not random) 
sample to reduce bias in the point and variance estima-
tors (see Exercise 4). 

7.6  Exercise 4: Simulation-
Based Assessment of 
Model-Based Estimator with 
One Source Of Auxiliary 
Data

In order to illustrate the perils of an incorrectly spec-
ified model in the context of model-based estimation, 
in this exercise, the model is developed from a sample 
selected only from the forested plots within the popu-
lation, and then used to estimate biomass—using both 

model-assisted and model-based estimators—over 
the entire population. Table 7.6 indicates that use of 
an incorrectly specific model (based on an unrepresen-
tative sample) can lead to significant bias in the point 
estimates (28% in this case), while the model-assisted 
estimator remains virtually unbiased (0.5%).

7.6.1  SAMPLING DESIGNS WITH MULTIPLE 
SOURCES OF AUXILIARY DATA

In some cases, two types of auxiliary information 
are available, where one (e.g., satellite SAR imagery) 
is collected wall-to-wall and another type of (more ex-
pensive and higher resolution) remotely-sensed data is 
collected in a sampling mode. For example, multi-level 
sampling design may consist of: (1) a large sample of 
relatively inexpensive photo-interpreted plots distribut-
ed over an area of interest, with (2) detailed, relatively 
expensive, field measurements of the attribute of inter-
est (e.g., tree biomass/carbon) collected on a subsam-
ple of these photo plots, and (3) free, or very inexpen-
sive, satellite image data (SAR) available over the entire 
area. Depending on application and how the data were 
collected, this type of multi-level sampling design can 

be approached from a model-based or model-assisted 
inferential standpoint. 

7.6.2  MODEL-ASSISTED

Following Mandallaz et al. (2013), a model-assist-
ed estimator of mean aboveground tree biomass can 
be developed using field plot data and two sources of 
auxiliary data in the following manner: as in the previ-
ous example, (1) a vector XU of remote sensing-derived 
variables that are known for all N elements in the pop-
ulation (U), and (2) a vector X1 of remote sensing-de-
rived variables that are known only for the elements 
in the first phase sample of n1 units, and the inventory 
attribute of interest, Y2, is only measured on a relatively 
small second-phase subsample of n2 photo plots. As a 
specific example, the XUi variables may represent satel-
lite image data (e.g., SAR HV/HH backscatter, Landsat 
tasselled cap bands) available wall-to-wall over the en-
tire study area, and the X1 variables represent photo plot 
measurements (average tree height, cover, forest type) 
that are only available at a sample of locations distribut-
ed over the area of interest. Regression analysis is used 
to develop a linear model for predicting biomass from 
photo-based measurements:

 Y2i = f(X1i;β1) + ε1i  , (7.18)

while satellite-derived predictor variables are used to 
predict biomass using satellite-based measurements: 

 Y2i = f(XUi;βU) + εUi  . (7.19)

Again, following Mandallaz et al. (2013), this design 
yields the following estimator of mean biomass for the 
study area:

  µ̂ma ,2=
1
N

ŶUi+
1
n1

j=1
N∑ Ŷ1i−ŶUi( )+ 1

n2
i=1
n1∑ Yk−Ŷ1k( )k=1

n2∑  (7.20)

Table 7.6 Statistical properties of model-assisted 
and model-based regression estimators with 
single-auxiliary (bias, relative standard error, 95% 
coverage probability) using a mid-range second-
phase sample size of 50 (based on 1,000 iterations). 

Bias (%) SE (%) 95% CP

n2 = 
50

M-A, 
1-aux 0.5% 11.3% 96.8%

M-B, 
1-aux 28.2% 9.2% 39.1%

n1

250 500 1000 2000

Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP

n2

25 0.5% 11.0% 91.3% 0.0% 10.8% 89.0% 0.5% 10.8% 89.0% 0.4% 10.3% 89.6%

50 -0.2% 8.3% 91.5% -0.1% 7.6% 92.8% 0.5% 7.4% 92.0% 0.0% 7.7% 89.9%

100 0.2% 6.5% 93.3% 0.0% 5.7% 94.3% 0.4% 5.3% 94.0% 0.0% 5.1% 93.5%

200 0.0% 5.4% 93.7% 0.0% 4.4% 95.2% 0.1% 4.0% 94.4% -0.1% 3.6% 95.2%

Table 7.7 Statistical properties of model-assisted estimator with two auxiliaries (bias, relative standard error, 95% coverage probability) for four different phase 
1 sample sizes (250, 500, 1,000, 2,000) and four different phase 2 sample sizes (25, 50, 100, 200). Satellite image-derived measurements were assumed to be 
available for every unit in the population (based on 1,000 iterations).
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with variance estimator:

  V̂ µ̂ma ,2( )= 1
n1

1
n2

Y2i−ŶUi( )2+ 1

n2
1−

n2
n1

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟i=1
n2∑ Y2i−Ŷ1i( )2i=1

n2∑  (7.21)

ŷ1k = ′x1k B̂1s
 (for k Є U) are the satellite image-based 

predictions at each satellite image pixel (obtained via 
linear regression). 

7.7  Exercise 5: Statistical 
Properties of Model-Assisted 
Estimators with Two Sources 
of Auxiliary Data
7.7.1  MODEL-BASED

A model-based approach to utilizing auxiliary data 
collected at multiple levels was developed by Saarela et 
al. (2016). As in the previous example of model-based 
estimator, the relationship between the inventory attri-
bute Y, which is the random variable (AGB) with a mean 
μ and standard deviation σ, the observed mean AGB 
value at the ith pixel (yi) can be represented as: 

 μi = f(Xi;β) + єi  , (7.22)

where єi ~N(0,σ2). The mean AGB at the ith pixel is given 
by

 µ̂i = f Xi ;β( ) (7.23)

which is estimated by 

 µ̂i = f Xi ;β̂( ) (7.24)

where Xi is the set of lidar-based predictor variables 
available for the second phase sample n2 of the pop-
ulation and β̂ is the vector of p predicted regression 
coefficients. This linear model is used to estimate the 
mean ABG at every pixel in the first phase sample n1:

 µ̂1i = f X1i ;β̂( )  . (7.25)

In this hierarchical modelling framework, a sec-
ond model is developed relating the satellite-based 
predictor variables ZU available over the entire pop-
ulation to the µ̂1 predictions available within the first 
phase sample:

 µ̂1i = f Z1i ;α1( )+ω1i  (7.26)

where ω1i~N(0,σ2) and α1 is the vector of model co-
efficients linking lidar-estimated AGB values and the 
satellite predictor variables estimated by α̂1. The 
model-based estimate of mean AGB over the entire 
area is

 µU
!
= ′ιUZUα̂1  . (7.27)

The variance of the model-based mean AGB estimate 
is given by:

 V µU
!⎛
⎝
⎜⎜⎜
⎞
⎠
⎟⎟⎟= ′ιUZUVα1

! ′ZUιU   , (7.28)

where  V
α1
! is the variance-covariance matrix for the 

regression model parameter estimates given by:

Vα̂=
 ˆ′ω1ω̂1

M−q−1
′Z1Z1( )−1 

+ ′Z1Z1( )−1
′Z1 X1Vβ̂ ′X1
⎡
⎣⎢

⎤
⎦⎥
Z1
′Z1Z1( )−1

  , (7.29)

where Vβ̂ is the variance-covariance matrix for 
the regression model parameter estimates β̂ and 
ω̂1= X1β̂−Z1α̂1 is an n1 length vector of model 
residuals. 

7.8  Exercise 6: Statistical 
Properties of Model-Based 
Estimators with 2-Auxiliaries 
with Biased Model

Refer to Table 7.8.

Table 7.8 Statistical properties of model-assisted and model-based regression estimators with two auxiliaries (bias, relative standard error, 95% coverage 
probability) using a mid-range second-phase sample size of 50 (based on 1,000 iterations). 

n1

250 500 1000 2000

Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP Bias (%) SE (%) 95% CP

n2 = 
50

M-A, 2-aux -0.4% 8.2% 95.6% -0.2% 7.8% 96.0% -0.1% 7.6% 95.6% 0.1% 7.3% 95.7%

M-B, 2-aux 10.8% 7.8% 85.7% 11.2% 7.1% 82.9% 10.7% 7.1% 82.8% 11.5% 6.5% 81.1%

7.9  Exercise 7: Estimation 
of Tree Biomass Using Field 
Plots, Lidar Plots, and SAR

In this exercise, the model-based estimators are 
applied with two sources of auxiliary data using an 
actual dataset collected for a region of interior Alas-
ka (USA). The data consist of: (1) estimates of abo-
veground tree biomass (Mg/ha) collected over rela-
tively sparse sample of field plots (n2 = 30 1/30th ha 
circular plots), (2) height-based metrics collected over 
a denser (systematic) sample of lidar plots (n1 = 325 
1/30th ha circular plots), and (3) wall-to-wall L-band 
satellite SAR-derived imagery (see Fig.  7.3). Tree 
height, tree diameter, and species were collected for 
each tree on the plots, and allometric models were 
applied to these measurements to estimate tree—
and aggregated plot-level biomass (Yarie et al. 2007). 

Here, the model-based estimator with one source 
of auxiliary data (SAR imagery) developed in Exercise 
4, and the estimator for two sources of auxiliary data 
(wall-to-wall L-band SAR backscatter, large sample 
of lidar plots) developed in Exercise 6 are compared 
in the estimation of total aboveground tree biomass 
(Table 7.9). 

Table 7.9 Mean biomass estimate for Tok study 
area (interior Alaska) using field data, lidar plots, 
and SAR imagery. 

Mean 
(Mg/ha)

SE 
(Mg/ha)

Model-based 
estimator: SAR only 49.35 9.43

Model-based 
estimator: SAR and 
Lidar plots

50.83 7.07
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7.10  Application in 
Monitoring, Reporting, and 
Verification (MRV) systems
7.10.1  REQUIREMENTS OF REDD+ MRV 
PROGRAMS 

The Intergovernmental Panel on Climate Change 
(IPCCC) has specified good practice as it pertains 
to the concept of REDD+ forest monitoring as in-
ventory design that “neither over- nor under-esti-
mates so far as can be judged, and in which uncer-
tainties are reduced as far as is practicable” (GFOI 
2016). This guidance essentially promotes the im-
plementation of monitoring programs that maxi-
mize precision of estimates, while minimizing bias, 
within the constraints of available resources. The 
multi-level estimators for forest biomass present-

ed in this chapter provide a range of options for 
design of carbon monitoring programs, including 
model-assisted approaches requiring probability 
samples for all levels of the design that provide 
design-unbiased estimators and model-based ap-

proaches that may be less expensive to implement 
due to the lack of requirements for a probability 
sample, but at the cost of a possibly biased esti-
mator if the model is incorrectly specified.  

Figure 7.3 L-band radar imagery, lidar 
plots (blue), and field plots (red) for 
Tok study area, interior Alaska, U.S. 
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APPENDIX F
Sampling Design for Forest 
Biomass Surveys – Chapter 
7 Training Module

INTRODUCTION

Please refer to Chapter 7 of the SAR Handbook for 
further background for the following exercises and re-
lated scripts. Scripts and data used for this tutorial can 
be found here: https://bit.ly/2HNZXWu as well as on the 
SERVIR global website training page.

Step 1: Download and install R. The download link is 
available here: https://ftp.osuosl.org/pub/cran/

Optionally, install R Studio (free license) as a GUI to 
develop your scripts from here: https://www.rstud-
io.com/products/rstudio/download/#download 

After installation, you will have a platform as shown 
in Figure 1.1. Please note these scripts have been 
created to run on a Windows operating system. When 
running them in a Linux or Mac environment, they will 
need slight modifications to function properly. This 
document provides guidelines to do those changes.

EXERCISE 1: Simulating a population

Here we use simulation, implemented in the R sta-
tistical software package, to demonstrate the imple-
mentation of several SAR-assisted, multi-level sampling 
designs. Proficiency in R programming is not required 
to carry out the exercises, since the scripts can be run 
by simply copying and pasting the code at the R com-
mand line. Simulation can be a useful approach to gain 
insight into the statistical properties of various survey 
estimators, especially in the case of somewhat complex, 
multi-level sampling designs (Ene et al., 2016; Saarela 
et al., 2017).

Open Script #1: 
Double click on the script so it appears in the upper 

left window in RStudio. Make sure in the editor this file 
is selected as a R Script (Figure 1.2).

Figure 1.1 The R Studio interface. The section in the lower right allows navigation to the folder containing 
the scripts for the exercises in this module. 

Figure 1.2 A window displaying options for selecting the file type in R Studio, with "R Script" highlighted.

Install Packages:
In RStudio, install the following packages by copying 

and pasting the following script lines:
install.packages('mvtnorm')

install.packages('RandomFields')

install.packages('extraDistr')

install.packages('MASS')

install.packages('psych')

install.packages('fields')

install.packages('CompRandFld')

install.packages('raster')

install.packages('RColorBrewer')

Note these lines are also included in the Exercise 1 
script, and are commented with (#). Make sure all these 
packages are installed correctly before proceeding. 

Modify script appropriately: 
In line 249, starting with “save.image”, modify where 

the final file will be saved (the path) and check the file 
name to which it will be saved; in this case, “servirsim-
data.RData” (highlighted section below):

# save the simulated popu-

lation to a RData file - this 

might take a minute or two...

# this is the file that will 

be loaded at the beginning of 

all subsequent exercises

save.image("C:\\Users\\hander-

sen\\Desktop\\SERVIR _ hand-

book\\servirsimdata.RData")

https://bit.ly/2HNZXWu
https://ftp.osuosl.org/pub/cran/


THE SAR HANDBOOK 291

Run Script:
Then select the rest of the script, starting with “li-

brary..” and click on Run (Figure 1.3). The purpose of 
this script is to create and save the simulated data file: 
“servirsimdata.RData”. This file will be used in subse-
quent exercises. As final step, check that such file was 
created. Navigate to the folder where it should be and 
make sure it exists. 

Additional note: If you are working on a Windows 
computer, the single backslash will work when writing 
paths in the script, but if you work on a Mac, the double 
backslash is preferred. 

EXERCISE 2: Assessment of simple random 
sampling estimator via simulation

The statistical properties of the various estimators 
can be assessed using the simulated population devel-
oped previously. In this exercise, at each iteration a sim-
ple random sample (SRS) of n first-phase elements is 
drawn from the population. The point estimator          and 
the variance estimator         are calculated, as well as 
the coverage probability of the 95% confidence interval 
of the point estimator. These statistics indicate the bias 
and precision of the point estimator and the variance 
estimator.

Step 1: Modify this line with the appropriate folder and 
path for the file created in first script:

load("C:\\Users\\handersen\\Desk-

top\\Handbook\\servirsimdata.RDa-

ta")

Step 2: Make sure the “R Script” is selected on the low 
right corner (Figure 1.2).

Step 3: After loading the file, make sure all objects were 
created. You can enter:

<ls() 

to see all the objects contained in the file. 
Step 4: If you’re running the script on a Mac, the Prog-
ress Bar may not work, as it is a Windows-specific func-
tion. Therefore, comment out lines 98, 99 and 129 in this 

Figure 1.3 Screenshot of the R Studio interface with the "Run" option highlighted.

script. Alternately, do not run those lines, as seen below:

# update progress bar

#Sys.sleep(0.1)

#setWinProgressBar(pb, t, title=paste(round(t/it-

erations*100, 0), "% done"))

# close the progress bar

#close(pb)

Step 5: You should get values and figures, and your console should look like this:

You can use the <ls() command to list all the objects that are now available. See below for a partial list:
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EXERCISE 3: Assessment of model-assisted estimator with single 
auxiliary via simulation

In this exercise, we assess the statistical properties of the model-assisted estimator 
with one source of auxiliary data (assumed to be collected wall-to-wall, such as SAR 
imagery) and various sample sizes of field plots. 

Repeat steps 1 through 4 of Exercise 2. If running on a Mac computer, comment 
out the script lines for the Progress Bar as shown in the previous section.
This will result in the creation of the following figures, shown below:

In addition, you should get the following output results:

EXERCISE 4:  Assessment of model-assisted estimator with two 
auxiliaries via simulation

In this exercise, we assess the statistical properties of a model-based estimator of 
mean biomass. In order to illustrate the perils of an incorrectly specified model in the 
context of model-based estimation, for this exercise the model is developed from a 
sample selected only from the forested plots within the population. This is then used 
to estimate biomass–using both model-assisted and model-based estimators–over 
the entire population.

Repeat steps 1 and 2 from Exercise 2. If running on a Mac computer, comment out 
the script lines for the Progress Bar as shown in Exercise 2, step 4. 

This will result in the creation of the following figure, shown below:

You should also get the following output results:
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EXERCISE 5: Assessment of model-based estimator with single 
auxiliary via simulation

In this exercise, we assess the statistical properties of the model-assisted estimator 
with two sources of auxiliary data (e.g. field plots, photo plots, and wall-to-wall SAR 
imagery). This estimator does not assume that the model is correct, but does assume 
that the underlying sample of field and/or remote sensing data is collected via a prob-
ability sample.

Repeat steps 1 and 2 of Exercise 2. If running on a Mac computer, comment out the 
script lines for the Progress Bar as shown in Exercise 2, step 4.
The following plot should be created:

And the console should show output results as follows:

EXERCISE 6:  Model-based estimation with two auxiliaries

In this exercise, we assess the statistical properties of the model-based estimator 
with two sources of auxiliary data (e.g. field plots, photo plots, and wall-to-wall SAR 
imagery). This estimator assumes that the model is correct (unbiased), but does not 
assume that the underlying sample of field and/or remote sensing data is collected via 
a probability sample.

Repeat steps 1 and 2 of Exercise 2. If running on a Mac computer, comment out the 
script lines for the Progress Bar as shown in Exercise 2, step 4. 

This will result in the creation of the following figure, shown below:

You should also get the following output results:
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Then, run the script again. The following plot should be generated:

 
And the console should show output results as follows:

EXERCISE 7: Model-based estimation with field, lidar plots, and SAR 
data from Tok, Alaska, USA

In this exercise, we apply the model-based estimators with 2 sources of auxiliary 
data using an actual dataset collected for a region of interior Alaska (USA). The data 
consist of: 1) estimates of aboveground tree biomass (Mg/ha) collected over relatively 
sparse sample of field plots (n_2= 30 1/30th ha circular plots), height-based metrics 
collected over a denser (systematic) sample of lidar plots (n_1=  325 1/30th ha circu-
lar plots) and 3) wall-to-wall L-band satellite SAR derived imagery. Tree height, tree 
diameter and species were collected for each tree on the plots, and allometric models 
were applied to these measurements to estimate tree-level and aggregated plot-level 
biomass (Yarie et al., 2007). 

Please note that for this exercise, we will use different input datasets provided along 
with the scripts: “Ex7data.RData” and L-band ALOS PALSAR backscatter image, “tok-
sat_aa83_21.tif”

Step 1:  Ensure the right path is included in the script for these input files: 
# Load the data into the workspace

load("C:\\Users\\handersen\\Desktop\\SER-

VIR _ handbook\\Ex7data.RData")

Step 2:  Select the script and run it. In case you run into an error stating "perhaps you 
need to install rgdal first",  install "rgdal" with the command:

> install.packages('rgdal')
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To consider how the use of SAR in forest and environmental monitoring is likely to change in the future, it is useful to reflect on how SAR is currently used 
across a range of applications. As documented in the preceding chapters, earlier research has transitioned to applications ranging from the use of SAR for 
tracking deforestation to its use in estimating forest height and biomass. The applications landscape is expected to change due to the growing public avail-
ability of SAR data to feed applications, with important missions like the NISAR (NASA-ISRO Synthetic Aperture Radar) and the European Space Agency’s 
(ESA’s) Biomass mission planned for launch within a five-year horizon from the publication of this handbook. Limitations notwithstanding, other factors 
expected to further accelerate the application of SAR data include the growing availability of desktop and online platforms with which to process and ana-
lyze radar data, and—as evidenced by this handbook—a growing set of resources to build the user community’s capacity to apply SAR data. In support of 
Global Forest Observation Initiative (GFOI) and SilvaCarbon, the global network of hubs of the SERVIR program are also poised as important resource cen-
ters to help strengthen capacities within their respective regions to apply SAR for forest monitoring, as well as in other environmental monitoring contexts.

ABSTRACT

8.1  SAR in the Present 
Forest Monitoring Context

At the close of this handbook, the reader should 
have acquired a series of skills that, applied, will put 
one well on the way to practical use of SAR data for 
forest monitoring. Toward that practical use, the pre-
vious chapters have addressed the following topics:

• Preprocessing of raw SAR data to radiometrically 
terrain corrected products

• Monitoring deforestation and forest degradation
• Mangrove monitoring
• Forest structure estimation
• Biomass estimation
• Sampling design

Taking a synoptic view, this handbook has thus 
responded to fundamental questions that need to be 
addressed not only for use of radar remote sensing, 
but also for other techniques in general, such as:

• What are the characteristics of the data?

• Where can the data be obtained?
• What can be done with the data?
• What tools can be used to process this data and 

where are they found?
• How can specific products be generated from 

the data? 
 – Toward that end, and for the benefit of a 
general public who might likely not have ac-
cess to commercially licensed software, this 
handbook’s practical exercises have general-
ly shown how freeware tools such as Alaska 
Satellite Facility (ASF) MapReady, PolSARPro, 
SNAP, and Python scripts can be used for gen-
erating different types of derived products.

This chapter follows those questions by addressing 
one last, related query:

• What can be expected in terms of future devel-
opments in SAR regarding the forest and broad-
er environmental monitoring contexts?

A major takeaway from the previous chapters was 

that SAR provides unique capabilities for forest mon-
itoring, complementing the capabilities provided by 
optical remote sensing systems. The preceding chap-
ters have likewise reflected on how far spaceborne 
imaging radar has come since NASA’s SeaSat mission 
in 1978, the development of subsequent research 
missions through the 1990s and the 2000s, and the 
launch of the operational Sentinel-1 satellites of the 
European Commission’s Copernicus Programme in 
2014. Nevertheless, as Meyer termed it in this book 
and elsewhere, today represents a “Golden Age of 
SAR,” and the next few years will see the launch of sat-
ellite missions that may have significant implications 
for the science, practices, and policies of monitoring 
forests. (At the time of the writing of this handbook, 
UNAVCO maintains a register of SAR missions.) Those 
implications concern not only the new wavelengths 
covered by future missions (e.g., P-band SAR missions 
like Biomass), but also newer imaging techniques 
and capabilities like SAR tomography (Tomo-SAR). 

CHAPTER 8
Perspectives on the Future Application of SAR in Forest and 
Environmental Monitoring
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They are also complementary to spaceborne lidar 
missions like Ice, Cloud, and land Elevation Satel-
lite-2 (ICESat2) and Global Ecosystem Dynamics 
Investigation (GEDI)—both launched in 2018. This 
chapter focuses on potential future applications of 
SAR, and particularly in relation to ongoing work 
across SERVIR’s global network. To a lesser extent, 
this handbook addresses research aspects of SAR, 
but to the extent possible, the focus is on proven 
applications.

8.2  Future SAR 
Developments

It is expected that future SAR missions—includ-
ing the continuation of current missions under the 
European Union’s Copernicus Programme—will 
impact how forests are monitored. One barrier to 
countries’ regular use of SAR data for forest mon-
itoring stems from a lack of archived SAR data that 
coincide with reference periods suggested for in-
ternational agreements (e.g., 1990, 2000). More-
over, historical SAR imagery tend to have variable 
acquisition parameters, making comparison diffi-
cult. Nevertheless, if future SAR missions are able 
to expand the observations made under programs 
such as Copernicus (e.g., same polarizations, acqui-
sition angles, beam modes; the influences of these 
factors on the SAR remote sensing of forests was 
also addressed in the second chapter of this hand-
book), that would greatly facilitate the continued 
use of those data. (Copernicus’ Sentinel-1A and 
Sentinel-1B satellites provide for systematic obser-
vation of the Earth, by which the places imaged by 
the twin C-band SAR instruments are acquired every 
12 days, with the same beam modes, and with the 
same imaging angles, facilitating comparison of im-
agery acquired on different days.) Taking that and 
other factors into context, the following subsections 
explore how the future SAR application landscape is 
likely to be impacted by:

(1) Expanded availability of data (from exist-
ing and upcoming missions)

(2) Desktop and cloud computing tools with 
which to process radar data

(3) Capacity building efforts

8.2.1  AVAILABILITY OF SAR DATA

Some previously restricted SAR datasets are be-
coming more available (e.g., the open availability of 
Advanced Land Observation Satellite (ALOS) Phased 
Array type L-band Synthetic Aperture Radar (PALSAR) 
data), and more SAR satellite missions have been 
launched (e.g., the Sentinel-1 satellites). In terms of fu-
ture SAR missions, Chapter 1 has already catalogued 
the near-term radar satellites relevant to forest moni-
toring (i.e., SAOCOM-1B, Radar Doppler Multifunction 
(RCM), Biomass, NISAR, TanDEM-L). In fact, of the 
satellite missions previously listed, since the writing 
of this handbook commenced, the PAZ, NovaSAR-S, 
and SAOCOM-1A missions have already launched (in 
February 2018, September 2018, and October 2018, 
respectively). Beyond noting that there are upcoming 
C-, L-, S-, and P-band missions, what is salient is that 
with various missions having “free and open” data 
policies, these will add to the already growing public 
archive of radar imagery of the Earth. As noted previ-
ously, this provides a significant opportunity for SAR-
based and SAR-enhanced monitoring of the Earth’s 
resources—something particularly unprecedented 
prior to Sentinel-1. That opportunity, however, also 
presents practical challenges to image analysts and 
their geospatial and/or data departments, specifically 
with regard to processing and storing large volumes 
of SAR data and derived products. Nevertheless, as 
was already covered earlier, it bears repeating that 
resources such as the Copernicus Open Access Hub 
and the ASF’s Vertex portal are crucial resources that 
provide access to SAR data. It is anticipated that the 
significance of these portals will only grow over time 
as “one-stop shops” for acquiring data from historical 
and ongoing missions. The forthcoming NISAR mis-
sion is likewise poised to generate more data than 
any NASA Earth observing mission. Faced with signifi-
cant file size and data volume challenges, an initiative 
“Getting Ready for NISAR” (GRFN) is part of efforts to 
move NASA Earth observing data and services to the 
commercial cloud (Blumenfield 2018).

8.2.2  PROCESSING OF SAR DATA: DESKTOP 
COMPUTING

There has been another welcome development re-
lating to software platforms for processing SAR data. 

Prior to ten years ago, radar data processing was partly 
the domain of commercially licensed software pack-
ages. In 2008, ASF released its MapReady software 
platform, which allowed for the conversion of SAR data 
from particular Committee on Earth Observation Satel-
lites (CEOS) data formats to GeoTIFF format. This low-
ered the barrier to visualizing SAR imagery by allowing 
more users to easily visualize SAR products in GIS plat-
forms, something that was already possible for optical 
datasets like Landsat imagery. Furthermore, around 
2009, in parallel to the development of MapReady, ESA 
commissioned the development of the Next ESA SAR 
Toolbox (NEST), which was later folded into the Sen-
tinel-1 Toolbox, and which itself later became a part 
of what is currently the Sentinel Application Platform 
(SNAP). As it stands, SNAP allows for preprocessing, 
processing, and visualizing data from a wide range of 
SAR missions (as well as data from non-SAR missions). 
In a similar vein to MapReady, SNAP allows for con-
verting radar imagery to GIS-readable formats such as 
GeoTIFF. Overall, these tools have allowed a larger pool 
of GIS analysts and optical remote sensing specialists 
to begin to bridge over to the study of SAR data.

While MapReady and SNAP serve as key examples 
of what is currently available in terms of openly avail-
able desktop software platforms, the evolution of such 
platforms may also herald what is to come in terms of 
additional functionalities. The shift from NEST to the 
Sentinel-1 Toolbox to SNAP, for instance, saw the addi-
tion of application-oriented functions. Responding to 
the potential for wide applications of SAR data, SNAP 
currently allows for height estimation, change detec-
tion, ocean object detection, and oil spill detection. 
As this chapter is being written, the InSAR Scientific 
Computing Environment (ISCE) processing package is 
undergoing further development in preparation for the 
forthcoming NISAR mission (Rosen et al. 2018).

8.2.3  PROCESSING OF SAR DATA: CLOUD 
COMPUTING

Beyond changes in how desktop applications 
process and manage SAR data, there has also been 
a significant shift in how SAR data are processed. 
Much of the community of users is moving away from 
downloading large SAR datasets from the Internet 
and processing them on desktop computer systems, 

https://scihub.copernicus.eu/
https://vertex.daac.asf.alaska.edu/
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and is moving toward bulk processing online, “in the 
cloud.” In only the last few years, a number of web-
based platforms are beginning to offer SAR process-
ing and analysis capabilities. These include, but are 
not limited to:

• ASF’s Hybrid Pluggable Processing Pipeline 
(HyP3): http://hyp3.asf.alaska.edu

• ESA’s Thematic Exploitation Platforms (TEPs): 
https://tep.eo.esa.int

 – There are currently seven individual TEPs, fo-
cusing on: coastal areas, food security, forest-
ry, geo-hazards, hydrology, polar areas, and 
urban areas.

• Google Earth Engine (GEE): https://earthengine.
google.com/

In the case of GEE, registered users are able to 
access and analyze the full and continually updated 
archive of Copernicus Sentinel-1 data, as well as the 
Japan Aerospace Exploration Agency’s (JAXA’s) Japa-
nese Earth Resources Satellite 1 (JERS-1) and ALOS 
PALSAR global mosaics. In comparison, ASF HyP3 
(pronounced “hype”) allows for more comprehen-
sive processing of SAR data, including pre-processing 
and the automatic generation of value-added prod-
ucts such as stacked and calibrated image time se-
ries, as well as Interferometric SAR (InSAR) products. 
ASF HyP3 contrasts with GEE, which only provides 
radiometrically terrain corrected (RTC) amplitude or 
backscatter datasets, but currently does not support 
interferometric analyses needed for some forestry 
applications. Currently, the HyP3 service permits the 
generation of a limited number of data products per 
month. Users are encouraged to provide feedback 
on the functionality of the service and the quality 
of the provided products. Furthermore, with regard 
to the upcoming Biomass and NISAR missions, ESA 
and NASA are collaborating on the development of 
a Multi-Mission Analysis Platform (MMAP) that will 
also allow for online processing and analysis of SAR 
data (Albinet et al. 2018).

ASF HyP3, GEE, and MMAP also highlight the 
growing significance of the Analysis Ready Data (ARD) 
concept. With ARD, users are unburdened from some 
preprocessing and are less likely to waste resources 
processing extraneous data outside of the specific 
geographic area of interest. GEE offers, for instance, 

easy extraction and processing of ALOS PALSAR or 
Sentinel-1 imagery for specific areas of interest, with-
out forcing users to download one or multiple 1-GB 
scenes to preprocess. It also offers simple functions 
to calculate time series statistics from the full 4-year 
archive of Sentinel-1 (S1) imagery in seconds (see 
Fig. 8.1). In contrast, the workflow to conduct the 
same process on a desktop or on-premise system 
(by downloading S1 data from the Copernicus Open 
Access Hub or from ASF’s Vertex and performing 
preprocessing, processing, and postprocessing on a 
software mentioned above), would take significantly 
more time and bandwidth. 

Something to mention are the pre-processing 
steps GEE uses for the Sentinel-1 data currently avail-
able in their platform. At the time of writing this hand-
book, GEE uses SNAP and, as explained in Chapter 
3, there are certain tradeoffs about using SNAP for 
SAR processing, particularly for the displacement 
issue observed in Sentinel-1 data and discussed in 
Chapter 3. This has particular implications in time 
series analyses, where it can affect change detection. 
The following is a flowchart of the preprocessing 
steps GEE uses for their Sentinel-1 data.

Sentinel-1 imagery in GEE consists of Ground 

Figure 8.1 Sentinel-1 backscatter time-series over a part of Belize City, extracted using GEE.

Figure 8.2 Sentinel-1 preprocessing steps used 
by GEE following Sentinel-1 Toolbox to derive 
the backscatter coefficient, σ0, in each pixel. 
Last updated August 15, 2018 (source: https://
developers.google.com/earth-engine/sentinel1)
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Range Detected (GRD) imagery processed to back-
scatter coefficient, σ0, in decibels. As implemented by 
the Sentinel-1 Toolbox (https://sentinel.esa.int/web/
sentinel/toolboxes/sentinel-1), the steps are described 
as: (1) orbit metadata are updated with an orbit file, (2) 
low-intensity noise and invalid data on scene edges are 
removed, (3) additive noise in sub-swaths for scenes in 
multi-swath acquisition modes are removed, (4) back-
scatter intensity is computed using sensor calibration 
parameters in the GRD metadata, and (5) takes into 
account terrain factor by converting to σ0, representing 
target backscattering area (radar cross-section) per unit 
ground area in decibels. GEE is in the process of repro-
cessing the Sentinel-1 data to keep all floats unchanged, 
since the current preprocessing steps convert float32 
values to 2-byte unsigned integers, keeping only the 99th 
percentile values.

Application-specific tradeoffs must be considered 
when deciding to perform analyses on-premise or on-
cloud. For instance, how critical is it to control each pre-
processing step, or is it acceptable to yield some choice 
to a free, on-cloud platform? Accuracy, precision, data 
volume (and bandwidth), and data latency are all con-
siderations. Here, one scenario is discussed that consid-
ers data volume and time-series analysis. For instance, 
if one wanted to look at radar backscatter patterns 
over Belize City, Belize, between October 26, 2014, and 
October 17, 2018, 84 descending mode images were 
acquired in relative orbit no. 128. At roughly 1 GB per 
GRD scene, analyzing data only over Belize City would 
still require downloading and subsequently analyzing 
about 84 GB of raw data. That would certainly be a chal-
lenge using a desktop computer in a bandwidth-limited 
environment. Even if downloading such a volume of 
data were not a challenge, one can imagine how long 
it would take to process the 84 scenes from GRD to RTC 
products, and how much space would be required for 
the various intermediate steps. Furthermore, the hy-
pothetical case provided pertains only to one scene in 
one particular mode, only over a 4-year period. If one 
were to include both ascending and descending data, 
and choose a study area (e.g., an entire country) that 
covered multiple scenes, and if the study period were 
extended (e.g., imagine processing S1 imagery in 2022), 
the data would become even more difficult to manage 
and process using desktop computing. This hypothetical 

case merely highlights the quandary that many applica-
tion-oriented users seeking to exploit SAR data will and 
have encountered, and how cloud computing can help 
circumvent that challenge. There is a growing interest in 
machine learning (ML) in this field, as demonstrated in 
many recent examples that use on-premise computing 
(e.g., Chen et al. 2018, Ndikumana et al. 2018, Belgiu et 
al. 2016). Given challenges discussed in this section, the 
barrier to enter into ML applications in remote sensing 
and environmental monitoring applications may be low-
er in cloud environments (e.g., Hird et al. 2017, Shelestov 
et al. 2017).

8.2.3.1  System for Earth Observation Data 
Access, Processing and Analysis for Land 
Monitoring (SEPAL) and Food and Agricultural 
Organization (FAO) Collaboration

SEPAL is a cloud computing platform for autono-
mous land monitoring using remotely sensed data. It 
is a combination of GEE and open source software 
such as ORFEO Toolbox, GDAL, R, R Studio Server, R 
Shiny Server, SNAP Toolkit, and OpenForis Geospatial 
Toolkit. It allows users to access powerful cloud-com-
puting resources to query, access, and process satel-
lite data quickly and efficiently for creating advanced 
analyses. SERVIR is working with the Food and Ag-
riculture Organization (FAO) of the United Nations, 
who are the developers of SEPAL, to ingest the SAR 
processing scripts generated as part of this handbook 
and used during training events offered by the SAR 
experts authoring the main six chapters of this hand-
book at SERVIR hubs in Africa and Asia. 

8.2.4  CAPACITY BUILDING EFFORTS

It is difficult to fully characterize the current state of 
various countries’ capacity to use SAR data for forestry 
and biomass applications, especially at a granularity 
relevant for creating partnerships to raise awareness, 
promote literacy, and develop expertise. Without ded-
icated efforts to establish baselines, that task might 
similarly be daunting in the future. There are, neverthe-
less, proxies for understanding the current and evolv-
ing status of SAR capacity. One notable development 
is that the “club” of countries launching SAR satellites 
has been growing. Whereas, roughly a decade ago, the 
principal SAR missions (airborne and spaceborne) were 
mainly the fruits of Canadian, European, Japanese, and 
U.S. manufacture, recent and upcoming SAR missions 
include contributions from other nations. (Note that 
besides ESA’s SAR satellites, other European efforts 
have included the TerraSAR-X and TanDEM-X satellites 
of Germany, and the CosmoSkyMed satellites of Italy.) 
These include Argentina (the SAOCOM satellites) and In-
dia (NISAR, jointly with the U.S.), and additional entries 
from European countries that previously did not have 
their own dedicated SAR missions, including the United 
Kingdom (the NovaSAR-S satellite), and Spain (the PAZ 
satellite). While a few additional countries launching 
SAR missions may not necessarily say much about SAR 
capacity, the use of SAR data and the “consumption” of 
capacity building opportunities may give another per-
spective on capacity. For instance, in its implementation 
of Copernicus, the European Commission publishes 
annual assessments of the usage of Copernicus data, 

Figure 8.3 Map of density of Sentinel-1 data downloads (source: https://scihub.copernicus.eu/twiki/pub/
SciHubWebPortal/AnnualReport2017/COPE-SERCO-RP-17-0186_-_Sentinel_Data_Access_Annual_Report_2017-Final_v1.4.1.pdf).
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including from the Sentinel-1 satellites. As shown 
in Figure 8.3, certain regions and countries have 
much less data downloaded than others. Although 
Sentinel-1 is only one of a number of available sourc-
es of radar data, this is likely an indicator of the low 
uptake of SAR capacity.

Regarding online opportunities to acquire skills 
relating to the processing of SAR data, there are 
a number of notable efforts open to the public, 
among others:

• Copernicus’ Research & User Support (RUS) 
webinars

• EO College’s Echoes in Space: Introduction to 
Radar Remote Sensing course

• NASA ARSET’s Introduction to SAR and Ad-
vanced SAR courses

In addition, the University of Alaska-Fairbanks, 
in collaboration with the University of Alabama in 
Huntsville, and the NASA Jet Propulsion Laborato-
ry ( JPL) is coordinating a three-year NASA-funded 
effort to develop a virtual capacity building center 
(CBC) for SAR (SAR-CBC) (Meyer et al. 2018). That 
effort is being piloted in three Spanish-speaking 
countries, and the Spanish- and English-language 
curricula and materials developed will be made 

open to the public. The commonality among these 
efforts is a growing recognition that the internet 
has provided an opportunity for distance-based 
learning, open to the public. Echoes in Space, for in-
stance, which launched in late 2017, is based on the 
premise that while there have been a number of on-
line courses focused on various aspects of remote 
sensing, few focused on building capacity to use 
SAR data. Echoes in Space, in fact, built off an earlier 
platform, SAR-EDU, which launched in 2015. Another 
key resource to mention is NASA’s Applied Remote 
Sensing Training (ARSET) that has provided intro-
ductory and advance trainings in the use of radar 
remote sensing. The high demand for SAR trainings 
has pushed ARSET to update their license to per-
form webinars and host more than 200 participants 
at a time. This highlights not only the high demand 
but also the critical mass of SAR users that is starting 
to form. GEE also provides an Internet-based plat-
form that facilitates access and processing capaci-
ty of SAR data, especially in developing countries 
where access to proprietary software and hardware 
for data archiving has been a limiting factor to up-
take of EO data processing for environmental and 
natural resource monitoring.

8.3  SAR Use in SERVIR Hubs
Given the potential of SAR for forest and broader 

environmental monitoring, SERVIR hub organizations 
are particularly interested in assisting with strength-
ening SAR capabilities in their respective focus re-
gions (Fig. 8.4). Based on their current work plans 
and strategies, the following subsections provide 
details on SERVIR hubs likely future applications of 
SAR data. The SERVIR hubs were also engaged in the 
production of this handbook by hosting the hands-on 
trainings, which were converted into the hands-on 
sections of the respective chapters. Within the SER-
VIR network, the value of a practical handbook on 
SAR usage is that it can help prepare these regional 
centers of excellence for the data coming out of future 
missions, as it is expected that more data will be both 
free and available.

8.3.1  SERVIR-EASTERN AND SOUTHERN 
AFRICA

The Regional Centre for Mapping of Resources for 
Development (RCMRD, see: http://rcmrd.org) is an 
inter-governmental organization, which became the 
hub for the SERVIR-Eastern and Southern Africa (SER-

Figure 8.4 Map of SERVIR focus regions.
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VIR-E&SA, see http://servir.rcmrd.org) program in 
2008. In 2018, RCMRD, hosted the trainings done by 
Marc Simard and Hans Andersen, focusing on SAR for 
mangrove monitoring and sampling design, respec-
tively. Representatives of RCMRD also participated in 
the full range of SAR trainings under the SERVIR-Sil-
vaCarbon collaboration. That included participation 
in training workshops on SAR data processing and the 
application of SAR for forest monitoring, respectively, 
led by Franz Meyer and Josef Kellndorfer, as well as 
trainings on the forest height estimation led by Paul 
Siqueira, and on biomass estimation, led by Sassan 
Saatchi. RCMRD is especially interested in using SAR 
for monitoring mangrove forests on the coasts of East 
Africa. In that context, RCMRD has already started 
giving training workshops to its member nations in 
the use of SAR. RCMRD is collaborating with the Ken-
ya Forest Service (KFS) and the Kenya Forestry Re-
search Institute (KEFRI) to develop their capacities in 
the use of SAR specifically for forest-related applica-
tions. In addition, RCMRD plans to support its mem-
ber States as part of its new Strategic Plan 2019–2022 
in the capacity-building activities related to the use of 
SAR for biomass estimation (e.g., Tanzania, Uganda, 
and Rwanda). Furthermore, RCMRD will engage with 
universities as part of its Summer School program in 
order to build capacity in the use of SAR in research.

8.3.2  SERVIR-WEST AFRICA

Since 2016, the Agro-meteorology, Hydrology, 
and Meteorology regional center (AGRHYMET, see 
http://agrhymet.cilss.int), a technical arm of the 
Permanent Interstate Committee for Drought Control 
in the Sahel (CILSS), has been the lead organization 
in the SERVIR-West Africa (see http://servir.cilss.
int/en/) six-member consortium. In implementing 
SERVIR-West Africa, AGRHYMET has partnered with 
the African Center of Meteorological Application for 
Development (ACMAD), the African Regional Institute 
for Geospatial Science and Technology (AFRIGIST), 
the Centre for Remote Sensing and Geographic In-
formation Services (CERSGIS), the Centre de Suivi 
Ecologique (CSE), and the International Crops Re-
search Institute for the Semi-Arid Tropics (ICRISAT). 
Even outside of the context of SERVIR, AGRHYMET 
has had prior experience working with SAR data. 

As part of its involvement in the ESA TIGER initiative 
focused on monitoring water resources in Africa, 
AGRHYMET has collaborated with ESA researchers 
for using ESA SAR imagery for monitoring water bod-
ies. Within the SERVIR context, in 2018, AGRHYMET 
hosted a joint training workshop by Franz Meyer 
and Josef Kellndorfer on the topics of radar data 
processing and using SAR to monitor deforestation 
and forest degradation. SERVIR-West Africa consor-
tium members AFRIGIST, CERSGIS, CSE, and ICRISAT 
also participated in that training. In terms of future 
activities, and building off the earlier trainings, the 
SERVIR-West Africa consortium plans to integrate 
SAR data into its services, particularly those related 
to landcover change. The forested parts of West Af-
rica are particularly susceptible to high cloud cover. 
Therefore, SAR presents an opportunity to more fre-
quently monitor land-use and landcover change. Ad-
ditionally, the SERVIR-West Africa consortium plans 
to apply the various methods of change detection to 
various land degradation services, such as the char-
coal production monitoring service in Ghana, as well 
as one that focuses on understanding the community 
level forest changes.

8.3.3  SERVIR-HINDU KUSH HIMALAYA

The International Centre for Integrated Mountain 
Development (ICIMOD, see: http://www.icimod.
org) is an intergovernmental organization, which, 
since 2010, has been the hub for the SERVIR-Hin-
du Kush-Himalaya (SERVIR-HKH, see: http://servir.
icimod.org) program. In 2018, ICIMOD hosted two 
SERVIR/SilvaCarbon-sponsored regional trainings: 
(1) Franz Meyer and Josef Kellndorfer on SAR for 
mapping of forest degradation and deforestation, 
and (2) Sassan Saatchi on SAR for monitoring of for-
est carbon stocks and biomass estimation. ICIMOD’s 
SAR capacity, strengthened through these workshops 
and trainings, is increasing across several thematic 
areas. Where ICIMOD collaborates with a number 
of government agencies of its member countries (Af-
ghanistan, Bangladesh, Bhutan, China, India, Myan-
mar, Nepal, and Pakistan) in forest monitoring—in-
cluding the recent establishment of a Regional Land 
Cover Monitoring System (RLCMS), leveraged from 
SERVIR-Mekong—ICIMOD plans to exploit SAR data 

for national forest monitoring. While not specifically 
in the forest domain, ICIMOD has conducted wheat 
mapping activities in Afghanistan using a combined 
SAR/Optical approach. Going forward, ICIMOD is col-
laborating with Afghanistan’s National Statistics and 
Information Authority (NSIA)/Central Statistics Orga-
nization (CSO) for capacity building regarding appli-
cation of SAR data for seasonal wheat area estimation 
and plan to expand these methodologies for other 
crops in Bangladesh through a collaboration with the 
Bangladesh Agriculture Research Council (BARC). Ad-
ditionally, building off the successful SERVIR trainings 
highlighted in this handbook, ICIMOD has committed 
to facilitate a follow-on workshop (2019) in the re-
gion, with global partners, to scope out the next steps 
in SAR capacity building in the HKH region related to 
SAR fundamentals, forest monitoring, and biomass 
estimation. 

8.3.4  SERVIR-MEKONG

The Asian Disaster Preparedness Center (ADPC, 
see http://adpc.net) is an international organization, 
which, in 2015, became the hub for the SERVIR-Me-
kong program (see https://servir.adpc.net), along 
with consortium members Spatial Informatics Group 
(SIG), Deltares, and Stockholm Environment Institute 
(SEI). In 2018, ADPC hosted a training workshop fo-
cusing on the use of SAR for evaluating forest struc-
ture, led by Paul Siqueira. Representatives of ADPC 
attended the training workshop hosted at ICIMOD on 
SAR data processing and the application of SAR for 
forest monitoring, respectively, led by Franz Meyer 
and Josef Kellndorfer. ADPC is especially interested in 
incorporating SAR data into its RLCMS for the Mekong 
region. Supported by the SilvaCarbon program, ADPC 
has also begun to provide trainings to its focus coun-
tries in the application of SAR for forest monitoring. 
In FY2019, ADPC plans to explore delivering trainings 
on the use of SAR data for applications crop-type 
mapping. In addition, in the upcoming year, SAR will 
be used for water and water-related disaster applica-
tions, SAR-focused trainings, and uptake into other 
SERVIR-Mekong services.

8.3.5  SERVIR-AMAZONIA

At the time of writing, the SERVIR-Amazonia hub 
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was in the process of being established. It is not pos-
sible to describe the capabilities or needs of the insti-
tutions that will implement SERVIR-Amazonia. Never-
theless, the institutions in the region have experience 
with using SAR data. For instance, in the 1970s, the 
RADAM Project (Radar of the Amazon) utilized aerial 
radar surveys to map approximately 8.5 million km2 
of the Amazon (Carvalho 1984). That project was ex-
tended to the RADMBRASIL project, and the Ministry 
of Mines and Energy (Geog. Serv. of Brazil) hosted the 
project’s output data. In more recent years, Colombia’s 
Institute of Hydrology, Meteorology, and Environmen-
tal Studies (IDEAM, in Spanish) has piloted the use of 
Sentinel-1 data for monitoring changes in forest cov-
er. The ongoing (2018–2021) previously mentioned 
NASA-funded SAR-CBC project is also working with 
institutions in Colombia and Ecuador to develop their 
SAR analysis capabilities. Depending on the outcomes 
of the service planning process involving SERVIR-Am-
azonia, given the existing SAR capabilities in South 
America and cloud cover limitations over the Amazon, 
it is certainly possible that SERVIR-Amazonia may also 
focus on strengthening the use of SAR for monitoring 
the Amazon’s forests.

8.4  Other Considerations
Having previously explored in detail both how SAR 

is currently and will likely continue to be used for forest 
monitoring, it is also useful to reflect on how SAR’s po-
tential future contributions to other application areas 
beyond forest monitoring. It is also useful to examine, 
to some extent, how SAR data can and will be integrat-
ed with other types of remote sensing data, such as 
multispectral imagery and lidar data.

8.4.1  OTHER APPLICATION AREAS

As indicated in the previous section on the involve-
ment of SERVIR hubs in SAR capacity building activities 
in their regions, those hubs also have interest in the 
use of radar data for other applications. Those applica-
tions include, but are not limited to, the list presented 
in Table 8.1. The table addresses how the applica-
tions relate to GEO’s societal benefit areas (SBAs) and 
the United Nations’ Sustainable SDGs. It goes without 
saying that via the “Earth Observations in Service of the 
2030 Agenda for Sustainable Development” activity 

in GEO’s 2017–2019 Work Programme—an initiative 

known as EO4SDG—work is already being done to 

highlight how Earth observation data, including SAR, 

can be used to support countries’ implementation of 

the SDGs. A 2017 report on the EO4SDG initiative like-

wise highlights the relevance of SAR to SDGs 2, 6, 11, 

and 15 (GEO 2017).

8.4.2  LIMITATIONS AND INTEGRATION WITH 
OTHER TYPES OF REMOTELY SENSED DATA

While the preceding chapters have highlighted 
the potential of SAR data for forest monitoring, an 
important caveat is that SAR data are not necessarily 
suited for all forest applications. For instance, one 
application not highlighted in this handbook—likely 

GEO SBA APPLICABLE SDG APPLICATION

Biodiversity 
& ecosystem 
sustainability

Life on land Mapping ecosystems, estimating habitat suitability and species richness by ecosystem type

Disaster
resilience

Sustainable cities 
and communities

Estimating elevation for modeling flood susceptibility (disaster mitigation and preparedness)

Mapping flooded areas (disaster response)

Mapping historic flood extents (disaster mitigation and preparedness)

Estimating ground deformation caused by earthquakes and landslides (disaster response)

Energy & 
mineral resource 
management

Industry, innovation, 
and infrastructure

Mapping oil spills

Monitoring reservoir extents and levels

Food security 
& sustainable 
agriculture

Zero hunger Crop type identification based on vegetative phenological changes (and surface water for 
flooded rice) reflected in backscatter changes

Evaluating drought impacts by estimating changes in crop biomass

Start of Season (SoS)-based backscatter signatures of crop emergence 

Sustainable 
urban
development

Sustainable cities 
and communities 

Mapping urban expansion

Monitoring subsidence due to development

Water resource 
management

Clean water and 
sanitation Mapping changes in water body extent over time

Table 8.1 Other uses for SAR data, and how they relate to GEO’s SBAs and the SDGs.

Figure 8.5 Contrast between polarimetric ALOS PALSAR data (left) and Landsat multispectral imagery 
(right) of French Guiana (Cherrington 2016).
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because of the level of difficulty—is the use of SAR 
imagery for distinguishing forest types as defined by 
unique tree communities. As an example, from Fig-
ure 8.5, it is apparent that various forest formations 
(e.g., montane forests) are visible in multispectral 
optical data, but do not show strong contrasts with 
other forest types in polarimetric SAR imagery. And 
in recognizing that limitation, it must be recalled 
that while L-band SAR data (such as the data dis-
played) are sensitive to ecosystem structure, the 
multispectral imagery, in contrast, will be sensitive 
to factors which vary even more greatly than struc-
ture, such as variable combinations of leaf spectral 
properties, leaf area index, leaf angle distributions, 
among others (Gastellu-Etchegorry et al. 2015). 
This emphasizes previously raised points about the 
value of complementing SAR data with other data 
types such as optical and lidar data.

While lidar is treated as the gold standard in 
terms of its ability to map the spatial distribution of 
the biomass of forests, SAR is sometimes—errone-
ously—treated as merely a proxy for lidar. Never-
theless, in terms of the complementarity between 
SAR and lidar, SAR backscatter—which usually 
covers large spatial extents, relative to smaller lidar 
coverages—has been used on occasion for extrap-
olating from lidar data. Related to that, and return-
ing to the contrast between multispectral data and 
SAR backscatter, it is important to recall that radar 
backscatter is sensitive to forest structure, com-
pared to, say, forests’ species composition, which 
multispectral imagery are more sensitive to. As il-
lustrated in the comparisons shown in Figure 8.6, 
for instance, it can be seen that there are strong 
correlations between L-band HV backscatter and 
various forest structural parameters such as diam-
eter at breast height (DBH), basal area, tree height, 
and timber volume. This reinforces the concept that 
radar backscatter is representative of some general-

ized forest structure parameter. Furthermore, with 
growing availability of SAR data and a growing body 
of research to accompany that data, it will be inter-
esting to see how future scientific advances might 
impact what are currently limitations to using SAR 
data. That will be particularly relevant for upcom-
ing L-band and P-band missions like NISAR and 
Biomass, the latter for which there is no precedent. 
Beyond this brief discussion of research challeng-
es, the other key limitation is capacity to apply SAR, 
which have been discussed through the future ca-
pacity building efforts in this chapter.

8.5  Final Thoughts
In this chapter, the contents of the practical ap-

plications encountered throughout this handbook 
have been summarized. Future SAR developments, 
such as the possibility of increasing data availabili-
ty, new ways to access SAR data, and developments 

Figure 8.6 Relationship between forest stand parameters and ALOS PALSAR HV backscatter 
(Holecz 2011, https://www.eorc.jaxa.jp/ALOS/kyoto/jan2011_kc15/pdf/1-10_kc15_sarmap.pdf)
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in desktop- and cloud-based processing environ-
ments were also addressed. A summary has been 
provided for recent and future capacity building 
initiatives and programs, as well as prime addition-
al application areas for SAR, from the perspective 
of SERVIR regions. Finally, as discussed throughout 
this handbook, the forestry sector should not see 
SAR as a solution to be considered in isolation. Chal-
lenges and opportunities abound in blending SAR 
data with other remote sensing and ground-based 
techniques for forestry and biomass applications.

This handbook serves to create a practical re-
source for applying SAR data for forestry and bio-
mass estimation. In support of GFOI and SilvaCar-
bon, the global network of SERVIR hubs are seen 
as important resource centers to articulate and 
address new environmental monitoring challenges 
and to help strengthen the capacity to apply SAR for 
forest monitoring.

https://www.eorc.jaxa.jp/ALOS/kyoto/jan2011_kc15/pdf/1-10_kc15_sarmap.pdf
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