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PREFACE

On behalf of both the U.S. Agency for International Development (USAID) and the U.S. Geological Survey (USGS),
and specifically on behalf of the SilvaCarbon initiative, we are proud to share with you the following Handbook, the
product of a collaboration between SilvaCarbon and the SERVIR program. Established in 2010, SilvaCarbon represents
the US contribution to the Global Forest Observation Initiative (GFOL), itself a collaborative effort supporting countries
in using Earth observation data for monitoring forests. SilvaCarbon’s implementing agencies include USAID, the U.S.
Department of State, the U.S. Forest Service (USFS), the USGS, the U.S. Environmental Protection Agency (EPA), the
National Aeronautics and Space Administration (NASA), the National Oceanic and Atmospheric Administration (NOAA),
and the Smithsonian Institution. This Handbook also represents an important contribution from a number of U.S.-
based experts in Synthetic Aperture Radar (SAR), as well as experts from SERVIR's global network of hubs.

The motivation for this Handbook is to translate knowledge gained from decades of research in SAR into practical guidance
to countries on how SAR can be used for different aspects of forest monitoring, reporting, and verification (MRV) for
REDD+. There has been growing interest in applying this technology to land cover mapping and monitoring in the tropics,
where seasonal and permanent cloud cover make detecting deforestation and forest degradation very challenging.

Radar data historically was known for being costly and complicated to use. However, with new datasets becoming avail-
able and open source, such as SENTINEL -1 from the European Space Agency (ESA), the fusion of optical and radar data
becomes an option for sustainable and replicable methods. The drawback is the lack of historical radar data to include
in historical baselines. However, the sooner SAR data is included in National Forest Monitoring Systems, the sooner it
will be considered historical data in the future.

One of the GFOI's focus activities is providing ‘Methods & Guidance” documentation to support countries’ forest mon-
itoring activities. This Handbook thus fits into that context as an important contribution to methods & guidance, espe-
cially since the body of available datasets and tools has been growing. One anticipated resource is the joint U.S. / India
NISAR satellite mission whose launch is expected in the next few years.

The handbook walks you through the principles of SAR data applications from the beginning, starting from how to
access the data and perform basic processing techniques. It describes how to use SAR data to map deforestation and
forest degradation and how to estimate forest height. It also provides guidance on the best methods for using SAR to
map and monitor forest biomass. Itincludes a chapter that exemplifies the use of radar for mapping mangrove forests.
It concludes with the important issue of choosing a sampling design while using SAR data for biomass estimation.
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The handbook was first conceptualized as an outcome from a workshop hosted by SERVIR. This workshop brought together
scientists, program managers, and country practitioners to identify challenges on using SAR data, gaps where SAR data
is not available, and potential areas where SAR could fill the gap in forest monitoring for remote sensing data. Thanks
to the efforts of the SERVIR team, especially Africa Flores for managing the overall initiative, the scientists involved in the
development of the handbook, and the SilvaCarbon team, this handbook offers a set of tools and operational methods that
will streamline efforts to assist countries to build robust, transparent, replicable and verifiable Monitoring, Reporting and
Verification Systems.

We therefore invite you to take advantage of this important resource, and feel free to provide us with feedback on how the
Handbook can be improved, as we hope that this will evolve into a truly living document. We also take this opportunity to
recognize the contributions of the subject matter experts who drafted the bulk of the Handbook, our counterparts from
the respective SERVIR hubs across the globe, and our partners at NASA's SERVIR Science Coordination Office. Thank you.

Wé‘/&wﬁ, )\ﬁl;ktf \L ,L);\ag\;
Juliann Aukema Sylvia Wilson
SilvaCarbon Coordinator, USAID SilvaCarbon Coordinator, USGS
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FOREWORD

‘|'vv0 years ago, a group of scientists and practitioners representing a dozen countries across Africa, Asia,
and the Americas identified a pressing need and opportunity for the applied Earth observations and
international development communities. Global and national commitments to sustainable landscape man-
agement—including forests, mangroves, and the biomass they store and CO, they capture—nhas challenged
scientists and resource managers to develop and implement new, accurate, and cost effective monitoring
and reporting systems. Field measurements combined with satellite remote sensing techniques have pro-
vided industry-standard inputs into monitoring, reporting, and verification systems. In the last decade,
critical access to satellite data has skyrocketed, thanks largely to public releases of over 40 years of Landsat
data from the NASA and USGS, along with the European Space Agency's (ESA) free and open data policies
under the Copernicus Sentinel series. However, data access alone does not guarantee appropriate use.
Tools and training are important steps in ensuring adequate capacity at individual and institutional levels.

This Handbook represents a joint contribution from the U.S. government-led SilvaCarbon initiative, and the
joint NASA-USAID SERVIR program, to support global capacity building endeavors as called for by the Global
Forest Observations Initiative (GFOI). SERVIR's global network of international technical centers of excel-
lence, known as “SERVIR Hubs”, played a crucial role in defining needs and initial expansion of Synthetic
Aperture Radar (SAR) capacity. SERVIR Hubs have deep knowledge of existing national and regional capac-
ities in remote sensing for forestry and biomass monitoring, which articulated the critical gaps addressed
in this Handbook.

A common challenge that the applied remote sensing community faces in forestry and landscape monitoring
are clouds. For years, SAR promised all-weather, day-and-night capability, but at a steep cost. Until the
launch of the Sentinel-1 series by ESA’s Copernicus Program and the release of archived ALOS-1 imagery by
JAXA, SAR data were effectively inaccessible and inappropriate for national and regional level forestry and
biomass monitoring. The forthcoming NASA and Indian Space Research Organization (ISRO) SAR mission,
NISAR, will only add to the free access of SAR data.
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THE SAR HANDBOOK

The series of chapters in this handbook are authored by leading global experts in SAR remote sensing fun-
damentals and applications in this field, and co-developed with professionals who thrive at the transition
of research to applications for societal benefit. Through careful testing and curation, these materials are
meant to complement existing national, regional, and global methods in forestry and biomass estimation.
We are proud to share this as a multilateral contribution to improve the use of free satellite data toward
better monitoring and management of our terrestrial environments.

TZPL)—

Daniel Irwin
SERVIR Global Program Manager, NASA
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CHAPTER 1

Introduction and Rationale

Africa Ixmucane Flores-Anderson ', Kelsey Herndon "%, Emil Cherrington %, Rajesh Thapa’, Leah Kucera %, Nguyen Hanh Quyen’, Phoebe Odour*, Anastasia Wahome*,
Karis Tenneson ¢, Bako Mamane’, David Saah ®, Farrukh Chishtie °, Ashutosh Limaye '

ABSTRACT

This Synthetic Aperture Radar (SAR) handbook of applied methods for forest monitoring and biomass estimation has been developed by SERVIR in collaboration with
SilvaCarbon to address pressing needs in the development of operational forest monitoring services. Despite the existence of SAR technology with all-weather capa-
bility for over 30 years, the applied use of this technology for operational purposes has proven difficult. This handbook seeks to provide understandable, easy-to-as-
similate technical material to remote sensing specialists that may not have expertise on SAR but are interested in leveraging SAR technology in the forestry sector.

This introductory chapter explains the needs of regional stakeholders that initiated the development of this SAR handbook and the generation of applied training
materials. It also explains the primary objectives of this handbook. To generate this applied content on a topic that s usually addressed from a research point of view,
the authors followed a unique approach that involved the global SERVIR network. This process ensured that the content covered in this handbook actually addresses
the needs of users attempting to apply cutting-edge scientific SAR processing and analysis methods. Intended users of this handbook include, but are not limited to
forest and environmental managers and local scientists already working with satellite remote sensing datasets for forest monitoring.

1.1 Background

As highlighted by the Global Forest Observation
Initiative (GFOI) in their Methods and Guidance
Document (MGD) (GFOI 2017), SAR datasets have
proven useful as a source of activity data for forest
Monitoring, Reporting, and Verification (MRV) sys-
tems at national and regional levels. SAR datasets can
provide substantial aid to MRV systems, particularlyin
areas with persistent cloud cover, due to the sensor’s
all-weather capability (Reich et al. 2016).

The MGD also highlights the potential of SAR data-
sets with higher spatial resolution (<5 m) to charac
terize forest canopy. SAR captures different target
parameters than optical sensors, therefore providing
unique information that complements standard opti-
cal remote sensing methods. A helpful analogy would
be that while the energy captured by optical sensors
of a green leaf relates to its amount of chlorophyll
(or “greenness”), the amount of microwave energy
(part of the electromagnetic spectrum used in SAR)
scattered by the leaf would be proportional to its Size,

shape, and water content (Woodhouse 2006). SAR
indeed has a strong sensitivity to forest structure and
biomass (Saatchi 2015).

GFOI's MGD also documents the limitations of op-
fical data such as Landsat and MODIS to estimate for-
est biomass and to detect early regrowth of secondary
vegetation, including a limited ability to expose small
disturbances such as removal of individual trees
(GFOI2017). The main premise and recommendation
of GFOI's MGD is to combine both remote sensing
technologies, optical and SAR. However, the main
limitation faced over and over by users is how to start
ingesting SAR when its assimilation and analysis is
rather difficult, considered highly sophisticated, and
previously limited only to experienced professionals.

To clearly define the need for SAR technology for
forest monitoring systems, a needs assessment was
carried out within the SERVIR global network. SERVIR
is a joint initiative between NASA and the U.S. Agency
for International Development (USAID) that fosters
the use of Earth observations to assess environmental
conditions to improve decision-making actions.

Then, in collaboration with SilvaCarbon, a plan
was designed and implemented to effectively address
needs and knowledge gaps of remote sensing special-
ists working in MRV systems to use SAR. SilvaCarbon
is an interagency technical cooperation program of the
U.S. government to enhance the capacity of selected
tropical countries in measuring, monitoring, and re-
porting on carbon in their forests and other lands. In
addition, SilvaCarbon is the U.S. primary contributor to
GFOI, where their activities focus on capacity building.

1.2 Limitations and
Opportunities of Applying
SAR Technologies

Multiple research efforts investigate empirical re-
lationships between SAR backscatter and biophysical
forest properties, particularly aboveground biomass
(Woodhouse 2006, Reich et al. 2016). Yet there are
a number of limitations that are well summarized by
GFOI's MGD in using SAR for biomass estimation:

+ Depending on wavelength, rapid saturation of

1 NASA Marshall Space Flight Center / SERVIR Science Coordination Office, 2 University of Alabama in Huntsville, 3 International Centre for Integrated Mountain Development (ICIMOD) / SERVIR-Hindu Kush Himalaya, 4 Regional Centre for Mapping of Resources for Development (RCMRD)
/ SERVIR-Eastern & Southern Africa, 5 Asian Disaster Preparedness Center (ADPC) / SERVIR-Mekong, 6 Spatial Informatics Group (SIG) / SERVIR-Mekong, 7 Agro-meteorology, Hydrology, and Meteorology regional center (AGRHYMET) / SERVIR-West Africa, 8 University of San Francisco
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the signal at low aboveground biomass stock
(~50-100t C/ha) (Gibbs et al. 2007)

*Increased errors due to terrain

* Rainfall and soil moisture effects

* Localized algorithm development focused on a
single biome or mono-species stands

+ Lack of consistency in estimates as a function of
sensor parameters

Of particular concern is the limited transferabili-
ty of algorithms within and between different forest
structural types (GFOI 2017). Chapter 5 of this
handbook addresses this particular topic in depth.
Though these limitations may confine some appli-
cability of SAR technology, this handbook addresses
them effectively and provides users with practical
information to facilitate the appropriate use of SAR
data for accurate results. It explains state-of-the-art
methods not only with theory but also with hands-on
exercises.

The use of SAR datasets to accurately monitor pro-
cesses of deforestation, land and forest degradation,
and secondary forest regrowth (Hoekman & Quinonez
2000) has produced promising results that should not
be overlooked. Chapter 3 provides practical infor-
mation on change detection and forest degradation
analysis. All chapters provide key information that
addresses the listed challenges in working with SAR
data. Practical workflows are also included to provide
SAR analysis tools specific for stated user needs and
forest monitoring applications.

With publicly available C-band data from the Sen-
tinel-1 mission (Malenovsky et al. 2012, Berger et al.
2012) since 2014, the outlook of SAR operational use
has changed significantly, and in the most promising
way. This, in addition to the forthcoming availability
of public L-band data from NISAR and TanDem-L,
completely changes the game in terms of potential
operational use of SAR datasets. Previously designat-
ed Research and Development (R&D) topics by GFO
(2013) now use SAR for forestry applications such as
change detection within forest land, near-real time
forest change indicators, and forest stratification.

This previous R&D has enabled current and oper-
ational use of SAR for these applications. This hand-
book strives to provide technical materials to facilitate
these new resources into operational use.

1.2.1 FROM NEEDS TO PRACTICE

Though extremely useful and educational, the most
complete literature available on SAR s constrained
mainly to textbooks (Woodhouse 2006, Shimada 2018)
and does not focus on an applied approach needed by
technicians to start processing SAR datasets. In addi-
tion, there are a number of studies and peer-reviewed
publications (Moreira et al. 2013, Hoekman & Quiriones
2000) that add to the wealth of knowledge, but also lack
applied content that facilitates uptake of SAR technol-
ogy. This handbook represents a comprehensive re-
source for using SAR datasets for forestry and biomass
applications, and also augments recent efforts to gener-
ate reference documentation for interpreting SAR data-
sets (CEQS 2018), given its applied focus that includes
processing workflows for specific forestry applications.

The content of this handbook has been driven by the
needs of the community (see Sec. 1.3), and as such, is
strongly focused on forest biomass estimation. Howev-
er, italso covers a range of topics from basic preprocess-
ing to change detection, including mangrove monitor-
ing, Forest Stand Height (FSH), and sampling design for
uncertainty estimation. Given that current state-of-the-
art methods use SAR data for forest biomass estimation
as well as the ongoing research on how to better under-
stand forest backscatter signals (Brolly & Woodhouse
2012), this handbook clearly describes the limitations
and advantages of using SAR for specific forest appli-
cations. It also conveys in practical and understandable
terms the main considerations and concepts technical
users should be aware of when analyzing SAR data. It
is the authors’ intent to generate applied knowledge by
leveraging the wealth of research knowledge that has
been gathered over the past 30 years.

SERVIR and SilvaCarbon are committed to strength-
ening the technical capacity of users working on forest
monitoring applications, and as new SAR missions are
launched and new technologies emerge, it becomes
crucial to join efforts to achieve this goal.

1.3 Needs Assessment

1.3.1 WHO IS SERVIR?

SERVIR operates through established technical
organizations (called hubs) with unique sets of ca-
pabilities, including political buy-in from member

countries, technical expertise in remote sensing, geo-
graphic information systems, and database manage-
ment, along with strong relationships with stakehold-
ers. Science within SERVIR is coordinated through the
Science Coordination Office (SCO) at NASA Marshall
Space Flight Center. All SERVIR activities and projects
are user-driven and involve stakeholders who play a
key role in service development and uptake. SERVIR'S
network of hubs includes:

* FEastern and Southern Africa, with the regional
hub at the Regional Center for Mapping of Re-
sources for Development (RCMRD) in Nairobi,
Kenya;

* Hindu-Kush Himalaya, with the regional hub at
the International Center for Integrated Mountain
Development (ICIMOD) in Kathmandu, Nepal;

* Lower Mekong River, with the regional hub at
the Asian Disaster Preparedness Center (ADPC)
in Bangkok, Thailand,

« West Africa with the regional hub at Centre
Regional de Formation et d'Application en
Agrométéorologie et Hydrologie Opérationnelle
(AGRHYMET) in Niamey, Niger; and

*Amazonia, with the regional hub based at the In-
ternational Center for Tropical Agriculture (CIAT)
in Cali, Colombia. Because this is the newest hub
in the SERVIR network and the agreement to
start activities did not take effect until December
2018, it was not included in the development of
this material.

SERVIR hubs are comprised of recognized experts
in their respective regions for satellite remote sensing
and have developed multiple applications related
to SERVIR's thematic areas, including food security
and agriculture, water and water-related disasters,
weather and climate, and land cover/land use. Forest
monitoring is one of the common threads among the
services SERVIR hubs provide in the land cover/land
use change thematic area. SERVIR's stakeholders have
identified forest biomass estimation using remote
sensing as a key need.

Measurements of forest biomass can advance the
understanding of forests in the global carbon cycle
(Panetal. 2011). In addition, forest biomass estimates
are useful to support the implementation of Reducing
Emissions from Deforestation and forest Degradation
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(REDD+) initiatives in different regions of the world.

Demand to enhance forest monitoring systems by
incorporating additional satellite datasets and to de-
rive forest biomass has increased due to newly avail-
able satellite datasets that incorporate SAR technology
(De Sy etal. 2012). Currently, there are free and open
historical archives (2006-2011) of the Advanced Land
Observing Satellite-1 (ALOS-1) SAR datasets, and Sen-
tinel-1 has been providing free and open SAR imagery
since 2014. In addition, new forthcoming missions
such as NISAR, Biomass, and TanDEM-L will also pro-
vide free and open SAR data.

The recent widespread availability of SAR data cou-
pled with the need to overcome cloud cover in most
SERVIR regions highlight the need for understanding
how these new and free SAR satellite resources might
be leveraged, especially in the context of open source
and freely available software for land cover and use
applications (Brovelli at al. 2018). Figure 1.1 shows
cloud coverage over the five SERVIR regions, including
the most recent SERVIR-Amazonia hub.

The SilvaCarbon program provides targeted tech-
nical support to countries in the process of develop-
ing and implementing national forest and landscape
monitoring systems. SilvaCarbon leverages state-of-
the-art science and technology to advance the gen-
eration and use of improved information related to
forest and terrestrial carbon. It is within this context
that SERVIR and SilvaCarbon joined efforts to gener-
ate state-of-the-art technical materials that will make
meaningful contributions to support these countries’
efforts to measure, monitor, and report on carbon in
their forests.

Although the potential of SAR data is well recog-
nized, the current level of expertise in operational use
of SAR data for LCLUC applications, forest mapping/
monitoring, and (more specifically) biomass estima-
tion is limited in SERVIR regions. This limitation not
only applies to scientists in the SERVIR netwaork, but is
also observed worldwide (Reich et al. 2016).

SERVIR hubs have advanced expertise in using op-
tical remote sensing for land cover mapping, which is
reflected in the multiple LCLUC projects executed over
the years (http:/catalogue.servirglobal.net). SERVIR
hubs and their partners have requested support to
increase their capacities to process and analyze SAR

00 02 04 06 08 1.0

Global cloud fraction from Terra/MODIS
January - November 2017

Figure 1.1 Cloud coverage for year 2017 over SERVIR regions

data for forest monitoring and biomass estimation
applications.

The SERVIR SCO performed a needs assessment
across the SERVIR hubs to collect information on
current capacity, main services, and requests on
land cover/land use change applications. This needs
assessment inspired an effort to work with SAR data
for forest applications. The authors recognize that
their focus in the SERVIR network does not represent
a thorough global needs assessment; however, it like-

SERVIR PRIMARY CURRENT RS TECHNOLOGY
REGION & HUB  STAKEHOLDERS USED FOR MRV SYSTEMS
West Africa Ghana Forestry Monitoring permanent plots
AGHRYMET Commission, for AGHRYMET (GCCA Project,
University of Ghana starting support for countries to
establish national forest MRV
systems
Eastern & Kenya Forest Service, Freely-available optical RS
Southern Kenya Water Towers used; complicated by persistent
Africa Agency, Kenya Marine coud cover
RCMRD and Fisheries Institute,
Kenya REDD+, CIFOR,
other agencies
Hindu Kush- FRTC - Nepal, Optical RS
Himalaya DFPS - Bhutan
1CIMOD y ! Object-based image analysis
Optical RS for MRV dev
Mekong Forest Inventory and For Activity data: using medium
ADPC Planning Institute of resolution optical satellite

Viet Nam images (Landsat and Sentinel 2)

For Emission factors: using

National systematic sample plots
GCCA: Global Climate Change Alliance

FRIC: Forest Research and Training Centre
DFPS: Department of Forests and Park Services

ly provides a good representation of the needs facing
remote sensing specialists around the globe in forest
monitoring applications (Table 1.1).

In addition, due to the authors' collaboration with
SilvaCarbon, the focus of this handbook is to contrib-
ute to and to be in alignment with their objectives,
which include enhancing the capacity of countries
for forest MRV systems. Through this collaboration,
the authors aim to address user needs through the
development of a distinctive product that could serve

RELEVANT
SAR CAPABILITIES

POTENTIAL
APPLICATIONS

Matching ancillary data with the RS
(SAR) within a pilot site, upscaling
to cover all of the West African
sub-region.

Gain knowledge to start processing
SAR data in general. This
knowledge will go a long way in
supporting the countries as well as
in the provision of data that can be
used by the relevant authorities in
decision making.

Strength on capturing biomass
estimates

Gain knowledge to process
SAR data and develop biomass
estimation models

Basic SAR processing (Sentinel
1) and application in mapping to
recognized forest/ nonforest

Integration of SAR to support MRV
systems

Estimation of forest biomass in
West Africa

Forest biomass estimation.
Forest monitoring in cloudy regions

Support for REDD+ MRV

Forest biomass estimation to
support national communications to
UNFCCC for assessing carbon fluxes

Accurate forest biomass estimation

Using SAR to improve volume-based
estimation for forest quality,
monitoring forest degradation

Applied SAR for operation on forest
change detection, forest plantation
monitoring

Forest biomass estimation

Table 1.1 List of needs to apply SAR technology in SERVIR regions as identified by each SERVIR Hub
during the needs assessment process.
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to lower the barrier and create wise users of SAR tech-
nology. Therefore, building from that expertise, the
authors have focused on capacity building.

Training SERVIR hubs and their partners on the
use of SAR data will further strengthen their remote
sensing capabilities. Researchers in the SERVIR net-
work represent a link between national agencies,
user groups and the global user/producer commu-
nity, and NASA scientists; thus, we envision that en-
gagement with SERVIR network researchers on SAR
data capacity building and training activities will max-
imize benefits, in addition to complementing their
current optical remote sensing methods with SAR
methodologies.

1.4 Objectives

The main objective of this handbook is to provide
practical guidance on the application of SAR technol-
ogy for forest monitoring and biomass estimation. It
addresses a gap that would otherwise exist on how to
process SAR imagery for practical forest applications
that can benefit from incorporating SAR technology.
More specific objectives include:

+ Disseminate practical knowledge on using SAR
imagery for forest mapping/monitoring and
biomass estimation

+ Generate applied theoretical and hands-on ma-
terials that will enhance operational uptake of
SAR technology for forest monitoring and bio-
mass estimation

+ Support SilvaCarbon objectives in developing
good practices and approaches for using SAR
data for MRV systems

1.5 SERVIR Approach

To meet the goals described above, SERVIR fol-
lowed the next steps:

1. Scoping workshop with SAR experts and SER-
VIR user community

2. Define main topics for training and subsequent
handbook

3. Recruit subject matter experts on SAR applica-
tions (SAR experts) to provide training and develop
applied documentation

4. “Train the trainer” approach:

+ Generate descriptive training material us-
ing open source software

* Hold sequential training events based on
regional needs

+ Trainees repeat training at their centers

* Review and update training materials per
feedback collected at training events

Rather than creating another product—such as a
local or regional biomass product for a given region
that later becomes outdated and which nobody can
replicate—the authors chose to develop a strong ca-
pacity building approach, enabling and strengthening
technical capacities of users to create such a product.
This entailed work with world-renowned SAR experts
that are also the authors of individual chapters in this
handbook. These experts also created training tutori-
als that are included in the appendices of this hand-
book and on the handbook webpage.

To identify the main technical topics this handbook
addresses, the authors conducted a scoping meeting
in February 2017, where SAR experts and technical ex-
perts on forest applications from SERVIR regions came
together. This scoping meeting served to select topics
for technical training that became the main topics ad-
dressed in this handbook. Hence, as portrayed in Ta-
hle 1.2, the trainers of these international workshops
are the authors of the main technical chapters in this
handbook (Chapters 2-7). The content they cover in
their chapters and training tutorials have been tested
athands-on workshops and reviewed by remote sens-
ing specialists of the SERVIR global network and other

SAR specialists to ensure functionality and usability.
Main deliverables include:

* SAR Handbook of Applied Methods for
Forest Monitoring and Biomass Esti-
mation—The SAR Handbook consists of eight
chapters that include theory and background on
a wide range of topics related to monitoring for-
ests with SAR, as well as appendices that include
step-by-step guides to applying the theory to
practice. The authors envision this resource be-
ing used to develop forest applications and for
capacity-building efforts. Chapters can be used
together as a relatively complete and cohesive
source of information on monitoring forests
with SAR, or each chapter can stand alone as a
resource on specific topics.

* Hands-on training materials—The SAR
Handbook website hosts the materials neces-
sary to complete the training described in the
appendices. It includes PDFs of the handbook
and step-by-step instructions, PowerPoint pre-
sentations to complement the training, scripts to
process SAR data, and ancillary datasets, such as
lidar and in-situ measurements.

* One-pagers—The editors have identified the
need for quick reference guides for various SAR
topics, since no such reference exists for using
SAR to monitor forests. The editors developed
a number of one-page documents that provide
clear and easy-to-read summaries of important
SAR concepts discussed more in-depth within

SAR EXPERT TRAINING HOSTING HUB(S) LOCATION & DATES

Franz Meyer SAR Basics, 1)West Africa Niamey, Niger (Jan 29 - Feb 2, 2018)

Uni. o aska Frbanks - Foret DEBIadRNON& 5 i sy Himalaya  Khmandu, Nepal (Feb 12:16, 2018
eforestation

Josef Kellndorfer

Earth BigData

Paul Siquiera Forest Stand Height Mekong Bangkok, Thailand (Mar 12-16, 2018)

Univ. of Mass. Amherst

Marc Simard Mangroves, Eastern & Southern Nairobi, Kenya (April 16-20, 2018)

(alTech/NASA JPL Sampling Design Africa

Hans Andersen

US Forest Service

Sassan Saatchi Biomass Estimation

CalTech/NASA JPL

Hindu Kush-Himalaya

Kathmandu, Nepal (April 30-May 4)

Table 1.2 List of global SAR capacity building workshops for international partners in Africa and Asia.
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the handbook. These one-pagers include “SAR
Data Access and Availability,” “SAR Vegetation
Indices,” “SAR Preprocessing Steps,” “SAR for
Biomass Estimation,” and “SAR for Forest Stand
Height (FSH) Estimation.” Digital versions of
these one-pagers can be found on the handbook
webpage or in the handbook appendices.

* Technical videos—The editors have de-
veloped short animated videos to simplify and
clearly communicate complex concepts found
within the handbook. These include an introduc
tion to SAR concepts (wavelength, penetration
depth, polarization, etc.), FSH estimation, and
biomass estimation.

1.6 What to Expect

This handbook was developed to generate ap-
plied knowledge on using SAR for forest applications.
The content has been generated by world-renowned
experts on the topic and vetted, tested, and reviewed
by a community of applied remote sensing users. It
covers basic concepts to understand how SAR tech-
nology works and identifies some of the best practic-
es and approaches to estimating forest change, bio-
mass, and stand height; to mapping mangroves and
estimating their biomass; and to sampling design for
uncertainty estimation of biomass maps.

All the training tutorials use open source software
and programming languages to process and analyze
SAR datasets. This was a requirement that was ful-
filled by the SAR experts that generated the materials.

This handbook is comprised of eight chapters in
total, including this introductory Chapter 1 and
the following:

o Chapter 2, Spaceborne Synthetic Aperture Ra-
dar — Principles, Data Access, and Basic Process-
ing Techniques. Author: Franz Meyer—This first
technical chapter explains basic concepts to start
using SAR datasets. It covers basic preprocessing
and the peculiarities of SAR imagery, which en-
ables an understanding of how these datasets
are interpreted. This chapter also provides a
comprehensive inventory of past, current, and
planned SAR sensors.

 Chapter 3, Use of SAR Data for Mapping Defor-
estation and Forest Degradation. Author: Josef
Kellndorfer—This chapter focuses on the appli-
cations of SAR imagery for forest change detec-
tion. It discusses how SAR backscatter changes
due to sensor and target parameters, with an
emphasis on forest targets. It also explains an ap-
proach for time series analysis for forest change
detection.

o Chapter 4, Forest Stand Height. Author: Paul
Siqueira—This chapter discusses the estimation
of Forest Stand Height (FSH) through the use of
spaceborne SAR, especially at [-band repeat-pass
Interferometric SAR (InSAR). It covers the theory
and software, and provides examples for the use
of repeat-pass InSAR for FSH estimation.

o Chapter 5, SAR Methods for Mapping and
Monitoring Forest Biomass. Author: Sassan
Saatchi—This chapter provides a summary of
the methodologies and techniques for estimat-
ing forest aboveground biomass. The content
covers state-of-the-art SAR remote sensing ap-
proaches for characterizing vegetation structure
and biomass estimation, and provides resources

for future developments in the technology and
emergency methodologies.

Chapter 6, Radar Remote Sensing of Mangrove
Forests. Author: Marc Simard—This chapter
addresses the use of SAR imagery to monitor
changes in the mangrove forest extent. The state-
of-the-art radar remote sensing techniques to
measure and monitor mangrove forest structure
are also covered in this chapter.

Chapter 7, Sampling Designs for SAR-Assisted
Forest Biomass. Author: Hans Andersen—This
chapter discusses sampling design and statisti-
cal modeling/estimation frameworks to provide
a sound, statistically rigorous assessment of the
uncertainty of forest biomass maps. It provides
examples for efficiently using expensive field plot
data and more extensive use of less expensive,
remotely sensed information.

Chapter 8, Perspectives on the Future Applica-
tion of SAR in Forest and Environmental Monitor-
ing. Authors: Emil Cherrington et al—This chap-
ter discusses future and emerging applications
of SAR for forest and environmental monitoring,
and also reflects on how SAR is currently being
used across a range of applications. This chapter
discusses how this is expected to change due to
the growing public availability of SAR data and
platforms to process and analyze radar data. It
also discusses how SERVIR regional hubs are
applying SAR technology, and how the SERVIR
global network can be important resource cen-
ters in support of SilvaCarbon and GFOI to aid in
articulating and addressing new environmental
monitoring challenges.
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CHAPTER 2

Spaceborne Synthetic Aperture Radar:
Principles, Data Access, and Basic Processing Techniques

Franz Meyer, Associate Professor for Radar Remote Sensing, UAF & Chief Scientist of Alaska Satellite Facility

ABSTRACT

This chapter provides background information and hands-on processing exercises on the main concepts of Synthetic Aperture Radar (SAR) remote sensing.
After a short introduction on the peculiarities of the SAR image acquisition process, the remainder of this chapter is dedicated to supporting the reader in
interpreting the often unfamiliar-looking SAR imagery. It describes how the appearance of a SAR image is influenced by sensor parameters (such as signal po-
larization and wavelength) as well as environmental factors (such as soil moisture and surface roughness). A comprehensive list of past, current, and planned
SAR sensors is included to provide the reader with an overview of available SAR datasets. For each of these sensors, the main imaging properties are described
and their most relevant applications listed. An explanation of SAR data types and product levels with their main uses and information on means of data access
concludes the narrative part of this chapter and serves as a lead-in to a set of hands-on data processing techniques. These techniques use public domain
software tools to walk the reader through some of the most relevant SAR image processing routines, including geocoding and radiometric terrain correction,
interferometric SAR processing, and change detection.

2.1 On the Concepts of
Imaging Radars

2.1.1 AWORD ABOUT HISTORY

The invention of RAdio Detection And Ranging, or
radar, as a concept for detecting and localizing ob-
jects in a three-dimensional space dates back to the
turn of the 20™ century and is typically credited either
to the German inventor and entrepreneur Christian
Huelsmeyer—who proposed the so-called “Telemo-
biloskop” as an active microwave-based system for
detecting distant metallic objects (Vollmar 1960)—
or to the British engineer Robert Watson-Watt, who
in June of 1935 successfully demonstrated an object
detection and ranging system that was capable of
accurately locating airborne objects up to a distance
of about 30 km (Watson-Watt 1946). Once invented,
radar technology developed rapidly during the World
War Il era, motivated mostly by air defense and over-
the-horizon surveillance considerations. By the early
1940s, radars had become small enough to be im-
plemented on airplanes, expanding the application

realm of radar systems into a range of new fields,
including the growing discipline of Earth observation.
This chapter discusses the application of imaging ra-
dar sensors to this discipline.

2.1.2 SIDE-LOOKING AIRBORNE RADARS

The allure of using radar systems for imaging pur-
poses mostly stems from the all-weather and all-day
capabilities that can be provided by this sensor type.
These capabilities are advantageous for many surveil-
lance applications, allowing for regular mapping of
areas affected by heavy cloud cover, persistent rain,
or extended darkness. Additionally, radar signals
interact differently with the surface than most other
sensing systems, providing interesting new informa-
tion about the observed environment.

With the development of Side-Looking Airborne
Radar (SLAR) systems in the 1950s, the first airborne
radar systems with reliable imaging performance
became available. The observation configuration
of a SLAR system is shown in Figure 2.1 and con-
sists of a radar sensor mounted on an airborne (or
spaceborne) platform that, in this simplified exam-

ple, is moving along a straight path at altitude H.
Unlike most optical imaging systems, which point
their sensors towards nadir, the antenna of a SLAR
(and any other imaging radar) system is pointed away
from nadir by a so-called look angle 6, such that it
illuminates a continuous swath on the ground as the
aircraft moves along. .

While flying along its track, the radar system is
transmitting a sequence of short microwave pulses of
pulse length 1, each of which illuminates an instan-
taneous area on the ground that is usually referred
to as the antenna footprint (see darker gray area in
Fig. 2.1). The size $ of this instantaneous footprint
in either the range or along-track (azimuth) direction
is largely defined by the relationship between system
wavelength 4 and the side length of the antenna [
(defining the antenna’s beamwidth through f = A/1)
along this direction, as well as by the distance of the

radar sensor from the ground
Sz%l?: BRMm] . 2.1)

To form a two-dimensional image, the echoes
received from the ground are sorted by their arrival
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Pulse length = range’?esolu% X
/
// Pixel in a SLAR image .
/ Pulse footprint
- / = along-track resolution

Sty

/

Figure 2.1 Observation geometry of a SLAR imager. The radar flies along a straight line at altitude H and
observes Earth at an oblique look angle 6, Instead of the look angle, sometimes the incidence angle 6, =
(90° - 8) is annotated. The size of the illuminated footprint is defined by the antenna beamwidth 8 and the
distance between satellite and ground R. Note that the radar beam is wide in range direction but narrow in

azimuth. The generation of an image is facilitated by the forward motion of the airborne platform.

time in both range and azimuth direction. In range
direction, echoes from the ground arrive progressive-
ly later from the near-range to the far-range edge of
the swath. Objects at different ranges can be distin-
guished if their range separation is larger than half
the transmitted pulse length. Hence, the range reso-
lution of a SLAR system is defined by
il (2.2)
with ¢ corresponding to the speed of light. The vari-
able p, in Eq. (2.2) is usually referred to as the slant
range resolution of a SLAR system as it describes a
SLAR's ability to distinguish objects at different (slant)
distances from the radar (see “slant range direction”
in Fig. 2.1). While the slant range parameter p, is
useful for many system design questions, remote
sensing is often more interested in the ground range
resolution p,, which describes the ability to discrim-
inate objects that are situated on the ground and is
calculated from p, via the local incidence angle 6
p=—hw ] .
0 sin(ei)

Eq. (2.3) shows that the ground range resolution

(2.3)

P, is not constant across the swath and actually im-
proves with distance from nadir (due to the increase
of 9). This is opposite to the behavior of most optical
systems for which the ground resolution degrades
with increasing 6.

In the along-track (or azimuth) direction, the
ground is scanned by the movement of the radar
along its track. In the case of SLAR systems, the azi-
muth resolution p, (the ability to discriminate objects
in azimuth direction) is defined by the width of the
antenna footprint in azimuth S,, which, in turn, is
limited by the side length L, of the antenna in this
direction. Hence, following Eq. (2.1), the azimuth res-
olution corresponds to

A
pAI=SA1z—R=ﬁA1~R[m] . (2.4)

b

Eq. (2.4) indicates that the azimuth resolution
p,, is linearly degrading with increasing distance
between the sensor and the ground R. This has two
important implications for SLAR systems: first, as R
changes from the near-range to the far-range edge
of the swath, the azimuth resolution of a SLAR is not

constant across range. Second, and more impor-
tantly, the dependence of p, on the distance to the
ground £ makes the application of SLAR systems on
high-altitude or even spaceborne platforms highly
impractical. To illustrate this point, assume a C-band
SLAR system operating at A = 0.03[m] and utilizing
an antenna of £ = 3[m] length. If operated from an
aircraft at H = 3000[m] altitude and observing at a
look angle of ¢, = 30°, this system will achieve an
acceptable azimuth resolution of p, = 0.01 - 3000 -
2= 60[m]. However, if the same system is operated
from a spaceborne platform at # = 800[km], p,, will
degrade to p, = 16[km], which is below the required
system performance for most Earth observation ap-
plications.

A straightforward approach for keeping the sys-
tem’s azimuth resolution at an acceptable level even
for spaceborne applications is to increase the length
of the antenna used by the system until a desired
value for p, is reached. Simple mathematics show,
however, that this solution is not practical. Using the
numbers from the previous example we find that an
unreasonable antenna length of about £ = 800[m]
would be needed to achieve a p, = 60[m] resolution
from space. An elegant and more practical solution
for the azimuth resolution issue—the synthetic ap-
erture principle—was developed in 1952 and will be
introduced in Section 2.1.3.

Despite their resolution limitations, SLAR systems
remain popular for many ground-based and airborne
applications. This continued popularity is largely due
to the simplicity of SLAR systems in both their system
design and data processing demands.

2.1.3 SYNTHETIC APERTURE RADAR SENSORS

In 1952, Carl Wiley, an engineer with the Good-
year Aircraft Cooperation, made an essential dis-
covery that provided a solution to the azimuth res-
olution problem plaguing existing SLAR technology
(see Sec. 2.1.2). In technical terms, he observed
that a one-to-one correspondence exists between
the along-track coordinate (relative to a transmitted
radar beam) of a reflecting object and the instanta-
neous Doppler shift of the signal reflected back to
the radar by that object. He further postulated that a
frequency analysis of the recorded signals could en-
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able a finer along-track resolution than that achieved
by conventional SLAR systems. Wiley's discovery—
which was originally published under the name
Doppler beam-sharpening but is often referred to
as aperture synthesis—is the key element behind
all modern high-resolution imaging radar systems.
There is a large body of literature on the mathemat-
ical details of Wiley's aperture synthesis solution to
radar imaging. Readers interested in more technical
information should refer to the excellent summary by
Cumming and Wong (2005).

The following conceptual explanations of Wiley's
invention provide a good summary. The aperture
synthesis principle essentially allows one to create
(or “synthesize”) a much longer effective antenna
(the so-called synthetic aperture) from a sequence of
acquisitions made with a shorter antenna as it moves
along its flight line. As antenna length is intrinsically
linked to the resolution capabilities of a radar system
(we know this from Eq. (2.1)), the much longer anten-
na synthesized by Wiley's principle allows high-reso-
lution imaging even from spaceborne platforms using

Figure 2.2 Geometry of
observations used to form
the synthetic aperture
for target P at along-

track position x = 0.

antenna hardware of a manageable size.

A simplified conceptual illustration of Wiley's con-
ceptis shown in Figure 2.2. There, a radar antenna
(indicated by a gray rectangle) of reasonably short
length is moving at a velocity V along its flight path
from the right to the left. While moving, it is con-
stantly transmitting short radar pulses and receiving
echoes returned from objects on the ground. Each
radar pulse illuminates an instantaneous footprint
of size S on the Earth surface. For spaceborne ap-
plications, the limited length L of the radar antenna
(Eq. (2.1)) results in instantaneous footprints that
typically measure several kilometers in size, resulting
in the typical resolution limitation that plagues SLAR
systems.

To apply Wiley's aperture synthesis concept, we
have to first ensure that an object P on the Earth
surface is imaged by many consecutive radar pulses
as the antenna heam sweeps across the ground. This
requirement is indicated in Figure 2.2 by several
antenna positions that illuminate object P as the sen-
sor moves from point x, (firsttime object Pis seen) to

point x, (last time P is observed). Once the radar data
are acquired, a postprocessing approach is applied to
combine all acquisitions between x, and x, and into
a single dataset that looks like it was acquired with a
much longer antenna. This longer (virtual) antenna is
typically called the “synthetic aperture,” as it was syn-
thesized from a number of acquisitions with shorter
antennas. The length L, of this synthetic aperture can

be calculated via
A
Ly =7'Ro“ﬁ'ko
and is equivalent to the footprint S illuminated by the
(shorter) real antenna installed on the spacecraft (see
Eg. (2).

The dataset resulting from the aperture synthesis
process is typically referred to as a SAR image and has
much higher resolution than SLAR images acquired
from the same distance. An example of a SAR image
acquired by the European Space Agency's (ESA's) ERS-2
sensor is shown in Figure 2.3.

The aperture synthesis concept is the basis of all
modern radar systems even though various modifica-
tions of the basic imaging concept are currently used
to maximize either image resolution (Spotlight concept:
Eineder etal. 2009, Lanari etal. 2001, Mittermayer etal.
1999) or image coverage (ScanSAR: Bamler and Eined-
er 1996, Bamler and Holzner 2004, Monti Guarnieri
and Prati 1996). Modern spaceborne SAR sensors typ-
ically achieve ground resolutions between roughly 0.5
and 20 m, depending on their specific design. Recent
developments in antenna design and image processing

98ues

Figure 2.3 Example of a spaceborne SAR
dataset acquired by ESA’s C-band sensor ERS-2.
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techniques have made high-resolution imaging across
large image swaths possible. These developments rely
on the concept of digital beamforming (Gebert et al.
2009, Krieger & Moreira 2003, Younis et al. 2003) and
have spawned new imaging modes such as Terrain
Observation with Progressive Scans SAR (TOPSAR) (De
Zan &Monti Guarnieri 2006) and SweepSAR (Freeman
etal. 2009). For technical details on these techniques,
please see the literature cited.

2.1.4 GEOMETRIC PROPERTIES OF SAR DATA

Due to the oblique observation geometry inherent
to allimaging radar systems, surface slopes and similar
terrain features lead to geometric distortions in data
acquired by SAR systems. The most relevant of these
distortions are foreshortening, layover, and shadow.
The origins and main characteristics are of these dis-
tortions are summarized in Figure 2.4.

In side-looking viewing geometries, sensor-facing
slopes appear foreshortened such that a symmetric
mountain would appear in the radar image as if “lean-
ing” towards the sensor. The geometric background of
foreshortening is shown in Figure 2.4(a), showing
that the slope between points A and B will get fore-
shortened into the image area A'8". The amount of fore-
shortening depends both on the system'’s look angle 8
and on the slope angle @, and reaches its maximum if
— qa.Inareaswhere f<a(e.g., in areas of steep slopes
combined with steep incidence angles), foreshortening
turns into layover (see Fig. 2.4(b)). In layover situa-
tions, the tops of mountains are imaged ahead of their
base (see projections of points Band Cin Fig. 2.4(h))
and backscatter from mountain slopes will overlay with
image information at closer and farther image ranges
(see green, red, and gray areas in Fig. 2.4(b)). Both
foreshortening and layover can be reduced if the look
angle @ is increased; however, larger & will produce
more image shadow (Fig. 2.4(c)). Hence, topogra-
phy-related image distortions cannot be entirely re-
moved, and image acquisitions from more than one
vantage point may be necessary to jointly minimize all
three imaging effects.

2.1.5 RADIOMETRIC PROPERTIES - THE
SPECKLE EFFECT

Besides these geometric distortions, SAR images
additionally are characterized by a somewhat grainy

FORESHORTENING
« Sensor-facing slope
foreshortened in image
+ Foreshortening effects decrease
with increasing look angle

LAYOVER

* Mountain top overlain on
ground ahead of mountain

« Layover effects decrease with
increasing look angle

lay-over

SHADOW
+ Area behind mountain cannot
be seen by sensor
+ Shadow effects increase with
increasing look angle

/ radar shadow

ground range

CcD
ground range

ground range

Figure 2.4 Main geometric distortions on SAR images with their dependence on acquisition geometry:

(a) foreshortening, (b) layover, and (c) shadow.

appearance that resembles “salt and pepper” noise.
This noise-like pattern can be seen in Figure 2.3
and is usually referred to as “speckle.” The speckle
effect is inherent to all narrow-banded coherent im-
aging systems and is a result of interference from the
many scattering echoes within a resolution cell.

In a medium-resolution SAR image, the scattering
response from one resolution cell (of about 10x10[m]
in size) is the coherent sum of thousands of individ-
ual scattering events, as shown in Figure 2.5(a).
Imagine the SAR system is imaging a homogeneous
surface, such as a smooth meadow, and assume that
the individual scattering events within one resolution
cell (gray arrows in Fig. 2.5(a)) are all about equal-
ly strong. Due to their different positions within the
resolution cell, the phase of the individual scatterers
will vary randomly, such that the scattering response
from one pixel is the summation of thousands of ran-
dom vectors (black arrow in Fig. 2.5(a)). As the ar-
rangement of scatterers in different resolution cells is
notidentical even for homogeneous targets, both the
amplitude and phase of the summation vector (black
arrow) will vary randomly from pixel to pixel, result-
ing in the typical grainy signature shown previously
in Figure 2.3.1f the number of individual scattering
events is large, the distribution of intensities in a SAR
image follows an exponential distribution of the form

1 /
pdf(/|o°)=—oexp{——0], (2.5)

g g

where /= Re{u}* + Im{u}* is the image intensity in

Im{u} @

Re{u}

4

(b)

o
2

g

%

%
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Observed Image Power /

Figure 2.5 (a) Speckle originating from the
coherent summation of many individual scattering
events within a resolution cell and (b) shape of
the speckle pdf for images areas with different
normalized radar cross sections a°.

a pixel. The distribution in Eq. (2.5) is often called
speckle distribution and is a valid description for the
noise patterns observed for homogeneous targets in
medium-resolution SAR images.

Eq. (2.5) shows that the shape of the speckle
distribution depends on the (true) normalized radar
cross section ¢® of the observed target, such that
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brighter image patches will show more intense noise.
Here, ¢” describes the percentage of incoming radar
energy that is scattered back to the sensor by an object
on the ground. It is a normalized version of Eq. (2.6)
discussed in the next section. The dependence of the
speckle statistics on ¢” is visualized in Figure 2.5(h),
where the speckle distribution pdf(/|¢°) is plotted for
three different o” values. It can be seen that the speck-
le distribution becomes wider with increasing a® and
starts to approximate a uniform distribution for very
high ¢”.

Speckle noise is distinguished from most other
noise sources, which are often constant throughout the
image, by its dependence on image brightness. Mul-
fiplicative noise such as speckle is difficult to treat, as
the true radar cross section ¢® of the target needs to be
known to correctly model paf(/|o°). Hence, throughout
the last decade, a lot of effort has been dedicated to
the development of effective speckle filters, resulting in
a wealth of different filtering methods. While the most
relevant/well known of these filters are listed in Ta-
ble 2.1, readers interested in this topic are referred to
specialized literature such as Bruniquel & Lopes 1997,
Ferretti et al. 2011, Huang et al. 2009, Lee et al. 1991,
Lee etal. 1994, Lopez-Martinez & Pottier 2007, Novak &
Burl 1990, and Sveinsson & Benediktsson 2003.

2.2 How SAR Images the
World

SARs transmit microwave signals at an oblique
angle and measure the backscattered (in the direc-
tion of the sensor) portion of this signal in order to
analyze features on the surface. Mathematically, this
(calibrated) measurement is described using the
term Radar Cross Section (RCS) g, which is defined
as the ratio between the incident and received signal
intensity:

o Lrcied 42 mzl : (26)

incident

The RCS recorded by a SAR for a specific surface
feature is not always straightforward to interpret,
as it is influenced both by a range of scene charac-
teristics as well as by the parameters of the imaging
Sensor.

The mostimportant scene parameters driving RCS
are surface roughness . and the dielectric prop-
erties of the imaged object quantified by its complex
relative dielectric constant €. While f, |~ describes
how much of the scattered radar energy is directed
back to the sensor, the dielectric properties guide

whether or not (and how deep) signals may penetrate
into the scattering surface. The fact that both of these
parameters are a function of sensor wavelength (and
to some degree signal polarization) explains why
the characteristics of the sensor play a role when
attempting to interpret the measured signature of
real-life objects in a SAR image.

2.2.1 DIELECTRIC PROPERTIES AND
PENETRATION DEPTH OF RADAR SIGNALS

The dielectric properties of a medium govern how
a microwave signal of wavelength A interacts with a
scattering medium such as the Earth's surface or a
vegetation canopy. These properties dictate how
much of the incoming radiation scatters at the sur-
face, how much signal penetrates into the medium,
and how much of the energy gets lost to the medium
through absorption. While a detailed explanation of
microwave scattering processes is beyond the scope
of this chapter, information is provided on how these
processes change with sensor wavelength. This will
provide the reader with the required background to
interpret differences in the appearance of observed
data from different SAR instruments. For a more de-
tailed discussion on the interactions of microwaves
with media, please refer to the excellent introducto-

SPECKLE FILTERS DESCRIPTION RELATED PUBLICATION(S)

Change-preserving
multi-temporal Speckle filter

Lee filter

Filter for stacks of SAR images; reduces speckle while preserving changes in the time series
(e.g., related to deforestation)

Standard deviation-based (sigma) filter, filtering data based on statistics calculated from

Quegan and Yu, 2001

Lee, 1980

the data. Unlike a Gaussian or boxcar filter, the Lee filter and other similar sigma filters
preserve image sharpness and detail while suppressing noise.

Enhanced Lee filter

The enhanced Lee filter is an adaptation of the Lee filter. Each pixel is put into one of three

classes, which are treated as follows:

Frost and enhanced
Frost filters

The Frost filter is an exponentially damped circularly symmetric filter that uses local statis-
tics. The Enhanced Frostfilter is an adaptation of the Frost filter. It classifies and filters pixels

according to the logic explained in the row above.

Non-local means filters

The basic idea behind non-local means filters is to provide an estimate of the clean image
via a proper averaging of similar pixels or patches, found in the image. Essentially, the al-

Lopes et al., 1990

Homogeneous: The pixel value is replaced by the average of the filter window.
Heterogeneous: The pixel value is replaced by a weighted average.
Point target: The pixel value is not changed.

Frostetal., 1982; Lopes etal., 1990

Buades et al., 2005; Chen et al., 2014; Di Martino
etal., 2016; Martino et al., 2015

gorithm searches for image patches that resemble the area around the pixel to be filtered.
Using some similarity criterion, these patches are found and averaged together to de-noise
the image without losing resolution.

Table 2.1 Summary of most relevant speckle filters with their properties and related publications.
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ry book on microwave remote sensing by lain Wood-
house (2006).

Figure 2.6 provides a conceptual overview of
the influence of sensor wavelength A on signal pene-
tration into a variety of surface types. The radar sig-
nals penetrate deeper as sensor wavelength increas-
es. Thisis related to the dependence of the dielectric
constant ¢ on the incident wavelength, allowing for
higher penetration at L-band than at G- or X-bands.
For vegetated areas, this implies that X-band SAR
sensors mostly scatter at the tops of tree canopies,
while G- and L-band signals penetrate increasingly
deeper into the vegetation volume. Hence, if vegeta-
tion parameters (e.g., vegetation structure, biomass,
etc.) are to be characterized using SAR, longer wave-
length systems should be used (see Table 2.3 to
identify sensors operating at longer wavelengths).
Similarly, users interested in mapping inundation
under forest canopies should select longer wave-
length SAR sensors as their main data source.

In addition to sensor wavelength, the penetration
depth of a SAR signal into a vegetation canopy is also
influenced by the density of this canopy. For exam-
ple, while G-band SAR data may “see” the ground un-
derneath sparse boreal forests, G-band signals will
not be able to fully penetrate the denser and layered
canopy structure of rainforests.

The rule of increasing penetration with increasing
sensor wavelength also holds true for bare surfaces
such as alluvium soils or glacier ice; X-band signals
scatter close to the surface, while G- and L-band data
penetrate progressively deeper into the medium. To
quantify penetration depths 6, into bare surfaces,
information about the dielectric properties ¢ of the
medium is needed. If information on ¢ is available,
9, can be approximated by

5,0 z)\\/g/(brs;') ,

where g} is the real component and g is the
imaginary component of the complex relative dielec-
tric constant. In addition to soil density and sensor
wavelength, &} and & are strongly dependent on
the moisture content of the medium. Figure 2.7(a)
shows an example of the dependence of dielectric
properties on moisture content for loam soils com-

(2.7)
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Figure 2.6 SAR signal penetration by sensor wavelength A.

posed of a mix of sand, silt, and clay ingredients. The
dielectric properties are plotted as a function of soil
moisture for several sensor wavelengths. It can be
seen that both g and & increase with soil moisture,
leading to a reduction of penetration depth accord-
ing to Eq. (2.7). Also, s: and s: depend on sensor
frequency f= ¢/A. With increasing frequency (de-
creasing wavelength), s: reduces and s: increases
such that penetration depth ¢, is significantly larger
for low-frequency (long wavelength) SARs. A plot of
the dependence of penetration depth 6, on sensor
wavelength 4 is shown in Figure 2.7(b). Penetra-
tion depth is approximated according to Eq. (2.7) for
the soil type shown in Figure 2.7(a) and assuming
a volumetric soil moisture of 0.35. A near-linear in-
crease of penetration depth with increasing sensor
wavelength can be observed.

2.2.2 SURFACE ROUGHNESS

With few exceptions (dry snow, dry sandy soils),
most bare or low-vegetation surfaces allow very little

penetration for microwave radiation (Fig. 2.7(h))
such that surface scattering dominates the measured
radar response. In these cases, the roughness of the
scattering surface is the main driver defining the ob-
served RCS in a SAR scene.

For narrow-band imaging systems like SAR,
whether a surface appears rough or not can only be
decided with the observing sensor wavelength in
mind. If the scale of roughness of a randomly rough
surface is characterized using the standard deviation
of the height deviation / from some mean height / of
the surface, then the question of how large / has to
be for a surface to appear rough to an observing SAR
system can be answered. According to the Fraunhofer
criterion, a surface is defined as rough if the height
deviations exceed the value £, ., which is deter-
mined by Eq. (2.8):

B> A7 (32 0s)) .

rough

(28)

Note that the relationship in Eq. (2.8) depends on
the signal wavelength A and indicates that a surface
with fixed height variations h may qualify as rough in
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Figure 2.7 (a) Relationship between soil
moisture and dielectric constant and (b)
dependence of penetration depth 6, on sensor
wavelength A for a fixed soil moisture.

X-band but possibly not in G- or L-bands. This concept
of wavelength-dependent roughness is visualized in
Figure 2.8, which shows increasing roughness con-
ditions from left to right and identifies the transition
from smooth (Fig 2.8(a)) to intermediately rough
(Fig. 2.8(b)) to rough surfaces (Fig. 2.8(c)) in ac-
cordance with the Fraunhofer criterion in Eq. (2.8). It
(an be seen that the amount of backscatter increases
(length of blue arrows pointing toward the sensor)
as roughness increases such that rough surfaces (at
wavelength 4) have higher RCS than intermediately
rough or smooth surfaces. The wavelength depen-
dence also means that a surface will look increas-

¥. i

—h<—

No return:

Smooth surface,
specular reflection

Intermediate
roughness

Moderate return:

Strong return:

Rough surface,
diffuse scattering

Figure 2.8 Conceptual sketch of the dependence of surface roughness on the sensor wavelength A: (a)

smooth, (b) intermediate, and (c) rough.

ingly darker as wavelength increases from X-band
(4=3.1 cm) through C-band (4 =5.66 cm) to L-band
(=24 cm).

2.2.3 THE INFLUENCE OF SIGNAL
POLARIZATION

As SAR is an active instrument with its own
source of illumination, it is one of the few sensing
instruments that allows one to fully control (and
fully exploit) the polarization of the signal on both
the transmit and the receive paths. Polarization de-
scribes the orientation of the plane of oscillation of
a propagating signal. In linearly polarized systems,
the orientation of this plane of oscillation is constant
along the propagation path of the electromagnetic
wave. In other systems, such as circular or elliptical-
ly polarized SARS, the orientation of the oscillation
plane changes, describing geometric shapes such as
ellipses or circles.

The majority of today’s SAR sensors are linearly
polarized and transmit horizontally and/or verti-
cally polarized wave forms. Many of the heritage
SAR satellites carry single-polarized sensors, which
support only one linear polarization. These sensors
predominantly operate in HH- (horizontal polariza-
tion on transmit; horizontal polarization on receive)
or VV-polarization (vertical transmit; vertical re-
ceive), while single-polarized sensors transmitting
one linear polarization and receiving the other (e.g.,
HV (horizontal transmit; vertical receive)) are rare
in practice.

More recent sensors provide either dual-polariza-
tion or quad-polarization capabilities. In the latter,

the sensor alternates between transmitting H- and
V-polarized waveforms and receiving both H and V
simultaneously, providing HH-, HV-, VH-, and VV-po-
larized imagery.

Knowing the polarization from which a SAR image
was acquired is important, as signals at different
polarizations interact differently with objects on the
ground, affecting the recorded radar brightness in
a specific polarization channel. While the details of
polarimetric scattering are beyond the scope of this
chapter, the following paragraph provides rules of
thumb that should aid in the interpretation of pola-
rimetric SAR data.

For simplicity, it is assumed that a natural scene
can be described as a combination of three types
of scatterers: (1) rough surface scatterers, (2) dou-
ble-bounce scatterers, and (3) volume scatterers.
The nature of these scattering types is illustrated
in Figure 2.9. The category of surface scatterers
(shown in blue in Fig. 2.9) is made up of low-vege-
tation fields and bare soils, as well as roads and other
paved surfaces. Double-bounce scatterers (red in
Fig. 2.9) include buildings, tree trunks, light poles,
and other vertical structures that deflect an initial
first forward reflection back to the sensor. Finally,
vegetation canopies belong to the category of volume
scatterers (green in Fig. 2.9) as the signals bounce
multiple times as they propagate through the vegeta-
tion structure.

|t turns out that these Scattering types do not con-
tribute to all polarimetric channels equally. Instead,
each polarimetric channel “prefers” certain scattering
types such that the scattering power |$| in the indi-
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Figure 2.9 Schematic sketch of the three main scattering types considered for SAR data.

vidual polarimetric channels follows the following
general scheme shown in in Table 2.2.

RELATIVE SCATTERING STRENGTH BY POLARIZATION:

|S\“J |>‘SHH |>‘SHV } or |S‘Jl' I

Rough Surface Scattering

Double Bounce Scattering S, [>[S,, [>[S,, | o [S,, |

Volume Scattering Main source of |S,,, | and |S,, |

Table 2.2 Relative scattering strength by polarization

These general rules should help when comparing
the RCS in different polarimetric channels. They can
be applied to perform an automatic classification of
scattering types if data with all relevant polarizations
(i.e., quad-polarization data) are available. For more
information on polarimetric SAR and polarimetric
SAR data analysis, see Pottier & Lee 2009 and Van Zy!
2011.

An example of the information contained in
quad-polarization SAR data is shown in Figure 2.10.
There, the polarimetric scattering power of |S,,|,
S,,|, and |S, | are presented in Figures 2.10(a),
(b), and (c), respectively, for an ALOS PALSAR scene
over Niamey, Niger. According to the rule above,
strong scattering in [S,, | indicates a predominance
of double-bounce scattering (e.g., stemmy vegeta-
tion, manmade structures), while strong |S,, | relates
to rough surface scattering (e.g., bare ground, water),
and spatialvariationsin |S,, | indicate the distribution
of volume scatterers (e.g., vegation and high-pene-
tration soil types such as sand or other dry porous
soils) across the scene. To enhance the visibility of
differences between the channels, the HH, VV, and
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HV information is often combined into a single RGB
image, with [S,, | inred, |S,,| assigned to blue, and
|S,,,| in green. Such an RGB image composite for the
scene over Niamey is shown in Figure 2.10(d). Ex-
tensive red areas can be seen in some urban districts
(buildings) and some agricultural zones (stemmy veg-
etation). A patch of green can be seen to the south
of Niamey, presumably relating to higher penetration
sandy soils and the volumetric scattering on inclusion
within the sand body. Most other areas have a tinge
of blue, indicating bare soils.

2.3 Historic, Current, and
Future SAR Sensors

Amazingly, spaceborne SAR sensors have been
around for more than 40 years. The first SAR was

launched on June 28, 1978, on board NASA's Seasat
satellite, a spaceborne platform aimed at monitoring
oceanographic phenomena. As part of its sensor
suite, Seasat carried an HH-polarized L-band SAR
that was mounted at a fixed angle to observe glob-
al surface wave fields and polar sea ice conditions.
Even though Seasat’s SAR operated for only 106
days (a short circuit in the satellite’s electrical sys-
tem occurred on October 10, 1979), the mission was
deemed an extensive success, demonstrating a SAR
capability both ocean and land surface observation
(Fu &Holt 1982).

Since the days of Seasat, SAR remote sensing has
come a long way. Starting with ERS-1in 1991, sev-
eral SAR sensors with ever-improving imaging char-
acteristics have been launched by an international
community of satellite providers, collectively ensur-
ing continuous coverage of the Earth with SAR data.
Unfortunately, this international constellation of SAR
systems comes with a downside. The SAR satellites
launched by the various agencies vary widely in their
sensor configurations such that data from different
sensors are not always directly comparable (see
Sec. 2.2). Section 2.3.1 outlines the main differ-
ences between different sensors in order to assist
new users in choosing the correct SAR data for an
intended application.

2.3.1 SAR SENSOR WAVELENGTHS

SAR sensors transmit energy in one of the micro-

Figure 2.10 Fully-polarimetric L-band SAR scenes from the ALOS PALSAR sensor over Niamey, Niger:
@) |S,,1, (b) 1S,,1, and (c) |S,,| scattering powers. An RGB color combination of these channels is

shown in (d).
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wave frequency bands shown in Table 2.3. Roughly
speaking, radar systems use frequencies from 1 to 90
GHz, a spectral range that is subdivided into the fre-
quency bands shown in the first column of Table 2.3.
These bands were initially defined according to the
different equipment needed to generate and detect
signals at these particular wavelengths, but now, they
can be understood as the equivalent of colors in the
visual range. As microwave remote sensing was de-
veloped largely during World War 11, a rather cryptic
naming convention was used to disguise the meaning
of microwave bands from the enemy. Unfortunately,
this letter-based naming scheme (Ka-band to P-band)
was never modified and may lead to confusion among
new users of SAR.

Not all of the microwave bands shown in Table 2.3
are used for SAR remote sensing. While some exper-
imental airborne Ka- and Ku-band SAR systems exist,
civilian spaceborne sensors have been exclusively using
the lower frequency bands ranging from X- to P-band
(blue shaded region in Table 2.3).

As explained in Section 2.2, the wavelength of
a SAR sensor is intrinsically linked to the penetration

capabilities of the transmitted microwave signal, such
that longer wavelength signals (e.g., signals at L- and
P-band) penetrate deeper into vegetation canopies and
soils. Hence, the applications supported by a SAR sen-
sor depend on the SAR frequency band used.

Table 2.3 summarizes typical applications of SAR
as a function of frequency band. It shows that sensors
at X-band are predominantly used for urban and in-
frastructure monitoring. Due to the higher resolution
capabilities of X-band radars, sensors at this frequency
find broad application in surveillance and tracking and
are also often used in the monitoring of industry instal-
lations. Due to the limited penetration into vegetation
covers, X-band is rarely used for characterizing forest
canopies for monitoring activity underneath vegetation.

With the predominate number of legacy systems
operating at this frequency range, (-band sensors have
been the workhorse of SAR monitoring over the last 30
years. With moderate- to high-resolution capabilities
and increased vegetation penetration, -band data can
be seen as a good compromise between X-band and
the longer wavelength L-band sensor classes. Com-
pared to X-band SARs, Gband sensors typically allow

for wider swath imaging, lending themselves to re-
gional- and global-scale applications. While G-band
has improved canopy penetration capabilities, its
signals will typically not penetrate all the way through
a vegetation layer. Especially in regions with denser
vegetation, C-band is of limited use for analyzing ac-
tivity underneath canopy layers.

While S-band SAR sensors were rarely used in
Earth observations in the past, this frequency will have
increased usage in the near future. NovaSAR-S, an
S-band SAR sensor, was launched in September 2018
and while access to NovaSAR-S data may be limited, it
will provide some medium-resolution SAR data to ex-
plore the performance of S-band data for applications
such as hazard monitoring, crop monitoring, forest
monitoring (temperate and rainforests), as well as land-
use mapping. More interesting to most users will be the
upcoming NASA ISRO SAR satellite, NISAR. In addition
to an L-band radar, NISAR will carry a fully polarimetric
S-band SAR. While NISAR's S-band coverage will likely
notbe global, all data will be freely and openly available
to the SAR science and applications community.

While most of the historic SAR systems operated

BAND FREQUENCY WAVELENGTH TYPICAL APPLICATION
27-40 11-08 Rarely used for SAR (airport surveillance)

K 18-27 GHz 1.7'=1.1 m Rarely used (H,0 absorption)

Ku 12-18 GHz 24-17 m Rarely used for SAR (satellite altimetry)

X 8-12 GHz 38-24 High-resolution SAR (urban monitoring; ice and snow, little penetration into vegetation cover; fast coherence decay in
vegetated areas)

C 4-8 GHz 75-38 SAR workhorse (global mapping; change detection; monitor-ing of areas with low to moderate vegetation; improved
pen-etration; higher coherence); Ice, ocean, maritime navigation

S 2-4 GHz 5-75 m Little butincreasing use for SAR-based Earth observation; agriculture monitoring (NISAR will carry an S-band channel;
expands C-band applications to higher vegetation density)

L 1-2 GHz 30-15 m Medium resolution SAR (Geophysical monitoring; biomass and vegetation mapping; high penetration; InSAR)

P 03-1 GHz 100 - 30 m Biomass. First P-band spaceborne SAR will be launched ~2020; vegetation mapping and assessment. Experimental SAR.

Table 2.3 Designation of microwave bands. Spaceborne SARs typically operate in the frequency bands shaded in green. Note: This table uses standard
terminology common to the radar community. This nomenclature is not identical to ones used by other disciplines. For instance, P-band is often referred to
as UHF band. Also note that the actual frequencies allocated for radar use by the International Telecommunications Union are narrower bands within these

broad classifications.
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in G-band, the family of future SAR sensors is largely
focused on the L-band frequency range. While L-band
SARs do not provide the high-resolution capabilities
of shorter wavelength SARs, their ability to penetrate
vegetation holds a number of advantages for Earth
observation. With a higher likelihood of seeing the
ground, L-band SARs are useful for mapping activity
underneath canopies such as flooding. Due to the
high penetration into vegetation covers, L-band SAR
also lends itself well to characterizing canopy struc-
ture, especially in denser forests. Finally, the higher
canopy penetration is also advantageous for users of
Interferometric SAR (InSAR), achieving higher inter-
ferometric coherence (see Sec. 2.6.2.) and better
deformation tracking capabilities.

P-band SAR sensors are currently under devel-
opment. Spaceborne applications at this frequency
are hampered by ionospheric distortions, and only
recent developments in ionospheric correction
(Belcher 2008, Belcher and Rogers 2009, Gomba et
al. 2016, Jehle et al. 2010, Jehle et al. 2009, Kim et
al. 2011, Meyer et al. 2006, Meyer & Nicoll 20084,
Meyer 2011, Meyer et al. 2016, Meyer & Nicoll 2008b,
Pietal. 2012) have allowed spaceborne P-band SAR
missions to go forward. The first spaceborne P-band
SAR—ESA's Biomass mission—is planned to launch
in 2021 and will focus on mapping the status and the
dynamics of Earth's forests, as represented by the
distribution of forest biomass and its changes.

2.3.2 A SUMMARY OF RELEVANT SAR
PLATFORMS WITH THEIR PROPERTIES

Alist of the most relevant past, current, and future
SAR platforms is provided in Table 2.4. The sensors
are sorted by their period of performance. For each
instrument, the sensor wavelength, supported polar-
ization modes, resolution and size of image products,
repeat cycle, and means of data access are listed. This
quick guide may be useful in selecting appropriate
sensors for a specific application.

2.4 SAR Data Types and
Their Applications

Table 2.4 showcases the diversity of SAR sensors
that have been launched since the beginning of the

spaceborne SAR era in 1979. While the deep, mul-
titemporal archive provided by these sensors is of
tremendous value for users interested in long-term
Earth observation, SAR data products from these
various platforms are, unfortunately, plagued by in-
consistent naming conventions and come in a range
of data types and formats, which can cause confusion
even for more senior users of SAR. The following sec-
tions attempt to summarize and categorize the vari-
ous data types and nomenclatures used by different
data providers to provide guidance to users new to
this tremendously useful Earth observation asset. For
every data type, typical naming conventions are listed
and appropriate open source software tools are in-
troduced. Also summarized are the main applications
associated with a specific data type. A concise sum-
mary of all information provided can also be found
in Table 2.5.

The variety of data types provided by a SAR system
are related to the diverse flavors of information that
are captured in every SAR acquisition. In every pixel,
a SAR provides measurements of signal amplitude,
phase, and polarization, all of which are related to
different physical quantities of the observed ground.
As extracting and utilizing these different information
layers is often not straightforward—and as ampli-
tude, phase, and polarization information is often
relevant to different user communities—SAR data
providers have decided to offer their imagery up in
a range of different processing levels, each progres-
sively simplified and tailored to emphasize different
components of the SAR information space.

2.4.1 SAR RAW DATA

General Description: As the purest of all SAR
processing levels, RAW data corresponds to the de-
coded but otherwise unfocused (i.e., Wiley's aper-
ture synthesis processing has not yet been applied;
Sec. 2.1.3) raw observables made by a SAR sen-
sor. Unlike optical sensors, visualizing raw SAR data
does not provide much useful information about the
scene. Only after aperture synthesis processing is the
RAW data transformed into an interpretable image.

Applications: RAW data products are the ba-
sis for all higher level SAR processing levels, and as
such, RAW is an essential data type in every SAR data

archive. Outside of the user community interested in
SAR data processing, however, RAW products find
very little use. Interestingly, while RAW data are an
essential product for every SAR sensor, not every
satellite operator has decided to make his RAW data
products available to the community. For some sen-
sors, satellite data security laws prohibit the publica-
tion of RAW data products. Mostly, however, sensor
providers elect to hide RAW data to retain proprietary
information about their SAR processing routines.

Naming Convention: RAW products are cat-
egorized as processing Level 0 data, a processing
level typically abbreviated as L0. An exception to this
abbreviation exists for data from the ALOS PALSAR
sensor, which uses L1.0 when referring to their RAW
data products.

Open Source Software Tools: There are a
number of open source software tools that can be
used to read and manipulate (focus) RAW SAR data
products. These include the following:

* InSAR Scientific Computing Environ-
ment (ISCE)—Developed by Jet Propulsion
Laboratory (JPL)/Stanford/Caltech. More infor-

mation and download: https://winsar.unavco.

org/isce.html.
*  GMTSAR—Developed by Scripps Institution

of Oceanography. More information and down-
load: http://topex.ucsd.edu/gmtsar/.

* Repeat Orbit Interferometry PACkage
(ROI_PAC)—Developed by JPL/Caltech. More
information and download: https://winsar.un-
avco.org/portal/wiki/ROI_PAC/.

* Delft Object-oriented Radar Interfero-
metric Software (DORIS)—Developed by
Delft University of Technology. More informa-
tion and download: http://doris.tudelft.nl/.

Note that most of these tools are focused on the
SAR expert community and therefore require a con-
siderable amount of expertise to use correctly. Fur-
thermore, these tools predominantly reside on Linux
or UNIX operating systems and use command-line
methods as the means of user interaction.

2.4.2 SINGLE LOOK COMPLEX IMAGE

General Description: Single Look Complex
(SLC) images are fully focused SAR data that are
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WAVELENGTH/

Seasat 1978 L-band Az: 25m 100km Free &open
\=24.6m Rg: 25m
ERS-1 1991-2001  C-band W Az: 6-30m 100km 35 days Restrained
A=05.6cm Rg: 26m
JERS-1 1995-1998  L-band HH Az: 18m 75km 44 days Restrained
\=24.6m Rg: 18m
ERS-2 1995-2011  C-band W Az: 6-30m 100km 35 days Restrained
A=05.6cm Rg: 26m
ENVISAT 2002-2012  C-band HH, W, W/HH, Az: 28m 100km 35 days Restrained
A=05.6cm HH/HV, W/VH Rg: 28m
ALOS-1 2006-2011  L-band FBS: HH, W FBS: 10x10m FBS: 70km 46 days Free & open
A=24.6cm FBD: HH/HV, HH/VH FBD: 20x10m FBD: 70km
PLR: HH/HV PLR: 30x10m PLR: 30km
/NH /W ScanSAR: 100m ScanSAR: 250-350km
ScanSAR: HH, W
Radarsat-1 19952013 C-band HH Standard: 25x28m Standard: 100km 24 days 1995-2008: Restrained
A=05.6cm Fine: 9x9m Fine: 45km 2008-2013: Commercial
Wide1: 35x28m Wide1: 165km
Wide2: 35x28m Wide2:150km
ScanSAR: 50x50-100x100m ScarSAR: 305-510km
TerraSAR-X 2007- X-band Single: HH, W Spotlight: 0.2x1.0-1.7x3.5m Spotlight: 3-10km 11 days Application-dependent;
TanDEM-X 2010- A=03.5cm Dual: HH/W, HH/HV, W/VH  Stripmap: 3x3m Stripmap: 50x30km restrained scientific, commercial
Twin: HH/W, HH/VH, W/VH  ScanSAR: 18-40m ScanSAR: 150x100-200x200km
Radarsat-2 2007- (-band Single: HH, W, HV, VH Spotlight: ~1.5m Spotlight: 18x8km 24 days Commercial
A=05.6cm Dual: HH/HV, W/VH Stripmap: ~3x3-25x25m Stripmap: 20-170m
Quad: HH/HV/VH/W ScanSAR: 35x35-100x100m ScanSAR: 300x300- 500x500km
Ccosmo 2007- X-band Single: HH, W, HV, VH Spotlight: <Tm Spotlight: 10x10km Satellite: 16 days Commercial; limited proposal-
-SkyMed A=03.5cm Dual: HH/HV, HH/W, W/VH  Stripmap: 3-15m Stripmap: 40x40km Constellation: ~hrs based scientific
ScanSAR: 30-100m ScanSAR: 100x100 -
200%200km
ALOS-2 2014- L-band Single: HH, W, HV, VH Spotlight: 1x3m Spotlight: 25x25km 14 days Commerdial; limited proposal-
PALSAR-2 \=24.6cm Dual: HH/HV, W/VH Stripmap: 3-10m Stripmap: 55x70-70x70km based scientific
Quad: HH/HV/VH/W ScanSAR: 25-100m ScanSAR: 355x355km
Sentinel-1 2014- (C-band Single: HH, W Stripmap: 5x5m Stripmap: 375km Satellite: 12 days Free & open
A=05.6cm Dual: HH/HV, W/VH Interferometric Wide Swath (IW): ~ IW: 250km Constellation: 6 days
5x20m EW: 400km
Extra Wide Swath (EW): 20-40m
SAOCOM 2018- L-band Single: HH, W Stripmap: 10x10m Stripmap: >65km Satellite: 16 days 8D
\=24.6cm Dual: HH/HV, W/VH TopSAR: 100x100m TopSAR: 320km Constellation: 8 days
Quad: HH/HV/AH/W
PAZ SAR 2018- X-band *See TerraSAR/TanDEM-x *See TerraSAR/TanDEM-x *See TerraSAR/TanDEM-x 11 days Commercial
A=03.5cm
RCM 2019 C-band Single: HH, W, VH, HV Very high, high, medium, and 20x20-500x500km Satellite: 12 days 8D
A=05.6cm Dual: HH/HV, W/VH, HH/W low-res modes (3-100m) Constellation: ~hrs
Compact
Quad
NISAR 2021 L-band Single: HH, W, VH, HV 3-20m (mode dependent) 250km 12 days Free & open
A=24.6cm Dual: HH/HV, W/VH, HH/W
Quad
BIOMASS 2021 P-band Quad <60x50m 160km 17 days Free & open
A=70.0cm
TanDEM-L 2023 L-band Single, dual, quad modes 12x12m 350km Satellite: 16 days Free & open
\=24.6tm Constellation: 8 days
Table 2.4 List of past, current and upcoming spaceborne SAR sensors with their properties.
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m FORMAT PRODUCT NAME PRODUCT FILES PROCESSING LEVEL OPEN SOURCE TOOLS APPLICATIONS

CURRENT SPACEBORNE SENSORS

Seasat HDF5 LT HDF5 Image
GeotTIFF L1 GeoTIFF
ERS-1&2 EOS L0
Envisat
Radarsat-1 L1 Image
JERS-1
ALOS-1 CEOS L1.0
L1.1 Complex
L1.5
TerraSAR-X  COSAR L15SC (Single Look Slant
TanDEM-X  fomat Range Complex)
GeoTlFF L1 MGD (Multi Look
Ground Range Detected)
GeoTIFF L1 GEC (Geocoded
Ellipsoid Corrected)
GeoTIFF L1 EEC (Enhanced

ellipsoid corrected)

Radarsat-2  GeoTlFFor  L1SLC
NITF2.1

with XML
L1 Ground Range (SGX;

SGF; SCN; SCW; SCF;
SCS)

L1 Geocorrected (SSG;
SPG)

Ccosmo HDF5 L0 RAW

-SkyMed m

L1B MDG (Multi-look
Detected Ground Range)

L1CGEC

11D GTC (Geocoded
Terrain Corrected)

h5, xml, kml, jpg, qc_report
tif, xml, kml, jpg, qc_report
D,L,P, kml, jpg

LED, IMG, VOL, TRL

Various higher-level products

ALOS-2
PALSAR-2

L1.1SLC

L1.5 (slant-range
detected)

2.1 GIC

13.1(Quality corrected
[1.5)

Sentinel-1  SAFE L0 raw data

GeoTlFF L1SLC

GeoTIFF L1 Detected High-Res
Single- & Dual-Pol
GeoTIFF L1 Detected Single- &

Dual-Pol

tiff, xml, xsd, kml, html, png,
pdf, safe

Amplitude
Geocoded amplitude

Raw
Amplitude

Raw

SLC

Amplitude
SLC

Amplitude

Amplitude

Amplitude

SLC

Amplitude

Amplitude

Raw

SLC

Amplitude

Amplitude
Amplitude

SLC

Amplitude

Geocoded amplitude

Enhanced amplitude

Raw

SLC

Georeferenced Amplitude

Georeferenced Amplitude

Table 2.5 Current and upcoming spaceborne SAR sensors with their properties.

ASF MapReady, QGIS
QGIS; graphics software
N/A

ASF MapReady; STTBX

N/A

SNAP; ROI_PAG; DORIS; PolSARpro;
GMTSAR

ASF MapReady; STTBX; PoISARpro

SNAP; ROI_PAG; DORIS; PolSARpro;
GMTSAR

ASF MapReady; SNAP; PolSARpro
ASF MapReady; SNAP; PolSARpro
ASF MapReady; SNAP; PolSARpro
SNAP; ROI_PAC; DORIS; PolSARpro;

GMTSAR
SNAP; PolSARpro

SNAP; PolSARpro

SNAP; ROI_PAC; DORIS; PolSARpro;
GMTSAR

SNAP; PolSARpro

SNAP; PolSARpro
SNAP; PolSARpro

SNAP; ROI_PAG; DORIS; Pol-SARpro;
GMTSAR

SNAP; PolSARpro

SNAP; PolSARpro
SNAP; PolSARpro

N/A

STTBX; ROI_PAC; DORIS; PolSARpro

ASF MapReady; Google Earth Engine;
S1TBX; PolSARpro

ASF MapReady; Google Earth Engine;
S1TBX; PolSARpro

Visualization; GIS-compatible
Visualization; GIS-compatible

Production of higher-level products
Visualization, mapping, change detection

Production of higher-level products

Interferometry

Visualization, mapping, change detection

Interferometry

Visualization, mapping, change detection

Visualization, mapping, change detection

Visualization, mapping, change detection

Interferometry

Visualization, mapping, change detection

Visualization, mapping, change detection

Production of higher-level products

Interferometry

Visualization, mapping, change detection

Visualization, mapping, change detection

Visualization, mapping, change detection

Interferometry

Visualization, mapping, change detection

Visualization, mapping, change detection

Visualization, mapping, change detection

Production of higher-level products

Interferometry

Visualization, mapping, change detection

Visualization, mapping, change detection
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https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
https://www.asf.alaska.edu/data-tools/mapready/
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http://www.qgis.org/en/site/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/
http://step.esa.int/main/download/
http://www.openchannelfoundation.org/orders/index.php?group_id=282
http://doris.tudelft.nl/Doris_download.html
https://earth.esa.int/web/polsarpro/home
http://topex.ucsd.edu/gmtsar/downloads/
https://www.asf.alaska.edu/get-data/get-started/data-formats/data-formats-in-depth/#safe
https://earthengine.google.com/
https://earthengine.google.com/

m FORMAT PRODUCT NAME PRODUCT FILES PROCESSING LEVEL OPEN SOURCE TOOLS APPLICATIONS

RECENT AND FUTURE SPACEBORNE SENSORS

SAOCOM
PAZ SAR
RCM Formats and data types yet to be determined
NISAR pesy
BIOMASS
TanDEM-L
AIRBORNE SENSORS
UAVSAR UAVSAR Ground Projected Com-  grd, ann Georeferenced Amplitude ASF MapReady; PolSARpro Visualization
PoISAR plex [full-res; 3x3; 5x5]
Multi-Look Complex mic, ann MLC ASF MapReady; PolSARpro Polarimetry
Compressed Stokes dat, ann AIRSAR compressed stokes ~ ASF MapReady; PolSARpro Polarimetry
Matrix matrix
GeoTlFF Pauli tif MLC pol. decomposition QGIS; graphics software Visualization, GIS compatible
Decomposition
KMz Google Earth KMZ kmz KML compressed Google Earth Visualization
UAVSAR UAVSAR Amplitude amp1, amp2, ann Amplitude ASF MapReady; PolSARpro Visualization
InSAR
Ground Projected amp1.grd, amp2.grd, hgt. Georeferenced Amplitude ASF MapReady; PolSARpro Visualization
Amplitude grd, ann
Interferogram int, unw, cor, ann Interferogram ASF MapReady; PolSARpro
Ground Projected cor.grd, hgt.grd, int.grd, Interferogram ASF MapReady; PolSARpro
Interferogram unw.grd, ann
Kmz Google Earth KMZ amp.kmz, Google Earth Visualization

cor.kmz, hgt.kmz, int.kmz,
osr.kmz, unw.kmz

Table 2.5, continued

provided at the full native resolution (single look)
with both amplitude and phase information stored
in each (complex) pixel. SLC products are typically
provided in the original slant-range observation ge-
ometry (Fig. 2.1) and are therefore not geocoded or
terrain-corrected. In contrast to most optical sensors,
the native resolution of SAR sensors is often signifi-
cantly different along the azimuth and range image
directions. Hence, SLC images often look geomet-
rically distorted when viewed in image processing
software. While SLCs usually come with radiometric
calibration factors already applied, speckle noise re-
mains unmitigated in these full-resolution products.
For polarimetric data, separate SLC products are pro-
vided for each polarimetric channel.

Applications: The phase information stored in
SLC products is an essential prerequisite for InSAR
processing (Sec. 2.6.2), which is used for mapping
surface topography or surface deformation. In addi-
tion to its use in InSAR, SLCs are also the basis for

higher level image products such as amplitude imag-
es, polarimetric products, and geocoded images. See
Tahle 2.5 for more information.

Naming Convention: In the SAR world, SLC
products are categorized as processing Level 1 data,
typically abbreviated as LT or L1 SLC data. An excep-
tion to this abbreviation exists for data from the ALOS
PALSAR sensor, which uses L1.1 when referring to its
SLC products.

Open Source Software Tools: SLC data can
be read and further processed by a series of open
source software tools. These include (but are not lim-
ited to) the following:

* All previously named RAW data tools (ISCE,
ROI_PAC, GMTSAR, DORIS)

* MapReady: Developed by the Alaska Satel-
lite Facility. More information and download:
https://www.asf.alaska.edu/data-tools/ma-

pready/.
* Sentinel Application Platform

(SNAP): Developed by ESA. More
information and download: http://
step.esa.int/main/download/.

While all of these tools are capable of processing
SLC products, not all tools work with all sensors. Us-
ersshould refer to the links above to ensure that their
data can be successfully processed with a particular
tool choice.

2.4.3 DETECTED (AMPLITUDE) IMAGES

General Description: Amplitude products are
fully focused SAR images that have been stripped
of phase information and are typically multi-looked
(spatially averaged) to reduce speckle noise and to
(reate pixels of approximately square size. While
useful for a range of mapping and monitoring appli-
cations, amplitude products unfortunately come in a
variety of geocoding stages. Most legacy SAR systems
(e.g., ERS-1/2, Envisat, Radarsat-1, JERS-1, and ALOS
PALSAR) provide non-geocoded amplitude products
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that are left in the original acquisition geometry, and
it is upon the user to geocode these datasets man-
ually. Other sensors (e.g., Sentinel-1) make georef-
erenced amplitude products available. While these
products remain in their native acquisition geometry,
information needed to link the image coordinate sys-
tem to geographic coordinates is stored within the
image file. Currently, only the recently reprocessed
archive of Seasat (available at the Alaska Satellite Fa-
cility) provides data in full geocoded formats.

Note that amplitude products are typically geo-
referenced or geocoded to an ellipsoidal approxima-
tion of the Earth. This means that image distortions
caused by surface topography (see Fig. 2.4) are not
corrected in amplitude products.

Applications: In their original form, the main
applications of amplitude images are limited to visu-
alization and data inspection. Only after an end user
applies geocoding and terrain correction steps do
these products have relevance in mapping, change
detection, hazard monitoring, and other Earth obser-
vation disciplines.

Naming Convention: Amplitude products
belong to the L1 family of products. To distinguish
them from SLCs, they are often referred to as L1.5
(ALOS PALSAR) or LT Detected (Sentinel-1, ERS-1/2,
Envisat, Radarsat-1, JERS-1). While data are provided
in a range of custom formats, most modern sensors
increasingly favor standard formatting such as Geo-
TIFF or HDF5. For more information, please refer to
Table 2.5.

Open Source Software Tools: Amplitude
products can be read and further processed by all of
the software tools mentioned in Section 2.4.2 and
Table 2.5.

2.4.4 POLARIMETRIC PRODUCTS

General Description: Most SAR sensors pro-
vide the different channels (i.e., HH, HV, VH, and
VV; see Sec. 2.2.3) of multi-polarization data as
separate layers, processed to either an L0, L1 SLC,
or L1 Detected product. There are, however, some
exceptions to this general approach. The NASA JPL-
run airborne remote sensing system UAVSAR offers
two product types (the Compressed Stokes Matrix
and Pauli Decomposition products) that are true po-

larimetric products. The Compressed Stokes Matrix
captures information about the polarization state of
the measured polarimetric signal, while the Pauli De-
composition provides information on the polarimetric
scattering properties of an observed surface. Polari-
metric products are also planned for upcoming SAR
missions NISAR and TanDEM-L.

Applications: Polarimetric data are useful for
studying the structure of the observed surface and
performing unsupervised image classifications. Pola-
rimetric products have been used extensively in ag-
riculture monitoring (crop classification, soil moisture
extraction, and crop assessment) (Alemohammad et
al. 2016, Jagdhuber et al. 2013, Liu et al. 2013, Quegan
et al. 2003, Xie et al. 2015), oceanography (surface
currents and wind field retrieval) (Hooper et al. 2015,
Latini et al. 2016, Migliaccio & Nunziata 2014), forestry
(forest monitoring, classification, and tree height esti-
mation) (Banqué et al. 2016, Mitchard et al. 2011, Shi-
mada et al. 2016, Walker et al. 2010), disaster moni-
toring (oil spill detection and disaster assessment),
and military applications (ship detection and target
recognition/classification).

Naming Convention: Due to the recent devel-
opment of standalone polarimetric products, no nam-
ing convention has been established thus far.

Open Source Software Tools: Polarimetric
data can be processed with the following software
packages (sorted in ascending order of sophistication
of available polarimetric processing):

* MapReady—Developed by the Alaska Sat-
ellite Facility. More information and download:

https://www.asf.alaska.edu/data-tools/ma-

pready/.
* SNAP (Sentinel Application Platform)—

Developed by ESA. More information and down-
load: http://step.esa.int/main/download/.

* PolSARpro—Developed by ESA. More infor-
mation and download: https://earth.esa.int/

web/polsarpro/home.
2.4.5 LEVEL 2 AND HIGHER LEVEL PRODUCTS

General Description: For the sake of this hand-
book, Level 2 data are defined as all data products
that are projected to the ground, gridded in regular
grids, and transformed into physical variables such as

a calibrated radar cross section (e.g., the radiometric
terrain-corrected data generated via the processing
flow described in Sec. 2.6.1), line-of-sight deforma-
tion, or polarimetric decomposition variables.

While Level 2 products are offered by only a few
missions at this point in time, an increasing number
of future sensors will offer products at advanced
processing levels. Currently, operationally produced
Level 2 products are only provided for the Seasat and
the UAVSAR archive and include geocoded amplitude
images (both sensors) as well as polarimetric and in-
terferometric products (UAVSAR; Table 2.4).

Several data formats have been used for Level 2
and higher products from SAR, as no common data
format has been established yet for this still uncom-
mon product type. Currently used formats include
GeoTlFF, HDFS, and KMZ.

Applications: Level 2 SAR data products facil-
itate a wide range of applications. Calibrated am-
plitude images find use in a range of fields such as
general mapping, land-use classification, change
detection, and hazard analysis. Interferometric data
may be used in damage mapping, geophysical analy-
ses of surface deformation, and more.

Naming Convention: Various.

Open Source Software Tools: The geocoded
products can be used in most Geographic Informa-
tion System (GIS) tools. While GeoTIFF products are
natively compatible with GIS tools, readers may have
to import HDF5 formats with their respective meta-
data information.

2.5 Accessing SAR Data

While an increasing number of satellite systems
are operating under a free and open data policy,
many legacy sensors and some currently operating
higher resolution sensors are still providing data
under a restricted or commercial paradigm. The fol-
lowing sections provide information on how, where,
and under which conditions data from these different
types of sensors can be accessed.

2.5.1 FREE AND OPEN DATA POLICY
MISSIONS

Past and current SAR missions that have (at the
writing of this chapter) adopted a free and open data
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policy include the spaceborne sensors Seasat, ERS-
1/2, ALOS-1, and Sentinel-1, as well as the NASA-op-
erated airborne SARS AirSAR, UAVSAR, and AIRMOSS.
Upcoming missions also expected to provide data in
a free and open manner include the Canadian Ra-
darsat Constellation Mission (RCM), NASA'S NISAR,
DLR’s TanDEM-L, and ESA's Biomass mission. Means
of data access for these sensors is briefly described
in the following sections. A summary of data access to
free and open SAR sensors is provided in Table 2.6.

2.5.1.1 Accessing Data from the ERS-1/2
and Envisat Missions

With a combined lifetime from 1991 until 2011,
the ERS system (composed of ERS-1 and ERS-2) pro-
vides unique insights into 20 years of changes on the
Earth’s surface. Therefore, it remains a relevant data
source for those interested in climate change, hazard
monitoring, and environmental analysis.

Two means of accessing data from this long-lived
legacy SAR system are:

 ESA Simple Online Catalogue—The glob-
al archive of the ERS and Envisat systems can be
searched and ordered via the ESA-maintained
Simple Online Catalogue. ESA SOC replaced the
EOLi-SA (Earth Observation Link — Stand Alone)
browser in early 2019. Once relevant data are
identified, images can be downloaded by the
user free of charge once reproduction is com-
pleted, with the possibility of additional data
downloads depending on overall system avail-
ability.

* ASF Vertex—Alternately, a subset of the avail-
able ERS SAR data is available through the ser-
vices of the NASA Alaska Satellite Facility (ASF)
Distributed Active Archive Center (DAAC). Level
0 and L1.5 data over North America (ASF station
mask) are freely and openly available through
ASF's Vertex client forimmediate download. See
Figure 2.11 for a view of the ASF Vertex inter-
face. Note that the ASF archive does not include
data from the Envisat mission.

2.5.1.2 ALOS-1 PALSAR

Data from JAXA's ALOS-1 PALSAR sensor are avail-
able through a distributed set of data nodes that

Seasat Global ASF Vertex One-time registration
ERS-1&2, ENVISAT  Global ESA Simple Online Catalogue Pl proposal
ASF Station Mask (ERS only) ASF Vertex One-time registration
ALOS-1 PALSAR Americas/Antarctica ASF Vertex One-time registration
Europe/Africa/Greenland ALOS PALSAR On-The-Fly Pl proposal
Asia AUIG2 Pl proposal
Australia/Oceania Unknown Unknown
Sentinel-1 Global ASF Vertex One-time registration
ESA's Copernicus Open Access Hub
AIRSAR, UAVSAR Limited extent ASF Vertex One-time registration
AirMoss Limited extent ORNL DAAC One-time regjstration

Table 2.6 List of free and open SAR sensors with modes of data access.
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Figure 2.11. Alook at the interfaces of two major SAR data search clients: (a) ASF Vertex client and (b)
ESA Copernicus Open Access Hub. Both clients allow for convenient data search via a map interface.
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were originally established to make access to ALOS
data more effective for end users. Separate data
centers are available for the Americas (data located
at ASF; free and open access via ASF Vertex), Europe
and Africa (ESA; Principal Investigator (P1) proposal
needed; access via ALOS PALSAR On-The-Fly web
interface), Asia (JAXA; Pl proposal needed; access
via ALOS User Interface Gateway (AUIG2)), and Aus-
tralia/Oceania (Geoscience Australia; data access via
JAXA'S AUIG2).

In 2015, data from the ALOS-T PALSAR sensor
became unrestricted, enabling all ALOS data nodes
to provide data freely and openly to its users. While
ASF has fully implemented this data policy—ALOS
PALSAR data over the Americas are now freely and
openly available through ASF's Vertex client—other
data nodes are still working on implementing this
unrestricted data policy.

2.5.1.3 Sentinel-1

The Sentinel-1 mission is the first of the six Sen-
tinel-dedicated missions operated by the European
Copernicus programme. Sentinel-1 is based on a
constellation of two SAR satellites to ensure conti-
nuity of C-band SAR observations across the globe.
Sentinel-1A was launched on April 3, 2014, and
the second Sentinel-1 satellite, Sentinel-1B, was
launched on April 25, 2016.

The operational nature of Sentinel-1 is a game
changer in a number of application domains thanks
to the large-scale mapping capability and revisiting
frequency of the two identical satellites, together
with a high-capacity ground segment that system-
atically processes, archives, and makes available
all the generated data products to users online in a
routine operational way (Potin et al. 2016).

The growing global archive of Sentinel-1 is acces-
sible through two freely available search clients:

* ESA’s Copernicus Open Access Hub: The
global archive of the Sentinel-1 SAR constel-
lation can be accessed via ESA's Copernicus
Open Access Hub. Requiring only a simple,
one-time registration, this hub allows for quick
and easy data download via an interactive map
interface. In addition to Sentinel-1, the Coper-
nicus Open Access Hub also provides access

ALOS-2 Commercial: PASCO Price list

PALSAR-2 cloba Science: AUIG2 Proposal to JAXA

Radarsat-1&2  Global Commercial: MDA MDA price list

North America Science: ASF Vertex Proposal to NASA

COSMO- Commercial: e-goes e-goes price list
SkyMed Global o

Science: ASI Proposal to ASI

TerraSAR-X, Commercial: Airbus Airbus price list

TanDEM-X Global Science (reduced cost): TSK / TDX Proposal to DLR

Archived data (free): TSX

(TSX/ 1DX)
Proposal to DLR

Table 2.7 List of restricted/commercial SAR sensors with modes of data access.

to all other Sentinel missions (at the time of
writing, access to Sentinel-1 to Sentinel-3 is
possible), making it a convenient one-stop-
shop for users interested in multi-sensor Earth
observation data. A screenshot of the Coper-
nicus Open Access Hub interface is shown in
Figure 2.11.

o ASF Vertex: The global Sentinel-1 archive
is also available through the previously men-
tioned ASF Vertex client (Fig. 2.11). Similar
to the Copernicus Open Access Hub, data can
be searched via a convenient map interface.
In addition to Sentinel-1, ASF Vertex provides
free and open access to other SAR data such
as those from the ERS, UAVSAR, AirSAR, and
Seasat missions.

* Google Earth Engine: In addition to the
previous options, geocoded Sentinel-1 De-
tected (Amplitude) products are now available
through Google Earth Engine (GEE). While
GEE does not allow downloading of Senti-
nel-1image products, it provides a convenient
cloud-based analysis platform within which
Sentinel-1 data can be analyzed together with
data from optical sensors. Hence, GEE may al-
low new users of SAR to gain experience with
this dataset without requiring local software
installs and without having to download large
volumes of SAR data.

2.5.1.4 NASA’s Open Access Airborne SAR
Sensors

Data from the NASA airborne SAR sensors AIR-

SAR (G, L+, and P-bands; 1990-2004) and UAVSAR
(L-band; 2008—present) are accessible through the
ASF Vertex client (Fig. 2.11). While covering only
limited areas, the versatility and high resolution of
these sensors make them interesting for a range of
Earth observation disciplines. UAVSAR data are also
available at JPL, which is also operating the mission.
To download data directly from JPL, please visit
https://uavsar.jpl.nasa.gov/.

Currently, AirMOSS data (P-band; 2012—present)
are being offered through the NASA Oak Ridge Na-
tional Laboratory (ORNL) DAAC. To access AirMQSS
data from ORNL, please visit https://daac.ornl.gov/

(gi-bin/dataset_lister.pl?p=36.

2.5.2 RESTRICTED-ACCESS AND
COMMERCIAL SAR MISSIONS

Despite their largely commercial nature, there are
means to access certain data from the Radarsat-1
and -2, TerraSAR-X, TanDEM-X, COSMO-SkyMed, and
ALOS-2 PALSAR-2 missions at low cost. Detailed in-
formation on these individual sensors is provided in
Table 2.7 and the following paragraphs.

2.5.2.1 Radarsat-1 and -2

Radarsat-1and -2 are Canada’s staple SAR sensors
which have been continuously providing G-band me-
dium- to high-resolution SAR data since 1995. Since
the launch of Radarsat-2 in 2007, most of the com-
bined Radarsat archive has migrated to a commercial
data policy with data access fees above $1,000 CAD
per image frame. Information on the data costs for
Radarsat-1and -2 datasets can be found from the com-
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mercial distributor MDA. On occasion, low-cost data
access is granted to Canadian and European Pls under
the Science and Operational Applications Research for
Radarsat-2 (SOAR) program after a competitive Pl pro-
posal is approved.

QOutside of this general agreement, some limited
Radarsat-1 data (from the period of 1995-2009) are
also available through the NASA ASF DAAC under a re-
stricted data access agreement and can be discovered
through its ASF Vertex search client. To access ASF-held
Radarsat-1 data, a proposal to NASAs necessary. Once
approved, data can be accessed free of charge. More
on ASF's Radarsat-1 restricted data use agreement
here at this link.

2.5.2.2 ALOS-2 PALSAR-2

While ALOS-2 PALSAR-2 data are distributed com-
mercially by the PASCO Corporation, a limited amount
of data is provided for free to the science community.
To apply for limited free data access (50 scenes per
year), look for regularly released ALOS Research An-
nouncements. A proposal describing the research ef-
fortis needed and is reviewed for validity. If approved,
free data access to up to 50 scenes per year is granted
via the AUIG2 interface. Information about the data
costs for commercial ALOS-2 PALSAR-2 data can be
found here.

2.5.2.3 High-Resolution X-band SAR Data
from TerraSAR-X, TanDEM-X, and COSMO-
SkyMed

While the high-resolution X-band SAR sensors
TerraSAR-X, TanDEM-X, and COSMO-SkyMed provide
most of their data under a commercial license, similar
to ALOS-2 PALSAR-2, some limited data can be ac-
cessed at a low cost (or for free) once a Pl proposal is
reviewed and approved.

Information on how to access commercial data from
the TerraSAR-X and TanDEM-X missions (including
pricing information) is available from the Airbus De-
fense and Space Company website. For information on
how to apply for access to low-cost science use data,
see the TerraSAR-X Science Server or, accordingly, the
TanDEM-X Science Server. While proposals to access
archived TerraSAR-X data can always be submitted,
look for special announcements of opportunities to

apply for access to newly acquired or special mission
phase data. Through the TanDEM-X Science Server, us-
ers can also apply for segments of the TanDEM-X Digital
Elevation Model (DEM) in addition to the SAR images
themselves.

Information on commercial access to COS-
MO-SkyMed data can be retrieved from their commer-
cial vendor, e-geos. Reduced-rate science data access
is available regularly through COSMO SkyMed Constel-
lation Data Utilization announcement of opportunities.
Please check for upcoming opportunities on the Italian

Space Agency (ASI) webpage.

2.6 SAR Image Processing
Routines - Theory

2.6.1 GEOCODING AND RADIOMETRIC
TERRAIN CORRECTION

2.6.1.1 Theoretical Background

Due to the side-looking observation geometry,
SAR images are subject to geometric and radiometric
distortions (Sec. 2.1.4). In addition to the geometric
mislocation of pixels in topographically inclined areas,
the oblique angle of the illuminating radar energy adds
topographic shading to the true surface RCS, giving the
sensor-facing side of hill slopes a radiometrically “over-
exposed” appearance (see Figure 2.12(a)). Both of
these effects hamper the use of SAR for many applica-
tions. The radiometric modulations often disguise the
true radar reflectance of the observed scene, reducing
the applicability of SAR for studying the properties of
the surface. Furthermore, geometric and radiometric
distortions make the application of SAR for change
detection more difficult, as these highly incidence an-
gle-dependent artifacts lead to classification errors if
images with different observation geometries are com-
bined. Hence, correction of geometric and radiometric
distortions is advisable if SAR data are to be analyzed
together with other image data or across datasets with
varying incidence angles.

The RCS of a pixel in a calibrated SAR image is com-

posed of:
0=0%0)-A(0) , (2.9)

where ¢”is the (incidence angle-dependent) normal-
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Figure 2.12 Example of geometric (b) and
radiometric (c) normalization applied to an
ALOS PALSAR image over Alaska (a). The applied
corrections enable the use of SAR data in GIS
environments (geometric correction step),
provide physically correct RCS values for every
pixel, and enable unbiased change detection
from multiple observation geometries.

ized RCS, 6is the local incidence angle, and A, is the
surface area covered by a pixel. Following Eq. (2.9),
two images acquired from different geometries will
differ due to the incidence angle dependence of ¢” and
A, even if the observed surface remains unchanged.
Hence, to enable unbiased analysis of SAR images
ina GIS and to allow for a joint change detection anal-
ysis of SAR amplitude images acquired from different
observation geometries, geometric and radiometric
distortions in these images need to first be removed.
Toretrieve the true RCS of the imaged surface ¢® from

THE SAR HANDBOOK

37


https://mdacorporation.com/geospatial/international/satellites
http://www.asc-csa.gc.ca/eng/programs/soar/default.asp
http://www.asc-csa.gc.ca/eng/programs/soar/default.asp
https://www.asf.alaska.edu/get-data/alaska-satellite-facility-daac-restricted-data-access-request/
http://www.eorc.jaxa.jp/ALOS/en/top/ra_top.htm
http://www.eorc.jaxa.jp/ALOS/en/top/ra_top.htm
https://auig2.jaxa.jp/openam/UI/Login?goto=https%3A%2F%2Fauig2.jaxa.jp%2Fips%2Fhome%3Flanguage%3Den_US&ipsLanguage=en_US
http://en.alos-pasco.com/offer/price.html
http://www.intelligence-airbusds.com/terrasar-x/
http://www.intelligence-airbusds.com/terrasar-x/
http://sss.terrasar-x.dlr.de/
https://tandemx-science.dlr.de/
http://www.e-geos.it/products/cosmo.html
http://www.asi.it/en/agency/calls-and-opportunities
http://www.asi.it/en/agency/calls-and-opportunities

the observed radar data g, the geometry dependence
of 0 needs to be removed by correcting for A (6). The
process of correcting for A (6) is called Radiometric
Terrain Correction (RTC) (Small 2011). RTC includes
both geometric terrain correction (geocoding) and
radiometric compensation and is typically performed
using the following steps:
+Geometric terrain correction (geocoding) is
conducted to remove geometric image distor-
tions. A DEM is needed to correct the location
of topographically inclined pixels. In areas be-
tween +60° geographic latitude, the DEM pro-
vided by the Shuttle Radar Topography Mission
(SRTM) should be sufficient (Gesch et al. 2014).
* Radiometric terrain normalization is performed
to remove geometry-dependent radiometric
distortions corresponding to a pixel-by-pixel
estimation and compensation of A () using a
DEM. The radiometric normalization technique
in Small (2011) is applied.

Figure 2.12 shows an example of the effects
of geometric and radiometric normalization. Fig-
ure 2.12(a) shows an original ALOS PALSAR image
over an area near the Denali fault in Alaska. The ef-
fects of geometric correction are shown in Figure
2.12(b), and the effects of radiometric normalization
are presented in Figure 2.12(c). The normalized
data are now largely devoid of geometric influences,
reducing radiometric differences between images ac-
quired from different geometries. As a consequence,
the RTC-corrected image data show improved perfor-
mance when combined with other remote sensing
datasets and in multi-geometry change detection.

2.6.1.2 More Information on Geocoding
and RTC Processing

To learn more about the theory behind geocod-
ing and RTC processing please visit Lecture 9 of UAF'S
Online Class on Microwave Remate Sensing. You can
find Lecture 9 in Class Module 2 “Imaging Radar Sys-
tems.” To go directly to the slide deck, click here.

2.6.2 THEORY OF INTERFEROMETRIC SAR

InSAR processing exploits the difference between
the phase signals of repeated SAR acquisitions to
analyze the shape and deformation of the Earth’s

Supplemental materials on InSAR

The Principles and Applications of Interferometric SAR (InSAR):

Interferometric SAR (InSAR) analyzes phase differences between two or more SAR acquisitions with the goal of
measuring surface topography and/or surface deformation. While the quality of derived topographic information
depends on the relative observation geometry of the SAR acquisitions used, surface deformation can be measured
at a fraction of the signal wavelength and, hence, with millimeter to centimeter accuracy. In this lecture, you will
hear about the concepts of InSAR and the general processing approaches to arrive at either surface topography

or surface deformation. Limitations of InSAR as well as advanced processing concepts will be covered in future
lectures.

Link: https://radar.community.uaf.edu/files/2017/03/Lecture12_ConceptsAndGeneralApproachesOfinSAR.pdf

Phase Unwrapping & Limitations of Traditional InSAR Methods:

The first part of this lecture will deal with the problem of phase unwrapping. As InSAR phase measurements are ini-
tially only available wrapped into the value range, a phase unwrapping process has to be applied to create an un-
ambiguous phase map ready for topography or deformation analysis. You will be introduced to the general process
of phase unwrapping and learn about several popular solutions to this problem. In the second part of this lecture,
we will look into the main limitations of the traditional two-image InSAR approach. These identified limitations will

set us up for future lectures, which will describe advanced processing techniques (e.g., PS- and SBAS InSAR).

Link: https://radar.community.uaf.edu/files/2017/03/Lecture13_PhaseUnwrappingandLimitationsofInSAR.pdf

The Role of InSAR in Geophysics:

Intrinsically, InSAR is a geodetic discipline, providing accurate measurements of surface deformation. While this is
interesting by itself, geoscientists are typically more interested in the geophysical source that causes an observed
deformation rather than the deformation itself. Using volcanic activity as an example, this lecture will provide you
with some insight on how geophysical parameters can be determined using InSAR measurements in combination

with inverse modeling.

Link: https://radar.community.uaf.edu/files/2017/03/Lecture14_UsingInSARinGeophysics.pdf

surface. While the principles and processing flows of
InSAR will not be described here in detail, is recom-
mended to look through the following material that is
available freely and openly online. The lecture mate-
rials listed are part of a full-semester, graduate-level
cass on microwave remote sensing offered by the
University of Alaska Fairbanks, listed in the "Supple-
mental materials on InSAR" callout.

2.6.2.1 A Word on Sentinel-1
Interferometric Wide Swath Data

The Interferometric Wide (IW) swath mode is the
main acquisition mode over land for Sentinel-1. It ac
quires data with a 250-km swath at 5-x-20-m spatial
resolution (single look). Interferometric wide mode

Figure 2.13 TOPSAR acquisition principle.

captures three sub-swaths using the TOPSAR acqui-
sition principle. With the TOPSAR technique, in addi-
tion to steering the beam in range as in ScanSAR, the
beam is also electronically steered from backward
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to forward in the azimuth direction for each burst,
avoiding scalloping and resulting in homogeneous im-
age quality throughout the swath. A schematic of the
TOPSAR acquisition principle is shown in Figure 2.13.

The TOPSAR mode replaces the conventional
ScanSAR mode, achieving the same coverage and res-
olution as ScanSAR, but with nearly uniform image
quality (in terms of signal-to-noise ratio and distrib-
uted target ambiguity ratio).

Interferometric wide SLC products contain one
image per sub-swath and one per polarization chan-
nel, for a total of three (single-polarization) or six
(dual-polarization) images in an IW product. Each
sub-swath image consists of a series of bursts, where
each burst has been processed as a separate SLCim-
age. The individually focused complex burst images
areincluded, in azimuth-time order, into a single sub-
swath image with black-fill demarcation in between.

2.6.3 CHANGE DETECTION USING SAR

2.6.3.1 Problem Statement

Detecting changes in land-use/land-cover is one
of the most fundamental and common uses of remote
sensing image analysis. One of the most rudimentary
forms of change detection is the visual comparison of
two images by a trained interpreter. With an effective
display system large enough to display both images
simultaneously and to explore and digitize with a cur-
sor tracking to the same location in both images, this
is a quick method that can be used to locally collect
valuable GIS-compatible data while streaming the
images themselves over a relatively low-bandwidth
Internet connection.

In an attempt to automate change detection (and
hence make it available for large-scale and more op-
erational implementation), a wealth of digital change
detection algorithms have been developed over the
last decade that operate on a range of different sen-
sors and are grouped into “supervised” and “unsu-
pervised” categories. While a great many methods
for detecting changes from remote sensing data are
available in literature, this short introduction is limit-
ed to methods that are used in reference to SAR.

2.6.3.2 Summary of SAR-Based Change

Detection Techniques

Even when limiting research to SAR-based change
detection only, the number of algorithms proposed in
recent years can seem overwhelming. Hence, instead
of providing an extensive summary of all available
techniques, this section attempts to categorize tech-
niques to help in choosing the right method for an
envisioned application. Methods will be categorized
using several indicators such as by the type of input
information needed, the required amount of training
data, and the amount of processing expertise needed
to implement the algorithms.

2.6.3.2.1 Input Data Used for Change Detection

SAR-based change detection techniques can be
categorized by the type of SAR information used
for change identification. Categories include “am-
plitude-based methods,” “phase/coherence-based
techniques,” and “polarimetric techniques.”

Amplitude-based methods focus on the RCS
information contained in the data, initially ignoring
information coming from phase and polarization.
One of the advantages of amplitude-based methods
lies in their ability maximize the temporal sampling
that can be achieved with SAR-based change detec-
tion information. Amplitude information is available
for every SAR collection, making every new image
useful for change detection. As not all SAR acquisi-
tions allow for the use of phase and/or polarization,
amplitude data naturally lead to better temporal
sampling. This benefit can be further enhanced if RTC
is applied to all images. As RTC processing removes
most geometry-dependent distortions from the mea-
sured SAR RCS, it allows for combining SAR data ac-
quired from multiple incidence angles, leading to fur-
ther improvements in temporal sampling. However, a
disadvantage of amplitude-based methods relates to
its limited sensitivity, which often increases the like-
lihood of false negatives, in which true changes are
erroneously missed in the classification.

Phase/coherence-hased techniques utilize
the fact that significant surface change results in a
significant reduction of interferometric coherence,
enabling the automatic detection of change via coher-
ence thresholding. Coherence-based techniques are

highly sensitive to change, which interestingly is both
the main advantage and disadvantage of this catego-
ry. On one hand, the high sensitivity is an asset, as it
reduces the likelihood for false negatives. On the oth-
er, coherent change detection methods tend to have
very large false positive rates, where change is vastly
overestimated. While methods have been developed
to combat these problems, the need for false positive
correction makes coherence-based methods appear
very complicated and non-straightforward for the
uninitiated user. Coherent image pairs are required
for these methods to be applicable, which somewhat
limits the temporal sampling that can be achieved.

Polarimetric techniques are often highly
capable, as they can analyze surface changes across
several polarimetric channels. This maximizes the
likelihood of change detection and allows one to
associate those changes with scattering types (e.g.,
changes associated with double-bounce, roughness,
and volume scattering). The latter is especially rel-
evant, as it enables one to ascertain as to whether
a change signature is related to vegetation or the
ground, enabling change classification. However, the
main disadvantage of polarimetric change detection
is related to its reliance on multi-polarization data,
which are not always available. Furthermore, polari-
metric processing theory may be a bit overwhelming
to uninitiated readers.

Independent of change detection methods, the
proper choice of sensor is essential to optimizing
change detection performance. In particular, the
choice of sensor wavelength should be appropriate
given the surface and vegetation characteristics of
an area of interest. If changes underneath vegetation
canopies are the target, longer wavelength sensors
are preferred. For bare surfaces, shorter wave-
lengths often have an advantage. This is because
shorter wavelength sensors often increase the RCS
associated with rough surfaces and provide more
dynamic range that can be used for the identification
of change.

2.6.3.2.2 Supervised vs. Unsupervised Methods

Change detection can be performed either un-
supervised (Bruzzone & Prieto 2000) or supervised
(Huoetal. 2010). In unsupervised change detection,
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a change map is generated by comparing objects in
two images with a similarity metric. The change map
then undergoes thresholding to classify each pixel
into changed and unchanged classes (Bruzzone &
Prieto 2000, Otsu 1979). In supervised change de-
tection, training samples are selected from the avail-
able dataset and are used to train a classifier, which
is then used to classify an image into changed and
unchanged classes (Huo et al. 2010).

Supervised methods are useful, as radar signa-
tures associated with change do not always have
to be theoretically understood to be able to detect
them. Instead, the impact of a surface change on the
signal observed by a SAR is learned using training
data, reducing the need for sophisticated modeling.
The reliance on reference data, however, is also the
main downside of these methods, as training data
are sometimes hard to come by and are seldom free

AMPLITUDE-BASED PHASE-BASED POLARIZATION-BASED

Super- White, 1991 Gamba etal., 2007
vised Gongetal., 2016 Pulvirenti et al., 2016
Liuetal., 2016
Gongetal., 2017
Unsuper-  Meyeretal., 2014 Yunetal., 2015a
vised Ajadietal., 2016 Yunetal., 2015b

Bruzzone and Prieto, 2000 Sharma etal., 2017

Bazi et al., 2005
Celik, 2010
Bovolo and Bruzzone, 2005

of errors. Some recent supervised algorithms based
on amplitude, phase, and polarization data are list-
edinTable 2.8.

Unsupervised methods have the advantage that
no reference data are required to arrive at a classifi-
cation result. Instead, signal models are used to en-
code the impact of surface change on the observed

SARsiAN - A free and open SAR Operating System:

Table 2.8 List of
change detection
methods categorized
by source data

and need for
reference data.

Marino and Hajnsek, 2014

Akbari et al., 2016

data. Unsupervised techniques are particularly
beneficial in hazard monitoring, where changes are
often unanticipated and training data are typically
not available in time. Selected recent unsupervised
change detection methods are listed in Table 2.8
as a function of input data type.

SARbian is an easy-to-use, Linux-based SAR processing virtual machine provided by the
group behind the EO-College initiative (https://eo-college.org) that comes loaded with a

SARbian can be downloaded from https://eo-college.org/sarbian, and comes with the
following list of software tools:

wide range of currently-available, free-and-open SAR processing and GIS software tools.
The virtual machine is completely pre-installed, ready for use in research, education, or
operational applications. No knowledge of installation steps is needed. Hence, SARbian is a
convenient resource for researchers and decision-makers that are looking

for a hassle-free start with SAR.

SAR Processing Tools: ESA STTBX; ASF MapReady; pyroSAR

SAR Polarimetry: PolSARPro

SAR Interferometry: DORIS; SNAPHU (phase unwrapping); PyRAT
GIS Tools: GDAL; QGIS; GRASS GIS

Supporting Tools: A number of Python, R, and Octave resources
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APPENDIX A
SAR Image Processing Routines
- Chapter 2 Training Module

1 GEOCODING AND RTC PROCESSING USING
ASF MAPREADY

Many of the SAR data holdings in the global archives
are available as so-called ground-range projected
products. While these products are typically georef-
erenced, they usually use an ellipsoid as reference
surface. Hence, geometric distortions such as fore-
shortening are not corrected in these products and
geolocation errors occur at points that don't lie at the
height of the applied reference surface.

This lab is for users who wish to geocode and gen-
erate an RTCimage from ERS-2 data using MapReady.
MapReady is a free software tool distributed by ASF
that can be used to correct geometric distortions from
SAR data and generate fully geocoded GeoTIFF prod-
ucts ready for use in GIS analyses. In this part of the
lab, we will demonstrate the MapReady tool and use it
to geocode a ERS-2 scene over Fairbanks, AK.

1.1 Starting and Exploring MapReady

MapReady is a free-and-open software tool pro-
vided by the Alaska Satellite Facility that provides some
basic SAR data processing capabilities such as reading
of SAR data formats, reprojection and geocoding, as
well as some polarimetric data manipulations. Ma-
pReady can be downloaded from https://www.asf.
alaska.edu/data-tools/mapready/. Installation instruc-
tions are provided in the same location. For further
information about MapReady functionality, please
consult the MapReady user manual (http://media.asf.
alaska.edu/asfmainsite/documents/mapready_man-
ual_3.1.22.pdf).

To start MapReady, type mapready in your
command window. You should see the MapReady in-
terface load (Figure 1.1).

1.2 Geocoding a ERS-2 SAR Scene over
Fairbanks, AK Using MapReady

ERS-2, a Chband (A=5.66cm) SAR operated by
the European Space Agency from 1995 to 2011, has

¢ ASF MapReady: Version MAKE-DEV@ip-172-31-9-207

_3] Gmml'cmlenemalI::o!nr.me:ry Terrain Correction | Geoeode | Export |

Summary
Format: CEOS L1

Select Processing Steps:

[ Import Data (required...)

[0 Run External Program

[ polarimetry (only for quad-pol SLC data)

[0 Terrain Correct (with Digital Elevation Model)
[0 Geocode to a Map Projection

Export to a Graphics File Format

O Keep no intermediate files
® Temporarily keep intermediate files

=

Data type: Amplitude
Terrain Correction: No
Geocoding: <none>
Export: JPEG (byte)
Scaling Method: Sigma

O Keep intermediates
[ show full path names
Generate and show thumbnails

il Input Files 5

About MapReady...
Process
individual imagel

Save Settings I Load Settings

K|

Process all images ©
@e«xm Alll @ stop D!co--’.-’.:-ug|

l] Show Completed Files

I

Figure 1.1 The ASF MapReady user interface

provided a wealth of Earth observation data, much
of which can be accessed through the services of
ASF. While the depth of the archive provides a large
potential value for a range of user communities,
the images of the ERS-2 archive are currently not yet
available in fully geocoded formats. Hence, being
able to geocode ERS-2 images will help unlock this
sensor's vast potential in environmental analysis.

The data to be geocoded is ERS-2 granule
E2_80464_STD_F163, which was acquired on Sep-
tember 10 of 2010 over the area of Fairbanks, AK.

1.3 Load the Image into MapReady and
visualize the content of the Data Set

Here some instructions for loading and exploring

the image:

*+ Toload the image, click the Browse button in
the Input Files section of the interface. Pick
the E2_80464_STD_F163.D file within the
E2_80464_STD_F163 folder and click Open.

Tovisualize the image, click on the icon labeled with

“Preview image” as shown in Figure 1.2. Aviewer will
open, displaying the image as well as metadata infor-
mation. Scroll around the image. Zoom in to evaluate
image noise and structure. Also investigate metadata
information on the left side of the viewer interface.

JHE]|

1.4 Geocode and Terrain Correct the Image
using MapReady

Apply the following settings to geocode and terrain
correct your data:

In the “General” Tab:
« To terrain correct and geocode the image,
activate the Terrain Correct and Geocode to a
Map Projection radio buttons in the top ele-
ment of the interface. The Terrain Correction
and Geocode tabs become active.

To separate input data from your processing re-
sults, change the Destination Folder settings in the
Input Files section of the interface. | recommend the
following folder as your destination folder: /home/
ubuntu/SARLabs/SARFocusin-
gAndGeocoding/Results

Navigate to the “Calibration” tab:
This tab allows the chosen calibration procedure to be
applied to the data.

+ Typically, scientists prefer data in o projection,
which allows relating the brightness in an im-
age pixel to physical quantities. Hence, | sug-
gest picking Sigma as Radiometric projection.
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General I Import Settings Terrain Correction I Geocode | Expo:tl

DEM File:

[~ Fill DEM holes with interpolated values

() Refine Geolocation Only
(& Apply Terrain Correction

[~ Apply a user mask

|7_MicrowaveRemoteSensing\Labs\Zm7-Labs\Lab 2\FairbanksDEM.tif| Browse... |

(® Automatically Mask ) Mask from File

Mask File: |

[~ Specify Pixel Size: l meters

[ Also apply radiometric Terrain Correction
[¥ Interpolate Layover/Shadow Regions

[~ Save Layover/Shadow Mask

[~ Save Clipped DEM

Browse... |

Figure 1.2 The ASF MapReady “Terrain Correction”

« You can also choose whether to output your
image in amplitude or decibel (dB) format.
As radar data have enormous dynamic range,
converting the pixel values to a dB scale is of-
ten recommended.

Navigate to the “Terrain Correction” tab:
Please create two geocoded datasets here: (1) a
dataset where only geometric terrain correction was
applied; and (2) an image where both geometric and
radiometric terrain correction was done.

Initially, create the geometrically corrected (GTC) image:

« To Pick a DEM file for terrain correction, click on
Browse and pick the file E2_80464_STD_F163_
dem.tifin the Data directory.

+ Explore the various options in the geocoding tab.
We will discuss those options.

Ensure that the Apply Terrain Correction feature is

activated (see Figure 1.2).

In a second run (after you complete the rest of the in-

structions), create the RTCimage by:

+ Selecting Also apply radiometric Terrain Correc-
tion in addition to the previous settings

+ (lickon Add Output File Prefix or Suffixin the “In-
put Files” section and add suffix “_RTC".

Navigate to the “Geocode” tab:
In this tab, you can change geocoding parameters such
as the desired projection, the pixel size, and the inter-

THE SAR HANDBOOK

Tab

polation method. In our case, we will simply accept the
default (UTM projection; in default mode, the pixel size
is set to half the original image sampling distance).

Navigate to the “Export” tab:

This tab allows you to set output formats. Please set the
Export format to GeoTIFF and activate the Output data
in byte format radio button (see Figure 1.3).

Once all of these parameters are set, click on either
the Process Individual Image icon (Figure 1.1) or the
Process All button to start the geocoding and terrain
correction process. You can monitor the progress of
the procedure in your command window.

1.5 Visualize Geocoded Image in QGIS

Once the geocoding process has completed, you
can visualize the product both within and outside of
the MapReady tool. To compare the result with map
information, we will open the file in QGIS. To do so, run
the following command:

Qgis /home/ubuntu/SARLabs/
SARFocusingAndGeocoding/
Results/E2 _ 80464 _

STD _ F163.tif

2 GEOCODING AND RTC PROCESSING USING
SNAP

This lab is for users who wish to generate an RTCim-
age from Sentinel-1 data using easy-to-follow instruc-
tions in a graphical user interface (GUI). Specifically, we
will use ESA's Sentinel Application Platform (SNAP) to
perform geocoding and RTC processing on Sentinel-1
images over Kathmandu, Nepal. The advantages of the
SNAP toolinclude (1) its graphical user interface, which
renders the SNAP tool straightforward to use (com-
pared to other InSAR processing tools); (2) the easy-
to-access, free-of-charge, and public domain nature of
the SNAP tool; and (3) the fact that SNAP is an integra-
tive multi-sensor toolbox and enables processing data
from all Sentinel sensors within one joint processing
platform. To install SNAP on your own workstation,
please visit http://step.esa.int/main/download/ for
download instructions.

General | Calibration | External I Polarimetry. | Terrain Correction | Geocode Export

Export Format:  GeoTIFF (.tif) 1':|

[¥] Output data in byte format (instead of floating point);

Sample mapping method: Statistical 2 Sigma | % I

(® Export All Bands as Separate Images

O Export RGB Image according to Polarimetric selection

O Export Multiple Bands in a Single RGB Image

(® User Defined O True Color

Red Band: v
Green Band; v
Blue Band: v

O False Color

Figure 1.3 The ASF MapReady “Export” Tab
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2.1 Sentinel-1 SAR Data Sets Used in this
Exercise

The data for this exercise are two Sentinel-1 acqui-
sitions bracketing the devastating 2015 Gorkha earth-
quake in Nepal, which killed nearly 9,000 people and
injured nearly 22,000. It occurred at 11:56 Nepal Stan-
dard Time on 25 April, with a magnitude of 8.TMs and
a maximum Mercalli Intensity of VIl (Severe). lts epi-
center was east of Gorkha District at Barpak, Gorkha,
and its hypocenter was at a depth of approximately 8.2
km (5.1 mi). It was the worst natural disaster to strike
Nepal since the 1934 Nepal-Bihar earthquake.

The following data sets, called Ground Range De-

tected (GRD) images, will be used for this exercise:

*  Pre-event image acquired on April 17, 2015:
STA_IW_GRDH_1SSV_201504177001852_2
01504177001921_005516_0070C1_17AA

+  Post-event image acquired on April 29, 2015:
S1A_IW_GRDH_1SDV_20150429T001909_
201504297001934_005691_0074DC_B016

Please download these Sentinel-1 SAR images us-
ing ASF's Veertex search engine (http://vertex.daac.ast.
alaska.edu).

2.2 Geocoding and RTC Processing Steps in
SNAP

Start SNAP by clicking on the associated desktop
icon or by typing in snap in your command window.

2.2.1 Open a SAR image in SNAP

In order to perform geocoding and RTC processing in
SNAP, the input products should be one or more GRD or
SLC products over your area of interest. While both data
types can be processed to RTCimages, we are using GRD
images in this lab due to their smaller size.

Step 1 - open the products:

Use the Open Product button in the top toolbar of
the SNAP interface and browse for the location of the
Sentinel-1 GRD products (Figure 1.4).

Select the *.zip file containing the post-event image
(dated 20150429) and click Open. Press and hold the
Ctrl button on the keyboard should you want to select
multiple products at a time.

E‘SNAP - Open Product

Look in:

Kathmandu-RTC processing

v BcE-

¢

P Flesoftype: | AllFies

Figure 1.4 Open Product dialog in SNAP.

Step 2 - view the product:

Inthe Product Explorer (Figure 1.5)you will see the
opened products. For GRD data, the product band fold-
er will contain two to four layers, depending on whether
the data set was acquired in single- or dual-pol (an am-
plitude and intensity image is provided per polarization).
For SLC data, you will find two bands per polarization
containing the real (i) and imaginary (q) parts of the
complex data.

Note that in Sentinel-1 /W SLC products, you will find
three subswaths labeled W1, IW2, and IW3. Each sub-
swath is for an adjacent acquisition collected by Senti-
nel-1's TOPS mode. For more information on this mode
and on the meaning of the subswath data, please refer
tothe lab on Interferometric SAR processing in Section 3.

Step 3 - view a band:
To view the data, double-click on either the ampli-

tude or intensity band for one of the polarizations (e.g.,
Intensity_VV). The image will appear on the right side of

S1A_IW_GRDH_1SDV_20150429T001909_20150429T001934_005691_0074DC_B016.2p

Date modified
1/4/2018 10:2...
1/4/2018 10:2...

Size Item type
0.98 GB zip Archive
611 MB zip Archive

the interface. Zoom in using the mouse wheel and pan
by clicking and dragging the left mouse button.

2.2.2 Apply Precise Orbit File

This s an optional step that will maximize the geolo-
cation quality that can be achieved during geocoding.
Precise orbit files are issued by the European Space
Agency within weeks after the acquisition of a data set.
These orbits are not annotated in the image data di-
rectly but are rather provided as a separate file. SNAP
is able to locate, download, and apply these precise
orbit files automatically via the following step:

Step 4 — apply orbit file:

To apply precise orbits select Apply Orbit File in the
Radar menu of SNAP. A new window will appear (Fig-
ure 1.6) providing some processing options. Note
that the default settings for processing options should
work for most applications.

Product Explorer X | Pixel Info

#-(33 Metadata

#- (@3 Vector Data

@ Tie-Point Grids

@ Quicklooks

=& Bands
@ Ampltude_VH
@ Intensity_VH
[l Amplitude_W
@ Intensity_w

=& [1] S1IA_IW_GRDH_1SDV_20150425T001909_20150429T001934_005691_00740C_B016

Figure 1.5 Product Explorer tab within the SNAP user interface.
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Optical Radar Tools Window Help

:-;Cll Apply Orbit File vl K X ¥ TN
Radiometric > Calibrate
Speckle Filtering > Radiometric Terrain Flattening
Coregistration 2 Remove Antenna Pattern
Interferometric 2 S-1 Thermal Noise Removal
Polarimetric >
Geometric > :
-1 TOP! >
Sentinel-1T0PS Create Calibration LUTTPG
ENVISAT ASAR >
@ Calibration x
File Help

1/O Parameters Processing Parameters

Polarisations: W

| Save as complex output

[(En ] [(ome

Optical Radar Tools Window Help

;-c‘ll Apply Orbit File vl K X N TN
Radiometric > Calibrate
Speckle Filtering % Radiometric Terrain Flattening
Coregistration 22 Remove Antenna Pattern
Interferometric ’ $-1 Thermal Noise Removal
Polarimetric >
Geometric > +
e ’ Create Calibration LUT TPG
ENVISAT ASAR >

Figure 1.6 Calibration inferface with relevant
options selected.

The only exception to this general rule pertains to
the |/OParameters tab where the output directory for
the Target Products can be changed from the default
to a desired storage location. Click Run to initiate the
automatic download and application of files. Awindow
will pop up showing the progress of the processing.
Depending on the computing power of your machine,
expect one to several minutes of processing time. Once
processing is complete, the output from the previous
step will appear in the Product Explorer window of the
interface (filename ending in “_Orb"). Single click the
file name to select it for the next processing step.

2.2.3 Apply Radiometric Calibration

Step 5 - calibration:
To correctly apply RTC corrections to the data, the

image information needs to be calibrated following the
B definition. To calibrate to B, select the Radiometric

> Calibrate option within SNAP's Radar menu. In the box
that appears, radiometrically calibrate the image to ° by
going into the Processing Parameters tab and selecting
the Output beta0 band option (Figure 1.6). If dual-pol
data are available, you have the choice of processing
both polarizations or selecting a subset of polarizations
by clicking on the desired channels. Click Run to initiate
processing. The defaults place the output into the same
directory as the input.

2.24 Apply Radliometric Terrain Flattening (RTC Processing)

RTC processing is referrred to as “Radiometric Terrain
Flattening" in the SNAP tool. This step will remove most
of the radiometric distortions from the data that are in-
troduced by surface topography.

Step 6 — RTC processing:
To apply RTC processing, first select the output of the

previous processing step (extension “_Orb_Cal") in the
Product Explorer window. Then, select Radiometric >
Radiometric Terrain Flattening from SNAP’s Radar menu
(see below). The default settings download a digital el-
evation model (DEM) matching the geolocation of the
scene being corrected, placing the output file into the
same directory as the input. Most applications will not
require a modification of the default settings. Click Run
(~45 minutes or longer, depending on system capability).

Note that an internet connection is necessary for this
step as the DEMs necessary for processing are down-
loaded from an online repository.

Potential necessary intermediary step — Multilooking:
Depending on the resolution of the DEM that can be

found for your area of interest, the SAR data may have to
be multilooked (reduced in resolution) before process-
ing. If the DEM is of lower resolution than the SAR data,
SNAP will enforce multilooking to the resolution of the
DEM before RTC processing can be applied. To multilook
your imagery, select the data set endingin“_Orb_Cal"in
the Product Explorer window and then select Multilook-
ing from SNAP's Radar menu (found on the very bottom
of the menu). In the emerging window, select the de-
sired number of looks within the Processing Parameters
tab and click Run. Once complete, use the output from
this step (file ending in “_Orb_Cal_ML") as the input for
Step 6 — RTCProcessing.

Small Data Analysis Exercise

|t may be instructional to compare the SAR im-
age data before and after RTC processing. Such
a comparison will provide you with information
both on the benefits and limitations of RTC cor-
rection for your area of interest.

To conduct a comparison, open both the im-
age before (extension “_Orb_Cal_ML") and af-
ter (extension “_Orb_Cal_ML_TF") RTC correc-
tion in the SNAP viewer by double-clicking the
image bands in the respective data sets. Click on
the By symbol to synchronize views across
multiple image windows and zoom into an area
of interest (preferably an area with significant
topography). Then toggle between images and
compare content. You should see that most of
the topographic shading was removed by the
RTC processing step. Residual topography is
mostly due to limitations in the resolution of the
DEM and the small incidence angle dependence
of 0°(6)). An example of the performance of RTC
correction is shown below. A significant (albeit
not perfect) reduction of topographic shading
was achieved.

BEFORE RTC PROCESSING

RTC CORRECTED
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2.2.5 Geocode the RTC-Corrected Data

Step 7 - Geocoding:
Unfortunately, the nomenclature thatis used in SNAP

for the geocoding step is a bit opaque. You will have to
pick Geometric > Terrain Correction > Range-Dopper
Terrain Correction from the Radar menu to apply the
geocoding procedure (Figure 1.7). Select the output
of the RTC processing step (file ending in “_Orb_Cal_
ML_TF") as input for the geocoding procedure.

The processing box pops up, and the defaults for the
/0 Parameters tab place the output files in the same
directory as the source file. The Processing Parameters
tab enables you to specify the map projection you need,
pixel spacing if you wish to change it, and options for
additional output files.

For the sake of this exercise, it is recommended to
use the default options for output files but select “UTM
/WGS 84" as your output map projection. Click Run af-
ter your settings are applied.

2.2.6 Visualizing Processing Results

The products of this processing flow can be visual-
ized easily both within SNAP and within a GIS system of
your choosing (e.g., ArcGIS or QGIS).

To view within SNAP, double click the generated file
(ending in “Orb_Cal_TF_TC") in the Product Explorer
window and explore within the SNAP interface.

@ Range Doppler Terrain Correction b4
File Help

1/O Parameters Processing Parameters

Source Bands:
Digital Elevation Model: SRTM 35ec (Auto Download) =
DEM Resamping Method: BILINEAR_INTERPOLATION v
Image Resamping Method: BILINEAR_INTERPOLATION v
Source GR Pixel Spacings (az xrg):  40.0(m) x 40.0(m)
Pocel Spacng (m): .0
Puxel Spaong (deg): 3.593261136478086E 4
Map Projection: f UTM Zone 45 / Workd Geodetic System 1984 ]
[ Mask out areas without elevation Output complex data

Output bands for:

[ Selected source band Ooem [ Latitude & Longitude

[ incdence angle from elipsoid ] Local incidence angle [ Projected local incidence angle
() Apply radiometric normakzation
Use projected local inadence angle from DEM
Use projected kcal nodence angle from DEM

Save Sigma0 band

Save Gamma0 band

Latest Auxkary Fle

Bun  Cose

Figure 1.7 Geocoding interface in SNAP
with relevant processing settings applied.
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Figure 1.8 Geocoded and RTC corrected Sentinel-1 SAR image over Kathmandu, Nepal.

To view your RTC image within a GIS, follow these
steps: (1) open ArcGIS or QGIS; Select Add Data (Arc-
GIS) or Add Raster Layer (QGIS); (3) Navigate to the
directory that contains the output from Step 7; (4)
Within this folder, click on the sub-folder ending in
“ TC.data”; (5) Load the .img file(s) contained within.
Figure 1.8 shows the geocoded and RTC corrected
image in QGIS.

2.2.7 Visualizing Processing Results

A summary of the geocoding and RTC processing
steps is provided in Figure 1.9. The following links
may be useful in case you want to dive deeper into the
topic of geocoding and RTC processing:

a) To learn a bit more about the theory behind geoc
oding and RTC processing, please visit Lecture 9 of UAF's
Online Class on Microwave Remote Sensing. You can
find Lecture 9 in Class Module 2 “Imaging Radar Sys-
tems”. To go directly to the slide deck, click here.

b) To learn how to Radiometrically Terrain Correct
(RTC) Sentinel-1 Data Using SNAP Scripting Languages,
please visit ASF's SAR data recipe on this topic.

() For instructions on how to do geocoding and
RTC processing using the GAMMA RS software,
please go here.

d) Forinstructions on how to geocode (no RTC) Sen-
tinel-1 data using GDAL, go here.

e) For information on how to effectively view RTC
datain a GIS Environment, go here.

Read in
data

Apply precise
orbit files

Radiometric
calibration

Multilooking
(OPTIONAL)

Speckle filter
(OPTIONAL)

Radiometric
terrain flattening

Geocoding/geometric
terrain correction

Linear to decibel
conversion (OPTIONAL)

|

Write data to
desired format

Figure 1.9 General workflow of geocoding and
RTC processing.
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Small Data Analysis Exercise

As an additional exercise, geocode and RTC process the second data set
(pre-earthquake image). After both data sets are available in geocoded and RTC -
corrected form, visually compare the images and see if you can identify changes in
Kathmandu that might indicate earthquake damage.

3 INSAR PROCESSING USING SNAP

3.1 Introduction

In this lab, we will analyze a pair of Sentinel-1 images
that bracket the devastating 2015 Gorkha earthquake
near Kathmandu, Nepal, whose 7.8 magnitude main
shock on April 25 together with several aftershocks
(6.9M on April 26; 7.3M on May 12) triggered an ava-
lanche on Mount Everest. 21 people were killed, making
April 25, 2015 the deadliest day on the mountain in his-
tory. Another huge avalanche was caused in in the Lang-
tang valley, where 250 people were reported missing.
Hundreds of thousands of people were made homeless
with entire villages flattened, across many districts of
the country. Centuries-old buildings were destroyed at
UNESCO World Heritage Sites in the Kathmandu Valley,
including some at the Kathmandu Durbar Square, the
Patan Durbar Square, the Bhaktapur Durbar Square,
the Changu Narayan Temple, the Boudhanath stupa,
and the Swayambhunath Stupa.

Figure 1.10 shows the USGS ShakeMap associat-
ed with the 7.8 magnitude main shock, showing both
the violence of the event and the location of the largest
devastation.

We will use ESA's Sentinel Application Platform
(SNAP) to perform InSAR processing on these Senti-
nel-1images. The advantages of the SNAP tool include
(1) its graphical user interface, which renders the
SNAP tool straightforward to use (compared to other
InSAR processing tools); (2) the easy-to-access, free-
of-charge, and public domain nature of the SNAP tool;
and (3) the fact that SNAP is an integrative multi-sensor
toolbox and enables processing data from all Sentinel
sensors within one joint processing platform.

Should you be interested in using SNAP on your
own work station, please visit http://step.esa.int/main/
download/ for download instructions.

Pre-event image acquired on April 17, 2015:
STA_IW_GRDH_1SSV_201504177001852_201504177001921_005516_0070C1_17AA
Post-event image acquired on April 29, 2015:

+ STA_IW_GRDH_15DV_20150429T001909_20150429T001934_005691_0074DC_BO016

3.2 Sentinel-1 and the 2015 Gorkha
Earthquake

We will use a pair of repeated Sentine-1A images
for this lab that were acquired on April 17 and April
29, 2015, bracketing the main- and first aftershock of
the Gorkha earthquake event. Hence, the phase dif-
ference between these image acquisitions capture the
cumulative co-seismic deformation caused by both of
these seismic events. The footprint of the Sentinel-1im-
ages (Figure 1.11) shows good correspondence with
the areas affected by the earthquake (Figure 1.10).
Hence, Sentinel-1 data are a good basis for studying
earthquake-related surface deformation.

SAR data for this exercise can be retrieved via the
ASF Vertex SAR data search client.

+  Pre-eventimage:
STA_IW_SLC__1SSV_201504177001852_201
504177001922_005516_0070C1_4608

+  Post-eventimage:
STA_IW_SLC__1SDV_20150429T001907_201
504297001935_005691_0074DC_7332
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Figure 1.10 USGS ShakeMap associated
with the 7.8 main shock of the 2015 Gorkha
Earthquake northwest of Kathmandu, Nepal.
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Figure 1.11 Footprint of the Sentine-1A SAR data used in this study.
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http://step.esa.int/main/download/
http://step.esa.int/main/download/
https://vertex.daac.asf.alaska.edu/

£ SNAP - Open Product x 3.3 InSAR Processing using the SNAP Tool
e L —— B Een; Start the SNAP on your computer by either dou-
) Name Size Item type Date modified Vg . . .
Y e s6008 zpachive  vioaoeiz. | DIe-clicking onthe related icon or by typing snap in
Recent Items e 2.61GB  zip Archive 1/10/2018 12:... .
your command window.
"y . ‘
Desktop 3.3.1 Opening a Pair of SLC Prodlucts
) In order to perform interferometric processing,
¢ the input products should be two or more SLC prod-
| ucts over the same area acquired at different times.
This PC
* Flename:  [201935_005691_00740C_7332.20" 'S 1A_IW_SLC__1SSV_20150417T001852_20150417T001922_005516_0070C1_4608.20"| | Open | Step 1- open the pl’OdU(tS:
et e o Coece Use the Open Product button in the top toolbar of

Figure 1.12 Open Product dialog in SNAP. the SNAP interface and browse for the location of the
Sentinel-1 Interferometric Wide (IW) swath products

Product Explorer X | Pixellnfo | =

© @ [1] S1AIW_SLC__ISSV_20150417T001852_20150417T001922_005516_0070C1_4608 (Figure 1.12).
ol Select the *.zip files containing the respective Sen-
i tinel-1 products that will be used in this lab and press
@ é[azl_su:_:sov_zo15042§roo1907_2015042§r001935_005691_007qx_7332 Open Product. Press and hold the Ctrl button on the
e g S keyboard to select multiple products at a time.

& (@3 Tie-Point Grids
@@ Quicdooks

&-@ o Step 2 - view the products:

In the Product Explorer (Figure 1.13) you will
see the opened products. Within the product bands,
Figure 1.13 Product Explorer tab within the SNAP user interface. you will find two bands containing the real (i) and
imaginary (q) parts of the complex data. The i and
q bands are the bands that are actually in the prod-
uct. The virtual Intensity band is there to assist you in
working with and visualization of the complex data.

Note that in Sentinel-1 IW SLC products, you will
find three subswaths labeled W1, IW2, and IW3.
Each subswath is for an adjacent acquisition by the
TOPS mode.

Step 3 - view a band:
To view the data, double-click on the Intensi-

ty_IW1_VV band of one of the two images. Zoom in
using the mouse wheel and pan by clicking and drag-
ging the left mouse button. Within a subswath, TOPS
data is acquired in bursts. Each burst is separated by
demarcation zones (Figure 1.14). Any ‘data’ within
the demarcation zones can be considered invalid and
should be zero-filled but may contain garbage values.

3.3.2 Coregistering the Data

T R : ; S 3 St For interferometric processing, two or more im-
Figure 1.14 Intensity image of IW1 swath with bursts and demarcation areas identified. ages must be co-registered into a stack. One image
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is selected as the master and the other images are
the slaves. The pixels in slave images will be moved
to align with the master image to sub-pixel accuracy.
Coregistration ensures that each ground target
contributes to the same (range, azimuth) pixel in both
the master and the slave image. For TOPSAR InSAR,
Sentinel-1 TOPS Coregistration should be used.

Step 4 - Coregister the images into a stack:

Select S-1 TOPS Coregistration in the Radar menu.
TOPS Coregistration consists of a series of steps in-
cluding the reading of the two data products, the
selection of a single subswath with TOPSAR-Split,
the application of a precise orbit correction with Ap-
ply-Orbit-File and the conduction of a DEM-assisted
Back-Geocoding co-registration. All of these steps
occur automatically once the process is kicked off via
mouse click (inset at right).

A window will appear allowing you to set a few
parameters for the co-registration process (Figure
1.15). In the first Read operator, select the first prod-
uct[17. This will be your master image. In Read (2) se-
lect the other product. This will be your slave image.

In the TOPSAR-Split tab, select the W1 subswath
for each of the products. In the Apply-Orbit-File tab,
select Sentinel Precise Orbits. Orbit auxiliary data
contain information about the position of the satel-
lite during the acquisition of SAR data. Orbit data are
automatically downloaded by SNAP and no manual
search is required by the user.

The Precise Orbit Determination (POD) service
for SENTINEL-T provides Restituted orbit files and
Precise Orbit Ephemerides (POE) orbit files. POE files
cover approximately 28 hours and contain orbit state
vectors at fixed time steps of 10 seconds intervals.
Files are generated one file per day and are delivered
within 20 days after data acquisition.

If Precise orbits are not yet available for your prod-
uct, you may select the Restituted orbits, which may
not be as accurate as the Precise orbits but will be
better than the predicted orbits available within the
product.

In the Back-Geocoding tab, select the Digital El-
evation Model (DEM) to use and the interpolation
methods. Areas that are not covered by the DEM or
are located in the ocean may be optionally masked

& S17TOPS Coregistration

Target Product

Name:
S1A_IW_SLC__1SSV_20150417T001852_20150417T001922_005516_0070C1_4608_Orb_Stack|
[ save as: BEAM-DIMAP v

Directory:

C:\Users\fimeyer \Downk InSAR

[4] Open in SNAP

@ | D

Figure 1.15 SNAP co-registration interface.

Radar| Tools Window Help
Apply Orbit File

2

Cross InSAR resampling

Radiometric 4
Speckle Filtering 4
Coregistration A Coregistration
Interferometric 4 S1 TOPS Coregistration »
Polarimetric % DEM-Assisted Coregistration *
Geometric L4 Stack Tools 2
Sentinel-1 TOPS 4

»

ENVISAT ASAR

out. Select to output the Deramp and Demod phase
ifyou require Enhanced Spectral Diversity to improve
the coregistration.

Finally, in Write, change the Directory path to a
preferred location.

Press Process to begin co-registering the data. The
resulting coregistered stack product will appear in
the Product Explorer tab.

3.3.3 Interferogram Formation and Coherence Estimation

The interferogram is formed by cross-multiplying
the master image with the complex conjugate of the
slave. The amplitude of both images is multiplied
while their respective phases are differenced to form
the interferogram.

The phase difference map, i.e., interferometric
phase at each SAR image pixel depends only on the
difference in the travel paths from each of the two
SARs to the considered resolution cell.

Read Read(2) TOPSAR-Spiit TOPSAR-Spiit(2) Apply-Orbit-File Apply-Orbit-Fie(2) Back-Geocoding Write

S1 TOPS Coregistration
S1 TOPS Coregistration with ESD

S-1 Back Geocoding
S-1 Enhanced Spectral Diversity
S-1 Double Difference Interferogram
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Step 5 - Form the Interferogram:

Select the stack ([3] in Product Explorer) and
select Interferogram Formation from the Radar/
Interferometric/Products menu (see inset A at
right). The information contained in the inter-
ferometric phase measurement is discussed in
Lectures 12 - 14 referenced at the end of chapter
2. Please refer to the Supplemental Material on
InSAR and associated lecture notes for further
information.

Through the interferometric processing flow
we will try to eliminate other sources of error
to be left with only the contributor of interest,
which is typically the surface deformation related
fo an event.

The flat-Earth phase removal is done auto-
matically during Interferogram Formation step
(Figure 1.16). The flat-Earth phase is the phase
present in the interferometric signal due to the
curvature of the reference surface. The flat-Earth
phase is estimated using the orbital and metada-
ta information and subtracted from the complex
interferogram.

Once the interferogram product is created ([4]
in Product Explorer), visualize the interferometric
phase. You will still see the demarcation zones
between bursts in this initial interferogram. This
will be removed once TOPS Deburst is applied.

Interferometric fringes represent a full 2m
cycle of phase change. Fringes appear on an in-
terferogram as cycles of colors, with each cycle
representing relative range difference of half a
sensor’s wavelength. Relative ground movement
between two points can be calculated by count-
ing the fringes and multiplying by half of the
wavelength. The closer the fringes are together,
the greater the strain on the ground.

Flat terrain should produce a constant or only
slowly varying fringes. Any deviation from a par-
allel fringe pattern can be interpreted as topo-
graphic variation.

3.3.4 TOPS Deburst

To seamlessly join all bursts in a swath into a
single image, we apply the TOPS Deburst opera-
tor from the Sentinel-1 TOPS menu.

& Interferogram Formation X

File Help

Source product:
[3) S1A_IW_SLC__1SSV_20150417T001852_20150417T001922_00... ~ || ...

Target Product
Name:
V_20150417T001852_20150417T001922_005516_0070C1_4608_Orb_Stack_ifg

[F] Save as: BEAM-DIMAP v
Directory:
C:\Users\fimeyer \Downloads \Kathmandu_InSAR
[ Open in SNAP

Qose
Figure 1.16 Interferogram Formation Interface.
Step 6 — TOPS Deburst:

Navigate to the the Radar/Sentinel-1 TOPS menu
item and select the S-1TOPS Deburst step (inset B).

3.3.5 Topographic Phase Removal

To emphasize phase signatures related to de-
formation, topographic phase contributions are
typically removed using a known DEM. In SNAP, the
Topographic Phase Removal operator will simulate
an interferogram based on a reference DEM and
subtract it from the processed interferogram.

Step 7 - Remove Topographic Phase:

Select the Radar/Interferogram/Product menu
item and select the Topographic Phase Removal
step (inset , right).

SNAP will automatically find and download the
DEM segment required for correcting your interfer-
ogram of interest. After topographic phase removal,

Radar| Tools Window Help A.)
Apply Orbit File
Radiometric 4
Speckle Filtering »
Coregistration 4
Interferometric b Products b Interferogram Formation
Polarimetric 4 Filtering > Coherence Estimation
Geometric 4 unwrapping ¢ DEM Generation
Sentinel-1 TOPS ¢ InSAR Stack Overview Topographic Phase Removal
ASAR WSS g Three-pass Differential INSAR
Feature Extraction .

Radar| Tools Window Help B )
Apply Orbit File
Radiometric L
Speckle Filtering 2
Coregistration %
Interferometric L7
Polarimetric Y
Geometric d
Sentinel-1 TOPS 2 S-1SLCto GRD
ENVISAT ASAR S-1 Slice Assembly
SAR Applications » S-1 TOPS Split
SAR Utilities S-1 TOPS Deburst
SAR Wizards L2 S-1 TOPS Merge
Complex to Detected GR S-1 Remove GRD Border Noise
Multilooking S-1 EAP Phase Correction

the resulting product will appear largely devoid of
topographic influence. A separated band showing
the topographic phase component simulated based
on the DEM is also included.

3.3.6 Multi-looking and Phase Filtering

You will see that up to this stage, your interfero-
gram looks very noisy and fringe patterns are diffi-
cultto discern. Hence, we will apply two subsequent
processing steps to reduce noise and enhance the
appearance of the deformation fringes.

As discussed in the previously referenced Lec-
ture 12, interferometric phase can be corrupted by
noise related to:

«  Temporal decorrelation

+  Geometric decorrelation

+  Volume scattering

+  Processing error

To be able to properly analyze the phase signa-
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“ & Multilooking X
[Radar| Tools Window Help C.) :
File Help
Apply Orbit File
= 1/O Parameters Processing Parameters
Radiometnic »
Source Bands:
Speckle Filtering 4 L
i i Intensity_ifg_WV_17Apr2015_29Apr2015_ifg_srd_W_...
Coregistration 4 Phase_ifg_srd_VV_17Apr2015_29Apr2015
» coh_VV_17Apr2015_29Apr2015
| Interferometric ’ Products » Interferogram Formation
Polarimetric L Filtering » Coherence Estimation
Geometric 2 Unwrapping , Topographic Phase Removal \ BAGR Sqme food
B o . Number of Range Looks: |14
Sentinel-1 TOPS % InSAR Stack Overview Three-pass Differential INSAR e =
ENVISAT ASAR ¢ Phase to Height Mean GR Square Pixel: |53 20934
licati ’ : i
SR Phase to Displacement Ll oukut Int=shy
SAR Utilities » " Note: Detection for complex data
Phase to Elevation is done without resampiing.
SAR Wizards ’
Integer Interferogram Combination
Complex to Detected GR [(Ron ]| gose

Multilooking
Figure 1.17 SNAP Multilooking interface.

tures in the interferogram, the signal-to-noise ra- Radar] Tools Window Help

tio W||Ilbe ?ncreased. by applying multilooking and Apply Orbit File D)

phase filtering techniques: R ot ?
Speckle Filtering 4

Step 8 — Multi-looking: Coregistraticn ’

The first step to improve phase fidelity is called | Interferometric : Products '

multi-looking. To run this step, navigate to the Radar e *| Filtering % | Spectral Filtering »

dropdown menu and select the Multilooking option EGn " [ Uroening * __ Goldstein Phase Filtering
Sentinel-1 TOPS . InSAR Stack Overview

(bottom of the menu). A new window opens. In the
Processing Parameters portion of this window, pick
the I and q bands as your Source Bands to be multi
looked. In the Number of Range Looks field, pick 6
range looks, resulting in a pixel size of about 25m
(Figure 1.17).

In essence, multilooking performs a spatial aver-
age of a number of neighboring pixels (in our case
6x2 pixels) to suppress noise. This process comes at
the expense of spatial resolution.

Step 9 - Phase Filtering:
In addition to multilooking we perform a phase

filtering step using a state-of-the art filtering ap-
proach. For this purpose, navigate to Radar/Inter-
ferometric/Filtering and select Goldstein Phase
Filtering (inset D).

After phase filtering, the interferometric phase
is significantly improved, and the dense earthquake

deformation-related fringe pattern is now clearly  Figure 7.18 Deformation fringes related to the 2016 Kumamoto Earthquake show clearly after
visible (Figure 1.18). multilooking and phase filtering was applied.
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Radar| Tools Window He

Apply Orbit File
Radiometric
Speckle Filtering
Coregistration
Interferometric
Polarimetric

Geometric
Sentinel-1 TOPS
ENVISAT ASAR
SAR Applications
SAR Utilities
SAR Wizards

Terrain Correction
Ellipsoid Correction
SAR-Mosaic

ALOS Deskewing

W W W W W W W W

» Range-Doppler Terrain Correction
»| SAR Simulation
SAR-Simulation Terrain Correction

Slant Range to Ground Range
Update Geo Reference

Complex to Detected GR
Multilooking

3.3.7 Geocoding and Export in a User-Defined Format

To make the data useful to geoscientists, the
interferometric phase image needs to be project-
ed into a geographic coordinate system using a
DEM-assisted geocoding step.

Step 10 - Geocoding:
To geocode the interferometric data, navigate

to Radar/Geometric/Terrain Correction and select
Range-Doppler Terrain Correction (inset above). In
the Range-Dopper Terrain Correction window (Fig-
ure 1.19), select product [8] as source product

9300000

and pick the Intensity, Phase, and Coherence imag-
es as Source Bands to be geocoded. Adjust the pixel
spacing if you want (e.g., 50m). See Figure 1.20
for the resulting geocoded interferogram of IW1.

Step 11 — Export Data:
The final geocoded data can be exported from

SNAP in a variety of formats. To find the export op-
tions navigate to File/Export. In addition to GeoTIFF
and HDF5 formats, also KMZs and various specialty
formats are supported. In addition to the Data Ex-
port functionalities, SNAP files can also be directly

9400000 950000

9300000

9400000

@ Range Doppler Terrain Correction X
File Help

1/O Parameters Processing Parameters

Source Bands: [ifo_W_17Apr2015_29Apr2015
Q_ifg_WV_17Apr2015_29Apr2015

Digital Elevation Model: SRTM 3Sec (Auto Download) v
DEM Resamping Method: BILINEAR _INTERPOLATION v
Image Resamping Method: BILINEAR_INTERPOLATION v
Source GR Pixel Spacings (azxrg):  69.95(m) x 72.08(m)
Pixel Spading (m):
Pixel Spacing (deg): 4.4915764205976077E-4
Map Projection: WGS84(00)
[ Mask out areas without elevation [ ] Output complex data

Output bands for:

[ Selected source band oM [ Latitude & Longitude

[ Incidence angle from elipsoid [ ] Local incidence angle ] Projected local incdence angle
[ Apply radiometric normalization
Use projected local inddence angle from DEM
Use projected local incidence angle from DEM

Save Sigma0 band

Save Gamma0 band

Latest Auxiiary Fle

(] [Cgese

Figure 1.19 SNAP Range-Doppler
Terrain Correction interface.

imported into most GIS packages such as QGIS. This
is because SNAP uses the established ENVI format
for its files, which breaks out each image in a bi-
nary data file accompanied by an ENVI-formatted
metadata file. Figure 1.20 shows the processed
Gorkha interferogram mapped on top of reference
data using QGIS.

EZ

9500000

Figure 1.20 Geocoded Gorkha earthquake interferogram mapped in QGIS.
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3.4 Summary of Processing Steps

A summary of the InSAR processing steps as de-
scribed in this section can be found in Figure 1.21.

Read in image pair used

for InSAR processing
r=—=—==-=-==== hl
Apply precise Co-register
orbit files images

!

Radiometric ) Interferogram ; Burst
calibration formation I merge

|

|

TOPS :

debursting I

|

|

|

Small Data Analysis Exercise: Multi-Swath Processing

Figure 1.21 InSAR
processing workflow as
described in this section.

Topographic Multilooking, Geocoding/geometric
phase removal phase filtering terrain correction
Write data to
desired format

We processed sub-swath IW1 in the preceding exercise. You can extend this
work by processing and merging multiple swaths. Specifically, you can create a geo-
coded differential interferogram by merging sub-swaths #1 and #2.

Step 1: Create a Geocoded Differential Interferogram of the Gorkha
Earthquake by Merging Subswaths #1 through #3

To create this merged product, repeat the processing chain for the remaining two
subswaths starting from Step 4:

*  Run"“Step #4 - Coregistration” again but this time select IW2 (or IW3) in
the TOPS Split operator tab — coregistered InSAR pair for sub-swath W2
(IW3) [Note: make sure to create a new filename under the “Write” tab to
no overwrite the IW1 stack result]

*  Run"“Step #5 - Interferogram Formation” using the new IW2 (IW3) stack
asinput - IW2 (IW3) interferogram

*  Run"“Step #6 — Debursting” for the IW2 (IW3) interferogram — deburst-
ed IW2 (IW3) interferogram

« NEWSTEP: Run Burst Merge: This step is combining the previously gener-
ated “debursted IW1 interferogram” with the newly generated “deburst-
ed IW2 interferogram” and “debursted IW3 interferogram”. To run burst
merge, g0 to Radar/Sentinel-1 TOPS menu item and select the S-1 TOPS
Merge step. Select the debursted IW1, debursted IW2, and debursted
IW3 interferograms as inputs.

*  RunSteps #7 - #11 for this merged product.

+  Produce an image of the merged differential interferogram overlaid on
Google Earth or on a QGIS basemap (see Figure 1.20).

Step 2: Compare InSAR Data to ShakeMap Information

The Earthquake Hazards Program of the U.S. Geological Survey is providing
a wealth of information about all significant earthquakes around the globe. The
ShakeMap® is one of many sets of information included in this USGS feed. It was
developed by the USGS to facilitate communication of earthquake information
beyond just magnitude and location. By rapidly mapping out earthquake ground
motions, ShakeMap portrays the distribution and severity of shaking.

To access the ShakeMap for the 2015 Nepal Gorkha earthquake event, please
visit https://earthquake.usgs.gov/earthquakes/eventpage/us20002926#executive
and download the Event KML (you will find the KML download link on the bottom
of the menu on the left side of the website).

Overlay the ShakeMap onto your interferogram and analyze how well the map
conforms with the interferogram. Where do the two data sets match up? Are there
places where they don’t match up?
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4 A SIMPLE AMPLITUDE CHANGE
DETECTION TECHNIQUE USING SNAP/
MAPREADY AND GIS

4.1 Introduction

Due to their 24/7 observation capabilities, SAR
data are relevant for a broad range of applications
in environmental monitoring and emergency re-
sponse. This lab will touch on three examples of
how SAR can be used to analyze various kinds of
changes on the ground. Examples will include (1)
repeated images over Huntsville, AL (or Fairbanks,
AK), for the detection of environmental change;
(2) imagery over Altamira, Bratzil, a stronghold for
illegal logging in the Amazon rainforest; and (3)
data over Livingston Parish, LA, documenting the
2016 Louisiana flooding event.

Processing of these data will be done in QGIS,
and emphasis will be put on simple, yet effective
processing techniques. While this lab can be done
within the cloud-based Virtual SAR Lab, which is
available to you for these exercises, it might be
more effective to process the data locally.

4.2 Detecting Changes in and Around
Huntsville, AL / (alternatively Fairbanks,
AK) from a Pair of ALOS PALAR RTC
Images

The goal of this exercise to detect environmen-
tal changes around Huntsville, AL, Fairbanks, AK
, or another area of interest through the obser-
vation period of the ALOS PALSAR SAR sensor
system (2006 — 2011). A secondary goal is to
demonstrate how quickly the ALOS PALSAR RTC
products can be brought into a GIS system to aid
in a geospatial analysis.

4.2.1 [dentify Suitable ALOS PALSAR RTC Images for
Change Detection using Vertex

To identify ALOS PALSAR RTC images suitable
for change detection, go to the ASF Vertex search
engine (http://vertex.daac.asf.alaska.edu) and
draw a box centered on Huntsville (Figure 1.22)
/ Fairbanks, AK. Specify the following search set-
tings to find suitable data:

Fartarks Oy Now: (1) Arcsc Comma for Ok () At v Explonr

R T B e A e T T e o o e o oy i
UAF ALaska SATELLITE FAciLITY S
P Defneyouk LA I ¥ Fina J
~ search parameters =
pres—— o ———y . —
E— o L e
—— = B
S - ] e
e Comvoam - {‘_
= = g /(R R foneia e
—— y "' . W o N 1 .m
ECT—— ® el A
3 I Startyoursearch =~ e St N
: / ~ here! VA o N / ~
B essie Sy ™ e |
S o Vertex e 31 100

Figure 1.22 Setting up a search mask around Huntsville, AL in Vertex.

Step 1 - Set Geographic Search Region:
Draw a bounding box on the Vertex map to in-
clude your study area.

Step 2 — Set Seasonal Search Range:

Setting a seasonal search range will limit your
search to images from the same season. This is im-
portant for change detection operations as it avoids
seasonal changes and focuses on true environmen-
tal changes in a change detection analysis.

* In the Search Tab on the left-hand side of
the Vertex interface, activate the Season-
al Search radio button and set the search
range to July to September.

Also, search for the time span of the ALOS PAL-

SAR mission by setting the year range to 2006 —
2011 (see Figure 1.23a).

Step 3 — Select Platform:

This is to select the sensor of interest from the list of
available sensors. Deactivate Sentinel-1A and -1B and
activate ALOS PALSAR in the Platform selection inter-
face (see Figure 1.23b).

Step 4 — Start Search and Down select Search Results:

Start the Vertex search by clicking on the Search
button. Once the search is completed, down-select
your results using the wonder bar (see Figure 1.22).

Geospatial Granule Missions A))

Geographic Region

« Seasonal Search

0)

Select All | None

Platform Coverage
Sentinel-1B 2016-now...
Sentinel-1A 2014-now...

SMAP 2015-now...

UAVSAR 2008-now...

« ALOS PALSAR 2006-2011...

RADARSAT-1 1995-2008...

ERS-2 1995-2011...

JERS-1 1992-1998...

ERS-1 1997-1997...

AIRSAR 1990-2004...

SEASAT 1978-1978...

Figure 1.23 Selecting date range
(a) and platform type (b) on Vertex.
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Once you have identified the images you are in-
terested in, click on their preview image to enlarge
the product info tab and download the Hi-Res Ter-
rain Corrected data set via a mouse click per image
of interest (Figure 1.24),

Every downloaded file is encapsulated in a zip
file. Expand the files into separate folders. Once
that's done, we are ready for an analysis of these
scenes in a GIS system (QGIS or ArcGIS).

4.2.2 Load Images into QGIS and Visualize

Load the downloaded images into QGIS (or Arc-
GIS) using the raster import feature (we will walk
through the process in this exercise should you be
unfamiliar with QGIS).

Ideally, load a background basemap image to
be able to compare image features to known land-
marks. I suggest loading the OpenLayers Plugin into
your QGIS system via the Plugins/Manage and In-
stall Plugins ... item in the menu bar at the top of
the QGIS interface.

7 Q6152163
Project Edit View Layer Settings [Plugins | Vector Raster Database Web Processing Help |

DeEBRLGRXR
9/ B SRE

Visualize the images and explore the data set. To
improve visualization at all spatial scales, apply a
few changes to the image properties:

« Open the property editor by right clicking
on an image in the image list and selecting
Properties. The Layer Properties interface
will appear.

« I the Style tab, change the resampling
method for Zoomed in to Cubic and for
Zoomed out to Average.

Analyze the data for geolocation quality, spatial

resolution, and image content.

4.2.3 Perform a a Simple Change Detection Procedure
in QGIS

The two images in your list were acquired ap-
proximately one year apart. As the data are season-
ally coordinated, differences between the images

ALPSRP185270680

ALOS PALSAR
ALPSRP185270680
Beam mode FE0
Absolute Orbit: 18527
Path 157
Frame: 650
Acquisition Date: 2009-07-17
Faraday rotation: 177"
Ascending/Descending: Ascending
Off Nadir Angle: 34.3°
Frequency: L-Band
Polarization: HH«HV

o (EETITEYITNED

o EETTTIT G

0 (O HiRes Terrai Corrected (15,75 MB) | ©
o EETTTTTTT G
Py Googhetarth KMZ (14.14 MB) .

Figure 1.24 Image info view in Vertex. Download the High-res Terrain Corrected product per image of interest.

should largely be due to environmental changes
between the image acquisition times, such as urban
development, changes in river flow, or differences
in agricultural activity.

Step 1 — Perform visual change analysis:
Flicker between the images to try to identify
changes.
« Which changes can you identify?
«  Howdifficultisit for you to identify differenc-
es between images?
«  What makes the identification of change
difficult?

Step 2 — Perform Log-ratio scaling, a simple change
detection routine:

Identifying changes in images with complex con-
tent (e.g., the complex landforms and urban struc-
tures in these PALSAR scenes) is hard, as the image
content is masking the signatures of change. Our eyes
and minds are overwhelmed and distracted by the
wealth of information in the data.

Hence, the main goal of image-based change
detection approaches is to effectively suppress the
image background information, while preserving

the main change signatures of interest. A simple and
effective change detection approach is the so-called
log-ratio scaling method. It is based on a differential
analysis of repeated images and has been shown to
be effective in background suppression and change
features enhancement. The callout on the next page
provides a bit more details on this change detection
method.
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Side-note: A Few Words on Log-Ratio Scaling

Log-ratio scaling is an effective means to suppress
image background and enhance the change signatures in
an image. To identify potential surface changes from SAR
data using this approach, a ratio image is formed between
a newly acquired image X and a reference data set X.. Us-
ing ratio images in change detection was first suggested by
Dekker (1998) and has since been the basis of many change
detection methods (Ajadi etal., 2016; Bazi et al., 2005; Celik,
2010; Coppin et al., 2004; Meyer et al., 2015). To minimize
the effects of seasonal variations as well as spurious chang-
es of surface reflectivity on the change detection product,
the reference image X, should be selected in the same
season as the newly-acquired image X. Before ratio image
formation, all data should be geometrically and radiometri-
cally calibrated. These steps were done by the data provider
(ASF) in our case. The ratio image can be modeled as:

X;
=% =
where ris the observed intensity, x is a multiplicative speck-
le noise contribution, and R is the underlying true intensity
ratio. The ratio image r has the disadvantage that the statis-
tical distribution of its gray values is highly non-normal and
that its multiplicative noise is difficult to remove. Therefore,
a logarithmic scaling is applied to r, resulting in:

r XR

Xir = logio Xx =y+Q

where y=10 log(x), Q=10 log(R), and X, is the log-scaled
ratio data.

Related Literature:

Ajadi, 0. A, Meyer, F. |, and Webley, P. W, 2016, Change Detection in
Synthetic Aperture Radar Images Using a Multiscale-Driven
Approach: Remote Sensing, v. 8, no. 6, p. 482.

Bazi, ¥, Bruzone, L., and Melgani, £, 2005, An unsupervised approach
based on the generalized Gaussian model to automatic change
detection in multitemporal SAR images: IEEE Transactions on
Geoscience and Remote Sensing, v. 43, no. 4, p. 874-887.

Celik, T., 2010, A Bayesian approach to unsupervised multiscale change de-
tection in synthetic aperture radar images: Signal Processing, v.
90, no. 5, p. 1471-1485.

Coppin, P, Jonckheere, 1., Nackaerts, K., Muys, B, and Lambin, £, 2004,
Review ArticleDigital change detection methods in ecosystem
monitoring: a review: International Journal of Remote Sensing,
.25, 0.9, p. 1565-1596.

Dekker, R. /., 1998, Speckle filtering in satellite SAR change detection im-
agery: International Journal of Remote Sensing, v. 19, no. 6, p.
1133-1146.

Meyer, F. |., McAlpin, D. B, Gong, W., Ajadi, 0., Arko, S., Webley, P. W,
and Dehn, /., 2015, Integrating SAR and derived products into
operational volcano monitoring and decision support systems:
Isprs Journal of Photogrammetry and Remote Sensing, v. 100,
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Figure 7.26 Example log-ratio image for Huntsville, AL.

To conduct log-ratio scaling in QGIS, apply the

following procedure:

+ Inthe Raster menu, select Raster Calculator

* In the Raster Calculator window (Figure
1.25), construct the following equation:
log,, ((newer image)/(older image))

+  Definean output layer name (e.g., Huntsvil-
lePALSAR-Logratio.tif)

+  (lick Ok to calculate the log-ratio image.
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Figure 1.25 Raster Calculator Interface and
entries for calculating a log-ratio image.

A screenshot of an example log-ratio image over
Huntsville is shown in Figure 1.26. This image
was created from a pair of images acquired on
7/17/2009 and 9/04/2010. It can be seen that most
of the original image content (city of Huntsville, hills
and vegetation structures near town, ...) was effec-
tively suppressed from the image. In the log-ratio
image, unchanged features have intermediate gray
tones (gray value around zero) while change fea-
tures are either bright white or dark black. Black
features indicate areas where radar brightness
decreased while in white areas, the brightness has
increased.

Step 3 — Analyze the log-ratio image:

Analyze the change image that you have created.
What kind of changes do you see? Compare change
features to the base map (e.g., Google Maps) to ex-
plain the meaning of observed changes.
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4.3 Monitoring (lllegal) Logging Activities
in the Amazon Rainforest

The region near Altamira, Brazil is one of the most
active logging regions of the Amazon rainforest. While
some of the logging activities in this area are legiti-
mate, illegal logging operations have flourished over
the last decade. Existing logging roads can be clearly
identified in optical satellite images such as those
used by Google Maps® (Figure 1.27). However,
frequent rain and cloud cover make change detection
based on optical remote sensing data impractical.

4.3.1 Retrieve Repeated ALOS PALSAR RTC Images over
Logging Areas near Altamira, Brazil

Use the ASF Vertex interface to retrieve repeated
images over the logging areas near the Brazilian city
of Altamira. When searching for images, don't forget
to target similar seasons. Due to the evergreen vege-
tation in this tropical area, there is no preference for
which season you choose.

Once you have identified images of interest,
download the High-Res Terrain Corrected images for
your change detection analysis. The goal is to identify
year-to-year changes in logging extent.

4.3.2 Map Logging Activities Using Log-Ratio-based Change
Detection Procedlures

Experimentwith Log-Ratio Scaling on your repeat-
ed ALOS PALSAR RTC data.

4.4 Flood and Inundation Mapping for the
2016 Louisiana Flooding

The Louisiana flood of 2016 was touted by many
as the biggest U.S. natural disaster since Hurricane
Sandy in 2012. In August 2016, prolonged rainfall in
southern parts of the U.S. state of Louisiana resulted
in catastrophic flooding that submerged thousands of
houses and businesses. Many rivers and waterways,
particularly the Amite and Comite rivers, reached re-
cord levels, and rainfall exceeded 20 inches (510 mm)
in multiple parishes (Figure 1.28).

4.4.1 Meteorological History

Early on August 11, a mesoscale convective system
flared up in southern Louisiana around a weak area
of low pressure that was situated next to an outflow

Image Landsat / Copernicus

© 2018 Google

Figure 1.28 A map of radar-estimated rainfall accumulations across Louisiana between August 9
and 16, 2016, areas shaded in white indicate accumulations in excess of 20 in (510 mm).

boundary. It remained nearly stationary, and as a re-
sult, torrential downpours occurred in the areas sur-
rounding Baton Rouge and Lafayette. Rainfall rates of
up to 2-3inches (5.1-7.6 cm) an hour were reported
in the most deluged areas. Totals exceeded nearly 2
feet (61 cm) in some areas as a result of the system
remaining stationary (Figure 1.28).

442 Flood History

Flooding began in earnest on August 12. On Au-

gust 13, a flash flood emergency was issued for ar-
eas along the Amite and Comite rivers. By August 15,
more than ten rivers (Amite, Vermilion, Calcasieu,
Comite, Mermentau, Pearl, Tangipahoa, Tchefuncte,
Tickfaw, and Bogue Chitto) had reached a moderate,
major, or record flood stage. Fight rivers reached re-
cord levels including the Amite and Comite rivers. The
Amite River crested at nearly 5 ft (1.5 m) above the
previous record in Denham Springs. Nearly one-third
of all homes—approximately 15,000 structures—in
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Ascension Parish were flooded after a levee along the
Amite River was overtopped. Water levels began to
slowly recede by August 15, though large swaths of
land remained submerged. Livingston Parish was
one the hardest hit areas; an official estimated that
75 percent of the homes in the parish were a “total
loss”. It was thought over 146,000 homes were dam-
aged in Louisiana. This mass flooding also damaged
thousands of businesses.

4.4.3 flood Mapping using Sentinel-1 SAR Data

In this exercise, we will look at the benefits (and
limitations) of Sentinel-1 SAR data for mapping the
extent of the 2016 Louisiana flood. As mentioned
previously, Sentinel-1 is an operational SAR system
acquiring images at a routine repeat frequency of ei-
ther 12 or 24 days for all areas of the globe that were
defined as hazard zones. Large parts of the western
and central U.S. are part of this hazard map and,
hence, are well-covered. The eastern U.S., however,
is less well served by Sentinel-1 acquisitions (see Fig-
ure 1.29).

In addition to the coverage of hazard zones, Sen-
tinel-1 is attempting to respond to natural disasters
such as the Louisiana flood, through the scheduling
of an acquisition on its next pass over this area.

For the Louisiana Flooding event, the following
Sentinel-1 data are available:

Pre-event data from Aug 7, 2016:

+  STA_IW_GRDH_15DV_20160807T000141_
201608077000210_012487_013866_11BE

«  STA_IW_GRDH_1SDV_20160807T000210_
20160807T000235_012487_013866_7D4F

Post-event data from August 19, 2016

+ STA_IW_GRDH_15DV_20160819T000211_
201608191000236_012662_013E26_5A79

«  SIA_IW_GRDH_1SDV_20160819T000142_
201608197000211_012662_013E26_8995

The footprint of these data is shown in Figure
1.30. The footprint matches the affected areas well.
However, the post-eventimage on Aug 19 might come
a bit late to detect the maximum extent of the event.

Sentinel-1 IW SLC coverage (Oct2014 to Aug2016)

4.4.4 Data Processing

Sentinel-1 data are (currently) available as SLC and as
so-called Ground-Range Detected (GRD) products. While
the GRD images are georeferenced, neither of these
products come fully geocoded and some pre-processing
is needed before it is straightforward to work with these
data in a GIS system. The images hosted on the website
for this lab are pre-processed, using the steps below:

A— ExtractImage Files:
Extract the iff file that you are interested in. In each

7ip file there will be a base directory that is the name of
the granule followed by “.SAFE” and then a number of
lower level directories. One of these is named measure-
ment, and within this directory will be the georeferenced
iff files. Using the Unix (or Windows) unzip utility, you
can extract only the file you want with a command like
this:

unzip <filename.zip> */
measurement/*vv*. tiff

This will extract just the VV polarized image from this
7ip package. Ifyou know which file you want, thisis usual-
ly much faster than extracting the whole zip file.

B — Project the Image Files:
Using the gdal (www.gdal.org) command line utilities
you can project and export these files as more useful

Go-gle

Man datn 80016 el INFOI

Roccet & man srmr

Figure 1.30 Footprint of Sentinel-1 data
covering the 2016 Louisiana flooding event.

products. To begin, we want to project the files. The Sen-
tinel-1's GCPs are provided in GCS (lat/lon) coordinates,
but can easily be reprojected into another projection. In
the case of the Louisiana data, tthis will be UTM zone 15
(EPSG 32615). To do this, you use the gdalwarp com-
mand:

gdalwarp -tps -r bilinear
-tr 10 10 -t _ srs
EPSG:32615 <inputfile.tiff>
<output-utm-file.tif>
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Note that:
-t_srs specifies the output projection
- specifies the resampling methos (default
is nearest neighbor)
-tr  specifies the output pixel size
-tps  specifies to use the thin plate spline tech-
nique when interpolating control points

Executing this command will result in a map pro-
jected geatiff file that could be read by nearly any GIS
application. For Sentinel-1, the datatype will still be
uint16.

(- Scale the data:

Scale to byte using gdal_translate. You can easily
scale the data to byte if you want, which may be more
useful.

gdal _ translate -ot Byte
-scale 0 700 0 255 <infile.

tif> <output.tif>

In this case, we convert from long int to byte and
scale the range 0 to 700 into the 0 to 255 byte range.
Values above 700 will be set to 255 and values below

Here, we use the fact that water is often much darker
than the true image content, causing the image histo-
gram to be bimodal and enabling the separation of
water from the rest of the image using simple thresh-
olding operations. To conduct image thresholding on
both images, please go through the following steps
for both data, starting with image 20160819,

Step 1 - Perform a log-transformation:

This step creates image histograms for the data
that are more Gaussian and simplifies the threshold-
ing operations. In GQIS, go to the Raster menu and
select the Raster Calculator. Perform a log transfor-
mation by applying an equation to the image (e.g.,
log10 ( “20160819@1")). Export the image as geotiff
under the name 20160819-log if.

Step 2 — Analyze the image histogram:

Right click on the 20160819-log and select proper-
ties. Navigate to the histogram tab and zoom into the
histogram to see its shape.

You should see a clearly bi-modal histogram (in-
set A) with water pixels appearing significantly darker
than the main image data.

Step 3 — Pick a threshold:

To separate water from the rest of the image,
pick a threshold at (or near) the minimum be-
tween the two modes of the distribution (e.g., at
2.05)

Step 4 — Create a black/white water mask:
Asimple approach is to navigate to the Style tab
of the Layer Properties window and rest the min-
imum and maximum value of the image to values
just below and just above the threshold. Click ok
or Apply to view the result (inset B). Your image
should look similar to the one in Figure 1.31.

Repeat this process for image 20160807 and
compare the resulting flood masks:
+ Analyze the quality of the water masks
+  Compare flood mapping results to a base
map (e.g., Google maps)
« Think about the benefit of such a map in
emergency management situations

0 (though there shouldn't be any) will be set to 0. : Raster Hstogran A)

Once these pre-processing steps are completed, B "‘ "‘ "'!wi‘lf
the data is ready for analysis in a GIS system. z 8'°°°; TOUT] "Jli",‘ﬁm

Se. ; B

For the purpose of this training module, these EW’: i “"
steps have been fully geo-coded and pre-processed. 2 T ,-‘,-‘.mﬁ."""r‘ bt .

Download the required image data from the website ey —
(radar.community.uaf.edu/lab-8-change-detection- - b * Ppixel Value “ “
from-sar-images/).

Load the pre-processed data 20160807.tif and ~ Juereree zoeeisslsoi -
20160819.tif into your GIS system and overlay them '::::e::ﬁm" - i
on a map. Inspect the images and flicker between GoybondBnd 1 (G) >
them to get a first idea of potential flood extents in - o &
the area. rameanen. S oMt ©

We will apply two different simple yet effective L
water/flood masking approaches to these data: (1) S—— < o et |
Image Thresholding and (2) Log-ratio scaling. o 4 e = i
(1) Image Thresholding: v Resamplng i
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(2) Log-Ratio Scaling:
Apply the log-ratio scaling approach from Section4.2

to the Louisiana flood data. Use the following equation
in your analysis:
log,, (20160819@1")/(*20160807@1"))

The result of your analysis should resemble the map
in Figure 1.32. Analyze the log-ratio map:

* Which signatures can you see?

+ What may the bright areas in the log-ratio im-
age represent?

+ How does the log-ratio result compare to the
water masks created via image thresholding?

Do you think this may be a useful layer for
emergency management situations?

445 Take Away Points

The goal of this last exercise was to demonstrate the
potential of SAR data for flood mapping. We learned
about two different simple water masking methods and
compared them. You should have seen that even very
simple techniques can achieve quite impressive results
that can have bearing on emergency management sit-
uations.

At the same time, this lab should also showcase
some of the remaining limitations that still plague SAR
data in general and Sentinel-1 SAR data specifically:

+ Currently, Sentinel-1 data does not come fully
geocoded and some pre-processing is re-
quired to be able to manipulate it effectively in
a GIS environment.

+ While Sentinel-1 is an operational system, it
doesn't cover all parts of the globe equally well
(even though this is improving as Sentinel-1Bis
ramping up production).

+ The temporal sampling of SAR systems is still
limited. In the Louisiana flood example, we are
missing the main flood pulse due to inconve-
nient image acquisition times. By the time of
the post-event acquisition, most of the flood
water has already receded.

+  Freely-available SAR data are also a bit limit-
ed in their spatial sampling. In the Louisiana
flood case, this may have reduced the quality
of flood maps in urbanized environments.

Figure 1.31 Threshold-based water mask for 20160818.

Figure 1.32 Log-ratio image for 2016 Louisiana flood

62

THE SAR HANDBOOK



THE SAR HANDBOOK

63



DR. JOSEF KELLNDORFER'S research focuses on monitoring and assessing terres-
trial and aquatic ecosystems, and disseminating Earth observation data products to policy
makers to improve decision making and support capacity building. He is a distinguished
visiting scientist at the Woods Hole Research Center and currently serves on various

expert working groups within NASA, the Japanese Space Agency JAXA, the Group on Earth
Observation, and GOFCG-GOLD to advance the use of remote-sensing technology for natural
resource mapping and monitoring. He is a member of the NASA Science Team for the US/
Indian NISAR satellite. He founded Earth Big Data to provide scalable solutions to modern
data-mining challenges.

Writing this chapter and development of the training material was supported by the NASA SERVIR pro-

gram. Sentinel-1 and ALOS examples were based on data from the Alaska Satellite Facility and work
over many years with the JAYA Kyoto and Carbon Science Team. The following NASA grants supported
some analysis of this work: NASA Carbon Monitoring System program, grant number 8ONSSC18K0190;
NASA NISAR Science Team, grant number SONSSCI8K0087.

Kellndorfer, Josef. “Using SAR Data for Mapping Deforestation and Forest Degradation.” SAR Handbook: Comprehensive
Methodologies for Forest Monitoring and Biomass Estimation. Eds. Flores, A., Herndon, K., Thapa, R., Cherrington, E. NASA. 2019.
DOI:.10.25966/689-gw82



CHAPTER 3

Using SAR Data for Mapping Deforestation and Forest Degradation

Josef Kellndorfer, President and Senior Scientist, Farth Big Data, LLC

ABSTRACT

This chapter focuses on Synthetic Aperture Radar (SAR) observations of forest cover change from deforestation
and forest degradation. Discussed are SAR backscatter changes determined by sensor and target parameters.
Sensor parameters include the wavelength/frequency of the SAR, as well as incidence angle, look directions, and
transmit and receive polarization. Since sensor parameters are typically stable from a satellite SAR, backscatter
variations over time can be attributed to two main target parameters: structure and moisture. For forests and oth-
er targets, this means observations of backscatter change can be linked directly to change in forest structure and
moisture conditions of the vegetation and underlying soil. This makes observations with SAR complementary to
optical data as (1) almost no atmospheric or Sun illumination variations play a role in SAR response, and (2) longer
wavelengths and active penetration into forest canopies interact directly with structure and moisture conditions.

This chapter discusses the influence of sensor and target parameters on backscatter variations from forests and
a time series analysis approach for forest change detection. Also discussed are proper methods for SAR data
calibration for forest applications, including preprocessing and proper data scaling. Most image examples in this
chapter stem from a time Series stack of Sentinel-1 data acquired over Ecuador in the Universal Transverse Mer-
cator (UTM) projection tile of the Military Grid Reference System (MGRS), tile number 18MTE (see Fig. 3.1). (The
MGRS provides a global tiling scheme with UTM zone number, row designator, and two-letter tile identifier, i.e.,
18MTE = Zone 18, Row M, Tile TE. More information may be found here.) The tile is transected by the Napo and

Cocarrivers on the eastern slopes of the Andes.

3.1 SAR for Mapping
Deforestation and Forest
Degradation

As a vital natural resource, forests provide a host
of ecosystem services, including carbon sequestra-
tion, diverse natural habitats for flora and fauna, and
they are a key source of food and fiber for human
consumption. Today, many nations have entered in-
ternational or regional agreements (e.g., the United
Nations’ Framework Convention of Climate Change
- Reducing Emissions from Deforestation or Forest
Degradation (UNFCCG-REDD)) to protect their for-
est resources. Tracking deforestation rates annually
and developing early warning systems of forest loss
(often from illegal activities) are essential. Remote
sensing of forest change has an important role in this

monitoring effort. While optical data have long been
the workhorse for forest monitoring, the advent of
operational SAR data availability offers an invaluable
complement with a crucial sensitivity: microwave
remote sensors are largely cloud-penetrating and
thus guarantee continuous monitoring, even under
cloudy skies. For tropical nations, this is particularly
important as continuous cloud cover severely limits
the availability of optical data at medium resolution
(Kellndorfer et al. 2014, Mitchell et al. 2017).

3.2 Brief Review of Color
Theory for Interpreting SAR
Images

SAR backscatter images are representations of the
microwave portion of the electromagnetic spectrum,

Figure 3.1 Location of the example
Military Grid Reference System (MGRS) tile
18MTE in Ecuador used in this chapter.

and as such always represent grayscale or false col-
or combinations mapped to the human visual color
space. This is analogous to the false color represen-
tation of multispectral optical remote sensing imag-
ery from bands outside the visual spectrum. (Please
note that in this chapter, “SAR image” shall refer to
a grayscale or multi-band image of SAR backscatter,
calibrated to y* with a Radiometric Terrain Correction
(RTC) approach (see Chapter 2)).

3.2.1 GRAYSCALE DISPLAY OF SAR IMAGERY

A single-band SAR image (i.e., from one frequen-
¢y and one polarization) is displayed such that low
backscatter values correspond to dark colors and
high backscatter values correspond to bright colors.
Enhancements can be applied, like linear or histo-
gram stretches. Examples of SAR backscatter images
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from Sentinel-1 are shown in Figure 3.2 for a land-
scape scale subset in Ecuador and in Figure 3.3 for
a large oil palm plantation just to the north of Puerto
Francisco.

3.2.2 COLOR DISPLAY OF SAR IMAGERY

For the interpretation of SAR imagery, it is useful
to briefly review the basics of how multichannel SAR
imagery is displayed. Tables 3.1 and 3.2 may be
used as resources for understanding colors when
displaying false color SAR Images (see Henderson &
Lewis 1998).

Img Layer 1 Img Layer? ImgLayer3 Resultant
Blue Green Red Color
Tonal Change on Image

White Black Black Blue
Black White Black Green
Black Black White Red
White White Black (yan
White Black White Magenta
Black White White Yellow
No Tonal Change on Image

White White White White
Black Black Black Black
Grey Grey Grey Grey

Table 3.1 Color assignments and resultant colors
for multi-dimensional SAR image composites
(Manual of Remote Sensing, Vol. 2, 1998).

Type of Composite Assigned Color
BLUE GREEN RED
Multifrequency/band ~ ShortestA ~ MiddleA  LongestA
Multitemporal (date) First Second Third
(earliest) (Latest)

Most to Least Common
(HV/VH)

Multipolarized

(HH) (W)

Table 3.2 Often-used color scheme for
multi-dimensional false color SAR composites
(Manual of Remote Sensing, Vol. 2, 1998).

Table 3.1 describes how the combination of
grayscale imagery assigned to the Red/Green/Blue
(RGB) bands would lead to the resulting colors when
the extreme dark (black) and bright (white) colors are
combined. This is useful when interpreting an RGB

4000

o 1000 2000 3000 5000

- I

0

Figure 3.2 Grayscale Sentinel-1 amplitude image in Ecuador. The area is mostly forested, with
the Coca and Napo Rivers, Puerto Francisco, and an oil palm plantation being dark and bright
prominent features. The Andes touch the western part of this image. The backscatter histogram
in the right panel contains values ranging from about -23 to 0 dB, peaking at about -6 dB.
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Figure 3.3 Google Earth and Sentinel-1 images of a subset of the large oil palm plantation. While the
river and most agricultural fields exhibit dark colors, the various states of regrowth in the oil palm

plantation correspond to different gray values.

multitemporal color image. For example, assume that
three dates are combined as per Table 3.2, with the
earliest acquisition in red, the second acquisition in
green, and the newest acquisition in blue. If a red col-
or is seen for a pixel, according to Table 3.1, the red
layer is close to white (bright backscatter), while the
subsequent acquisitions are close to black (dark back-
scatter). Thus, the backscatter drops after the firstac-
quisition, which is often a sign of deforestation or a
degradation event. Note that for forest applications in
particular, itis always useful to assign cross-polarized
data, which are more related to volume scattering of
the canopies to the green band. Co-polarized data

(VVor HH) are suited for the red band, where surface
scattering components are more pronounced. When
only dual-polarimetric data are available (e.g., -HH/
HV from ALOS, or GVV/VH from Sentinel-1), a color
SAR image is often constructed by assigning the ratio
of co-polarized to cross-polarized data to the blue
channel. Note that for multi-polarized images with
only two polarizations, the co-polarized band is often
assigned to red, the cross-polarized to green, and the
ratio of co-/cross-polarized data to the blue channel.

Examples for Sentinel-1 Cband and ALOS-1
[-band data are shown in Figures 3.4 and 3.5,
respectively. The images show the Napo river in the
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southeast, an oil palm plantation in the northeast,
primary rainforest in the northwest, and active fish-
bone logging patterns in the southwest. The color
composites are constructed from dual-polarimetric
data with co-polarized data assigned to the red chan-
nel, cross-polarized data to the green channel, and
the co-/cross-polarized ratio to the blue channel. A
nice effect for forest applications with this color as-
signment strategy is that forests tend to be shown
in shades of green, and typically the brightness of
green corresponds to the amount of biomass in the
forest. Also, water tends to be represented in blue
colors, which also represent other surface scattering
components. Naturally, different histogram stretches
may be applied to enhance various surface compo-
nents. In these examples, it is remarkable that both
G-VV/VH and L-HH/HV false color SAR composites over
this predominantly forested landscape exhibit similar
color impressions. Differences are notable, however,
foremost by the appearance of some dark green color
in agricultural areas in the C-band composite. This like-
ly stems from higher sensitivity to volume scattering
from agricultural crops, which have less of a volume
scattering component at L-band.

3.3 Review of SAR
Characteristics for Forest
Mapping

SAR backscatter values are determined by two
main groups of characteristics: sensor and target char-
acteristics. The first group includes the frequency/
wavelength of the SAR, polarization of the transmitted
and received SAR signal, incidence angle of the radar
beam interacting with the ground, and look direction
of the sensor. The combination of these characteristics
needs to be considered when interpreting and ana-
lyzing SAR imagery. It is often ill-advised to combine
SAR imagery from a set of varying sensor parameters
if the backscatter data are not carefully cross-calibrat-
ed. For time series analysis in particular, itis advisable
to analyze data from the same sensor characteristics,
otherwise signal variations can be misinterpreted as
true change, though no change has actually occurred.
The following sections review with examples the main
sensor characteristics to point to these differences.

Sentinel-1 Path 120 Subset, 2018-05-31

a) Sentinel-1 C-W b) Sentinel-1 C-VH

c) Sentinel-1 C-VV/C-VH Ratio
X T “

d) RGB: Sentinel-1 CWV, C-VH, Ratio

Figure 3.4 Sentinel-1 G-band dual polarimetric VV and VH data: (a) VV, (b) VH, (c) VV/VH ratio, and (d)
SAR false color composite with RGB = VV/VH/ratio channel assignment. Image acquired on May 31, 2018.

ALOS-1 Path 107 Subset, 2008-06-22

a) ALOS-1 L-HH b) ALOS-1 L-HV

) ALOS-1 L-HH/L-HV Rat. d) RGB: ALOS-1 LHH, L-HV, Ratio

Figure 3.5 ALOS-1 L-band dual-polarimetric HH and HV data: (a) HH, (b) HY, (c) HH/HV ratio, and (d) SAR
false color composite with RGB = HH/HV/ratio channel assignment. Same area as in Figure 3.4, acquired
~10 years earlier on June 22, 2008.
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The other group of characteristics determining
SAR backscatter of forests and other natural and
manmade targets are related to target characteristics.
In general, assuming constant imaging sensor char-
acteristics, SAR backscatter is a function of a target's
moisture content and structural characteristics. For
forests, this means that forest volume (biomass) and
structural complexity (forest trunks, branches, and
leaves) can indicate Species present (e.g., pines vs.
deciduous). Unlike optical imagery, if sensor parame-
ters are stable—as is the case with most repeat-pass
orbiting SAR sensors—signal variations at any given
pixel location are only a function of these target char-
acteristics. Sun angle variations seen in optical data
do not affect the active SAR sensing system. Also, at-
mospheric variations (including clouds) have (almost)
noimpact on the SAR signal; however, there are nota-
ble and important exceptions at shorter wavelength
SARs when heavy active rain events are encoun-
tered, as seen in G-band observations over tropical
environments. Thus, when analyzing radar signals,
it is important to recognize that moisture changes
in both soil and vegetation strongly determine SAR
backscatter. For some key concepts in understanding
SAR backscatter from forests and natural vegetation,
see Ulaby et al. 1986, 1989, 1990, 2014; Henderson
& Lewis 1998; Woodhouse 2006; and Kellndorfer &
McDonald 2008.

3.3.1 ROLE OF FREQUENCY IN FORESTS

SAR frequency determines the wavelength of the
electromagnetic wave interacting with targets such as
forests. In a nutshell, the longer the wavelength (i.e.,
the smaller the frequency), the more a wave pene-
trates into forest canopies and interacts with larger
parts of the forest volume. In a simplistic view, one
can attribute X-band (at about 3 cm) to mostly crown
and small branch and leaf/needle scattering. G-band
(5 cm) penetrates somewhat deeper into crowns and
scatters on medium-sized branches. L-band (23 cm)
and P-band (40 cm) have strongest penetration ca-
pacity and interact with larger parts of trees like big
branches and trunks (see Chapter 2, Fig. 2.6).
As such, L-band and longer wavelengths are often
connected with a strong “double-bounce” scattering
component, where the incident energy is scattered

Figure 3.6 Double-bounce effect from bellow-canopy flooding at L-HH polarization from ALOS-1: (a)
Low-water season and (b) high-water season. Note the brightening of the forests during inundation.

forward towards the ground where it bounces back
to the sensor (similar to a racquetball or squash). This
double-bounce effect is invaluable for detecting be-
low-canopy flooding effects where inundation with
standing water below a tree acts as a strong reflect-
ing surface in the forward direction back to the SAR
instrument. In tropical forest environments, riparian
forests are thus extremely bright in SAR imagery
when flooded (Fig. 3.6).

Figures 3.7 and 3.8 show - and G-band back-
scatter images of the oil palm plantation in Ecuador.
Although the C-band data are from a timeframe of 10
years after the L-band acquisitions, most notably, the
relative absence of very dark surfaces in the C-band
data points to strong backscatter from rough surfaces
at the shorter wavelengths, whereas at the L-band,
surfaces appear smoother (hence, darker) when little
or no vegetation is present.

3.3.2 ROLE OF POLARIZATION IN FORESTS

It is important to consider the polarization of
radar waves interacting with forests, as it deter-
mines how the signal interacts with trunks and
crown components. Figure 3.9 shows a simpli-
fied diagram of how long and short wavelengths at
horizontal and vertical polarizations interact with
forests. Most important is that backscatter from
co-polarization (VV, HH) (i.e., same transmit and
receive components) is typically stronger for sur-
face scattering components, whereas energy mea-
sured from cross-polarized (VH or HV) detection
(i.e., measuring energy returning at a 90° offset to
the transmitting wave) is associated with measur-
ing volume scattering. Chapter 2, Section 2.2.3
provides a good background about polarization and sur-

ALOS.3 Pt 107 Subset, 2008.66.22

Figure 3.7 ALOS-1 L-band imagery for the oil
palm plantation: (a) L-HH, (b) L-HV, (c) ratio, and
(d) RGB composite LHH/LHV/ratio.

Figure 3.8 Sentinel-1 Gband imagery for the oil
palm plantation: (a) GVV, (b) GVH, (c) ratio, and
(d) RGB composite CVV/CVH/ratio.
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Figure 3.9 Schematic effects of polarization
on backscatter of long and short wavelengths

scattering from trunks and crowns.

face scattering types. Thus, for biomass applications, for-
est degradation tracking, and identifying changes from
volumes to surfaces, cross-polarized observations with
SAR imagery are essential. The differences between like
and cross-polarized imagery from the - and L-bands of
the oil palm plantation are visible in Figures 3.7 and
3.8. Itcan clearly be seen atboth L-HH or GVV that large
grayvalue ambiguities exist between forest canopies and
non-forest regions. In the cross-polarized images, these
distinctions are more readily made and less ambiguous.
Note for example in the L-band image’s lower part in
Figure 3.5 that the fishbone logging pattern visible in
the HV polarization is not visible in the HH polarization.

3.3.3 ROLE OF INCIDENCE ANGLE

The incidence angle describes the angle between
the sensor and ground and the surface normal of the
illuminated surface (see Chapter 2). SAR backscatter
is strongly influenced by this angle, as it determines scat-
tering in the crown layer, trunks, and interactions with
the ground. If slopes are tilted toward the sensor, stron-
ger backscatter can be expected. If slopes are tilted away
from the sensor, weaker backscatter is to be expected.
RTC will account for these effects to some degree; how-
ever, scattering behavior is strongly dependent on the
type of surface cover. This effect is weaker over dense
forested environments and stronger over sparse vegeta-
tion or bare soils.

Figure 3.10 is an example from the Pacific North-
west of the United States where timber management
involves clearcutting, selective logging, and replanting.
The Sentinel-1 images show acquisitions in the subset
from overlapping paths, one imaging the area closer to
near range (steeper incidence angle) of the SAR sensor
and one closer to far range (shallower incidence angle)

Ascending Sentinel-1 C-Band Data over Pacific Northwest

Northing (=] (16.6 km)

5076140.0 goge

Northing (m) (10.8 km)

Easting (m]) (10.0 km)

VV Scale [dB]

-11 -10 -9 -8 -7 -6

b) Near Range VH 2018-06-02
_ VTR -

AT

Easting [m] (10.0 km)

d) Far Range VH

Easting (m] (1.0 km)

VH Scale [dB]

Toas -17 -16 -15 -14 -13 -12

Figure 3.10 Near- and far-range acquisitions of Sentinel-1 CVV and CVH data over a forested site in

the Pacific Northwest.

of the sensor. While not immediately obvious, close in-
spection of the figure shows differences in the near- and
far-range acquisitions only five days apart where no sig-
nificant rain events have changed moisture conditions.
The rows show near- and far-range data for VV and VH
data in the columns. A comparison of the top and hot-
tom figures in each column illustrates the differences
stemming from variations in incidence angles from the
overlapping paths.

3.3.4 ROLE OF LOOK DIRECTION
(ASCENDING/DESCENDING) DATA TAKES

The look direction of a SAR refers to the direction
the radar antenna is pointed when emitting and re-
ceiving the radar beam. A SAR look direction is de-
termined with respect to the flight direction of the

sensor (see Chapter 2, Sec. 2.1). It is analogous
to sitting on the right or left side of an airplane and
looking out the window. Typically, SAR sensors are
configured to look either right or left. If the satellite
is rotated, that direction can change. How an area is
illuminated by a radar beam changes foremost with
image acquisitions during ascending and descending
overpasses of an area. Figure 3.11 exemplifies the
effect of look direction from ascending or descending
data. The image subset is from the Sentinel-1 cross-
over pass in northeast Ecuador at the location shown
in the right-hand part of the figure. The left side of
the figure shows from top to bottom the combined
layover and shadow masks from ascending and de-
scending paths over a Google Earth subset. The cen-
ter figure shows the descending path, and the bottom
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figure shows the ascending path. Differences in the
backscatter can be seen as well as the varying loca-
tions of the layover and shadow masks (red color).
Forest monitoring applications benefit from combin-
ing different look directions, as different regions will
be mapped and complementary backscatter infor-
mation can be retrieved.

Figure 3.12 shows an example of look direction
effects for forest observations in Chile from L-band.
The city of Talca lies in the western part of the imag-
es and can be seen as a rose-colored blob, similar
another smaller city farther north. Note that in the
ascending data, these two cities turn green in the
multi-polarization L-HH/L-HV/ratio image to assume
the same backscatter levels as the forests south of
Talca and on the Andean slopes in the eastern part
of the images. Incidence angle might also contribute
with near- and far-range observations, although the
gamma naught values mostly flatten the backscatter
in the narrow ALOS-1 swath of about a 70-km swath
width. Thus, here look direction is mostly causing a
change in how the city and forests are seen structur-
ally. Again, if time series analysis for change detection
is targeted for forest monitoring, it is advisable to an-
alyze time series by repeat-pass orbits and not mix
ascending and descending datasets.

3.3.5 ROLE OF MOISTURE

SAR is very sensitive to moisture in soils and
vegetation, and also to standing open water and
below-canopy standing water. Increased moisture
content in soils and vegetation tend to increase the
backscatter signals. Standing open water has very
dark image characteristics due to most of its energy
being scattered in the forward direction away from
the sensor; however, when wind, currents, or boat
engines rough up water surfaces, strong backscatter
can originate from open water surfaces. In particular,
shorter wavelengths like G- and X-bands have strong
open water surface backscatter from rough water
surfaces. At longer wavelengths, the aforementioned
double-bounce effect under canopies can have a
strong backscatter signal (Fig. 3.6).

Figure 3.13 shows an example of moisture influ-
ence on the Sentinel-1 C-band data over Ecuador. The

Figure 3.11 Example showing the effects of
look direction on backscatter and layover and
shadow on Sentinel-1 CG-VV/VH/ratio RGB data.

Ascending superimposed

Figure 3.12 ALOS-1 data over Chile, Talca, region from ascending and descending paths. RGB=L-
HH/L-HV/ratio. Red arrows indicate the look direction of the right-looking sensor.

darkening effects are associated with actively raining
strong tropical convection systems that cause signal
attenuation. The brightening effects stem from wet
vegetation and soils from the rain events associated
with the tropical frontal system. Riverbeds are still
seen in the midst of brightened backscatter areas in
the affected image from February 27, 2017, confirm-

ing that the SAR signals indeed stem from an increase
in vegetation and soil moisture.

Figure 3.14 shows the effects of vegetation and
soil moisture on signal brightening in L-band HH po-
larization from ALOS-1 at the Ecuador site. Three ac-
quisitions from the end of June 2008, 2009, and 2010
are compared. While 2008 seems to have few effects
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Sentinell C-Band Data over Ecuador

Band 3: 2016-02-17 Band 35: 2017-02-17

Band 59: 2018-02-12 RGB: 2016-02-17 2017-62-17 2018-02-12

Figure 3.13 Sentinel-1 CVV example of moisture influence on enhancing and darkening backscatter

ALOS-1 L-Band Data over Ecuador
Band 6: 2008-06-22 Band 9: 2009-06-25

Band 14: 2010-06-28 : 2008-06-22 2009-06-25 2010-06-28

Figure 3.14 ALOS-1 [-HH example of moisture influence on enhancing backscatter.
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from moisture-related backscatter enhancements,
the year 2009 shows some effects in the eastern
part of the image. In 2010, a strong moisture-related
brightening is visible. As a result, the multitemporal
color composite shows large-scale color variations
that are moisture-related. Care must be taken when
performing multitemporal image change detection for
forest degradation so as to not to interpret darkening
inatime series as a degradation signal when moisture
variations can be the cause for decreases or increases
in backscatter. Time series analysis can help to sepa-
rate these effects, as moisture variations are shorter
in time and space and exhibit a more random pattern
compared to real disturbance or deforestation signals.

3.3.6 ROLE OF STRUCTURE

In addition to moisture conditions, vegetation
structural characteristics determine SAR backscatter
from forests. This includes both horizontal structure
(i.e., canopy density, row plantations, texture) and
vertical structure (i.e., crown depth, crown and trunk
biomass, leaf and branching structure, life forms of
trees, excurrent or decurrent growth). Figure 3.15
provides a schematic overview of these structural
classes (Dobson et al. 1996).

Figure 3.16 provides an example of backscat-
ter response for GVV and GVH data for the oil palm
plantation and its various growth, disturbance, and
regrowth stages (including backscatter from undis-
turbed primary forest). The timing of the Google Earth
subset corresponds to the C-band acquisition dates in
September 2017.

For L-band sensors, Figure 3.17 provides an ex-
ample from a timber management area in Louisiana,
U.S. The area is heavily managed, and various stages
of clearcutting, selective logging (row thinning), and
regrowth can be seen. The cross-polarized data clearly
show increased brightness where there are more ma-
ture, higher biomass forests.

3.3.6 SUMMARY: DEFORESTATION AND
FOREST DEGRADATION FROM A SAR POINT
OF VIEW

In simple terms, broad characteristics of backscat-
ter behavior can be summarized as follows:

* Deforestation—Predominantly a change

from volume to surface scattering. This means

Growth Form

Structural
Characteristics:

Trunks

Branches

Foliage

Herbaceous Woody
Blade-like Broadleaf Shrubs Trees
Excurrent Decurrent Columnar
Gymnosperms Angiosperms Angiosperms
(i.e. grass, corn) (i.e. soybeans) (i.e. alder) (i.e. pine) Dicots (i.e.oak) | Monocots (i.e. palm)
M‘anysmalltran‘s Conical trunk with Cylmdncal,‘ Cylindrical trunk
None None with characteristic - | forked trunkwith | of homogeneous
o layered dielectric o o
orientations layered dielectric dielectric
Branch size/orien- | Forked branches,
Non-woody Non-woody stems Many small tation varieswith | few horizontal el- None
stalks or stems y branches &stems | height; branches | ements; branches
oftenlong/thin | often short/thick
Blade-hlfe Broad leaves Blade-like or Needles Broad leaves Blade-like clump
erectophile broad leaves attop of trunk

Figure 3.15 Description of simple structural classes of vegetation (Dobson et al. 1996).

cross-polarized (VH, HV) backscatter decreases
significantly. However, if deforestation results in
rough soil conditions (e.g., slash) or if site prepa-
rations rough up soils, backscatter can be signifi-
cantly enhanced, to the point where actual felling
events increase (e.g., until logs are removed). In
time series observations, however, trends are to-
wards reduced backscatter. Moisture conditions
of soils that are more visible now can enhance
signals at G-hand significantly and can introduce
ambiguities. Time series signals will reveal those
transitions.

* Degradation—Degradation of forests typi-
cally reduces volume scattering and (depending
on the amount of degradation) how much soil
contributes to the backscatter signal at the ob-
serving wavelength. At G-band, degradation is
tough to detect unless larger patches of forest are
removed. L-band tends to have a detectable sig-
nal drop from forest thinning. However, the type
of degradation also determines the scattering
mechanisms. For example, storm damage may
be such that vegetation volumes and scattering
mechanisms have enhanced backscatter from
slanted trunks, which is difficult to separate from
before-disturbance signal strength. Fire events
have a strong increase at L-band, where stronger
soil contributions enhance double-bounce and
hence brighten the backscatter signal. Over time,

asvolume starts to significantly degrade, the SAR
signal follows a pattern of backscatter decrease in
degraded forests.
Table 3.3 gives an overview of the expected
backscatter characteristics for different vegetation
transition scenarios.

3.4 Appropriate SAR
Preprocessing Methods for
Forest Applications

3.4.1 WELL-CALIBRATED, RADIOMETRICALLY
TERRAIN CORRECTED SAR DATA

Proper RTC of SAR data is a crucial starting point
for any analysis of change detection, either bitem-
poral, in time series, or in combination with optical
datasets (see Chapter 2 for RTC processing discus-
sion). A word of caution: as of this writing, the open
source software SNAP delivered by the European
Space Agency (ESA) has two known shortcomings: (1)
geolocation inaccuracies up to 40 m in the range di-
rection and (2) radiometric correction that is subop-
timal given the novel approach by Small et al. (2012).
For change detection purposes, careful co-regis-
tration after processing with SNAP (i.e., with image
matching postprocessing) might overcome some of
these issues. However, it is important to assess
whether backscatter change stems from geometric
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Sentinell C-Band Data over Ecuador

DVH 2017-09-11 DWWV 2017-69-11

Figure 3.16 Sentinel-1 C-band example of VV/VH backscatter in the oil palm plantation in Ecuador for
different growth stages. Descending orbit (D).

ALOS-1 L-Band Data over Louisiana

Google Earth October 2007

Figure 3.17 ALOS-1 L-band data over a timber management region in southern Louisiana, U.S., showing
various stages of clear cuts, selective logging, and regrowth. Ascending orbit (A).
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WAVELENGTH POLARIZATION

Medium to high;
Depending on the

Low to medium;
Depending on forest

RESPONSE BY FOREST TYPE

Medium to high; most
scattering from crown

Medium to high; most
scattering from crown

Medium to high;
most scattering from

Sparse Forest (dry) Sp(aﬂr:z :::;St Degraded Forest (dry) Deg(rfz:::g : :;)mt Dense Forest (dry) | Dense Forest (flooded)

Medium to high;
most scattering from

roughness of the forest
floor and moisture,

there is lots of variation

in this category
C-band
backscatter VH
(80)

Medium to high;
Depending on the
roughness of the forest
floor and moisture,

there is lots of variation

in this category

VV/VH Ratio

HH Low to medium; lower
than dense forest and
flooded sparse forest.
At steep incidence
angles, backscatter can
be medium to high

Medium to high

L-band
backscatter

(&0 HV Low to very low,

depending on how dry
the soils are

HH/HV Ratio Medium

density, lots of forward
scattering

Low to medium;
Depending on forest
density, lots of forward
scattering

Medium to high; most
scattering from crown

Medium to high; most
scattering from crown

crown (Can be low

in scenarios where
absorption dominates
and diminishes
backscatter)

Medium to high;
most scattering from
crown (Can be low

in scenarios where
absorption dominates
and diminishes

crown (Can be low

in scenarios where
absorption dominates
and diminishes
backscatter)

Medium to high;
most scattering from
crown (Can be low

in scenarios where
absorption dominates
and diminishes

backscatter) backscatter)
Medium to high Medium Medium Medium Medium
Medium to high, Medium to high High to very high, High to very high; High to very high,
depending on how double bounce higher than degraded ~ double bounce
much double bounce contributes to high forest, however atvery  contributes to high
is contributing to the backscatter high biomass levels backscatter
signal we see saturation and

no distinction with

degraded forests
Low to very low. Most ~ Medium to high Medium to high, no High to very high; Medium to high, no
scattering is in the seasonal variation with  volume scattering seasonal variation with
forward direction due flooded forest floor is dominant — best flooded forest floor
to specular reflection senstivity to biomass
High Medium High Medium High

Table 3.3 Expected backscatter characteristics for different vegetation transition scenarios. Note: Cross-polarized backscatter is generally lower than like
polarized backscatter; backscatter values range from very low, low, medium, high, to very high.

offsets rather than real change, particularly in hilly
terrain. The quality of the DEM as an input to any
orthorectification process is also critical. Note that
SRTM-derived DEMSs are often adequate for ~20- to
30-m resolution SAR processing; however, improve-
ments in backscatter mapping could be achieved
with better resolution DEMs. This is in some ways
a question of cost/benefit ratios, as higher resolu-
tion DEMs are available, yet often not open source.
All datasets shown in this chapter were produced
with the Gamma Remote Sensing software, which
is also employed by the Alaska SAR facility for RTC
production and used by Earth Big Data, LLC, for all
SAR geocoding. In preparation for the NISAR mis-
sion, the Jet Propulsion Laboratory (JPL) developed
the InSAR Scientific Computing Environment (ICSE)
software which will eventually be available to the
community. A well-suited open source software for
post-RTC processing is available in the Geospatial
Data Abstraction Library (GDAL) packages from

command line or as Python APl bindings.

3.4.2 MULTITEMPORAL SPECKLE NOISE
REDUCTION

If properly stacked SAR data are available (such
as in a tiling scheme for manageable data volume
handling), it is advisable to preprocess time series
data stacks with a multitemporal speckle filter (e.g.,
by Quegan et al. 2001). Multitemporal speckle fil-
ters have been shown to preserve spatial detail
while significantly reducing speckle noise at each
time step. Multitemporal speckle filters estimate
speckle characteristics along the time domain rath-
er than the spatial domain. The resulting speckle
statistics can be used to estimate a noise-reduced
mean backscatter of a pixel, preserving the back-
scatter estimate at any time step, but at reduced
noise. As such, spatial detail is preserved.

Figure 3.18 contains an example of L-band
data from ALOS. Sixteen multitemporal scenes
were available to reduce speckle noise using multi-
temporal speckle diversity. After filter application,
various forest growth and logging states are much

more discernible than before filter application.
Given the color theory in Section 3.2.2 and an
understanding of volume backscatter changes in
L-band HV for forests, the multitemporal image can
be readily interpreted as to what areas underwent
clearcutting or selective logging (red and yellow
colors) and what areas are in regrowth (blue col-
ors) or unchanged stage (white and black colors).
Note that perfect alignment of pixels over the tem-
poral domain is a prerequisite of successful multi-
temporal speckle filtering. Thus, it is advisable to
apply the filter on data of the same repeat path.

3.4.3. AWORD ON POWER, AMPLITUDE,
AND DB SCALES

With SAR data handling, itis important perform
all spatial and temporal averaging operations in
power scale. SAR data expressed in dB (logarithmic
transformation) or amplitude scale (square root
transformation) introduce mathematical errors
when using these averaging or spatial convolution
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operations. This is also true for warping operations
when convolutions on the SAR data are performed.
Therefore, it is recommended that data be convert-
ed to the power domain during processing, such
as the Earth Big Data’s (EBD's) processing software
for multitemporal filtering. The QGIS plugin of
EBD’s open source SAR time series visualization
tool also uses power transformations behind the
scenes when displaying time series in dB scale.

3.4.4 TILING AND CONSTRUCTION OF
TIME SERIES FROM GEOTIFFS WITH
VIRTUAL RASTER TABLES

With the advent of SAR sensors with global
acquisitions at high temporal frequency, the era
of time series analysis for SAR data has begun.
Sentinel-1, with its two-sensor formation flights,
now monitors most of the planet at 12-day repeat
cycles, denser at higher latitudes. With swath
width in high-resolution Interferometric Wide
Swath mode at ~250 km, SAR data volumes be-
come massive quite quickly. Thus, it is imperative
that appropriate tiling schemes and data handling
strategies are employed. For many reasons, the
GeoTlFF image format has evolved as a standard
for handling remote sensing imagery. In concert
with the Virtual Raster Table (VRT) format from the
GDAL library, GeoTIFFs can be very efficiently tied
together into time series that can readily be subset
or rearranged without the need for large raster
data operations. VRTs are just XML-based headers
that form the metadata for building image band
stacks. But even more so, many raster operations
can be prescribed as VRT processing in multiple
steps, only to be executed on the data when the
raster output is generated.

A tiling approach was developed for Sentinel-2
optical data at 20-m resolution based on the Mili-
tary Grid Reference System (MGRS). This globally
consistent Universal Transverse Mercator (UTM)
projection-hased approach keeps data consistent
in spatial extent and projection across the globe.
The pixel area of an MGRS UTM tile at the equator
is the same as in a tile at higher latitudes. Argu-
ably, this approach keeps data globally minimally
distorted, and algorithms for spatial convolutions

BEFORE FILTER APPLICATION:

AFTER FILTER APPLICATION:

—

Figure 3.18 Multitemporal speckle filter application on a perfectly co-registered time series data stack of

ALOS L-band data over Louisiana, U.S

like speckle filters would work consistently on UTM
data. This is not true for data in latitude/longi-
tude spacing, where longitudinal pixel resolution
changes with latitude. Using the Sentinel-2 MGRS
tiling scheme also for Sentinel-1 data enables
readily optical/SAR fusion without the need for
further reprocessing. Hence, the EBD production
suite readily provides Sentinel-1 SAR time series
data stacks in MGRS tiling format.

A data guide explaining the naming conventions
and tiling of VRT/GeoTIFF time series data stacks
used by EBD products can be found here. GDAL
can be used directly to build VRT stacks solely
based in open source components.

3.5 Change Detection
Approaches for SAR Data

3.5.1 BITEMPORAL METHODS

(lassic image change detection methods for
bitemporal image comparison can be applied
to well-calibrated RTC SAR imagery. The log-ra-
tio method was explained in Chapter 2. The
Iteratively reweighted Multivariate Alteration De-
tection (iMAD) algorithm (Nielsen 2007) holds
promise for change detection between two im-
ages; however, as shown in previous sections,
it is important to understand possible impacts
on backscatter change that are not linked to
real changes such as deforestation. While for-
est changes are easier to detect in bitemporal

analyses at L-band, C-band data often present
a challenge, as surface roughness and moisture
components can lead to significant SAR signal
ambiguities.

3.5.2 TIME SERIES ANALYSIS METHODS

In the past, the availability of SAR data was
sparse in space and time; however, the Sen-
tinel-1 mission has been a game changer in
moving SAR into operational use. The upcoming
NISAR mission—with its open data policy and
[-band data at 12-day repeat intervals at medi-
um resolution—will be the next big push for SAR
data availability. With near-continuous availabil-
ity of SAR observations of the ground, real time
forest monitoring can thus be achieved. Time
series analysis techniques developed for optical
imagery are somewhat applicable, although SAR
characteristics of backscatter sensitivity to struc-
ture and moisture warrant a closer look at new
methods. Change point detection with cumula-
tive sums (Manogaran & Lopez 2018) is an estab-
lished time series analysis technique stemming
from the financial sector. With the general SAR
backscatter trending to decrease with biomass
loss due to deforestation or forest degradation,
the application of cumulative sum analysis to
SAR time series data seems potentially simple,
yet powerful.

The following figures show time series signals
over a deforestation event in Ecuador observed
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https://sentinel.esa.int/documents/247904/1955685/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml/ec05e22c-a2bc-4a13-9e84-02d5257b09a8
https://github.com/EarthBigData/openSAR/blob/master/documentation/EBD_DataGuide.md

Figure 3.19 Ecuador logging test site

with Sentinel-1 data from 2016 to 2018 that ex-
emplify the strength of SAR time series for forest
change detection. Figure 3.19 shows a 4-x-4-km?
subset of an active logging region in the northeast-
ern part of Ecuador, and Figure 3.20 shows the
time series profile and associated imagery for a
logging event in January 2017. While some noise
exists in the time series, a clear backscatter de-
crease in early 2017 is visible in the center image
and time series plot. As is typical for deforested
areas at (-band, lower backscatter at higher vari-
ability is observed in the G-band profile after the
deforestation event. This disturbance observation
can be identified from the longer trends visible
compared to more short-term random noise due
to moisture variations. After applying a kernel
filter to smooth the time series somewhat, a cu-
mulative sum curve can be constructed from the
residuals of the time series data, minus the mean
observation of the entire time series.

Figure 3.21(a) shows the smoothed time se-
ries profile and the mean of the time series used
to calculate the residuals. The cumulative sum of
the residuals is shown as the peaking blue curve
in the bottom panel. A way to establish the valid-
ity and significance of a candidate change point is
to perform a bootstrap analysis in which the time
steps are randomly reordered and cumulative
sums of the randomized residuals are computed.
If the randomization (n>500) shows few or no
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Figure 3.20 Time series profile of red square with associated Sentinel-1 descending VV data.

curves reaching the same maximum value of the
peak of the cumulative sum curve (which is the
change pointin time) the point can be labeled val-
id. The bootstrapping thus provides a confidence
level for a detected change point. Other metrics

can aid in the confirmation of change points in a
SAR time series, as elaborated with formulas and
Python code in the training Jupyter Notebooks that
go along with this chapter. As can be seen in Fig-
ure 3.21(h), the 500-fold randomization shows

76

THE SAR HANDBOOK



that all randomized S-curves are significantly low-

- — v
‘/\_;_/\ — v | erintheir peak values compared to the candidate
-6
change pointin the observed time series.

v7 Applying this approach to all pixels in the sub-

* A set results in the identification of change pixels

* ) and the detected dates of change shown in Fig-
iy % s o> 49 N K 45 oS v,&" .

> > > > » = » 1°‘ > o ure 3.22 (right panel). The color codes corre-

spond to the change dates, at a time resolution of

about 12 days. The left panel in this figure shows
" a multitemporal color composite of Sentinel-1 de-
scending VV acquisitions from 2016-11-15 (red),
2017-08-29 (green), and 2018-05-21 (blue). Note
20 that many of the red and yellow color tones in
this multitemporal composite correspond to the
expected and detected deforestation and forest
degradation events. However, some red tones
also are more associated with changes in agricul-
tural patterns, which were correctly not mapped
as forest degradation events, as their time series
profiles did not match the type of curves seen in
the previous profiles.

Lastly, to confirm the capability of Sentinel-1
SAR time series to map logging progression, a
close-up of the earliest detected event in this re-
gion is shown in Figure 3.23. Change dates show
the progression of the logging of a 5-ha area over
the course of four months starting in the southeast
AW s e o T w i a s oo T corner of the patch and progressing to the west.

10

Cumulative Sums of the Residuals

Figure 3.21 (a) Smoothed time series and mean backscatter, and (b) 500 cumulative sums of the
residuals of the time series, minus the mean and 500-fold bootstrapped cumulative sum curves.
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Figure 3.22 Sentinel-1 time series profiles of forest and non-forest land cover patches. Red profiles are GV, Figure 3.23 Logging progression detected from
and blue profiles are G-VH backscatter curves. The backscatter range in each subset shows backscatter — Sentinel-1 satellites. A 20-m pixel spacing the subset
from 0 to -20 dB for the SAR g° values. The timeframe covers dates from April 2015 to April 2017. covers 300 x 320 m2. The logged area is 5 ha.

THE SAR HANDBOOK 77



3.5.3 SUMMARY ON TIME SERIES SIGNAL
ANALYSIS FOR SAR BACKSCATTER DATA

In summary, SAR time series data, such as those
now available from Sentinel-1, are an invaluable
resource for detailed forest change mapping with
quasi-continuous mapping capacity from the sen-
sors. Note that several regions of the planet might
be covered more often with ascending or descend-
ing data, single-polarization VV or dual-polarization
VV+VH datasets. The upcoming NISAR mission will
bring the same datasets and temporal frequency at
L-band, which will increase forest change detection
capability, as fewer signal ambiguities in the time
series exist with clear drops in backscatter from
deforestation and forest degradation activities.

An example of a semi-arid region and time se-
ries signal variation at -band is provided for Burki-
na Faso. Figure 3.22 exemplifies the moisture
and structure dependency of various dense for-
ests. Note in this figure how backscatter varies by
season due to an increase in moisture and agricul-
tural activity. Even a strong rain event seems to be
detected in April 2016, leading to a spike in almost
all curves but urban and the mud flat. The mud flat
profile shows a strong drop at one date (which is
most likely associated with a flash flood event from
the heavy rain event), leading to open water sur-
face detection in the time series. Also note that the
amplitude in the time series signal increases with
decreasing canopy cover, which can be attributed
to an increase in soil moisture signal contribution
during the rainy season. It can be seen that with
decreasing density, the seasonal moisture changes
contribute to the rise and fall of backscatter. Thus,
itis again important to keep in mind that backscat-
ter signals vary over time, which is vital for careful
selection of seasons for time series analysis. A com-
pilation by Ulaby et al. (2014) entitled Microwave
Radar and Radiomeric Remote Sensing contains in-
depth resources for SAR data backscatter behavior
from soil and vegetation targets.

3.5.4 OPTICAL/SAR FUSION FOR FOREST
MAPPING

SAR and optical data provide complementary
information for forest monitoring, as different im-

aging principles underlie the SAR backscatter and
optical multispectral reflectance measurements.
As previously noted, SAR measures changes in
vegetation and soil moisture content as well as
the structural composition of the vegetation (life-
forms). Optical remote sensing measures changes
in the chemical composition of leaves and their
reflectance when illuminated by sunlight, also in-
cluding measurements of shadow fractions within
canopies. Indices like the Normalized Difference
Vegetation Index (NDVI) (Tucker 1979) normalize
optical reflectance values and provide a measure of
the vegetation density or leafiness. Thus, studies of
SAR backscatter and NDVI can be used to compare
time series of optical and SAR data. Several studies
have exploited these similarities, fusing SAR data
from Sentinel-1 and ALOS and Landsat time series
(Reiche et al. 2016). Various approaches for fusing
time series data can be applied. Attempts have
been made to fuse time series at the sjgnal fevel,
where optical and SAR signals are normalized to
simulate similar trends in a fused time series (e.g.,
filling NDVI gaps with simulated SAR backscatter
assuming similar behaviors). This is problematic,
however, given that the signals have different un-
derlying principles, although some successes have
been demonstrated (Reiche et al. 2015).

Another approach is fusion at the prediction lev-
el, thatis, optical and SAR time series are analyzed
separately, and probabilities for deforestation and
forest degradation events are computed and com-
pared in the time domain. This has an advantage
in thatinherent sensor characteristics are optimally
analyzed, and probabilities as dimensionless mea-
sures can readily be fused in a time series. As such,
SAR can fill time gaps in optical observations, and
joint probabilities can confirm detections from sep-
arate optical or SAR analyses. Holden et al. (forth-
coming) developed and tested two approaches
for fusing time series of Landsat reflectance and
L-band backscatter time series for mapping defor-
estation for a site with both small- and large-scale
agroforestry near Yurimaguas, Peru. This “Proba-
bility Fusion” approach—similar to the approach-
es used by Reiche et al. (2015, 2018)—nperformed
slightly better for finding deforestation with radar

data in terms of map accuracy (78.9% vs. 75.6%)
and change detection timing, even with a relative
abundance of Landsat data and only 11 radar ob-
servations. The improvement when using radar
data was much higher when simulating reduc-
tions to Landsat data availability. Their “Residual
Fusion” algorithm relies on time Series regression
forecasts (similar to BFAST Monitor (Verbesselt et
al. 2010) or CCDC (Zhu et al. 2012)) and was less
accurate when fusing data sources than when us-
ing Landsat alone, likely because there were too
few radar observations to reliably develop forecast
regression models. The authors encourage further
development of time series fusion algorithms that
can incorporate data from current and upcoming
radar missions, especially approaches that can go
beyond just deforestation mapping to provide class
transition labels for IPCC reporting.

3.6 Conclusions

With the launch of Sentinel-1 and its associat-
ed open data distribution, monitoring forest re-
sources at medium resolution with SAR has now
reached operational levels. The C-band mission
of the Sentinel-1 sensors are already projected to
2030 in ESA's budget. NASA and ISRO are poised
to launch the L-band NISAR missions at the begin-
ning of the next decade, which will provide 12-day
repeat global L-band and regional S-band acquisi-
tions, also with an open data policy. As shown in
this chapter, SAR data have a strong sensitivity to
forest change. Careful preprocessing is required to
build good time series data stacks. Seasonal and
moisture variations need to be Separated from
structural changes in change detection approach-
es. This requires potentially filtering of the time
series to remove “outliers.” Cumulative sum-based
change detection of SAR backscatter mean shifts
are amongst efficient change detection techniques
of the continuously available time series signals.
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APPENDIX B

Chapter 3 Training Module Overview

These training modules are provided as Python scripts in the form of Jupyter Notebooks (http://jupyter.org). The appeal of using Jupyter Notebooks is that Jupyter
Notebook servers can be deployed from any platform/operating system and natively deploys a range of open source programming and scripting languages that are
supported by a very large, growing open source developer community. Jupyter notebooks support the Python and R languages, amongst others. This means that all
open source packages supported by Python (e.g., GDAL) are readily available in Jupyter. Also, Jupyter Notebooks are cloud-friendly, as servers can be launched on
high-performance cloud instances and displayed via any web broweser. Terminals are also supported. The developed Notebooks for the SERVIR training courses have
instructions for setting up and using Notebooks. A suite of Notebooks has been developed to cover various aspects of SAR data processing and analysis with a focus on
forest mapping. To exercise the Notebooks, several example SAR time series data stacks have been provided for:

+ West Africa Region - Sub-Sahelian Forest and Savanna ecosystems
* HKH Region - Foothills of the Himalaya

The training datasets are hosted by SERVIR and can be downloaded from SERVIRglobal.net. The Notebooks cover the following topics with embedded exercises (and

their solutions):

* <+ Part1-Getting to Know SAR Images and Forest Signatures

++Part2- SAR Time Series Visualizations and Animations

++Part3- Change Detection with Time Series Metrics and Log Ratio Method

* <+ Part4- SAR Time Series Change Point Detection

«+Part5- SAR/Optical (NDVI) Time Series Analysis

+ <+ Part6 - How to Make RGB Composites from Dual-Polarimetric SAR Data

Another Notebook is available that describes how to use the GDAL Virtual Raster Table (VRT) format for efficient stacking of SAR data into an analysis-ready time
series data stack. All notebooks, dataset descriptions and installation instructions are also hosted on an open source GitHub repository that can be accessed from http://
github.com/jkellndorfer/servir_training and http://github.com/earthbigdata/openSAR

Atime series visualization QGIS plugin tool is also available on the openSAR site.
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SAR Training Workshop for Forest Applications
Part 1 - Getting to Know SAR Images and Forest Signatures

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC
Revision date: January 2019

This book chapter on SAR data analysis for forest applications with a focus on deforestation and forest degradation monitoring is implemented as an interactive notebook.
The digital format (a jupyter notebook) of this chapter can readily be launched in any web browser for interactive data exploration with provided or new traning data. The
notebook is comprised of text written in a combination of executable python code and markdown formatting including latex style mathematical equations. With this
approach, the trainees can readily expand, change, and share the entire work with new data sets in new regions or newly available time series steps.

While we are only scratching the surface of available open source tools, the course will provide a broad overview on what modern tools can be employed for SAR focused
data analysis, or remote sensing data analysis in general.

Software Installation and Data Sets
Please refer to the documents INSTALLATION and DATA_HOWTO.

The time series data sets for this training course were pre-processed with the EARTH BIG DATA Software for Earth Big Data Processing, Prediction Modeling and Organization
(SEPPO) using cloud-based processing on Amazon Web Services. SEPPO allows for the fully automated processing of large SAR (and other remote sensing) data sets to
constuct time series data effectively. The data format guide EBD_README explains data structures and filenaming conventions for data sets produced by EARTH BIG DATA,
LLC.

Notes on Working with this Notebook

1. After launching the notebook server and opening a notebook navigate to the Kernel menu and choose ebd: > Kernel > Change Kernel > Python \conda env:ebd\
2. To execute code in a cell, position your blinking cursor inside a cell and either select the Run Button from the notebook menu bar, or use the following keystroke
combination:

o (TRL+Entertoruna cell
o ALT+Enter to run a cell and insert a new cell below
3. To comment lines inside code cells use as first character # You can mark several lines and use a keystroke combination to comment/uncomment the block with:

o Windows: CTRL+/
o Mac0S: CMD+/

Importing relevant python packages

First step in the time series analysis approach after obtaining the preprocessed data stacks is the import of necessary python packages.

See the comments below as to what packages are needed and their functions. Note that all these packages should have been installed when the python anaconda
environment was created.

In [1]: import pandas as pd
import gdal
import numpy as np
import time,os, glob
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In [2]: %matplotlib inline
import matplotlib.pylab as plt

Set Project Directory and Filenames

Edit and uncomment the respective cell entries below to activate the wanted project data directory. Take a look at the EBD Data Guide:

https://github.com/EarthBigData/openSAR/blob/master/documentation/EBD_DataGuide.md for an explanation of the filenaming conventions used for image and date

files.

How to specify data directories:
Linux: /path/to/file

Windows: d:/path/to/file
D:is the drive letter # IMPORTANT: Always use '/" instead "\" in Windows

)

NOTE: Directories and filenames are specified in python as strings enclosed in single or double quotes: 'string' "string"

West Africa - Biomass Site

In [5]: datadirectory='/Users/rmuench/Downloads/wa/BIOsS1'
datefile='532631X398020Y1315440sS1_A vv_0001_mtfil.dates'
imagefile='532631X398020Y1315440sS1 A vv_0001 mtfil.vrt'
imagefile cross='S32631X398020Y1315440sS1 A vh 0001 mtfil.vrt'

West Africa - Niamey Deforestation Site

In [6]: # datadirectory='/dev/shm/projects/c40lservir/wa/cra/"'
# datefile='S32631X402380Y1491460sS1_A vv_0001 A mtfil.dates'
# imagefile='532631X402380Y1491460sS1_A vv 0001 A mtfil.vrt'

West Africa - Dam Site

In [7]:  # datadirectory='/dev/shm/projects/c40lservir/wa/DAMsS1/"
# datefile='S532631X232140Y1614300sS1_A vh 0001 A mtfil.dates'
# imagefile='S32631X232140Y1614300sS1_A vh 0001 A mtfil.vrt'
HKH Site
In [8]: datadirectory='C:/data/hkh/time series/S32644X696260Y3052060sS1-EBD'

#

# datefile='532644X696260Y3052060sS1_D vv_0092 mtfil.dates'

# imagefile='S32644X696260Y3052060sS1_D vv_0092 mtfil.vrt'

# imagefile cross='S532644X696260Y3052060sS1_D vh 0092 mtfil.vrt'

Switch to the data directory

In [9]: os.chdir(datadirectory)
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In [10]:
Out[10]:
In [11]:

os.getcwd() # Uncomment this line to display the present working directory

' /Users/rmuench/Downloads/wa/BIOsS1'

# glob.glob("*.vrt") # Uncomment this line to see a List of the files

Acquisition Dates

Read from the dates file the dates in the time series and make a pandas date index

In [12]: dates=open(datefile).readlines()
tindex=pd.DatetimeIndex(dates)
In [13]: # From the index we make and print a lookup table for

# band numbers and dates

j=1

print('Bands and dates for', imagefile)

for i in tindex:

print("{:4d} {}".format(j, i.date()),end="' ")
j+=1
if j%5==1: print()
Bands and dates for S$32631X398020Y1315440sS1_A vv_0001_mtfil.vrt
1 2015-03-22 2 2015-04-03 3 2015-04-15 4 2015-05-09 5 2015-05-21
6 2015-06-02 7 2015-06-14 8 2015-06-26 9 2015-07-08 10 2015-07-20
11 2015-08-01 12 2015-08-13 13 2015-08-25 14 2015-09-06 15 2015-09-18
16 2015-09-30 17 2015-10-12 18 2015-10-24 19 2015-11-17 20 2015-11-29
21 2015-12-11 22 2015-12-23 23 2016-01-04 24 2016-01-28 25 2016-02-09
26 2016-03-04 27 2016-03-16 28 2016-03-28 29 2016-04-09 30 2016-04-21
31 2016-05-03 32 2016-05-15 33 2016-05-27 34 2016-06-08 35 2016-07-02
36 2016-07-14 37 2016-07-26 38 2016-08-07 39 2016-08-19 40 2016-08-31
41 2016-09-12 42 2016-09-24 43 2016-10-06 44 2016-10-18 45 2016-10-30
46 2016-11-11 47 2016-11-23 48 2016-12-05 49 2016-12-17 50 2016-12-29
51 2017-01-10 52 2017-01-22 53 2017-02-03 54 2017-02-15 55 2017-02-27
56 2017-03-11 57 2017-03-23 58 2017-04-04 59 2017-04-16 60 2017-04-28
61 2017-05-10 62 2017-05-22 63 2017-06-03 64 2017-06-15 65 2017-06-27
66 2017-07-09 67 2017-07-21 68 2017-08-02 69 2017-08-14 70 2017-08-26
71 2017-09-07 72 2017-09-19 73 2017-10-13 74 2017-10-25 75 2017-11-06
76 2017-11-18 77 2017-11-30
Image data

To open an image file and make it readable use the gdal.Open() function. This generates an image handle that can be used for further interactions with the file:

In [14]:

img=gdal.Open(imagefile)

To explore the image, e.g. number of bands, pixels, lines you can use several functions associated with the opened image object, e.g.:
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In [15]: print(img.RasterCount) # Number of Bands
print(img.RasterXSize) # Number of Pixels
print(img.Raster¥YSize) # Number of Lines

717
4243
3776

Reading data from an image band

To access any band in the image, use the img.GetRasterBand(x) function. E.g. to access the first band x=1, the last band: x=60.

In [16]: band=img.GetRasterBand(1l)

Once a band is selected, several functions associated with the band are available for further processing, e.g.
« band.ReadAsArray(xoff=0,yoff=0,xsize=None,ysize=None)

So, to read the entire raster layer for the band:

In [17]: raster=band.ReadAsArray()

Subsets

Because of the potentially large data volume when dealing with time series data stacks, it may be required to read only a subset of data.
With the gdal .ReadAsArray() function, subsets can be requested with offsets and size:

img.ReadAsArray(xoff=0, yoff=0, xsize=None, ysize=None)

xoff,yoff are the offsets from the upper left corner in pixel/line coordinates.

xsizeysize specify the size of the subset in x-direction (left to right) and y-direction (top to bottom).

E.g., to read only a subset of 5x5 pixels with an offset of 5 pixels and 20 lines:

In [18]: raster sub=band.ReadAsArray(5,20,5,5)

The result is a two dimensional numpy array with the datatype the data were stored in. We can inspect these data in python by simply typing the array name on the
command line:

In [19]: raster_sub

Out[19]: array([[4308, 4616, 4944, 4850, 41307,
[3639, 4142, 4789, 5224, 47457,
[3361, 3980, 4785, 5364, 49997,
[3383, 3946, 4674, 5118, 4936],
[3359, 3687, 4155, 4711, 5004]], dtype=uintlé)
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Displaying Bands in the Time Series of SAR Data
From the look-up table we know that bands 5 and 18 in the Niamey dataset are from late March and late October. Let's take look at these images.

HINT: Because python is an object oriented scripting language, we can often combine several steps (or function calls) into one command.
See the trick below to access a raster band and read the data in one step.

In [20]: # These will select the two bands
raster 1 = img.GetRasterBand(5).ReadAsArray()
raster 2 = img.GetRasterBand(18).ReadAsArray()

Plotting in Python to Visualize the Image Bands
Matplotlib's plotting functions allow for powerful options to display imagery. We are following some standard approaches for setting up figures.

First we are looking at a raster band and it's associated histogram.

In [21]: fig plt.figure(figsize=(16,8)) # Initialize figure with a size
axl fig.add subplot(121) # 121 determines: 1 row, 2 plots, first plot
ax2 = fig.add subplot(122) # 122 determines: 1 row, 2 plots, second plot

# First plot: Image

bandnbr=5

axl.imshow(raster_1,cmap='gray',vmin=2000,vmax=8000)

axl.set title('Image Band {} {}'.format(bandnbr,
tindex[bandnbr-1].date()))

# Second plot: Historgram

# IMPORTANT: To get a histogram, we first need to *flatten%*

# the two-dimensional image into a one-dimensional vector.

h = ax2.hist(raster 1l.flatten(),bins=100,range=(0,8000))

ax2.xaxis.set label text('Amplitude (Uncalibrated DN Values)')

_=ax2.set_title('Histogram Band {} {}'.format(bandnbr,
tindex[bandnbr-1].date()))

Histogram Band 5 2015-05-21
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Writing a plotting function for the task

Below, the plotting commands used above are defined in a function named show/mage. Several parameters can be passed to the function, some with default values listed
atthe end:

Note

raster =a numpy two dimensional array

tindex = a panda index array for dates

bandnbr = the band number the corresponds to the raster
vmin = minimim value to display

vmax = maximum value to display

: By default, data will be linearly stretched between vmin and vmax.

In [22]:

def showImage(raster,tindex,bandnbr,vmin=None,vmax=None):
fig = plt.figure(figsize=(16,8))
axl = fig.add subplot(121)
ax2 = fig.add subplot(122)

axl.imshow(raster,cmap='gray',vmin=vmin, vmax=vmax)
axl.set title('Image Band {} {}'.format(bandnbr,
tindex[bandnbr-1].date()))

vmin=np.percentile(raster,2) if vmin==None else vmin #change vmin & vmax to

change what values are displayed
vmax=np.percentile(raster,98) if vmax==None else vmax
axl.xaxis.set label text(
'Linear stretch Min={} Max={}'.format(vmin,vmax))

h = ax2.hist(raster.flatten(),bins=100,range=(0,8000))

ax2.xaxis.set label text('Amplitude (Uncalibrated DN Values)')

ax2.set_title('Histogram Band {} {}'.format(bandnbr,
tindex[bandnbr-1].date()))

EXERCISE 1: Read different bands and display them using the function showIimage()

Use as a variable name for bands bandnbr. Use the already open image handle imgto obtain the raster data from a band.
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In [23]: # ENTER YOUR CODE HERE
showImage(raster 2,tindex,11,1000,2000)

o Image Band 11 2015-08-01 700000
T -
N /T /\
AR VA
500 ) 600000
Y
b,
1000 e
500000
1500
400000
2000
300000
2500
2000 200000
3500 100000
500 1000 1500 2000 2500 3000 3500 4000

Linear stretch Min=1000 Max=2000

EXERCISE 2: Read two different bands and display them side by side

Histogram Band 11 2015-08-01

0

1000 2000 3000 4000 5000 6000 7000 8000
Amplitude (Uncalibrated DN Values)

The output should display two bands with a heading of the band numbers. Use the concept for figures with subplots from the function showlmage(). Try your code to

compare images from different years and different seasons.

In [24]: # ENTER YOUR CODE HERE
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Time Series Data Stacks

Just as we can use the ReadAsArray() function on a band, we can actually use it on the entire image data stack. To read an entire stack, i.e. all bands use the function on the
image data handle:

img.ReadAsArray()

CAUTION: Since this could potentially result in large memory need, it is wise to do some preliminary calcuations as to how large of a data set would be read in. For that we
can do the following calculation:

Npands XNpixets¥Niines XBYI€S il

DataVolume[GB] = e

For SAR data we typically use dataypes of:

« Float 32 bit (4 bytes per pixel) for power and dB data,
« Unsigned Integer 16 bit (2 bytes per pixel) linearly scaled amplitudes, and
« Unsigned Byte (1 byte per pixel) for dB-scaled to 8 bit data

The following table gives an overview of typically used data types for SAR data analysis in python:

Data Type Numpy Name GDAL Name GDAL Code Bytes per pixel
Float 32 bit np.float32 gdal.GDT_Float32 6 4
Unsigned Integer 16 bit np.uint16  gdal.GDT_UInt16 2 2
Unsigned Integer 8 bit np.uint8 gdal.GDT_Byte 1 1

Compare the result of the computation with the available RAM on the computer running the notebook.

EXERCISE 3: Compute the Data Volume of the Raster Stack

Compute the estimated data volume from the data set opened with gdal.Open() using the img object information img.RasterXSize, img.RasterYSize, img.RasterCount,
img.GetRasterBand(1).DataType

In [25]: # ENTER YOUR CODE HERE (if you need help see the bottom of the document)
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Reading the SAR Time Series Subset

Let's read a image subset (offset 2000, 2000 / size 1024, 1024) of the entire time series data stack. The data are representatios of linearly scaled amplitudes scaled to
unsigned 16 bit interger

We use the gdal ReadAsArray(xoff yoff,xsize ysize) function where:

« xoff = offset in pixels from upper left
« yoff =offset in lines from upper left
« xsize = number of pixels

« ysize = number of lines

If ReadAsArray() is called without any parameters set, the entire image data stack is read. ReadAsArray() returns a numpy array of the form:

[bands,lines,pixels]

In [26]: # Alternatively you can make a subset and use
# it in the ReadAsArray function prefixed with a star
subset=(2000,2000,1024,1024)
rasterDN = img.ReadAsArray(*subset)

The numpy .shape object tells us the dimensions of this data stack as bands (here:time steps), lines, and pixels:

In [27]: rasterDN.shape

out[27]: (77, 1024, 1024)
Data conversion from linear scaled amplitudes to dB, power and amplitude data

The values of the raw image data show the linearly scaled amplitude values. These digital number (DN) values need to be converted to proper backscatter values of y .
We consider conversion to dB scale (logarithmic scale) for the expression of the SAR backscatter, power, or amplitude scale.

SAR backscatter data of radiometrically terrain corrected data are often expressed as ¢ or the terrain flattened y © backscattering coefficients. For forest and land cover
monitoring applications @ is the preferred metric.

Conversion from power to the logarithmic decibel (dB) scale follows:
7:1)3 =10 X% lagl()(y;i)ower)

As per widely used convention SAR backscatter data are often stored in 16bit unsigned integer values as linearly scaled amplitude data (referred to below as digital numbers
DN), conversion to dB scale from the linear scaled amplitues is performed with a standard calibration factor of -83 dB. This is how ALOS SAR data are distributed by
JAXA, how Earth Big Data LLC produces all SAR data including Sentinel-1 data, and how NISAR data will likely be scaled:

Conversion from amplitude to dB:

vas = 20 % log10(DN) — 83

In [28]: rasterdB=20*np.logl0O(rasterDN)-83
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Conversion from dB to power:

tds.
}’gwr =10 10

In [29]:

rasterPwr=np.power(10.,rasterdB/10.)

Conversion from power to amplitude:

}’gmp =/ }’gwr

In [30]:

rasterAmp=np.sqrt(rasterPwr)

Explore the image bands of the time steps

Let's explore how a band looks in the various image scales

Choose the band number and find which date it is

In [31]:

Out[31]:

bandnbr=20
tindex[bandnbr-1]

Timestamp('2015-11-29 00:00:00")

Below is the python code to create a four-part figure comparing the effect of the representation of the backscatter values in the DN, amplitude, power and dB scale.

In [32]:

fig=plt.figure(figsize=(16,16))

axl=fig.add subplot(221)
ax2=fig.add_subplot(222)
ax3=fig.add_subplot(223)
ax4=fig.add subplot(224)

axl.imshow(rasterDN[bandnbr],cmap="'gray',
vmin=np.percentile(rasterDN,10),
vmax=np.percentile(rasterDN,90))
ax2.imshow(rasterAmp[bandnbr],cmap="'gray',
vmin=np.percentile(rasterAmp,10),
vmax=np.percentile(rasterAmp,90))
ax3.imshow(rasterPwr[bandnbr],cmap="'gray',
vmin=np.percentile(rasterPwr,10),
vmax=np.percentile(rasterPwr,90))
ax4.imshow(rasterdB[bandnbr],cmap='gray',
vmin=np.percentile(rasterdB,10),
vmax=np.percentile(rasterdB,90))

axl.set title('DN Scaled (Amplitudes)')
ax2.set_title('Amplitude Scaled')
ax3.set title('Power Scaled')
_=ax4.set_title('dB Scaled')
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Comparing histograms of the amplitude, power, and dB scaled data

In [33]:

# Setup for three part figure
fig=plt.figure(figsize=(16,4))

fig.suptitle('Comparison of Histograms of SAR Backscatter in Different Scales',f

ontsize=14)

axl=fig.add_subplot(131)
ax2=fig.add_subplot(132)
ax3=fig.add_subplot(133)

# Important to "flatten" the 2D raster image to produce a historgram

axl.hist(rasterAmp[bandnbr].flatten(),bins=100,range=(0.,0.6))

ax2.hist(rasterPwr[bandnbr].flatten(),bins=100,range=(0.,0.25))

ax3.hist(rasterdB[bandnbr].flatten(),bins=100,range=(-25,-5))

# Means, medians and stddev
amp_mean=rasterAmp[bandnbr].mean()
amp_std=rasterAmp[bandnbr].std()
pwr_mean=rasterPwr[bandnbr].mean()
pwr_std=rasterPwr[bandnbr].std()
dB_mean=rasterdB[bandnbr].mean()
dB_std=rasterdB[bandnbr].std()

# Some lines for mean and median
axl.axvline(amp mean,color='red')

axl.axvline(np.median(rasterAmp|[bandnbr]),color="'blue’

ax2.axvline(pwr_mean,color='red', label='Mean')

)

ax2.axvline(np.median(rasterPwr[bandnbr]),color='blue’',label="Median')

ax3.axvline(dB_mean,color='red")

ax3.axvline(np.median(rasterdB[bandnbr]),color="blue')

# Lines for 1 stddev
axl.axvline(amp mean-amp std,color='gray')
axl.axvline(amp mean+amp std,color='gray')

ax2.axvline(pwr_mean-pwr std,color='gray',label="'1l $\sigma$')

ax2.axvline(pwr_mean+pwr_ std,color='gray')
ax3.axvline(dB_mean-dB std,color='gray')
ax3.axvline(dB mean+dB_std,color='gray')

axl.set title('Amplitude Scaled')
ax2.set_title('Power Scaled')
ax3.set_title('dB Scaled')
_=ax2.legend()

Comparison of Histograms of SAR Backscatter in Different Scales
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Why is the scale important?

Itis critical to use the correct scaling of SAR data for image processing operations. As we can see from the comparison of the histograms, the amplitude, power, and dB
scales have different statistial distributions.

In time series analysis we often compare measurements at any given time step against the mean of the time series and compute its residuals. When we compute the mean
of observations, it makes a difference whether we do that in power or dB scale. Since dB scale is a logarithmic scale, we cannot simply average data in that scale. Consider
the following backscatter values and their mean:

y? = —10dB
vy = —15dB

Let's compute the mean of these values in power and dB scale and compare the result in dB scale:

In [34]: gl dB = -10
g2_dB -15
gl pwr = np.power(10.,-10/10.)
g2 _pwr = np.power(10.,-15/10.)

mean dB = (gl dB+g2 dB)/2.
mean_pwr = (gl pwr+g2 pwr)/2.
mean_pwr_inDB = 10.*np.logl0(mean_pwr)

print('Mean averaging dB values : {:.1f}' .format (mean_dB))
print('Mean averagin power values in dB : {:.1f}'.format(mean_pwr inDB))

Mean averaging dB values : =-12.5
Mean averagin power values in dB : -11.8

As one can see, there is a 0.7 dB difference in the average of these two y @ backscatter values. If we make mean estimates of backscatter values, the correct scale in which
operations need to be performed is the power scale. This is critical, e.g. when speckle filters are applied, spatial operations like block averaging are performed, or time
series are analyzed. Very often we implement models that relate backscatter to biophysical variables like biomass, forest height, or use thresholds to determine change.
Ensure that the proper scaling is done when working with the SAR data applying these models.

Another example of the effects can be illustrated with our backscatter data from the images we extracted. Consider a 1 hectare window extracted from our data sets with an
off set of 500, 500 for band 20. We compute the mean over time and space of all the pixels.

In [35]: offset=500
size=5
ol=offset
o2=offset+size

In [36]: mean dB = rasterdB[:,0l:02,0l:02].mean()
mean_dB

Out[36]: -11.302698

In [37]: mean pwr = rasterPwr[:,0l:02,0l:02].mean()

mean pwr_in dB = 10.* np.logl0(mean_ pwr)
mean_pwr_in dB

Out[37]: -10.75519323348999
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As one can see, a difference of more than 0.5 dB is found simply by operating in the different scales. Hence: CAUTION!

Exploring Polarization Differences

We look at the backscatter characteristics in SAR data from like-polarized (Same transmit and receive polarzation, hh or w) and cross-polarized (vh or hv polarization). For
this, we read a timestep in both polarizations, plot the histograms, and display the images in dB scale. First, we open the images, pick the bands from the same acquisition
date, read the raster bands and convert them to dB scale.

In [38]: # Open the Images
img like=gdal.Open(imagefile)
img cross=gdal.Open(imagefile cross)
# Pick the bands, read rasters and convert to dB
bandnbr_ like=20
bandnbr_cross=20
rl=img like.GetRasterBand(bandnbr like).ReadAsArray()
rc=img cross.GetRasterBand(bandnbr cross).ReadAsArray()
rl dB=20.*np.logl0(rl)-83
rc_dB=20.*np.logl0(rc)-83

Now, we explore the differences in the polarizations by plotting the images with their histograms. We look at the dB ranges over which the histograms spread, and can
adjust the linear scaling in the image display accordingly to enhace contrast. In the case below:

o (-w like-polarized data are mostly spread from -17.5 to -5 dB
o (vh cross-polarized data are mostly spread from -25 to-10 dB

Thus, we note that the cross-polarized data exhibit a larger dynamic range of about 2.5 dB

9
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In [39]: fig,ax=plt.subplots(nrows=2,ncols=2,figsize=(16,16))
fig.suptitle('Comaprison of Like- and Cross-Polarized Sentinel-1 C-band Data',
fontsize=14)
ax[0][0].set_title('C-VV Image')
ax[0][1l].set_title('C-VH Image')
ax[1][0].set_title('C-VV Histogram')
ax[1][1l].set_title('C-VH Histogram')
ax[0][0].axis('off")
ax[0][1l].axis('off")
ax[0][0].imshow(rl dB,vmin=-17.5,vmax=-5,cmap="'gray"')
ax[0][1].imshow(rc_dB,vmin=-25,vmax=-10,cmap="'gray')
ax[1][0].hist(rl dB.flatten(),range=(-25,-5),bins=100)
ax[1][1].hist(rc_dB.flatten(),range=(-25,-5),bins=100)
fig.tight layout() # Use the tight layout to make the figure more compact

Comaprison of Like- and Cross-Polarized Sentinel-1 C-band Data
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EXERCISE 4: Explore different Seasons in different polarizations

Change the band numbers bandnbr_like and bandnbr_cross in the cell above to explore different bands.
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EXERCISE SOLUTIONS

Solution 1
In [ ]: # Pick different band numbers for the exercise.
# Adjust scaling factors and see the effect.
bandnbr=40
raster=img.GetRasterBand(bandnbr) .ReadAsArray()
showImage(raster,tindex,bandnbr,4000,8000)
Solution 2
In [ ]: # Enter your code for the exercise here.

bandnbrl=51
rasterl=img.GetRasterBand(bandnbrl) .ReadAsArray()

bandnbr2=66
raster2=img.GetRasterBand(bandnbr2).ReadAsArray()

fig=plt.figure(figsize=(16,8))

axl=fig.add subplot(121)

ax2=fig.add_subplot(122)

axl.imshow(rasterl,vmin=2000,vmax=8000,cmap="'gray"')
ax2.imshow(raster2,vmin=2000,vmax=8000,cmap="'gray')

axl.set title('Band {} Date {}'.format(bandnbrl,tindex[bandnbrl-1].date()))
_=ax2.set_title('Band {} Date {}'.format(bandnbr2,tindex[bandnbr2-1].date()))

Solution 3:

In [ ]: | # Get the Data type
img.GetRasterBand (1) .DataType

In [ ]: #Use the lookup table for the number of bytes per pixel for this type:
bytespp=2
size=img.RasterCount*img.RasterXSize*img.RasterYSize*bytespp/(1024*1024*1024)
print('Data Volume for {}: {:.1f} Gigabytes'.format(img.GetDescription(),size))
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SAR TRAINING WORKSHOP: Forest Applications
PART 2 - SAR TIME SERIES VISUALIZATION AND ANIMATIONS

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC
Revision date: January 2019

This section introduces more sophisticated animations for time series visualization which allow us to inspect time series in more depth. Note that html animations are not
exported into the pdf file, but will display interactively.

In [1]: # Turn on inline presentations
gmatplotlib inline

In [2]: # Imports
import os
import time
import gdal
import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.patches as patches # Needed to draw rectangles
from matplotlib import animation, rc

from IPython.display import HTML

West Africa - Biomass Site

In [3]: #datadirectory='/dev/shm/projects/c40lservir/wa/BIOsS1/"'
datadirectory='C:\\Users\\loaner.SERVIRLOAN-5057.001\\Downloads\\BIOsS1\\'
#1f using a PC you may need to add two forward slashes between folders

datefile ='532631X398020Y1315440sS1_A vv_0001 mtfil.dates'
imagefile='532631X398020Y1315440sS1_A vv_0001_mtfil.vrt'
subset=None

# subset=(2000,2000,1000,1000)

# Browse image

# datefile ='S32631X398020Y1315440sS1_A vh browse.dates'
# imagefile='S32631X398020Y1315440sS1 A vh browse.tif'
subset=None

subset=(3700,1500,500,500)

#
#
#
#
#
# subset=(3000,700,500,500)

West Africa - Niamey Deforestation Site

In [ ]: # datadirectory='/Users/rmuench/Downloads/wa/cra/"'
# datefile ='532631X402380v1491460sS1_A vv 0001 A mtfil.dates'
# imagefile='532631X402380Y1491460sS1 A vv 0001 A mtfil.vrt'
# subset=None

West Africa - Dam Site
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HKH Site

# datadirectory="'/Users/rmuench/Downloads/wa/DAMsS1/"’
# datefile='S32631X232140Y1614300sS1_A vh 0001 A mtfil.dates'
# imagefile='S32631X232140Y1614300sS1_A vh 0001 A mtfil.vrt'

# subset=None
# # subset=(2000,1500,500,500)
# # subset=(1500,500,500,500)

# datadirectory=/Users/rmuench/Downloads/hkh/time series/S32644X696260Y3052060sS1

-EBD'

# datefile='532644X696260Y3052060sS1_D vv_0092 mtfil.dates'
# imagefile='532644X696260Y3052060sS1 D vv_0092 mtfil.vrt'
# imagefile cross='S532644X696260Y3052060sS1_D vh 0092 mtfil.vrt'

Prepare the Animations

In [4]:

In [5]:

In [6]:

Out[6]:

In [7]:

os.chdir(datadirectory)

# Get the date indices via pandas
dates=open(datefile).readlines()
tindex=pd.DatetimeIndex(dates)

tindex

DatetimeIndex(['2015-03-22"', '2015-04-03'
'2015-05-21"', '2015-06-02"'
'2015-07-08"', '2015-07-20"'
'2015-08-25"', '2015-09-06"
'2015-10-12"', '2015-10-24"
'2015-12-11"', '2015-12-23'
'2016-02-09', '2016-03-04"
'2016-04-09', '2016-04-21"
'2016-05-27"', '2016-06-08"'
'2016-07-26"', '2016-08-07"
'2016-09-12"', '2016-09-24"
'2016-10-30', '2016-11-11"
'2016-12-17"', '2016-12-29'
'2017-02-03', '2017-02-15"
'2017-03-23"', '2017-04-04"'
'2017-05-10', '2017-05-22"'
'2017-06-27"', '2017-07-09'
'2017-08-14"', '2017-08-26"
'2017-10-13"', '2017-10-25"
'2017-11-30'1,
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dtype='datetime64[ns]', freg=None)

# Open the image and read the first raster band

img = gdal.Open(imagefile)
band = img.GetRasterBand(1l)
# Set the subset
if subset==None:

subset=(0,0,img.RasterXSize,img.Raster¥YSize)
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In [8]: subset
Out[8]: (0, 0, 4243, 3776)
In [9]: # Plot one band and subset outline to see which subset we are interested in
raster=band.ReadAsArray ()
vmin=np.percentile(raster.flatten(),5)
vmax=np.percentile(raster.flatten(),95)
fig=plt.figure(figsize=(10,10))
ax=fig.add subplot(111)
ax.imshow(raster,cmap='gray',vmin=vmin,vmax=vmax)
# plot the subset as rectangle

_=ax.add_patch(patches.Rectangle( (subset[0],subset[1]),subset[2],subset[3],
fill=False,edgecolor="'red'))
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In [10]: raster0 = band.ReadAsArray(*subset)
bandnbr=0 # Needed for updates
rasterstack=img.ReadAsArray(*subset)
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In [11]:

In [12]:

%%¥capture

import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np

fig=plt.figure(figsize=(10,10))

ax = fig.add_subplot(111)

ax.axis('off'")
vmin=np.percentile(rasterstack.flatten(),5)
vmax=np.percentile(rasterstack.flatten(),95)

im = ax.imshow(raster0,cmap='gray',vmin=vmin,vmax=vmax)
ax.set _title("{}".format(tindex[0].date()))

def animate(i):
ax.set_title("{}".format(tindex[i].date()))
im.set_data(rasterstack[i])

# Interval is given in milliseconds
ani = matplotlib.animation.FuncAnimation(fig, animate,

frames=rasterstack.shape[0],

interval=400)

rc('animation',embed 1imit=40971520.0) # We need to increase the

# limit to show the entire animation
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In [13]: from IPython.display import HTML
HTML (ani.to_jshtml())

Out[1l3]:

-« K <« 1 >» X M +
~10nce @ Loop ) Reflect

Plot the global means of the Time Series for the Subset

1. Conversion to power
2. Compute means
3. Convert to dB

4. Plot time series of means
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In [14]:

In [15]:

Out[1l5]:

In [16]:

Out[1l6]:

In [17]:

# 1. Conversion to Power

caldB=-83

calPwr = np.power(10.,caldB/10.)

rasterstack_pwr = np.power(rasterstack,2.)*calPwr
# 2. Compute Means

rs_means _pwr = np.mean(rasterstack pwr,axis=(1,2))
# 3. Convert to dB

rs_means_dB = 10.*np.logl0(rs_means_pwr)

rs_means_pwr.shape # Check that we got the means over time

(77,)

# 4. Plot

fig=plt.figure(figsize=(16,4))
axl=fig.add_subplot(111)
axl.plot(tindex,rs means pwr)

axl.set xlabel('Date')
axl.set_ylabel('$\overline{\gamma“o}$ [power]")

ax2=axl.twinx()

ax2.plot(tindex,rs means dB,color='red')
ax2.set_ylabel('$\overline{\gamma“o}$ [dB]')

fig.legend([ 'power','dB'],loc=1)

plt.title('Time series profile of average band backscatter $\gamma“o$ ')

Text (0.5, 1.0, 'Time series profile of average band backscatter $\\gamma“o$ ')

Time series profile of average band backscatter y°
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In [18]:

out[18]:
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#This will print a list of the dates and the respective dB mean values

a

2015-03-22
2015-04-03
2015-04-15
2015-05-09
2015-05-21
2015-06-02
2015-06-14
2015-06-26
2015-07-08
2015-07-20
2015-08-01
2015-08-13
2015-08-25
2015-09-06
2015-09-18
2015-09-30
2015-10-12
2015-10-24
2015-11-17
2015-11-29
2015-12-11
2015-12-23
2016-01-04
2016-01-28
2016-02-09
2016-03-04
2016-03-16
2016-03-28
2016-04-09
2016-04-21

-10.139979
-10.184575
-10.143337
-10.134364
-10.218999
-10.481450
-10.728489
-9.964857
-9.330598
-8.706461
-8.734129
-8.235253
-7.423883
-7.023914
-6.836782
-8.363434
-9.116455
-9.169089
-10.202442
-11.128629
-11.145837
-11.523537
-11.549477
-11.430446
-11.372730
-11.207707
-11.401895
-11.278982
-10.491783
-11.249865

2016-12-05
2016-12-17
2016-12-29
2017-01-10
2017-01-22
2017-02-03
2017-02-15
2017-02-27
2017-03-11
2017-03-23
2017-04-04
2017-04-16
2017-04-28
2017-05-10
2017-05-22
2017-06-03
2017-06-15
2017-06-27
2017-07-09
2017-07-21
2017-08-02
2017-08-14
2017-08-26
2017-09-07
2017-09-19
2017-10-13
2017-10-25
2017-11-06
2017-11-18
2017-11-30

Length: 77, dtype:

-11.314669
-11.671808
-11.566748
-11.438762
-11.441662
-11.427748
-11.367423
-11.354894
-11.246345
-11.229724
-11.605949
-11.442106
-11.490215
-11.580404
-11.092516
-11.248882
-10.215062
-10.183667

-9.969588

-9.901120

-9.140317

-8.085749

-7.777649

-8.956864

-8.700844

-9.901974
-10.611529
-11.038310
-11.161617
-11.492415

float64



A two part figure with moving global mean backscatter of the time
series in dB

In [19]: %%capture
import matplotlib.pyplot as plt
import matplotlib.animation
import numpy as np

fig, (axl,ax2) = plt.subplots(1l,2,figsize=(16,4),gridspec_kw = {'width ratios':[1
311

vmin=np.percentile(rasterstack.flatten(),5)
vmax=np.percentile(rasterstack.flatten(),95)

im = axl.imshow(raster0,cmap='gray',vmin=vmin,vmax=vmax)
axl.set title("{}".format(tindex[0].date()))

axl.set _axis off()

ax2.axis([tindex[0],tindex[-1],rs means _dB.min(),rs means_dB.max()])
ax2.set_ylabel('$\overline{\gamma“o}$ [dB]")

ax2.set xlabel('Date’)

ax2.set_ylim((-15,-5))

1, = ax2.plot([1,[1)

def animate(i):
axl.set title("{}".format(tindex[i].date()))
im.set data(rasterstack[i])
ax2.set_title("{}".format(tindex[i].date()))
l.set data(tindex[:(i+1l)],rs means dB[:(i+1)])

# Interval is given in milliseconds
ani = matplotlib.animation.FuncAnimation(fig, animate,
frames=rasterstack.shape[0],
interval=400)

In [20]: from IPython.display import HTML
HTML(ani.to_jshtml())

Out[20]: 2015-03-22
2015-03-22

7 198]
|
3

2015-04 2015-07 2015-10 2016-01 2016-04 2016-07 2016-10 2017-01 2017-04 2017-07 2017-10
Date

-« K« <« 1 > M MW +
“10Once @ Loop ' Reflect

EXERCISE

Modify the animation function to display animation of a single pixel of your choosing.

Bonus: Add a second pixel to the right hand graph.
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SAR Training Workshop for Forest Applications
PART 3 - Change Detection with Time Series Metrics and Log Ratio

Method

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2018

In this chapter we introduce three methods for change detection based on

o Time series metrics 957 and 5 percentile difference thresholding

* Time series coefficient of variation thresholding

* |og Ratio from two image pairs

Import Python modules

In [1]:

import os,sys,gdal

gmatplotlib inline

import matplotlib.pylab as plt

import matplotlib.patches as patches # Needed to draw rectangles
from skimage import exposure # to enhance image display

import numpy as np

import pandas as pd

Select the project data set and time series data

Louisiana Timber Management Site

In [ ]:

# SENTINEL-1 TIME SERIES STACK VV from LOUISIANA FOREST MANAGEMENT SITE
#datapath="'/dev/shm/projects/c303nisar/louisiana/15SWRsS1/15SWRsS1-EBD/"'
#imagefile='15SWRsS1 A vv_0063 A mtfil.vrt'
#datefile="15SWRsS1_A vv_0063_A mtfil.dates'

West Africa - Biomass Site

In [4]:

In [5]:

THE SAR HANDBOOK

datapath='/Users/rmuench/Downloads/wa/BIOsS1'
datefile='S32631X398020Y1315440sS1 A vv_0001 mtfil.dates'
imagefile='S532631X398020Y1315440sS1_A vv_0001 mtfil.vrt'
imagefile cross='S32631X398020Y1315440sS1 A vh 0001 mtfil.vrt'

os.chdir(datapath)



We are defining two helper functions for this task

* (CreateGeoTiff() to write out images
* timeseries_metrics() to compute various metrics from a time series data stack

In [6]: def CreateGeoTiff (Name, Array, DataType, NDV,bandnames=None,ref image=None,
GeoT=None, Projection=None):
# If it's a 2D image we fake a third dimension:
if len(Array.shape)==2:
Array=np.array([Array])
if ref image==None and (GeoT==None or Projection==None):
raise RuntimeWarning('ref image or settings required.')
if bandnames != None:
if len(bandnames) != Array.shape[0]:
raise RuntimeError('Need {} bandnames. {} given'
.format (Array.shape[0],len(bandnames)))
else:
bandnames=[ 'Band {}'.format(i+l) for i in range(Array.shape[0])]
if ref_ image!= None:
refimg=gdal.Open(ref image)
GeoT=refimg.GetGeoTransform()
Projection=refimg.GetProjection()
driver= gdal.GetDriverByName('GTIFF')
Array[np.isnan(Array)] = NDV
DataSet = driver.Create(Name,
Array.shape[2], Array.shape[l], Array.shape[0], DataType)
DataSet.SetGeoTransform(GeoT)
DataSet.SetProjection( Projection)
for i, image in enumerate(Array, 1):
DataSet.GetRasterBand(i).WriteArray( image )
DataSet.GetRasterBand(i).SetNoDataValue (NDV)
DataSet.SetDescription(bandnames[i-11])
DataSet.FlushCache()
return Name

In [7]: def timeseries metrics(raster,ndv=0):
# Make us of numpy nan functions
# Check if type is a float array
if not raster.dtype.name.find('float')>-1:

raster=raster.astype(np.float32)
# Set ndv to nan
if ndv != np.nan:
raster[np.equal(raster,ndv) ]=np.nan

# Build dictionary of the metrics
tsmetrics={}
rperc = np.nanpercentile(raster,[5,50,95],axis=0)
tsmetrics[ 'mean’']=np.nanmean(raster,axis=0)
tsmetrics[ 'max’']=np.nanmax(raster,axis=0)
tsmetrics[ 'min' ]=np.nanmin(raster,axis=0)
tsmetrics[ 'range' ]=tsmetrics[ 'max']-tsmetrics[ 'min']
tsmetrics[ 'median' ]=rperc[1l]
tsmetrics[ 'p5' ]=rperc[0]
tsmetrics[ 'p95' ]=rperc[2]
tsmetrics[ 'prange' ]=rperc[2]-rperc[0]
tsmetrics[ 'var']=np.nanvar(raster,axis=0)
tsmetrics[ 'cov']=tsmetrics['var']/tsmetrics[ 'mean']
return tsmetrics
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Set the Dates

In [8]: # Get the date indices via pandas
dates=open(datefile).readlines()
tindex=pd.DatetimeIndex(dates)
j=1
print('Bands and dates for',imagefile)
for i in tindex:

print("{:4d} {}".format(j, i.date()),end="' ")
J+=1
if je5==1: print()

Bands and dates for S32631X398020Y1315440sS1 A vv_0001 mtfil.vrt

1 2015-03-22 2 2015-04-03 3 2015-04-15 4 2015-05-09 5 2015-05-21
6 2015-06-02 7 2015-06-14 8 2015-06-26 9 2015-07-08 10 2015-07-20
11 2015-08-01 12 2015-08-13 13 2015-08-25 14 2015-09-06 15 2015-09-18
16 2015-09-30 17 2015-10-12 18 2015-10-24 19 2015-11-17 20 2015-11-29
21 2015-12-11 22 2015-12-23 23 2016-01-04 24 2016-01-28 25 2016-02-09
26 2016-03-04 27 2016-03-16 28 2016-03-28 29 2016-04-09 30 2016-04-21
31 2016-05-03 32 2016-05-15 33 2016-05-27 34 2016-06-08 35 2016-07-02
36 2016-07-14 37 2016-07-26 38 2016-08-07 39 2016-08-19 40 2016-08-31
41 2016-09-12 42 2016-09-24 43 2016-10-06 44 2016-10-18 45 2016-10-30
46 2016-11-11 47 2016-11-23 48 2016-12-05 49 2016-12-17 50 2016-12-29
51 2017-01-10 52 2017-01-22 53 2017-02-03 54 2017-02-15 55 2017-02-27
56 2017-03-11 57 2017-03-23 58 2017-04-04 59 2017-04-16 60 2017-04-28
61 2017-05-10 62 2017-05-22 63 2017-06-03 64 2017-06-15 65 2017-06-27
66 2017-07-09 67 2017-07-21 68 2017-08-02 69 2017-08-14 70 2017-08-26
71 2017-09-07 72 2017-09-19 73 2017-10-13 74 2017-10-25 75 2017-11-06
76 2017-11-18 77 2017-11-30

Explore the Images

Below are a couple of plots showing the dataset

Open the image and get dimensions (bands, lines, pixels):
In [9]: img=gdal.Open(imagefile)
img.RasterCount,img.RasterYSize,img.RasterXSize

Out[9]: (77, 3776, 4243)

For a managable size we choose a 1000x1000 pixel subset to read the entire data stack. We also convert the amplitude data to power data right away and will perform the
rest of the calculations on the power data to be mathmatically correct. NOTE: Choose a different xsize/ysize in the subset if you need to
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In [10]:

In [11]:

subset=(1500,0,500,500) # (xoff,yoff,xsize,ysize)
bandnbr=1

rasterDN=img.GetRasterBand(bandnbr) .ReadAsArray()

fig, ax = plt.subplots(figsize=(8,8))

ax.set_title('Sentinel-1 C-VV, NIGER!!!!!, {}'
.format(tindex[bandnbr-1].date()))

ax.imshow(rasterDN,cmap='gray',vmin=2000,vmax=8000)

ax.grid(color='blue')

ax.set xlabel('Pixels')

ax.set_ylabel('Lines"')

# plot the subset as rectangle

if subset != None:

_=ax.add_patch(patches.Rectangle((subset[0],subset[1]),

subset[2],subset[3],

fill=False,edgecolor="red',

linewidth=3))

Sentinel-1 C-VV, NIGER!!!!!, 2015-03-22

500

1000

1500

Lines

2000

2500

3000

3500

1500 2000 2500 3000 3500
Pixels

rasterDN=img.ReadAsArray (*subset)
mask=rasterDN==
CF=np.power(10.,-8.3)

4000

rasterPwr=np.ma.array(np.power (rasterDN,2.)*CF,mask=mask,dtype=np.float32)

rasterDB=(10.*np.ma.logl0(rasterPwr)+31)/0.15
rasterDB[rasterDB<1. ]=1.
rasterDB[rasterDB>255. ]=255.
rasterDB=rasterDB.astype(np.uint8)
rasterDB=rasterDB.filled(0)

W OR K WK

Code below is an example to generate an 8bit scaled dB image
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We make an RGB stack to display the first, center, and last time step as a multi-temporal color composite. The np.dstack results in an array of the form [lines, pixels,bands],

which is the format we need for RGB display with matplotlib's imshow() function.

Note that numpy array indexing starts with 0, so band 1 s raster[0].

In [12]:

rgb_bands=(1,int(img.RasterCount/2),img.RasterCount) # first, center, last band
rgb_bands=(1,10,40)
rgb_bands=(18,45,74)
rgb_idx=np.array(rgb bands)-1 # get array index from bands by subtracting 1
rgb=np.dstack((rasterPwr[rgb_idx[0]],rasterPwr[rgb_idx[1l]],rasterPwr[rgb_idx[2
11))
rgb_dates=(tindex[rgb idx[0]].date(),

tindex[rgb_idx[1l]].date(),tindex[rgb idx[2]].date())

We are also interested in displaying the image enhanced with histogram equalization.

We can use the function *exposure.equalize_hist()* from the skimage.exposure module

In [13]:

rgb_stretched=rgb.copy()

# For each band we apply the strech

for i in range(rgb_stretched.shape[2]):
rgb stretched[:,:,i] = exposure.\
equalize hist(rgb_stretched[:,:,i].data,
mask=~np.equal (rgb_stretched[:,:,i].data,0.))

Now let's display the unstrechted and histogram equalized images side by side.

In [14]:
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fig,ax = plt.subplots(1l,2,figsize=(16,8))

fig.suptitle('Multi-temporal Sentinel-1 backscatter image R:{} G:{} B:{}'
.format (rgb_dates[0],rgb _dates[1l],rgb_dates[2]))

plt.axis('off")

ax[0].imshow(rgb)

ax[0].set_title('Unstreched')

ax[0].axis('off")

ax[1l].imshow(rgb stretched)

ax[l].set_title('Histogram Equalized')

_=ax[l].axis('off")

Multi-temporal Sentinel-1 backscatter image R:2015-10-24 G:2016-10-30 B:2017-10-25

Unstreched




Computation and Visualization of the Time Series Metrics

For the entire time series, we will compute some metrics that will aid us in change detection. For each pixel in the stack we compute:

® Mean

e Median

®  Maximum

* Minimum

® Range (Maximum - Minimum)

e 5th Percentile

e 95th Percentile

* PRange (95th - 5th Percentile)

® Variance

o (oefficient of Variation (Variance/Mean)

In [15]:

In [16]:

out[16]:

Let's look at the histograms for the time series variance and coeficient of variation to aid displaying those images:

In [17]:

metrics=timeseries metrics(rasterPwr.filled(np.nan),ndv=np.nan)

#Print out what the various metrics keys are

metrics.keys()

dict_keys([ 'mean’,

r',

fig, ax= plt.subplots(1l,2,figsize=(16,4))
ax[0].hist(metrics['var'].flatten(),bins=100)
ax[1l].hist(metrics['cov'].flatten(),bins=100)
_=ax[0].set_title('Variance')
_=ax[l].set_title('Coefficient of Variation')

22500
20000
17500
15000
12500
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7500
5000
2500

'max"',

Variance

'min',

'range',

0004

0.006

0.008

'median',

25000

20000

15000

10000

5000

'p5', 'p95', 'prange', 'va

Coefficient of Variation

We use thresholds determined from those histograms to set the scaling in the time series visualiztion. For the backscatter metrics we choose a typical range appropriate for
this ecosystem and radar sensor. A typical range is -30 dB (0.0001) to -5.2 dB (0.3).

110

THE SAR HANDBOOK



In [18]: # List the metrics keys you want to plot
metric_keys=[ 'mean', 'median’', 'max', 'min’',
'p95', 'p5','range', 'prange', 'var', 'cov']
fig= plt.figure(figsize=(16,40))
idx=1
for i in metric_keys:
ax = fig.add subplot(5,2,idx)
if i=='var': vmin,vmax=(0.0,0.005)
elif i == 'cov': vmin,vmax=(0.,0.04)
else:
vmin,vmax=(0.0001,0.3)
ax.imshow(metrics[i],vmin=vmin,vmax=vmax,cmap='gray')
ax.set _title(i.upper())
ax.axis('off")
idx+=1
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VAR v

Change detection with the Percentile Difference Threshold Method

In this method we find thresholds on the 957 and 5 percentile difference. The advantage to look at percentiles verus maximum minus minimum is that outliers and
extremas in the time series are not influencing the result.

For our example, the historgram of the 957 and 57 percentile difference image looks like this:

In [19]: plt.hist(metrics['range'].flatten(),bins=100,range=(0,0.3))
_=plt.axvline(0.27,color="red"')

8000 1

6000

4000

2000
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Let's visualize the change pixels (cp) where the 95th - 5th percentile difference in the time series for each pixel (x,y) exceed a threshold #

— p95tl Sth
Cpx,y _PX,'1 _Px,y >1

With £ = 0.15 the image looks like:

In [20]: thres=0.25
plt.figure(figsize=(8,8))

mask=metrics[ 'range' ]<thres # For display we prepare the inverse mask
maskpdiff=-mask # Store this for later output

plt.imshow(mask,cmap="'gray')

plt.legend(['$p {95} - p 5 > 0.15$'],loc="'center right')
_=plt.title('Threshold Classifier on Percentile Difference ($P_{95} - P. 5 > 0.15

$)")

Threshold Classifier on Percentile Difference (Pgs — Ps > 0.15)

100 1
200 1 Sy
300 1 -

400 A

]

-

500

Change Detection with the Coefficient of Variation Method

We can set a threshold 7 for the coefficient of variation image to classify change in the time series:

(S

0.

CPyy = )?— >1

Let's look at the histogram of the coefficient of variation:
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In [21]: plt.hist(metrics['cov'].flatten(),bins=100,range=(0,0.05))
_=plt.axvline(0.025,color="red")

14000 A

12000 A

10000 A

8000 A

6000

4000 A

2000

0-

With a threshold t=0.01 the change pixels would look like the following image:

In [22]: thres=0.025
mask=metrics['cov'] < thres
maskcv=~mask
plt.figure(figsize=(8,8))
plt.imshow(mask,cmap="'gray')
_=plt.title('Threshold Classifier on Time Series Coefficient of Variation')

Threshold Classifier on Time Series Coefficient of Variation
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Change Detection with the Log Ratio Method

We compare two images from the same season in different years. First we look at global means of the backscatter images in the subset building a time series object of
acquisition dates and global image means of backscatter.

In

We make a time series object to list the dates, mean backscatter in dB, and band index number for the rasterPwr array:

In

[23]:

[24]:

tsmean=10*np.logl0(np.nanmean(rasterPwr.filled(np.nan),axis=(1,2)))

ts = pd.Series(tsmean,index=tindex)

for i in range(len(ts)):

0 oL WP O

WNNNNNNMNNNNNRRRERRRRRRREO
O VWO NOU b WNEFEFOWODLWSNOU & WNEFEOo

print(i,ts.index[i].date(),ts[1i])

2015-03-22
2015-04-03
2015-04-15
2015-05-09
2015-05-21
2015-06-02
2015-06-14
2015-06-26
2015-07-08
2015-07-20

2015-10-24
2015-11-17
2015-11-29
2015-12-11
2015-12-23
2016-01-04
2016-01-28
2016-02-09
2016-03-04
2016-03-16
2016-03-28
2016-04-09
2016-04-21
2016-05-03

-9.773781
-9.814333
-9.84827
-10.075288
-9.987606
-9.835003
-10.412914
-10.64331
-9.98234
-9.159636
2015-08-01 -7.678219
2015-08-13 -8.60141
2015-08-25 -7.6070075
2015-09-06 -7.645421
2015-09-18 -6.655918
2015-09-30 -8.7717705
2015-10-12 -9.348694
-9.547744

-10.
-11.
-11.
-11.

-11

-11

2138815
099142
029471
332901

.346351
-11.
.145014
-10.
-11.
-11.
-10.
-11.
-11.

197915

9366045
114582
000681
456753
031124
042203

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

2016-05-15 -11.248089
2016-05-27 -10.781347
2016-06-08 -10.7717905
2016-07-02 -10.622729
2016-07-14 -10.262638
2016-07-26 -9.969166
2016-08-07 -9.227007
2016-08-19 -8.372538
2016-08-31 -7.8771267
2016-09-12 -9.163029
2016-09-24 -9.04641
2016-10-06 -10.078144
2016-10-18 -10.534364
2016-10-30 -11.044583
2016-11-11 -11.120414
2016-11-23 -11.056729
2016-12-05 -11.187023
2016-12-17 -11.514052
2016-12-29 -11.376835
2017-01-10 -11.243304
2017-01-22 -11.204616
2017-02-03 -11.176929
2017-02-15 -11.093778
2017-02-27 -11.04459
2017-03-11 -10.92975
2017-03-23 -10.895084
2017-04-04 -11.270055
2017-04-16 -11.106432
2017-04-28 -11.091718
2017-05-10 -11.196309
2017-05-22 -10.516581
2017-06-03 -11.056223
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63 2017-06-15 -10.081734
64 2017-06-27 -10.121447
65 2017-07-09 -10.04177
66 2017-07-21 -9.837778
67 2017-08-02 -9.248106
68 2017-08-14 -8.226735
69 2017-08-26 -8.096363
70 2017-09-07 -9.48612

71 2017-09-19 -9.06922

72 2017-10-13 -10.274279
73 2017-10-25 -10.869721
74 2017-11-06 -11.154692
75 2017-11-18 -11.122526
76 2017-11-30 -11.273689

To compare two dates for change detection with the log ratio approach we pick two dates of
relative low backscatter (dry conditions) and from similar times of the year. Two such
candidate dates are:

West Africa / Biomass Site example:
® 2015-11-29-11.099142 dB (index 19)

* 2017-11-30-11.273689 dB (index 76)

In [26]: # WA biomass
Xr=rasterPwr[19] # Reference Image
Xi=rasterPwr([76] # New Image

The Log ratio between the images is:
Xi
r=logi(x")

In [27]: r = np.logl0(Xi/Xr)

To find a threshold for change, we can display the absolute ration image abs(r) and the historgram of 7. We adjust the scale factors for the display to enhance
visualization of change areas with largest backscatter change over the time series. Brighter values show larger change.
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In [28]: # Display r
fig, ax = plt.subplots(2,1,figsize=(8,16))
ax[0].axis('off")
ax[0].imshow(np.abs(r),vmin=0,vmax=0.3,cmap="'gray"')
_=ax[1l].hist(r.flatten(),bins=100,range=(-0.4,0.4))

14000 A

12000 A

10000 A

8000 A

6000 A

4000

2000 A
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Let's define change pixels as those falling outside the range of three times the standard deviation of the ration image o,- from the image mean 7:

Pry = (rry <7 —=30,)0r (ryy > 1+ 30,)

We are using the numpy masking to set the non-changing pixels inside the range:

In [29]:

stddev=np.std(r)

thres=3*stddev

mask=np.logical and(r>-l*thres,r<thres)
masklr=~mask

Let's display pixels that fall outside 3 times the standard deviation

In [30]:

fig,ax = plt.subplots(figsize=(8,16))
ax.imshow(mask,cmap="'gray')
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])

_=ax.set_title('Log Ratio Classifier of the October 2016/2017 Log Ratio Images')

Log Ratio Classifier of the October 2016/2017 Log Ratio Images
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Write the images to an output file

Determine output geometry

First, we need to set the correct geotransformation and projection information. We retrieve the values from the input images and adjust by the subset:
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In [31]: proj=img.GetProjection()
geotrans=1list(img.GetGeoTransform())

subset xoff=geotrans[0]+subset[0]*geotrans[1]
subset yoff=geotrans|[3]+subset[1l]*geotrans[5]
geotrans[0]=subset_ xoff
geotrans|[3]=subset_yoff
geotrans=tuple(geotrans)

geotrans

Out[31]: (428020.0, 20.0, 0.0, 1390960.0, 0.0, -20.0)

Time series metrics images

We use the root of the time series data stack name and append a tsmetrics_.if ending as filenames

In [32]: | # Time Series Metrics as image:
# We make a new subdirectory where we will store the images
dirname=imagefile.replace('.vrt',' tsmetrics2')
os.makedirs(dirname,exist ok=True)

print(dirname)

S$32631X398020Y1315440sS1_A_vv_0001_mtfil tsmetrics2

Output the individual metrics as GeoTIFF images:

In [33]: | Names=[] # List to keep track of all the names
for i in metrics:
# Name, Array, DataType, NDV,bandnames=None,ref image
Name=os.path.join(dirname,imagefile.replace("'.vrt',' '+i+'.tif"))
CreateGeoTiff (Name,metrics[i],gdal.GDT_Float32,np.nan,[i],GeoT=geotrans,Proje
ction=proj)
Names .append (Name)

Build a Virtual Raster Table on the Metrics GeoTIFF images
To tie the images in to one new raster stack of time series metrics we build a virtual raster table with all the metrics.

Trick: Use "' join(Names) to build one long string of names separated by a space as input to gdafbuildvrt

In [34]: cmd='gdalbuildvrt -separate -overwrite -vrtnodata nan '+\
dirname+'.vrt '+' '.join(Names)
# print(cmd)
os.system(cmd)

Oout[34]: 0

In [35]: os.getcwd()

Out[35]: '/Users/rmuench/Downloads/wa/BIOsS1'

In [36]: print('Time Series Metrics VRT File:\n',dirname+'.vrt')

Time Series Metrics VRT File:
S32631X398020Y1315440sS1_ A vv_0001 mtfil tsmetrics2.vrt
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Change Images from the three methods

We are going to write one three-band GeoTIFF output file that stores the results from the three classifiers

In [37]: imagename=imagefile.replace('.vrt',' thresholds.tif')
bandnames=[ 'Percentile', 'COV', 'Log Ratio']
Array=np.array([maskpdiff,maskcv,masklr])
CreateGeoTiff (imagename,Array,gdal.GDT_Byte, 0,bandnames,GeoT=geotrans,Projection=
proj)

Out[37]: 'S32631X398020Y1315440sS1 A vv_0001 mtfil thresholds.tif'

This image can now be loaded into QGIS or similar programs and only the detected layers should show.

Conclusion

Thresholds for the three methods are site dependent and need to be identified with calibration data or visual post-classification interpretation, and can subsequently be
adjusted to maximize classification accuracy. Also, some methods will have advantages in different scenarios.

At the Earth Big Data SEPPO Processor we actually transform many of the time series metrics data types back to lower volume storage models, e.g. 16 bit scaled amplitudes.
See the EBD Data Guide below:

hitps://github.com/EarthBigData/openSAR/blob/master/doc/EBD_DataGuide.md

https://github.com/EarthBigData/openSAR/blob/master/doc/EBD_DataGuide.pdf

Exercises

® (hange the threshold and band choices in this notebook to see the effects on detected changes.
* |o0ad masks on the with QGIS and compare the detected areas with your time series plots and image data in QGIS.

* Lookat the effect of using cross-polarized versus like-polarized polarizations

THE SAR HANDBOOK



SAR Training Workshop for Forest Applications
PART 4 - SAR Time Series Change Point Detection

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC
Revision date: January 2019

In this chapter we introduce the advanced concepts of change point detection in time series. One of the goals of change detection for forest applications is to identify
disturbance over an observation period and the timing of events. Many tools for change point detection stem from the financial sector and are available today with different
complexities. In this workbook we will analyze time series signatures from SAR with emphasis on forest time series. We will start by exploring time series at pixel levels and
will work up to a change point detection scenario with image based analysis.

In [1]: # Importing relevant python packages
import pandas as pd
import gdal
import numpy as np
import time,os

# For plotting

gmatplotlib inline

import matplotlib.pylab as plt
import matplotlib.patches as patches

font = {'family' : 'monospace'’,
'weight' : 'bold',
'size’ : 18}

plt.rc('font',**font)

Set Project Directory and Filenames
West Africa - Biomass Site

In [ ]:  # datadirectory='c40lservir/wa/BIOsS1/'
# datefile='S32631X398020Y1315440sS1 A vv_ 0001 _mtfil.dates'
# imagefile='S32631X398020Y1315440sS1_A vv 0001 mtfil.vrt'

West Africa - Niamey Deforestation Site

In [2]: datadirectory='/Users/rmuench/Downloads/wa/cra/"
datefile='S32631X402380Y1491460sS1 A vv_0001 A mtfil.dates'
imagefile='S532631X402380Y1491460sS1 A vv_0001 A mtfil.vrt'

West Africa - Dam Site

In [ ]:  # datadirectory='/dev/shm/projects/c40lservir/wa/DAMsS1/"
# datefile='S32631X232140Y1614300sS1_A vh 0001 A mtfil.dates'
# imagefile='S32631X232140Y1614300sS1_A vh 0001 A mtfil.vrt'
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HKH Site

In [ ]: | # datadirectory='hkh/time series/S32644X696260Y3052060sS1-EBD'
# datefile='532644X696260Y3052060sS1_D vv_0092 mtfil.dates'
# imagefile='S32644X696260Y3052060sS1_D vv_0092 mtfil.vrt'
# imagefile cross='S32644X696260Y3052060sS1_D vh 0092 mtfil.vrt'

In [3]: # Switch to the data directory
os.chdir(datadirectory)

Acquisition Dates

Read from the Dates file the dates in the time series and make a pandas date index

In [4]: dates=open(datefile).readlines()

tindex=pd.DatetimeIndex(dates)

j=1

print('Bands and dates for', imagefile)

for i in tindex:
print("{:4d} {}".format(j, i.date()),end="' ")
j+=1
if je5==1: print()

Bands and dates for S$32631X402380Y1491460sS1_A vv_0001_A mtfil.vrt

1 2015-04-03 2 2015-11-17 3 2015-11-29 4 2015-12-11 5 2015-12-23
6 2016-01-04 7 2016-01-28 8 2016-02-09 9 2016-03-04 10 2016-03-16
11 2016-03-28 12 2016-04-09 13 2016-04-21 14 2016-05-03 15 2016-05-15
16 2016-05-27 17 2016-06-08 18 2016-07-02 19 2016-07-14 20 2016-07-26
21 2016-08-07 22 2016-08-19 23 2016-08-31 24 2016-09-12 25 2016-09-24
26 2016-10-06 27 2016-10-18 28 2016-10-30 29 2016-11-11 30 2016-11-23
31 2016-12-05 32 2016-12-17 33 2016-12-29 34 2017-01-10 35 2017-01-22
36 2017-02-03 37 2017-02-15 38 2017-02-27 39 2017-03-11 40 2017-03-23
41 2017-04-04 42 2017-04-16 43 2017-04-28 44 2017-05-10 45 2017-05-22
46 2017-06-03 47 2017-06-15 48 2017-06-27 49 2017-07-09 50 2017-07-21
51 2017-08-02 52 2017-08-14 53 2017-08-26 54 2017-09-07 55 2017-09-19
56 2017-10-13 57 2017-10-25 58 2017-11-06 59 2017-11-18 60 2017-11-30

Image data

Get the time series raster stack from the entire training data set.

In [5]: rasterstack=gdal.Open(imagefile).ReadAsArray()

Data Pre-Processing

Plot the global means of the Time Series

1. Conversion to power

2. Compute means

3. Convertto dB

4. Make a pandas time series
5. Plot time series of means
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In [6]: # 1. Conversion to Power
caldB=-83
calPwr = np.power(10.,caldB/10.)
rasterstack_pwr = np.power(rasterstack,2.)*calPwr
# 2. Compute Means
rs_means_pwr = np.mean(rasterstack pwr,axis=(1,2))
# 3. Convert to dB
rs_means_dB = 10.*np.logl0(rs_means_pwr)

In [7]: # 4. Make a pandas time series object
ts = pd.Series(rs_means_dB,index=tindex)

In [8]: # 5. Use the pandas plot function of the time series object to plot
# Put band numbers as data point labels
plt.figure(figsize=(16,8))
ts.plot()
x1 = plt.xlabel('Date')
yl = plt.ylabel('s\overline{\gamma“o}$ [dB]"')
for xyb in zip(ts.index,rs means dB,range(l,len(ts)+1l)):
plt.annotate(xyb[2],xy=xyb[0:2])

¥° [d8]
b
o

-10.0

-10.5

EXERCISE

Look at the global means plot and determine from the tindex array at which dates you see maximum and minimum values. Are relative peaks associated with seasons?
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Generate Time Series for Point Locations or Subsets

In python we can use the matrix slicing rules (Like Matlab) to obtain subsets of the data. For example to pick one pixel at a line/pixel location and obtain all band values,

use:

[ line,pixel] notation.

Or, if we are interested in a subset at an offset location we can use:

[ yoffset:(yoffsettyrange) xoffset:(xoffset+xrange)]

In the section below we will learn how to generate time series plots for point locations (pixels) or areas (e.g. a 55 window region). To show individual bands, we define a
showlmage function which incorporates the matrix slicing from above.

In [9]:

Exercise

def showImage(rasterstack,tindex,bandnbr,subset=None,vmin=None,vmax=None):

P

Input:

rasterstack stack of images in SAR power units
tindex time series date index

bandnbr bandnumber of the rasterstack to dissplay'''
fig = plt.figure(figsize=(16,8))

axl = fig.add subplot(121)

ax2 fig.add subplot(122)

# If vmin or vmax are None we use percentiles as limits:
if vmin==None: vmin=np.percentile(rasterstack[bandnbr-1].flatten(),5)
if vmax==None: vmax=np.percentile(rasterstack[bandnbr-1].flatten(),95)

axl.imshow(rasterstack[bandnbr-1],cmap="gray',vmin=vmin, vmax=vmax)
axl.set title('Image Band {} {}'.format(bandnbr,tindex[bandnbr-1].date()))
if subset== None:

bands,ydim,xdim=rasterstack.shape

subset=(0,0,xdim,ydim)

axl.add patch(patches.Rectangle((subset[0],subset[1]),subset[2],subset[3],fi

ll1=False,edgecolor="red'"))

axl.xaxis.set label text('Pixel')
axl.yaxis.set label text('Line')

ts_pwr=np.mean(rasterstack[:,subset[1]:(subset[1l]+subset[3]),
subset[0]: (subset[0]+subset[2])],axis=(1,2))

ts_dB=10.*np.logl0(ts_pwr)

ax2.plot(tindex,ts_dB)

ax2.yaxis.set label text('$\gamma“o$ [dB]')

ax2.set_title('$\gamma"o$ Backscatter Time Series')

# Add a vertical line for the date where the image is displayed

ax2.axvline(tindex[bandnbr-1],color="'red")

fig.autofmt xdate()

Compare band 24 and band 43 visually
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In [10]: bandnbr=24 #
subset=[5,20,3,3]
# subset=[30,15,3,3]
# subset=[12,10,3,3]

In [11]: showImage(rasterstack pwr,tindex,bandnbr,subset)

Image Band 24 2016-09-12
[ ]

35

In [12]: bandnbr=43

y° Backscatter Time Series

-7

y° [dB]

04 S N > ] N & o »
3 > o Cy Cy o \J ‘) g
ST @ @ @ @ T T

showImage (rasterstack pwr,tindex,bandnbr, subset)

Image Band 43 2017-04-28

35

y° Backscatter Time Series

v° [dB]
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EXERCISE

For subset (5,20,3,3):

1. What are the dates where backscatter falls below - 11 dB?

2. Compute the gradients (backscatter difference between two consecutive dates.
3. What is the largest gradient of backscatter drop between two consecutive dates?
4. What are the dates associated with this gradient (before and after)?

Helper function the generate a time series object

In [13]: def timeSeries(rasterstack pwr,tindex,subset,ndv=0.):

# Extract the means along the time series axes

# raster shape is time steps, lines, pixels.

# With axis=1,2, we average lines and pixels for each time

# step (axis 0)

raster=rasterstack pwr.copy()

if ndv != np.nan: raster[np.equal(raster,ndv)]=np.nan

ts_pwr=np.nanmean(raster[:,subset[1]:(subset[1l]+subset[3]),
subset[0]: (subset[0]+subset[2])],axis=(1,2))

# convert the means to dB

ts_dB=10.*np.logl0(ts_pwr)

# make the pandas time series object

ts = pd.Series(ts_dB,index=tindex)

# return it

return ts

Using the timeSeries(...) function to make a time series object for the chosen subset:

In [14]: ts

Plot the object:

= timeSeries(rasterstack pwr,tindex,subset)

In [15]: _=ts.plot(figsize=(16,4)) # = is a trick to suppress more output.

-7

> s W > s o> (4] s W

¥ » % M v N

ENTER YOUR CODE HERE

In [ ]: # 1.

What are the dates where backscatter falls below - 11 dB?
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In [ ]: # 2. Compute the gradients (backscatter difference
# between two consecutive dates.

# 3. What is the largest gradient of backscatter drop
# between two consecutive dates?

In [ ]: # What are the dates associated with this gradient
# (before and after)

Question: Can you field verify that change occured at this location between these two dates?

Seasonal Subsets of time series records

Let's expand upon SAR time series analysis. Often it is desirable to subset time series by season or months to compare with similar conditions of a previous year's
observation. For example, in analyzing C-Band backscatter data, it might be useful to limit comparative analysis to dry season observations only as soil moisture might
confuse signals during the wet seasons. In this section we will expand upon the concepts of subsetting time series along the time axis. We will make use of the pandas
datatime index tools:

» Month
« Dayofyear

First we extract the time series again for a area at the subset location (5,20,5,5). We then convert the pandas time series to a pandas DataFrame to allow for more
processing options. We also label the data value column as 'g0" for gamma0:

In [16]: subset=(5,20,5,5)
ts = timeSeries(rasterstack pwr,tindex,subset)
tsdf = pd.DataFrame(ts,index=ts.index,columns=['g0'])

# Plot

ylim=(-20,-5)

tsdf.plot(figsize=(16,4))

plt.title('Sentinel-1 C-VV Time Series Backscatter Profile, Subset: 5,20,5,5 ")
plt.ylabel('$\gamma”o$ [dB]")

plt.ylim(ylim)

_=plt.legend(["C-VV Time Series"])

Sentinel-1 C-VV Time Series Backscatter Profile, Subset: 5,20,5,5

=6 1 —— C-VV Time Series
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-10
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-16
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Start the time series in November 2015

We can use the pandas index parameters like month to make seasonal subsets
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In [17]: tsdf subl=tsdf[tsdf.index>'2015-11-01"]

# Plot

tsdf subl.plot(figsize=(16,4))

plt.title('Sentinel-1 C-VV Time Series Backscatter Profile, Subset: {}'.format(s
ubset))

plt.ylabel('$\gamma“o$ [dB]")

plt.ylim(ylim)

_=plt.legend(["C-VV Time Series"])

Sentinel-1 C-VV Time Series Backscatter Profile, Subset: (5, 20, 5, 5)

- —— C-WV Time Series
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Subset by months:

We can make use of pandas DateTimelndex object index.month and numpy's logical_and function to subset a time series easily by month.

March to May data only

In [18]: tsdf_ sub2=tsdf subl][
np.logical and(tsdf subl.index.month>=3,tsdf subl.index.month<=5)]

# Plot

fig, ax = plt.subplots(figsize=(16,4))

tsdf_ sub2.plot(ax=ax)

plt.title('Sentinel-1 C-VV Time Series Backscatter Profile, Subset: {}'
.format (subset))

plt.ylabel('$\gamma”o$ [dB]')

plt.ylim(ylim)

_=plt.legend(["March-May"])

Sentinel-1 C-VV Time Series Backscatter Profile, Subset: (5, 20, 5, 5)
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All other months

Using numpy's boolean invert function, we can invert a selection and in this example get to all other months:
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In [19]: tsdf sub3=tsdf subl[np.invert(

np.logical_ and(tsdf_ subl.index.month>=3,tsdf subl.index.month<=5))]

# Plot

fig, ax = plt.subplots(figsize=(16,4))

tsdf sub3.plot(ax=ax)

plt.title('Sentinel-1 C-VV Time Series Backscatter Profile, Subset: {}'
.format (subset))

plt.ylabel('$\gamma”o$ [dB]")

plt.ylim(ylim)

_=plt.legend(["June-February"])

Sentinel-1 C-VV Time Series Backscatter Profile, Subset: (5, 20, 5, 5)
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Group time series by year to compare average backscatter values

In [20]: ts_sub by year = tsdf_ subl.groupby(pd.Grouper (freg="Y"))

In [21]: fig, ax = plt.subplots(figsize=(16,4))
for label, df in ts_sub by year:
df.g0.plot(ax=ax, label=label.year)
plt.legend()
# ts_sub by year.plot(ax=ax)
plt.title('Sentinel-1 C-VV Time Series Backscatter Profile, Subset: {}'
.format (subset))
plt.ylabel('$\gamma”“o$ [dB]"')
plt.ylim(ylim)

Out[21]: (=20, =5)

Sentinel-1 C-VV Time Series Backscatter Profile, Subset: (5, 20, 5, 5)
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Make a pivot table to group year and sort by day of year for plotting overlapping time series
First we add two coluns to the data frame:

« Day of year (doy)
o Year

In [22]: # Add doy
tsdf subl = tsdf subl.assign(doy=tsdf subl.index.dayofyear)
# Add year
tsdf subl = tsdf subl.assign(year=tsdf subl.index.year)

Then a pivot table gets created which has day of year as the index and years as columns:

In [23]: piv=pd.pivot_table(tsdf subl,index=['doy'],columns=['year'],values=["'g0'])
# Set the names for the column indices
piv.columns.set names(['g0', 'Year'],inplace=True)
print(piv.head(10))

print('...\n',piv.tail(10))

g0 g0

Year 2015 2016 2017

doy

4 NaN -8.874602 NaN

10 NaN NaN -8.091206

22 NaN NaN -8.222770

28 NaN -8.155600 NaN

34 NaN NaN -8.294136

40 NaN -8.695752 NaN

46 NaN NaN -8.402759

58 NaN NaN -10.330054

64 NaN -8.426312 NaN

70 NaN NaN -11.441220

g0 g0
Year 2015 2016 2017
doy

321 -7.774510 NaN NaN
322 NaN NaN -10.665520
328 NaN -8.395135 NaN
333 -8.594952 NaN NaN
334 NaN NaN -10.840596
340 NaN -8.461259 NaN
345 -8.560352 NaN NaN
352 NaN -8.681982 NaN
357 -8.698992 NaN NaN
364 NaN -8.615916 NaN

In [24]: piv.columns.set names(['g0', 'year'],inplace=True)

As we can see, there are NaN (Not a Number) values on the days in a year where no acquisition took place. Now we use time weighted interpolation to fill the dates for all
the observations in any given year. For time weighted interpolation to work we need to create a dummy year as a date index, perform the interpolation, and reset the
index to the day of year. This is accomplished with the following steps:
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In [25]: # Add fake dates for year 100 to enable time sensitive interpolation
# of missing values in the pivot table
year_doy = ['2100-{}'.format(x) for x in piv.index]
y100_doy=pd.DatetimeIndex(pd.to_datetime(year_ doy,format='%Y-%j"))

# make a copy of the piv table and add two columns

piv2=piv.copy()

piv2=piv2.assign(dl100=yl00 _doy) # add the fake year dates
piv2=piv2.assign(doy=piv2.index) # add doy as a column to replace as index later
again

# Set the index to the dummy year
piv2.set _index('d100',inplace=True,drop=True)

# PERFORM THE TIME WEIGHTED INTERPOLATION
piv2 = piv2.interpolate(method='time') # TIME WEIGHTED INTERPOLATION!

# Set the index back to day of year.
piv2.set index('doy',inplace=True,drop=True)

Let's inspect the new pivot table and see wheather we interpolated the NaN values where it made sense:

In [26]: print(piv2.head(10))

print('...\n',piv2.tail(10))
g0 g0

year 2015 2016 2017
doy

4 NaN -8.874602 NaN

10 NaN -8.694852 -8.091206
22 NaN -8.335351 -8.222770
28 NaN -8.155600 -8.258453
34 NaN -8.425676 -8.294136
40 NaN -8.695752 -8.348448
46 NaN -8.628392 -8.402759
58 NaN -8.493672 -10.330054
64 NaN -8.426312 -10.885637
70 NaN -8.506059 -11.441220

g0 g0
year 2015 2016 2017
doy

321 -7.774510 -8.023862 -10.667306
322 -7.842880 -8.076901 -10.665520
328 -8.253101 -8.395135 -10.753058
333 -8.594952 -8.422687 -10.826007
334 -8.592069 -8.428197 -10.840596
340 -8.574769 -8.461259 -10.840596
345 -8.560352 -8.553227 -10.840596
352 -8.641225 -8.681982 -10.840596
357 -8.698992 -8.654455 -10.840596
364 -8.698992 -8.615916 -10.840596

Now we can plot the time series data with overlapping years
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In [27]: piv2.plot(figsize=(16,8))
plt.title('Sentinel-1 C-VV Time Series Backscatter Profile,\
Subset: 5,20,5,5 ")
plt.ylabel('$\gamma”o$ [dB]')
plt.xlabel('Day of Year')
_=plt.ylim(ylim)

Sentinel-1 C-VV Time Series Backscatter Profile,Subset: 5,20,5,5

g0, year

- — (g0, 2015)
(g0, 2016)

— (g0, 2017)

0 50 100 150 200 250 300 350
Day of Year

Change Detection on the Time Series
Data

We can now analyze the time series for change. We will discuss two approaches:
1. Year-to-year differencing of the subsetted time series

2. Cumulative Sum based change detection

In [28]: # Difference between years
# Set a dB change threshold
thres=3

In [29]: diffl716 = (piv2.g0[2017]-piv2.g0[2016])

Year-to-Year Change Detection

We compute the differences between the interpolated time series and look for change with a threshold value.
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In [30]: _=diffl716.plot('line')

2

T T T

0 50 100 156 200 250 300 350
doy

In [31]: thres exceeded = diffl716[abs(diffl1716) > thres]
thres_exceeded

Out[31]: doy

76 -3.081974
82 -3.430615
88 -3.499177
94 -3.527523

100 -3.810760
106 -3.665967
112 -3.248034
118 -3.420952
124 -3.741039
130 -3.782975
136 -3.803250
142 -3.956439
148 -4.003891
154 -3.642117
dtype: float64
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From the three_exceeded dataframe we can infer the first date at which the threshold was exeeded. We would label that as a change point. As an additional criteria for
labeling a change point, one can also consider the number of observations after identification of a change point where backscatter differed from the year before. If only one
or two observations differed from the year before this could be considered an outlier. Addtionally, one can introduce smoothing operations with the interpolation

EXERCISE:

Work through the workbook again with selection of a different point and determine if it is a change point.

Cumulative Sums for Change Detection

Another approach to detect change in regularly acquired data is employing cumulative sums. Changes are determined against mean observations of time series. A full
explanation and examples from the the financial sector can be found at http://www.variation.com/cpa/tech/changepoint.html

Time Series and Means

First let's consider a time series and it's mean observation. We look at two full years of observations from Sentinel-1 data for an area where we suspect change. In the
following we consider X as a time series

X =X,X,...,X,)
with
o X;SARbackscatterattimei = 1,...,n
7. number of observations in the time series
In [32]: subset=(5,20,3,3)
#subset=(12,5,3,3)

tsl = timeSeries(rasterstack pwr,tindex,subset)
X = tsl[tsl.index>'2015-10-31"]

Filtering the time series for outliers

It is advantageous in noisy SAR time series data like C-Band data to filter on the time axis. Pandas offers a "rolling" function for these purposes. With that function we can
choose, for example, a median filter along the time axis. Below is an example of a median filter for an observation filters the time series when the observation before and
after a time stamps are part of the filter.

In [33]: Xr=X.rolling(5,center=True).median()
Xr.plot()
_=X.plot()
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Let's plot the time series and it's mean over the time span

In [34]: X=Xr # Uncomment if rolling mean is wanted for further computation
Xmean = X.mean()

In [35]: fig,ax=plt.subplots(figsize=(16,4))
X.plot()
plt.ylabel('$\gamma”o$ [dB]')
ax.axhline(Xmean,color="'red')
_=plt.legend(['$\gamma”o$"', '$\overline{\gamma”0}$"'1])
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Let's determine the residuals of the time series against the mean

R=X-X

In [36]: R = X - Xmean

Now we compute the cumulative sum of the residuals and plot it:

1
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In [37]: S = R.cumsum()

_=S.plot(figsize=(16,8))

25

An estimator for the magnitude of change is given as the difference between the maximum and minimum value of S

Spirr = Smax — Smin
In [38]: Sdiff=S.max() - S.min()
Sdiff

Out[38]: 30.847062820803558

A candidate change point is identified from the S curve at the time where Syz4x is found:
TCPbLffore = T(Sl = SMAX)
with

. Tcpbefm Timestamp of last observation before change
o S, Cumulative Sumof Rwithi = 1,...n
o 1 Number of observations in the time series

The first observation after change occured (Tcp . ) is then found as the first observation in the time series following Tcpbeﬂm‘ .

uflzr)
For our example time series X these points are:
In [39]: t_cp before = S[S==S.max()].index[0]
print('Last date before change: {}'.format(t_cp before.date()))
Last date before change: 2017-02-15
In [40]: t_cp after = S[S.index > t_cp before].index[0]
print('First date after change: {}'.format(t_cp after.date()))

First date after change: 2017-02-27
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Bootstrapping the cumulative sums by randomly reordering the time series

We can determine if an identified change point is indeed a valid detection by randomly reordring the time series and comparing the various S curves. During bootstrapping
we count how many times the S py - values are greater than S ;g of the identified change point. A confindence level CL is computed as:

random

cL= N

N, bootstraps
with

* Ngr Numberof times Sprrr > Sprrr, 0
o Npoorstraps Number of bootstraps randomizing R

Another metric for the significance of a change point is 1 minus the ratio of the mean of the S pyrr
more significant the change point:

values and S pyrr. The closer this value is approaching 1, the

random

N bootstraps S
C P _ 1 _ b=1 DIFF random, S
significance — DIFF

N, bootstraps

The python code to conduct the boot strapping, including visualization of the S curves is below:

In [41]: n_bootstraps=500 # bootstrap sample size
fig,ax = plt.subplots(figsize=(16,8))
S.plot(ax=ax,linewidth=3)
ax.set_ylabel('Cumulative Sums of the Residuals')
fig.legend(['S Curve for Candidate Change Point'],loc=3)
Sdiff random sum=0
Sdiff random max=0 # to keep track of the maxium Sdiff of the
# bootstrapped sample
n_Sdiff gt Sdiff random=0 # to keep track of the maxium Sdiff of the
# bootstrapped sample
for i in range(n_bootstraps):
Rrandom = R.sample(frac=1) # Randomize the time steps of the residuals
Srandom = Rrandom.cumsum()
Sdiff random=Srandom.max()-Srandom.min()
Sdiff random sum += Sdiff random
if Sdiff random > Sdiff random max:
Sdiff random max = Sdiff random
if sdiff > Sdiff_ random:
n_Sdiff gt Sdiff random += 1
Srandom.plot (ax=ax)
_=ax.axhline(Sdiff_ random sum/n_bootstraps)
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In [42]:

In [43]:

Cumulative Sums of the Residuals

-20

== S Curve for Candidate Change Point

CL = 1.*n_Sdiff gt _Sdiff random/n_bootstraps
print('Confidence Level for change point {} percent'.format(CL*100.))

Confidence Level for change point 100.0 percent

CP_significance = 1. - (Sdiff_random sum/n_bootstraps)/Sdiff
print('Change point significance metric: {}'.format(CP_significance))

Change point significance metric: 0.5910152452854309

Another useful metric to determine strength of a change point is the normalized integral S,; of the absolute values of the S curve:

Snnrmintegral =

In [44]:

abs(S;)

/n
=1 max abs(S)

n

# NaN's to be excluded in the computation
S ni=(S.abs()/S.abs().max()).cumsum().max()/len(S[S != np.nan])
print('Normalized Integral of cumulative sum: {}'.format(S_ni))

Normalized Integral of cumulative sum: 0.3741739515908098
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EXERCISE

Conduct the change point analysis for different subsets in the traning data

Selection of threshold values

CL and CPgignificance can be used as threshold values for the acceptance or rejection of a candidate threshold. These values are to some degree specific to a SAR
sensor and environmental conditions. E.g. L-Band SAR has a more pronounced decrease in backscatter after forest disturbance and logging, whereas C-Band can have more
ambigious signals. Also moisture regime changes, e.g. with snow cover, freeze/thaw conditions or dry/wet season changes have an influence on the time series signal. For
example El Nino years can suggest changes solely due to different wetting and dryup conditions pertinent to a particular year. For this reason other techniques can be added
to the SAR time series ananlysis. Two techniques can readily be thought of:

« Subsetting of time series by seasons
« Detrending time series with global image means

If year-to-year comparison is the focus, the first approach likely leads to subsets that are too small for meaningful cumulative sum change point detection. The approach of
interannual differencing as discussed above likely performs better.

In the following we explore the approach to detrend the data with global image means.

De-trending time series with global image means

The idea of de-trending time series with global image means should prepare time series for a somewhat more robust change point detection as global image time series
anomalies stemming calibration or seasonal trends are removed prior to time series analysis. This de-trending needs to be performed with large subsets so real change is
not influencing the image statistics.

NOTE: For our small subset, we will see some of these effects.

Let's start by building a global image means time series:

In [45]: means_pwr = np.mean(rasterstack pwr,axis=(1,2))
means_dB = 10.*np.logl0(means_pwr)
gm_ts = pd.Series(means_dB, index=tindex)
gm_ts=gm_ts[gm ts.index > '2015-10-31'] # filter dates
gm_ts=gm_ts.rolling(5,center=True).median()
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In [46]:

out[46]:

In [47]:

out[47]:

In [48]:

out[48]:

In [49]:

gm_ts.plot()

<matplotlib.axes._ subplots.AxesSubplot at 0x128525518>
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X.plot()

<matplotlib.axes. subplots.AxesSubplot at 0x12854aa90>
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Xd=X-gm_ts
Xmean=Xd.mean()
Xd.plot()

<matplotlib.axes._ subplots.AxesSubplot at 0x128576278>
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Now we compute the cumulative sum of the residuals and plot it:
n

S = Z Ri
1

In [50]: S = R.cumsum()

_=S.plot(figsize=(16,8))

25
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An estimator for the magnitude of change is given as the difference between the maximum and minimum value of S

Spirr = Suax — Smin

In [51]: Sdiff=S.max() - S.min()
Sdiff

Out[51]: 30.765903052062484

A candidate change point is identified from the ' curve at the time where S5,74x is found:
TCP,,efm.e =T(S; = Suax)
with

s Tcp,, e Timestamp of last observation before change
o §; Cumulative Sumof Rwithi = 1,...n
1 Number of observations in the time series

The first observation after change occured (Zcp, ) is then found as the first observation in the time series following T'cp,, .-

For our example time series X these points are:

K A°
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In [52]: t_cp before = S[S==S.max()].index[0]
print('Last date before change: {}'.format(t_cp before.date()))

Last date before change: 2017-02-15

In [53]: t_cp after = S[S.index > t_cp before].index[0]
print('First date after change: {}'.format(t_cp_ after.date()))

First date after change: 2017-02-27

Cumulative Sum Change Detection for the entire image

With numpy arrays we can apply the concept of cumulative sum change detection analysis effectively on the entire image stack. We take advantage of array slicing and axis-
based computing in numpy. Axis 0 is the time domain in our raster stacks

In [58]: # Can do this in power or dB scale
X = rasterstack pwr
# Filter out the first layer ( Dates >= '2015-11-1")
X _sub=X[1l:,:,:]
tindex sub=tindex[1:]
X= 10.*np.logl0(X_sub) # Uncomment to test dB scale

In [59]: plt.figure()
#Indicate the band number
bandnbr=0
vmin=np.percentile(X[bandnbr],5)
vmax=np.percentile(X[bandnbr],95)
plt.title('Band {} {}'.format(bandnbr+l,tindex_sub[bandnbr].date()))
plt.imshow(X[0],cmap='gray',vmin=vmin, vmax=vmax)
_=plt.colorbar()

Band 1 2015-11-17

10 20 30 40
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In [60]: Xmean=np.mean(X,axis=0)
plt.figure()
plt.imshow(Xmean,cmap="gray')

Out[60]: <matplotlib.image.AxesImage at 0x128a80908>

In [61]: #
X.shape

Out[61]: (59, 38, 44)

In [62]: R=X-Xmean

In [63]:  #Create an image that spatially displays the residuals (R)
plt.imshow(R[0])

plt.title('Residuals’)
_=plt.colorbar()

Residuals

0 3.0
5 2.5
10 2.0
15 1.5
20 1.0
25 0.5
30 0.0
35 -8.5
0 10 20 30 40
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In [64]: S = np.cumsum(R,axis=0)
Smax= np.max(S,axis=0)
Smin= np.min(S,axis=0)
Sdiff=Smax-Smin
fig,ax=plt.subplots(1l,3,figsize=(16,4))
vmin=Smin.min()
vmax=Smax.max()
p=ax[0].imshow(Smax,vmin=vmin, vmax=vmax)
ax[0].set_title('$S_{max}s$')
ax[1].imshow(Smin,vmin=vmin, vmax=vmax)
ax[l].set_title('$S_{min}s$")
ax[2].imshow(Sdiff,vmin=vmin, vmax=vmax)
ax[2].set_title('$S_{diff}s$')
fig.subplots_adjust(right=0.8)
cbar ax = fig.add axes([0.85, 0.15, 0.05, 0.71])
_=fig.colorbar(p,cax=cbar_ax)

Smax

Mask Sdiff with a priori threshold for expected change

If we have an assumption as to how much actual change we expect in the image, we can threshold S ;¢ to reduce computation of the bootstrapping. For land cover
change we would not expect more than 5-10% change in a landscape. So, if the test region is reasonably large, setting a threshold for expected change to 10% would be
appropriate. Thus we can set a mask with the 90th percentile of the histogram of S ;¢ . In our example we'll start out with a very conservative threshold of 50%.

The histogram for S ¢z is shown below:
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In [65]: #Display the Sdiff histogram
precentile=50
fig,ax=plt.subplots()
h=ax.hist(Sdiff.flatten(),bins=50)
thres=np.percentile(h[1],50)
print('At the {}% percentile, the threshold value is {:2.2f}'.format(precentile,
thres))
_=ax.axvline(thres,color="red")

At the 50% percentile, the threshold value is 19.82

At the 50% percentile, the threshold value is ____ (printed above the histogram)

Using this threshold, we can visualize the candidate changepoints:

In [66]: Sdiffmask=Sdiff<thres
_=plt.imshow(Sdiffmask,cmap="gray"')
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Now we can filter our Residuals and perform bootstrapping analysis on these data. We make use of numpy masked arrays for this purpose.
In [67]: Rmask = np.broadcast_ to(Sdiffmask,R.shape)

In [68]: Rmasked = np.ma.array(R,mask=Rmask)
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On the masked time series stack of residuals we can compute the cumulative sums:

In [69]:

Smasked = np.ma.cumsum(Rmasked,axis=0)

Suiax, Syn. Sprrr can also be computed on the masked arrays :

In [70]:

Out[70]:

In [71]:

plt.imshow(Rmasked.mask[0],cmap="gray"')

<matplotlib.image.AxesImage at 0x127cb1390>
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e |
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Smasked = np.ma.cumsum(Rmasked,axis=0)

Smasked max= np.ma.max(Smasked,axis=0)

Smasked min= np.ma.min(Smasked,axis=0)
Smasked_diff=Smasked max-Smasked min
fig,ax=plt.subplots(1l,3,figsize=(16,4))
vmin=Smasked min.min()

vmax=Smasked max.max()

p=ax[0].imshow(Smasked max,vmin=vmin,vmax=vmax)

ax[0].
ax[1l].
ax[1l].
ax[2].
ax[2].

set_title('$S_ {max}s$')

imshow(Smasked min,vmin=vmin,vmax=vmax)
set_title('$S_{min}s$"')

imshow(Smasked diff,vmin=vmin,vmax=vmax)
set_title('$S_{diff}s$")

fig.subplots_adjust(right=0.8)
cbar ax = fig.add axes([0.85, 0.15, 0.05, 0.71])

_=fig.colorbar(p,cax=cbar_ax)
Smax Smin Saiff
0 0
] 5 [ 5 [

10 10 10 ’_,—‘
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Bootstrapping over the masked change point candidates

We can now perform the bootstrapping analysis over the not masked out values. For efficient computing we permutate the index of the time axis.

In [72]: random_ index=np.random.permutation(Rmasked.shape[0])
Rrandom=Rmasked[random index,:,:]

fig,ax=plt.subplots(1l,2,figsize=(8,4))
ax[0].imshow(Rmasked[0])
ax[0].set_title('Band 0')
ax[1l].imshow(Rrandom[0])
_=ax[l].set_title('Band 0 Randomized')

Band @ Band @ Randomized

0 1 TR 0 = ]
5 F 5 1 F

10 4 10

15 4 15

20 1 20 1

25 1 25 1

30 41 . 30 4

35 1 ':=Il 35 1

0 10 20 @ 0 1 20 4
In [73]: Smasked max=np.ma.max(Smasked,axis=0)

Below is the numpy based implementation of the bootstrapping over all pixels. Note the efficient implementation using nympy masked arrays.

In [74]: n_bootstraps=1000 # bootstrap sample size

# to keep track of the maxium Sdiff of the bootstrapped sample:
Sdiff random max = np.ma.copy(Smasked diff)
Sdiff random max[~Sdiff random max.mask]=0
# to compute the Sdiff sums of the bootstrapped sample:
Sdiff random sum = np.ma.copy(Smasked diff)
Sdiff random sum[~Sdiff random max.mask]=0
# to keep track of the count of the bootstrapped sample
n_Sdiff gt Sdiff random = np.ma.copy(Smasked diff)
n Sdiff gt Sdiff random[~n_Sdiff gt Sdiff random.mask]=0
for i in range(n_bootstraps):
# For efficiency, we shuffle the time axis index and use that
#to randomize the masked array
random_index=np.random.permutation(Rmasked.shape[0])
# Randomize the time step of the residuals
Rrandom = Rmasked[random index,:,:]
Srandom = np.ma.cumsum(Rrandom,axis=0)
Srandom max=np.ma.max(Srandom,axis=0)
Srandom min=np.ma.min(Srandom,axis=0)
Sdiff random=Srandom max-Srandom min
Sdiff random sum += Sdiff random
Sdiff random max[np.ma.greater(Sdiff random,Sdiff random max) ]=\
Sdiff random[np.ma.greater(Sdiff random,Sdiff random max) ]
n _Sdiff gt Sdiff random[np.ma.greater(Smasked diff,Sdiff random)] += 1
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Now we can compute for all pixels the confidence level CL, the change point significance metric $CP_{significance} and the product of the two as our confidence metric
for identified changepoints.

In [75]: CL = n_Sdiff gt Sdiff random/n_bootstraps
CP_significance = 1.- (Sdiff random sum/n_bootstraps)/Sdiff
#Plot
fig,ax=plt.subplots(1l,3,figsize=(16,4))

a = ax[0].imshow(CL*100)
fig.colorbar(a,ax=ax[0])
ax[0].set_title('Confidence Level %')
a = ax[1l].imshow(CP_significance)
fig.colorbar(a,ax=ax[1])
ax[l].set_title('Significance')

a = ax[2].imshow(CL*CP_significance)
fig.colorbar(a,ax=ax[2])
_=ax[2].set_title('CL x S')
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Now if we were to set a threshold of 0.5 for the product as identified change our change map would look like the following figure:
In [76]: cp_thres=0.5

In [77]: plt.imshow(CL*CP_significance < cp_thres,cmap='cool')

Out[77]: <matplotlib.image.AxesImage at 0x126bf49e8>

0 - "
5] [

Our last step is the idenficiaton of the change points is to extract the timing of the change. We will produce a raster layer that shows the band number of this first date after
detected change. We will make use of the numpy indexing scheme. First, we create a combined mask of the first threshold and the identified change points after the
bootstrapping. For this we use the numpy "mask_or" operation.
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In [78]: # make a mask of our change points from the new threshold and the previous mask
cp_mask=np.ma.mask or(CL*CP_significance<cp_ thres,CL.mask)
# Broadcast the mask to the shape of the masked S curves
cp_mask2 = np.broadcast to(cp_mask,Smasked.shape)
# Make a numpy masked array with this mask
CPraster = np.ma.array(Smasked.data,mask=cp _mask2)

To retrieve the dates of the change points we find the band indices in the time series along the time axis where the the maximum of the cumulative sums was located.
Numpy offers the "argmax" function for this purpose.

In [79]: CP_index= np.ma.argmax(CPraster,axis=0)
change indices = list(np.unique(CP_index))
change indices.remove(0)
print(change indices)
# Look up the dates from the indices to get the change dates
alldates=tindex[tindex>'2015-10-31"]
change dates=[str(alldates[x+1l].date()) for x in change indices]
print(change dates)

[2, 27, 28, 29, 32, 33, 34, 35, 36]
['2015-12-23"', '2016-11-23', '2016-12-05', '2016-12-17', '2017-01-22"', '2017-02-
03', '2017-02-15"', '2017-02-27', '2017-03-11"]

Lastly, we visualize the change dates by showing the CP_index raster and label the change dates.

In [80]: ticks=change indices
ticklabels=change_ dates

cmap=plt.cm.get cmap( 'magma’,ticks[-1])

fig, ax = plt.subplots(figsize=(8,8))

cax = ax.imshow(CP_index,interpolation='nearest',cmap=cmap)
# fig.subplots adjust(right=0.8)

# cbar ax = fig.add axes([0.85, 0.15, 0.05, 0.7])

# fig.colorbar(p,cax=cbar_ax)

ax.set_title('Dates of Change')

# cbar = fig.colorbar(cax,ticks=ticks)
cbar=fig.colorbar(cax,ticks=ticks,orientation="horizontal')
_=cbar.ax.set_xticklabels(ticklabels,size=10,rotation=45,ha="right")

Dates of Change
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Secondary Change Points

After detection of a change point in the time series we can split the series in before and after change subsets. For forest degradation or deforestation detection for example
this could apply when over the course of a multi-year time series selective logging precedes a clearing event or conversion of a logged plot to agriculture or regrowth, which
show typically different time series profiles of radar backscatter. The approach to detect secondary change points would be to repeat analysis of the time series split into
before and after change point detection.

Conclusion

Pandas and numpy are powerful open source scripting tools to implement change point detection on large data stacks. For image based analysis numpy offers more
efficient implementations compared to pandas, whereas pandas is more powerful in date time processing, e.g. time-weighted interpolation.

Solutions

In [ ]: # 1.
ts[ts<-11].index

In [ ]: # 2.
gradient lagl = ts.diff(1)
gradient_lagl.plot()

In [ ]: # 3.
gradient_lagl.min()

In [ ]: # 4.
gradient_lagl[gradient lagl==gradient lagl.min()]

In [ ]: before = gradient lagl[gradient lagl==gradient lagl.min()].index[0]
before

In [ ]: after=tindex[tindex>before][0]
after
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SAR Training Workshop for Forest Applications
PART 5 - SAR/Optical (NDVI) Time Series Analysis

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

In this chapter we compare time series data of C-band Backscatter and Landsat 8 Normalized Difference Vegetation Index (NDVI) over a forested site in Southern Niger.

In [1]: # Importing relevant python packages
import pandas as pd
import gdal
import numpy as np
import time,os
from skimage import exposure # to enhance image display

# For plotting

¢matplotlib inline

import matplotlib.pylab as plt
import matplotlib.patches as patches
import matplotlib.cm as cm

font = {'family' : 'monospace'’,
'weight' : 'bold',
'size' : 18}

plt.rc('font',**font)

# Define a helper function for a 4 part figure with backscatter, NDVI and False
Color Infrared

def ebd plot(bandnbrs):

fig,ax=plt.subplots(2,2,figsize=(16,16))

# Bands for sentinel and landsat:

# Sentinel VV

sentinel vv=img handle[0].GetRasterBand(bandnbrs[0]).ReadAsArray(*subset sen
tinel)

sentinel vv=20.*np.logl0(sentinel vv)-83 # Covert to dB

# Sentinel VH

sentinel vh=img handle[1l].GetRasterBand(bandnbrs[0]).ReadAsArray(*subset sen
tinel)

sentinel vh=20.*np.logl0(sentinel vh)-83 # Covert to dB

# # Landsat False Color InfraRed

r=img handle[5].GetRasterBand(bandnbrs[1]).ReadAsArray(*subset landsat)/1000

0.

g=img handle[4].GetRasterBand(bandnbrs[1]).ReadAsArray(*subset landsat)/1000
0.

b=img handle[3].GetRasterBand(bandnbrs[1]).ReadAsArray(*subset landsat)/1000
0.

fcir=np.dstack((r,g,b))

for i in range(fcir.shape[2]):
fcir[:,:,1i] = exposure.\
equalize_ hist(fcir[:,:,1i],
mask=~np.equal (fcir[:,:,1],-.9999))
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# Landsat NDVI
landsat ndvi=img handle[2].GetRasterBand(bandnbrs[1]).ReadAsArray(*subset la

ndsat)

mask=landsat ndvi==-9999

landsat_ndvi = landsat_ndvi/10000. # Scale to real NDVI value

landsat ndvi[mask]=np.nan

svv = ax[0][0].imshow(sentinel vv,cmap='jet',vmin=np.nanpercentile(sentinel

VV,5),

vmax=np.nanpercentile(sentinel vv,95))
cb = fig.colorbar(svv,ax=ax[0][0],orientation="horizontal')
cb.ax.set_title('C-VV $\gamma“o$ [dB]')
svh = ax[0][1].imshow(sentinel vh,cmap='jet',vmin=np.nanpercentile(sentinel

vh,5),

vmax=np.nanpercentile(sentinel_vh,95))
cb = fig.colorbar(svh,ax=ax[0][1],orientation="horizontal')
cb.ax.set_title('C-VH $\gamma“o$ [dB]')

nvmin=np.nanpercentile(landsat_ndvi,5)
nvmax=np.nanpercentile(landsat_ndvi, 95)

# nvmin=-1

# nvmax=1

nax = ax[1][0].imshow(landsat ndvi,cmap='jet',vmin=nvmin,
vmax=nvmax)

cb = fig.colorbar(nax,ax=ax[1][0],orientation="horizontal')

cb.ax.set_title('NDVI')

fc= ax[1][1].imshow(fcir)
# cb = fig.colorbar(fc,cmap=cm.gray,ax=ax[1][1],orientation="horizontal')
# cb.ax.set title('False Color Infrared')

ax[0][0].axis('off")
ax[0][1l].axis('off")
ax[1l][0].axis('off")
ax[1l][1l].axis('off")
ax[0][0].set_title('Sentinel-1 C-VV {}'.format(stindex[bandnbrs[0]-1].date
ax[0][1l].set_title('Sentinel-1 C-VH {}'.format(stindex[bandnbrs[0]-1].date
ax[1][0].set_title('Landsat-8 NDVI {}'.format(ltindex[bandnbrs[1l]-1].date

ax[1][1l].set_title('Landsat-8 False Color IR {}'.format(ltindex[bandnbrs[1l]-

1].date()))

_=fig.suptitle('Sentinel-1 Backscatter and Landsat NDVI and FC IR',size=16)
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Set Project Directory and Filenames
West Africa - Biomass Site

In [2]:

In [3]:

datadirectory='C:\\Users\\loaner.SERVIRLOAN-5057.001\\Downloads\\BIOsS1"'
#datadirectory="'/dev/shm/projects/c40lservir/wa/BIOsS1'

sentinell datefile='S32631X398020Y1315440sS1 A vv_0001 mtfil.dates'
sentinell_ imagefile='S32631X398020Y1315440sS1_A vv_0001_mtfil.vrt'
sentinell imagefile cross='S532631X398020Y1315440sS1_A vh 0001 mtfil.vrt'
landsat8_ndvi='landsat/L8_192_052_NDVI.vrt'

landsat8 b3='landsat/L8_192 052 B3.vrt'
landsat8_b4='landsat/L8_192_052_B4.vrt'

landsat8 b5='landsat/L8_ 192 052 B5.vrt'

landsat8 datefile='landsat/L8 192 052 NDVI.dates'

# Switch to the data directory
os.chdir(os.path.join(datadirectory))

Acquisition Dates

Read from the Dates file the dates in the time series and make a pandas date index

In [4]:

sdates=open(sentinell datefile).readlines()
stindex=pd.DatetimeIndex(sdates)

j=1

print('Bands and dates for',sentinell imagefile)
for i in stindex:

print("{:4d} {}".format(j, i.date()),end="' ")
j+=1
if j%5==1: print()
Bands and dates for S532631X398020Y1315440sS1_A vv_0001_mtfil.vrt

1 2015-03-22 2 2015-04-03 3 2015-04-15 4 2015-05-09 5 2015-05-21

6 2015-06-02 7 2015-06-14 8 2015-06-26 9 2015-07-08 10 2015-07-20
11 2015-08-01 12 2015-08-13 13 2015-08-25 14 2015-09-06 15 2015-09-18
16 2015-09-30 17 2015-10-12 18 2015-10-24 19 2015-11-17 20 2015-11-29
21 2015-12-11 22 2015-12-23 23 2016-01-04 24 2016-01-28 25 2016-02-09
26 2016-03-04 27 2016-03-16 28 2016-03-28 29 2016-04-09 30 2016-04-21
31 2016-05-03 32 2016-05-15 33 2016-05-27 34 2016-06-08 35 2016-07-02
36 2016-07-14 37 2016-07-26 38 2016-08-07 39 2016-08-19 40 2016-08-31
41 2016-09-12 42 2016-09-24 43 2016-10-06 44 2016-10-18 45 2016-10-30
46 2016-11-11 47 2016-11-23 48 2016-12-05 49 2016-12-17 50 2016-12-29
51 2017-01-10 52 2017-01-22 53 2017-02-03 54 2017-02-15 55 2017-02-27
56 2017-03-11 57 2017-03-23 58 2017-04-04 59 2017-04-16 60 2017-04-28
61 2017-05-10 62 2017-05-22 63 2017-06-03 64 2017-06-15 65 2017-06-27
66 2017-07-09 67 2017-07-21 68 2017-08-02 69 2017-08-14 70 2017-08-26
71 2017-09-07 72 2017-09-19 73 2017-10-13 74 2017-10-25 75 2017-11-06
76 2017-11-18 77 2017-11-30
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In [5]: ldates=open(landsat8 datefile).readlines()

ltindex=pd.DatetimeIndex(ldates)

j=1

print('Bands and dates for',landsat8 ndvi)

for i in ltindex:
print("{:4d} {}".format(j, i.date()),end="' ")
J+=1
if j%5==1: print()

Bands and dates for landsat/L8_192_ 052_NDVI.vrt

1 2015-01-13 2 2015-01-29 3 2015-02-14 4 2015-03-18 5 2015-04-03
6 2015-04-19 7 2015-05-05 8 2015-05-21 9 2015-06-06 10 2015-06-22
11 2015-07-08 12 2015-07-24 13 2015-08-09 14 2015-08-25 15 2015-09-10
16 2015-09-26 17 2015-10-12 18 2015-10-28 19 2015-11-13 20 2015-11-29
21 2015-12-15 22 2015-12-31 23 2016-01-16 24 2016-02-01 25 2016-02-17
26 2016-03-04 27 2016-03-20 28 2016-04-05 29 2016-04-21 30 2016-05-07
31 2016-05-23 32 2016-06-08 33 2016-06-24 34 2016-07-10 35 2016-07-26
36 2016-08-11 37 2016-08-27 38 2016-09-12 39 2016-09-28 40 2016-10-14
41 2016-10-30 42 2016-11-15 43 2016-12-01 44 2016-12-17 45 2017-01-02
46 2017-01-18 47 2017-02-03 48 2017-02-19 49 2017-03-07 50 2017-03-23
51 2017-04-08 52 2017-04-24

Projection and Georeferencing Information of the SAR and Optical
Time Series Data Stacks

For processing of the imagery in this notebook we generate a list of image handles and retrieve projection and georeferencing information. We print out the retrieved
information.

In [6]: imagelist=[sentinell imagefile,sentinell imagefile cross,landsat8 ndvi,landsat8_

b3,landsat8_b4,landsat8 b5]

geotrans=[ ]

proj=[1]

img handle=[]

xsize=[]

ysize=[]

bands=[]

for i in imagelist:
img handle.append(gdal.Open(i))
geotrans.append(img handle[-1].GetGeoTransform())
proj.append(img _handle[-1].GetProjection())
xsize.append(img handle[-1].RasterXSize)
ysize.append(img_handle[-1].RasterYSize)
bands.append(img_handle[-1].RasterCount)

# for i in proj:

# print(i)

# for i in geotrans:

# print(i)

# for i in zip(['C-VV', 'C-VH', 'NDVI', 'B3','B4', 'B5'],bands,ysize,xsize):

# print(i)
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Display SAR and NDVI Images

First, depending on the capacity of the computer we might want to define a subset. We will choose the subset in the raster extension of the Sentinel-1 Image and use the
geotransformation information to extract the corresponding subset in the Landsat Image. We assume that the images have the same upper left coordinate. The we can
compute the offsets and extent in the Landsat image as follows:

X __ XI€Ssentinel-1
cal XTeSiandsar

y __ YreSsentinel-1
cal YreSiandsat

We can use these calibration factors to get the landsat subset as follows:

* xofflandsat = xOff;'entinel—l X Xcal
* yofﬁandsat = yoffsentinel—l X Yeal
* XSiZ€landsar = XSIZsentinel—1 X Xcal
* YSiZ€landsar = YSiZ€sentinel-1 X Yeal

(xoffset,yoffset,xsize,ysize)

In [7]: subset sentinel=None
subset_sentinel=(570,40,500,500) # Adjust or comment out if you don't want a su
bset
if subset sentinel == None:

subset_sentinel=(0,0,img handle[0].RasterXSize,img handle[0].RasterYSize)

subset_ landsat=(0,0,img handle[2].RasterXSize,img handle[2].Raster¥YSize)
else:

xoff,yoff,xsize,ysize=subset sentinel

xcal=geotrans[0][1l]/geotrans[2][1]

ycal=geotrans[0][5]/geotrans[2][5]

subset landsat=(int(xoff*xcal),int(yoff*ycal),int(xsize*xcal),int(ysize*ycal

))

print('Subset Sentinel-1',6subset sentinel, '\nSubset Landsat ' ,subset_landsat)

Subset Sentinel-1 (570, 40, 500, 500)
Subset Landsat (380, 26, 333, 333)
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Now we can pick the bands and plot the Sentinel-1 and Landsat NDVI images of the subset. Change the band numbers to the bands we are interested in.

Dry Season Plot

In [8]: # Dry season plot
bandnbrs=(24,24)
ebd_plot(bandnbrs)

Sentinel-1 Backscatter and Landsat NDVI and FC IR

-01-28

g@f

Sentinel-1 C-VV 2016-01-28
P U ioT =

Sent

inel-1 C-VH 2016
SRR 3

Landsat-8 NDVI 2016-02-01
AT S R
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Wet Season Plot

In [9]: # Wet season plot
bandnbrs=(40,37)
ebd_plot(bandnbrs)

Sentinel-1 Backscatter and Landsat NDVI and FC IR

C-W y° [dB] C-VH y° [dB]
-11.0 -10.5 -10.0 9.5 9.0 -8.5 -8.0 -17.5 -17.0 -16.5 -16.0 -15.5 -15.0 -14.5 -14.0
Landsat-8 NDVI 2016-08-27 Landsat-8 False Color IR 2016-68-27

0.10

In the figure above, for band 24 of Sentinel-1 and 24 of NDVI, which was acquired three days after the Sentinel-1image, there is an inverse relationship. Where Sentinel-1
exhibits low backscatter, NDVI shows relatively higher NDVI. What are the reasons for this in this environment?

Exercise

Pick different bands to compare. Look at the list of the dates for SAR data and Landsat data acquisitions in the above. One good option is to compare bands from the dry
and wet seasons 2016.
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Time Series Profiles of C-Band Backscatter and NDVI

We compute the image means of each time step in the time series stack and plot them together.

Prepare Sentinel-1 and NDVI Data stacks

Sentinel time series stack

In [10]: caldB=-83
calPwr = np.power(10.,caldB/10.)

s_ts=[]
for idx in (0,1):
means=[ ]

for i in range(bands[idx]):

rs=img handle[idx].GetRasterBand(i+1l).ReadAsArray(*subset_sentinel)

# 1. Conversion to Power

rs_pwr=np.power(rs,2.)*calPwr

rs_means pwr = np.mean(rs_pwr)

rs_means_dB = 10.*np.logl0(rs_means_ pwr)

means.append(rs_means_dB)
s_ts.append(pd.Series(means,index=stindex))

Landsat NDVI time series stack

In [11]: means=[]
idx=2
for i in range(bands[idx]):
r=img_handle[idx].GetRasterBand(i+1l).ReadAsArray(*subset landsat)
means.append(r[r!=-9999].mean()/10000.)
1 ts=pd.Series(means,index=1tindex)

Joint Plot of SAR Backscatter and NDVI of Image Subset Means

Now we plot the time series of the SAR backscatter and NDVI values scaled to the same time axis. We also show the time stamps for the images we display above.

THE SAR HANDBOOK



In [12]: fig, ax = plt.subplots(2,1,figsize=(16,8))
# axl.plot(s_ts.index,s ts.values, 'r-'")
s_ts[0].plot(ax=ax[0],color="red',label="'C-VV',xlim=(min(min(ltindex),min(stinde
X)),
max(max(ltindex),max(stinde
x))))
s_ts[1l].plot(ax=ax[0],color="blue',label="C-VH")
ax[0].set_xlabel('Date')
ax[0].set_ylabel('Sentinel-1 $\gamma“o$ [dB]')

# Make the y-axis label, ticks and tick labels match the line color. axl.set yla
bel('exp', color='b")
# axl.tick params('y', colors='b')
# ax[1] = axl.twinx()
# s ts.plot(ax=ax[1],share=ax[0])
1 ts.plot(ax=ax[1l],sharex=ax[0],label="NDVI',xlim=(min(min(ltindex),min(stindex
),

max (max(ltindex),max(stinde
x))),ylim=(0,0.75))
# ax[1].plot(l ts.index,l ts.values,color='green',label='NDVI'")
ax[l].set_ylabel('NDVI')
ax[0].set_title('Sentinel-1 Backscatter')
ax[l].set_title('Landsat NDVI')

ax[0].axvline(stindex[bandnbrs[0]-1],color="cyan',6label="Sent. Date')
ax[l].axvline(ltindex[bandnbrs[1]-1],color="'green',label='NDVI Date')
_=fig.legend(loc='center right')

_=fig.suptitle('Time Series Profiles of Sentinel-1 SAR Backscatter and Landsat-8
NDVI ')

# fig.tight layout()

Time Series Profiles of Sentinel-1 SAR Backscatter and Landsat-8 NDVI
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Comparison of time series profiles at point locations.
We will pick a pixel location in the SAR image, find the corresponding location in the Landsat NDVI stack and plot the joint time series.
First let's pick a pixel location in the SAR image (i.e. the reference image)

We use the geotrans info to find the same location in the Landsat image

160

THE SAR HANDBOOK



In [13]:

sarloc=(2000,2000)

ref x=geotrans[0][0]+sarloc[0]*geotrans[0][1]

ref y=geotrans[0][3]+sarloc[l]*geotrans[0][5]

print('UTM Coordinates ',ref x,ref y)

print('SAR pixel/line ',sarloc[0],sarloc[1])

target pixel=round((ref x-geotrans[2][0])/geotrans[2][1])
target line=round((ref y-geotrans[2][3])/geotrans[2][5])

print('Landsat pixel/line ', target_pixel,target line)
UTM Coordinates 438020.0 1350960.0
SAR pixel/line 2000 2000

Landsat pixel/line 1333 1334

Read the image data at these locations

In [14]:

s_ts_pixel=[]
for idx in (0,1):
means=[ ]
for i in range(bands[idx]):
rs=img handle[idx].GetRasterBand(i+1l).ReadAsArray(*sarloc,6,6)
# 1. Conversion to Power
rs_pwr=np.power(rs,2.)*calPwr
rs_means_pwr = np.mean(rs_pwr)
rs_means_dB = 10.*np.logl0(rs_means_ pwr)
means.append(rs_means_dB)
s_ts_pixel.append(pd.Series(means,index=stindex))

means=[ ]
idx=2
for i in range(bands[idx]):

r=img handle[idx].GetRasterBand(i+1l).ReadAsArray(target pixel,target line,4,

4)
means.append (np.nanmean(r)/10000.)
1 ts_pixel=pd.Series(means,index=1ltindex)
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Plot the joint time series.

In [15]: fig, ax = plt.subplots(2,1,figsize=(16,8))
# axl.plot(s_ts.index,s ts.values, 'r-'")
s_ts[0].plot(ax=ax[0],color="red',label="'C-VV',xlim=(min(min(ltindex),min(stinde
X)),
max(max(ltindex),max(stinde
x))))
s_ts _pixel[l].plot(ax=ax[0],color="blue',label="C-VH")
ax[0].set_xlabel('Date')
ax[0].set_ylabel('$\gamma“o$ [dB]")

# Make the y-axis label, ticks and tick labels match the line color. axl.set yla
bel('exp', color='b")
# axl.tick params('y', colors='b')
# ax[1] = axl.twinx()
# s ts.plot(ax=ax[1],share=ax[0])
1 ts_pixel.plot(ax=ax[1l],sharex=ax[0],label="NDVI',xlim=(min(min(ltindex),min(st
index)),
max(max(ltindex),max(stinde
x))))
# ax[1].plot(l ts.index,]l ts.values,color='green',label='NDVI')
ax[l].set_ylabel('NDVI')
ax[0].set_title('Sentinel-1 Backscatter')
ax[1l].set_title('Landsat NDVI')
_=ax[0].legend(loc="upper left')
_=ax[1l].legend(loc="upper left')
# fig.tight layout()

Sentinel-1 Backscatter

— W
8{— CW

v [d8]

Landsat NDVI

—— NVI

Interpret these time series profiles. While generally the seasonal trends are visible in both like (VW) and cross-polarized (VH) data, and correlate well with the NDVI temporal
profile, the cross-polarized response is less pronounced at the example pixel location UTM Coordinates Zone 31N 438020.0 1350960.0.

EXERCISE

Pick different pixel locations and replot the figure above. Interpret the result with respect to forest, non-forest, deforestation and forest degradation signatures. In your
interpretation look for image signals of strong rain events in the SAR data and cloud covered scenes in the Landsat imagery.
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SAR Training Workshop for Forest Applications
How to Make RGB Composites from Dual-Polarimetric Data

Josef Kellndorfer, Ph.D., President and Senior Scientist, Earth Big Data, LLC

Revision date: January 2019

In this chapter we introduce how to make a three band color composite and save it

Import Python modules

In [1]:
In [2]:
In [3]:
In [4]:

import os,sys,gdal

¢matplotlib inline

import matplotlib.pylab as plt

import matplotlib.patches as patches # Needed to draw rectangles
from skimage import exposure # to enhance image display

import numpy as np

import pandas as pd

# Select the project data set and time series data

# West Africa - Biomass Site
datapath='Users/rmuench/Downloads/wa/BIOsS1/"'
datefile='S32631X398020Y1315440sS1 A vv_0001 mtfil.dates'
imagefile like='S32631X398020Y1315440sS1 A vv_ 0001 mtfil.vrt'
imagefile cross='S532631X398020Y1315440sS1 A vh 0001 mtfil.vrt'

os.chdir(datapath)

We are defining two helper functions for this task

* (CreateGeoTiff() to write out images
* dualpol2rgh() to compute various metrics from a time series data stack
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In [5]: def CreateGeoTiff (Name, Array, DataType, NDV,bandnames=None,ref image=None,
GeoT=None, Projection=None):
# If it's a 2D image we fake a third dimension:
if len(Array.shape)==2:
Array=np.array([Array])
if ref image==None and (GeoT==None or Projection==None):
raise RuntimeWarning('ref image or settings required.')
if bandnames != None:
if len(bandnames) != Array.shape[0]:
raise RuntimeError('Need {} bandnames. {} given'
.format (Array.shape[0],len(bandnames)))
else:
bandnames=[ 'Band {}'.format(i+l) for i in range(Array.shape[0])]
if ref_ image!= None:
refimg=gdal.Open(ref image)
GeoT=refimg.GetGeoTransform()
Projection=refimg.GetProjection()
driver= gdal.GetDriverByName( 'GTIFF')
Array[np.isnan(Array)] = NDV
DataSet = driver.Create(Name,
Array.shape[2], Array.shape[l], Array.shape[0], DataType)
DataSet.SetGeoTransform(GeoT)
DataSet.SetProjection( Projection)
for i, image in enumerate(Array, 1):
DataSet.GetRasterBand (i) .WriteArray( image )
DataSet.GetRasterBand(i).SetNoDataValue (NDV)
DataSet.SetDescription(bandnames[i-1])
DataSet.FlushCache()
return Name
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In [6]: def dualpol2rgb(like,cross,sartype='amp',ndv=0):
CF=np.power(10.,-8.3)
if np.isnan(ndv):
mask=np.isnana(cross)
else:
mask=np.equal(cross,ndv)

1 = np.ma.array(like,mask=mask,dtype=np.float32)
c np.ma.array(cross,mask=mask,dtype=np.float32)

if sartype=='amp':
l=np.ma.power(l,2.)*CF
c=np.ma.power(l,2.)*CF

elif sartype=='dB':
l=np.ma.power(10.,1/10.)
c=np.ma.power(10.,c/10.)

elif sartype=='pwr':
pass

else:
print('invalid type
raise RuntimeError

,sartype)

if sartype=='amp':
ratio=np.ma.sqgrt(l/c)/10
ratio[np.isinf(ratio.data)]=0.00001

elif sartype=='dB':
ratio=10.*np.ma.logl0(l/c)

else:
ratio=1/c

ratio=ratio.filled(ndv)

rgb=np.dstack((like,cross,ratio.data))

bandnames=( 'Like', 'Cross', 'Ratio')
return rgb,bandnames,sartype

def any2amp(raster,sartype='amp',ndv=0):
CF=np.power(10.,-8.3)
mask=raster==ndv

if sartype=='pwr':
raster=np.sqrt(raster/CF)
elif sartype=='dB':
raster=np.ma.power(10., (raster+83)/20.)
elif sartype=='amp':
pass
else:
print('invalid type ',sartype)
raise RuntimeError

raster[raster<1l]=1

raster[raster>65535]1=65535

raster[mask]=0
raster=np.ndarray.astype(raster,dtype=np.uintl6)
return raster
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Set the Dates

In [7]: # Get the date indices via pandas
dates=open(datefile).readlines()
tindex=pd.DatetimeIndex(dates)
j=1
print('Bands and dates for',imagefile like)
for i in tindex:

print("{:4d} {}".format(j, i.date()),end="' ")
j+=1
if j%5==1: print()

Bands and dates for S532631X398020Y1315440sS1_A vv_0001_mtfil.vrt

1 2015-03-22 2 2015-04-03 3 2015-04-15 4 2015-05-09 5 2015-05-21
6 2015-06-02 7 2015-06-14 8 2015-06-26 9 2015-07-08 10 2015-07-20
11 2015-08-01 12 2015-08-13 13 2015-08-25 14 2015-09-06 15 2015-09-18
16 2015-09-30 17 2015-10-12 18 2015-10-24 19 2015-11-17 20 2015-11-29
21 2015-12-11 22 2015-12-23 23 2016-01-04 24 2016-01-28 25 2016-02-09
26 2016-03-04 27 2016-03-16 28 2016-03-28 29 2016-04-09 30 2016-04-21
31 2016-05-03 32 2016-05-15 33 2016-05-27 34 2016-06-08 35 2016-07-02
36 2016-07-14 37 2016-07-26 38 2016-08-07 39 2016-08-19 40 2016-08-31
41 2016-09-12 42 2016-09-24 43 2016-10-06 44 2016-10-18 45 2016-10-30
46 2016-11-11 47 2016-11-23 48 2016-12-05 49 2016-12-17 50 2016-12-29
51 2017-01-10 52 2017-01-22 53 2017-02-03 54 2017-02-15 55 2017-02-27
56 2017-03-11 57 2017-03-23 58 2017-04-04 59 2017-04-16 60 2017-04-28
61 2017-05-10 62 2017-05-22 63 2017-06-03 64 2017-06-15 65 2017-06-27
66 2017-07-09 67 2017-07-21 68 2017-08-02 69 2017-08-14 70 2017-08-26
71 2017-09-07 72 2017-09-19 73 2017-10-13 74 2017-10-25 75 2017-11-06
76 2017-11-18 77 2017-11-30

In [8]: # PICK A BAND NAUMBER
bandnbr=70

Open the image and get dimensions (bands, lines, pixels):

In [9]: img like=gdal.Open(imagefile like)
img cross=gdal.Open(imagefile cross)
# Get Dimensions
print('Likepol ',img like.RasterCount,img_like.RasterYSize,img like.RasterXSize)
print('Crosspol’',img cross.RasterCount,img cross.RasterYSize,img cross.RasterXSiz
e)

Likepol 77 3776 4243
Crosspol 77 3776 4243

For a manageable size we can choose a 500x500 pixel subset to read the entire data stack (commented out). We also convert the amplitude data to power data right away
and will perform the rest of the calculations on the power data to be mathmatically correct.

NOTE: Choose a different xsize/ysize in the subset if you need to.
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In [10]: subset=None
#subset=(3500,1000,500,500) # (xoff,yoff,xsize,ysize)
if subset==None:
subset=(0,0,img_like.RasterXSize,img like.Raster¥YSize)

raster=img_like.GetRasterBand(bandnbr).ReadAsArray()
fig, ax = plt.subplots(figsize=(8,8))
ax.set_title('Likepol full image {}'

.format (tindex[bandnbr-1].date()))
ax.imshow(raster,cmap='gray',vmin=np.nanpercentile(raster,5),vmax=np.nanpercentil
e(raster,95))
ax.grid(color="blue')
ax.set xlabel('Pixels')
ax.set_ylabel('Lines')

# plot the subset as rectangle
if subset != None:
_=ax.add_patch(patches.Rectangle((subset[0],subset[1]),
subset[2],subset[3],
fill=False,edgecolor="'red',
linewidth=3))

Likepol full image 2017-08-26

500

1000

2500
3000

3500

Make the RGB like/cross/ratio image

In [11]: raster like=img like.GetRasterBand(bandnbr).ReadAsArray(*subset)
raster cross=img cross.GetRasterBand(bandnbr).ReadAsArray(*subset)

We make an RGB stack to display the like,cross, and ratio data as a color composite.

In [12]: rgb,bandnames,sartype=dualpol2rgb(raster_like,raster_cross)
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We are interested in displaying the image enhanced with histogram equalization.

We can use the function exposure.equalize_hist() from the skimage.exposure module

In

In

[13]:

[14]:

Out[1l4]:

rgb_stretched=np.ndarray.astype(rgb.copy(), 'float32")
# For each band we apply the strech

for i in range(rgb_stretched.shape[2]):
= np.ndarray.astype(exposure.equalize hist(rgb_stretched

[:,:

rgb_stretched[:,:,1i]
Ii]l
mask=~np.equal (rgb_stretched[:,:,i],0)), 'float32")

rgb_stretched

array([[[6.78325057e-01,

[8.76864195e-01,
[9.83614683e-01,
ey

[5.28072240e-03,
[6.99684722e-03,
[3.84910442e-02,

[[5.00227690e-01,
[6.34485126e-01,
[8.29794526e-01,
el
[5.95453382e-03,
[6.23923307e-03,
[2.66998932e-02,

[[1.96703568e-01,
[2.68557519e-01,
[4.55813646e-01,
ees
[1.46300010e-02,
[1.15622561e-02,
[2.56231278e-02,

2

[[5.30907631e-01,
[2.64292091e-01,
[1.08426727e-01,
ey
[1.24921982e-07,
[1.24921982e-07,
[1.24921982e-07,

[[4.51068103e-01,
[2.54053503e-01,
[1.29825607e-01,
e,
[1.24921982e-07,
[1.24921982e-07,
[1.24921982e-07,

[[4.22746390e-01,
[2.41145849e-01,
[1.81992248e-01,
ey
[1.24921982e-07,
[1.24921982e-07,
[1.24921982e-07,

9.72052574e-01,
9.84529495e-01,
9.98086393e-01,

1.07818116e-02,
1.37452455e-02,
9.95012820e-02,

9.16491270e-01,
9.05717731e-01,
9.68486011e-01,

1.87972672e-02,
1.84695572e-02,
9.82193723e-02,

4.68630195e-01,
4.29826617e-01,
7.10059583e-01,

1.38415113e-01,
9.69374627e-02,
1.70091271e-01,

7.67807901e-01,
5.22130668e-01,
3.33118588e-01,

1.87382980e-07,
1.87382980e-07,
1.87382980e-07,

8.14454377e-01,
6.20940566e-01,
3.66306335e-01,

1.87382980e-07,
1.87382980e-07,
1.87382980e-07,

8.42523038e-01,
6.77982450e-01,
4.34495091e-01,

1.87382980e-07,
1.87382980e-07,
1.87382980e-07,

3.90828580e-01],
1.71240658e-01],
2.89953277e-02],

9.95057702e-01],
9.93614554e-01],
9.67868745e-01]]

5.65926731e-01],
4.34903175e-011],
2.25173086e-01],

9.94502723e-011],
9.94265974e-01],
9.77528811e-01]]

8.36585879e-01],
7.75374472e-01],
6.08429134e-01],

9.87303555e-011],
9.89897549e-011,
9.78379309e-011]

5.37106931e-01],
7.78782785e-017,
9.10773575e-017,

2.49843964e-07],
2.49843964e-07],
2.49843964e-071]

6.13029897e-017],
7.87545741e-01],
8.92777562e-01],

2.49843964e-071,
2.49843964e-071,
2.49843964e-07]]

6.38080597e-01],
7.98704743e-011],
8.49451780e-011,

2.49843964e-07]1,
2.49843964e-07],

2.49843964e-071]11,

dtype=float32)
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Now let's display the the histograms and equalized image side by side.

In [15]:

fig,ax = plt.subplots(1l,2,figsize=(16,8))
fig.suptitle('Multi-temporal Sentinel-1 backscatter image R:{} G:{} B:{}'

.format (bandnames[0],bandnames[1],bandnames[2]))
plt.axis('off")
ax[0].hist(rgb[:,:,0].flatten(),histtype="step',color="'red',bins=100,range=(0,100
00))
ax[0].hist(rgb[:,:,1].flatten(),histtype="'step',color="green',bins=100,range=(0,1
0000))
ax[0].hist(rgb[:,:,2].flatten(),histtype="step',color="'blue’',bins=100,range=(0,10
000))
ax[0].set_title('Histograms')
ax[1l].imshow(rgb_stretched)
ax[l].set _title('Histogram Equalized')
_=ax[l].axis('off")

Multi-temporal Sentinel-1 backscatter image R:Like G:Cross B:Ratio

Histograms

2000000
Histogram Equalized

1750000

1500000

1250000

1000000

750000

500000

250000

J

2000 4000 6000 8000 10000

o4

Write the images to an output file

Determine output geometry

First, we need to set the correct geotransformation and projection information. We retrieve the values from the input images and adjust by the subset:

In [16]:

out[16]:

proj=img like.GetProjection()
geotrans=1list(img_like.GetGeoTransform())

subset xoff=geotrans[0]+subset[0]*geotrans[1]
subset _yoff=geotrans[3]+subset[1l]*geotrans[5]
geotrans|[0]=subset_xoff
geotrans|[3]=subset_yoff
geotrans=tuple(geotrans)

geotrans

(398020.0, 20.0, 0.0, 1390960.0, 0.0, -20.0)
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Convert to 16bit Amplitude image

We use the root of the time series data stack name and append a _ts_metrics_.tif ending as filenames

Build a like/cross/ratio amplitude scaled GeoTIFF images

In [17]: outbands=[]
for i in range(3):
outbands.append(any2amp(rgb[:,:,1]))

imagename=imagefile like.replace(' vv_',' lcr ').replace('.vrt',' {}.tif'.format(

dates[bandnbr-1].rstrip()))
bandnames=[ 'Like', 'Cross', 'Ratio']
Array=np.array(outbands)

CreateGeoTiff (imagename,Array,gdal.GDT_UIntl6,0,bandnames,GeoT=geotrans,Projectio

n=proj)

Out[17]: 'S32631X398020Y1315440sS1_ A lcr 0001 mtfil 20170826.tif’

This Image can now be loaded into QGIS or similar programs

Exercise

Change the bandnbr, generate a new rgb image and export it. Display in QGIS
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CHAPTER 4

Forest Stand Height Estimation

Paul Siqueira, Professor of Electrical and Computer Engineering, Microwave Remote Sensing Laboratory, University of Massachusetis, Amherst

ABSTRACT

The measurement of forest structural characteristics is important for a variety of Monitoring, Reporting, and Verification (MRV) protocols in resource management.
One characteristic of particular importance is Forest Stand Height (FSH), or the average height of trees in a forest stand. In this context, FSH can be used an indicator
of the age of a forest stand, plant and animal habitats, and the amount of Above Ground Biomass (AGB) held in the forest stand. FSH can be measured through the
use of terrestrial and/or airborne lidar, with airborne lidar being especially useful due to its wide area coverage and direct measurement of forest height. A difficulty
with airborne measurements, however, is that while these measurements work well at the tens- to hundreds-of-hectares-level, they are difficult to scale beyond that.

One method for the spatial scaling of FSH is through the use of spaceborne Synthetic Aperture Radar (SAR), especially at L-band repeat-pass Interferometric SAR
(InSAR), which can be obtained through repeat observations from ALOS-2 and the future NISAR mission. In this scenario, the measure of InSAR decorrelation can
be related to FSH through the use of localized training data obtained from lidar. This chapter focuses on the use of repeat-pass InSAR for FSH estimation, and
presents the theory, software, and examples of these methods. Although there is currently a limited availability of L-band SAR from ALOS-2, when NISAR launches
in 2021, the presented method of FSH determination can be applied over large regions, especially when initialized using instruments such as the Global Ecosystems
Dynamics Investigation Lidar (GEDI) aboard the International Space Station, or other lidar observations.

4.1 Theory

4.1.1 BACKGROUND AND BASIC CONCEPTS

The average height of trees in a forest stand, or
Forest Stand Height (FSH), is an indicator of the age
of a forest stand and an important forest structure
metric that helps to characterize (1) plant and ani-
mal habitats, (2) the history of land use, and (3) the
amount of Above Ground Biomass (AGB) held in the
forest stand. The size of the forest stand in this con-
text is minimally 1 ha in size, but is generally larger
depending on the homogeneity of the forested re-
gion. In general, when using remote sensing data to
estimate FSH, the smaller the size of the land unit,
the less accurate the FSH estimate will be. This is due
to basic sampling statistics and estimation errors
that are incurred when a statistically varying quantity
(such as forest height) is measured remotely.

4.1.1.1 Relating SAR to Forest Stand Height
SAR sensitivity to FSH is based on three funda-

mental SAR properties. These three fundamental
properties are discussed below and are illustrated in
Figure 4.1:

(1) As the number of scatterers increase within
a SAR resolution cell, so does the reflected
power. This trend is moderated by the effect
of attenuation of signals as they pass through a
forested canopy, and is directly related to the
saturation effect seen in backscatter to bio-
mass relationships (discussed in Chapter 5).
Insomuch as the number of scatterers increas-
es with FSH and forest density, observations of
the backscatter power from radar can be used
as an indirect measure of FSH. This relation-
ship is often obtained through an empirical
relationship between the two variables.

It should be noted that SAR data can have a
number of different polarization combina-
tions, with the simplest being a co-polarized
return, such as HH or VW (see Chapter 2);
followed by dual-polarized, which is a combi-

nation of one of the co-polarized returns with
its cross-polarized counterpart (HH with HV, or
VWV with VH); and finally, the quad-polarized
signature, which is the most complicated as it
has all four components (HH, HV, VV, and VH)
of the polarimetric scattering matrix. Because
of the sensitivity of the cross-polarized signa-
ture to the multiple scattering that occurs in
vegetated environments, the cross-polarized
channels of the backscatter power are most
often used for characterizing forest structure.

(2) In addition to the power measured in a SAR
backscatter image, SAR can also very accurate-
ly measure the distance to targets. When the
height of target is not accurately known, there
exists an ambiguity in the geometric relation-
ship between the target and the SAR sensor,
principally through the look angle, which is de-
fined as the angle between the nadir direction
of the SAR and the vector pointing from the
SARto the target.
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Test Region

When two SAR observations are made, howev-
er, this angle can be determined very accurately
through some basic trigonometric calculations
and indeed can be used for measuring the to-
pography of the Earth through a process known
as Interferometric SAR, or InSAR. If the measure
of InSAR height can be modeled relative to the
bare ground surface, and if the topography of
that surface can be determined through other
means, then an estimate of the vegetation height
(an be determined by the difference between
the InSAR-measured height and ground surface
Digital Elevation Model (DEM).

In places where the topographic height is not
well defined (e.g., in a forest canopy where the
interferometrically measured height can mean
either at the ground surface or the canopy top),
a unique interferometric signature arises in
which the detected height from the interferom-
eter can be shown to be a random number. Its
mean is an extinction weighted average of the
radar signal penetration into the canopy. The
term “extinction weighted average” refers to
the loss of signal strength (extinction) as a radar
signal penetrates a forest canopy. Hence, parts
at the top of the canopy will contribute more to
the backscatter signature than the bottom of the

RCS (HV)

Intf. phase

canopy. This depth of penetration is proportion-
al to the signal wavelength (24 cm for L-band
and 5-cm for G-band) and the density of scat-
terers. For interferometric applications, the ver-
tical distribution of scatterers plays a role in the
overall signature, and hence the use of the term
“extinction weighted average.” The magnitude of
this weighted average is known as the “interfer-
ometric coherence,” a normalized value with a
range between 0 and 1. InSAR sensitivity to FSH
statistics have led to a number of approaches to
be explored using spaceborne satellites (e.g.,
Treuhaft & Siqueira 2000, Cloude & Papathanas-
siou 2001).

(3) For InSAR to work well over vegetated surfaces

in the previously described manner, itis import-
ant to make the SAR observations simultaneous-
ly, or as close together in time as possible. This is
because if the observations are made at differ-
enttimes, the targets within a SAR resolution cell
may have moved, and this movement will cause
an error in measuring the trigonometric look
angle and will create a reduction in the inter-
ferometric coherence. This process is known as
“temporal decorrelation,” that is, the more that a
target changes between observations, the lower
the coherence will be.

Standard devaton of the inverted heights /m

25

When an InSAR system makes both observa-
tions at the same time (typically requiring two
satellites or a single airborne platform with two
antennas), it is known as “single-pass InSAR.”
Conversely, if the observations of the scene
are made at different times, this is called “re-
peat-pass InSAR.”
One way FSH can be estimated from repeat-pass
InSAR is to measure the amount of temporal
decorrelation that has occurred between passes
and to make the broad assumption that the tall-
eratree (or forest stand) is, the more movement
that will occur between passes of the satellite.
Hence, when the interferometric coherence is
measured, it can indirectly (through an empirical
relationship) be used to estimate FSH.
Asin the case of backscatter to biomass relation-
ships, the cross-polarized channel (HV) of the
interferometric coherence is more sensitive to
FSH that the co-polarized channels (HH and VV).
Based on the principles highlighted above, a set
of algorithms has been created for estimating FSH
from InSAR observations. Because most spaceborne
SAR systems cannot perform single-pass interfer-
ometry, the FSH algorithm relies on the repeat-pass
relationship between interferometric coherence and
vegetation height.

—+—InSAR correlation magnitude
- 8- differental InNSAR phase
O SAR backscattering intensity

Intf. correlation

R=038
o
2
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,'U‘
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Figure 4.1 Illustration of the three principles behind the relationship of SAR measurements to vegetation height. Shown from left to right are (a) a test region
located in the U.S. state of Maine imaged by the LVIS lidar sensor, (b) the radar backscatter intensity for the region (grayscale), (c) the height difference between
L-band repeat-pass SAR and the ground surface DEM, and (d) a height estimate based on the interferometric correlation. The graphic at the right (e) shows the FSH
error relative to the lidar measurement for each of the three SAR methods derived from the cross-polarized signal. It can be seen from the plot that for vegetation
heights of less than 10 m, the backscatter intensity is most accurate. For vegetation taller than 10 m, the InSAR coherence proves to be more accurate.
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4.1.1.2 Mission Platforms for Estimating
Forest Stand Height

At the time of this writing, and algorithm develop-
ment, for spaceborne applications with a global ex-
tent, there are only two SAR systems with single-pass
interferometry. One of these is the Shuttle Radar
Topography Mission (SRTM), a G-band InSAR flown
on board NASA's space shuttle for an 11-day mission
in February 2000. The other is TanDEM-X, flown by
the German Space Agency (DLR), where data were
collected by two co-orbiting satellites at X-band in
2010 and made mostly available through commercial
arrangements. Because both satellites operate with
wavelengths less than 10 cm, the signals from SRTM
and TanDEM-X do not penetrate far into the canopy,
and withouta model for the ground surface DEM, will
have difficulty estimating FSH.

Upon implementation, a significant source of error
in estimating coherence is related to thermal noise.
As the amount of backscatter power received from
a target decreases, an increased proportion of the
coherence measurement is related to the signal that
remains. In the case of a radar system, the residual
signal not originating from the target itself is con-
sidered thermal noise (or simply instrument noise).
Since bare surfaces (especially smooth surfaces) do
not have a strong backscatter signal, the error in
measuring interferometric coherence is large. Hence,
the error in FSH estimation increases with decreasing
values of vegetation height. For this reason, the best
estimate of FSH made from repeat-pass interferom-
etry is made from a combination of SAR backscatter
power and InSAR coherence. For this reason, the ap-
proach described here can be referred to as a com-
bined SAR/InSAR estimation of FSH.

With respect to theory, a final note should be
made about this method’s sensitivity to the observ-
ing SAR's wavelength. For most terrestrial remote
sensing systems, wavelengths range between ~1 m
(P-band) to ~3 cm (X-band) (for more information on
SAR wavelengths, see Chapter 2, Section 2.3.1).
Because vegetation structures are on the order of
some tens of centimeters, forest vegetation is often
best observed using P- and L-bands (~24 cm). For
L-band SAR, only the Japanese Aerospace Exploration

Agency’s (JAXA's) JERS-1 and ALOS-1 and -2 satellites
are available, but are limited due to their observing
strategy and data distribution policy. The European
Space Agency's (ESA's) Sentinel-1a and -1b satellites
that operate at G-band (5 cm) are potential resources,
but are limited for repeat-pass InSAR because of the
short wavelength and dominance of temporal decor-
relation over vegetated targets.

This leaves the capacity for estimating FSH on a
global hasis to future satellite systems. Of these,
there are three upcoming missions that may fill this
need:

(1) The Argentinian Space Agency’s (CONAE's) L-band
SAOCOM mission that was launched in 2018. The
observing plan and data availability for this mis-
sion are currently not known.

(2) ESA's P-band Biomass mission, which will launch
in the 2021-2022 timeframe. This will be a first-
of-its-kind spaceborne P-band repeat-pass InSAR.

(3) NASA and the Indian Space Research Organiza-
tion’s (ISRO’s) L-band and S-band (10 cm) NISAR
mission, which will launch in late 2021 or early
2022. Data will be freely available and have glob-
al coverage at L-band.

With the NISAR mission in mind, and under-
standing the CG-band wavelength limitations of ESA's
Sentinel-1 data, prototyping of FSH algorithms have
concentrated on L-band using geographically limited
ALOS data as a proxy.

4.1.1.3 Additional Theoretical and Applied
Background

To learn more about the FSH algorithm and to
access Python-based scripts for executing the algo-
rithms described here, refer to the following journal
articles:

* Anintroductory paper on the topic:

lei, ¥, P. Siqueira, “Fstimation of Forest Height Using
Spaceborne Repeat-Pass [-Band InSAR Correla-
tion Magnitude over the US State of Maine,” Rem.
Sens., 6(17), 1025210285, 2014.

*An automated method for mosaicking FSH data
and minimizing errors

Lei, Y, P. Siqueira, "An Automatic Mosaicking Algorithm for

the Generation of a Large-Scale Forest Hejght Map
Using Spaceborne Repeat-Pass InSAR Correlation
Magnitude,” Rem. Sens., 7(5), 5639-5659, 2015.

* An article describing the theory behind the ap-
proach

Lei, ¥, P. Siqueira, R. Treuhaft, "A physical scattering model
of repeat-pass InSAR correlation for vegetation,”
Wys. Rand. Cmpx. Med., 27(1), 129-152, 2017,

* Application of FSH and Repeat-pass InSAR for
Forest disturbance detection

Lej, ¥, R. Lucas, P. Siqueira, M. Schmidt, and R. Treuhafi,
“Detection of forest disturbance with spaceborne
repeat-pass SAR interferometry,” IEEE Trans. Geos-
di. Rem. Sens., 56(4), 2424-2439, Apr 2018.

+ Statistical evaluation of the FSH algorithm over a
wide area

Lei, Y, P Siqueira, N. Torbick, M. Ducey, D. Chowdhury, and
W. Salas, “Generation of large-scale moderate-res-
olution forest hejght mosaic with spaceborne re-
peat-pass SAR interferometry and lidar,” To be pub-
lished IEEE Trans. Geosdi. Rem. Sens., 34 pp., 2019,

4.1.2 PROCESSING TECHNIQUES

InSAR data processing for FSH estimation requires
either raw satellite data that have been downlinked
but not processed, or SAR data that have been pro-
cessed into Single Look Complex (SLC) imagery that
is appropriate for forming interferograms. If the user
has access to SLCs directly, then itis recommended to
begin from there. If only the raw data are available,
then some additional processing is necessary. One
advantage to beginning with raw data is that the out-
put formats of the interferograms and ancillary data
are assembled in such a way as to make it easy to
follow-on the processing with additional steps imple-
mented to estimate FSH.

Software for processing raw data into SLCS can be
obtained both commercially and through open source
licensing agreements. Of the open source licensing
processors, there are two that have been used for
processing raw ALOS data into SLCs and then into FSH
estimates. These are ROI_PAC (Repeat Orbit Interfer-
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ometry PACkage) and ISCE (InSAR Scientific Computing
Environment). In this document, ROI_PAC is used be-
cause it has completed its development lifetime is and
is somewhat easier to obtain than ISCE. At the time of
this writing, ISCE continues to be developed, whereas
ROI_PACis not. With this in mind, the scripts that esti-
mate FSH from SLCs have been designed to work with
both ROI_PACand ISCE.

It is important to note that while Python programs
can be run in Windows, Mac OS X, and Unix environ-
ments, processing raw data into interferograms using
the methods described requires a Unix or Linux envi-
ronment. For this reason, it is assumed that the reader
has access to these types of computing capabilities and
is familiar with operating inside of them.

The following sections describe three steps: (1)
downloading and processing ALOS data, (2) staging of
ground validation data (necessary for establishing em-
pirical relationships between SAR backscatter power
and interferometric coherence to forest height), and
(3) running the FSH algorithms. Users starting with SLC
data may begin at the second step.

4.1.2.1 Processing ALOS Data

To understand SAR data processing for FSH estima-
tion, itis helpful to refer to a particular software so that
the user can conceptualize the steps necessary to pro-
cess SAR data. This section begins with a short descrip-
tion on how to obtain and install the ROI_PAC software.

4.1.2.1.1 Installing and Testing ROI_PAC

In this work, the ROI_PAC processing software can
be obtained in TGZ (i.e., gzipped TAR) format at http://
www.openchannelfoundation.org/projects/ROI_PAC.
Tofullyinstall the ROI_PAC software, itis also necessary
to have available a Fortran compiler (e.g., gfortran) and
the FFTW library. Additional details for the installation
of ROI_PACsoftware can be found at http://roipac.org/
(gi-bin/moin.cgi/Installation.

The ROI_PAC software distribution comes with
a test dataset that can be processed by ROI_PAC to
test the software installation. The details of this test
processing can be found in the ROI_PAC installation
subdirectory fullpath/contrib/multtest.sh, where full-
path refers to the folder that the ROI_PAC installation
archive is unzipped.

Level 1.1 Level 1.5 Level 2.0
Slant range data Ground range data Corr. ground range data
Needs “projection” Needs “mapping” in map coordinates

Figure 4.2 Processing chain for SAR data showing the steps that occur in the transition of a SAR image
from raw data into processed data. Interferometric analysis should be done at Level 1.1. Level 2.0 refers
to data that have been multi-looked, corrected for terrain effects, etc. Level 3.0 data (not shown) refers
to data that have been interpreted in some way, either through classification or parameter estimation.
Note that the different level numbering specified in the headings of the processing steps may vary from
space agency to space agency.

a.)

N I 1
Header Information
(720 bytes)

b.) )

Magnitude

1QA/D samples
(10800 bytes)

Figure 4.3 The four steps of processing ALOS SAR data beginning from (a) raw samples from the
satellite, (b) range compression, (c) azimuth compression resulting in an SLC, and (d) projection into
map coordinates (Level 2.0). Shown in parts (b) and (c) is the signal phase used in interferometry for
determining topographic height and coherence.

4.1.2.1.2 SAR Processing FSH ground validation data is an important com-
ponent of the data processing methodology nec-
essary for converting interferometric SAR data into
FSH estimates. The FSH algorithms are implemented
such that they can ingest geographically explicit data
of measured (either ground-based or lidar) forest
heights through the GeoTIFF format. The following
subsection provides a review of the ground validation

data necessary for the running of FSH.

Processing SAR data from raw digital values
retrieved from the satellite into what ultimately be-
comes SAR imagery can be a detailed and complex
process. In the processing of SAR data, corrections
are made to account for the motion of the satellite
and for the image projection effects that arise from
the atmosphere, viewing geometry, and topography
of the Earth. Asummary of the basic steps executed in
processing are shown in Figure 4.2. An illustration
of SAR data as they are processed from raw imagery
into map-projected ground-range (i.e., Level 2.0) is
shown in Figure 4.3.

4.1.2.2.1 Types of Ground Validation Input

There are two types of ancillary ground validation
data that are necessary for completing the specifica-
tion of the empirical models used for the estimation

4.1.2.2 Staging of Ground Validation Data of FSH from SAR data: (1) a Forest/Non-Forest (FNF)
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mask that indicates where in the image the estimates
should be exercised, and (2) a map of locations
where forest height has been previously determined
and will be used by the FSH algorithm for the training
of the empirical models.

The FNF map can be derived from a number of
sources or created independently by the user. Exam-
ples of external data sources that can be used to de-
rive an FNF mask are (1) JAXA's FNF mask, (2) the U.S.
National LandCover Dataset (NLCD), and (3) ESA's CCl
Landcover (formerly GlobCover). From datasets such
as these, a determination can be made where forests
are situated and hence, where it is desired to esti-
mate FSH. The contents of the FNF mask should be
such that all regions where FSH should be estimated
have a value of 0, and all regions where FSH should
not be estimated have a value of 1. An example of this
dlassification is shown in Figure 4.4(a).

4.1.2.2.2 Use of Lidar for Forest Stand Height Model
Development

To determine values for the empirical models that
relate radar backscatter power and interferometric co-
herence to FSH, some independent measure of forest
height is necessary. Because of its ability to acquire
accurate measurements of vegetation height over an
extended geographic region, lidar is a preferred meth-
od for determining the coefficients that parameterize
these models. An example of lidar data for a region
in Maine, U.S., is shown in Figure 4.4(h), which
was derived from the Laser Vegetation Imaging Sen-
sor (LVIS) operated by NASA's Goddard Space Flight
Center.

The LVIS data in Figure 4.4 show vegetation
height gridded into 30-m pixels, converted into a
GeoTlFF format, and visualized using QGIS software.
Aresolution of 30 m was selected for this example be-
cause it is commensurate with the LVIS spot size of 25
m and the multi-looked resolution of the L-band SAR
data. An example of the distribution of LVIS-estimated
tree heights is shown in Figure 4.5.

4.1.2.2.3 Alternative Methods for Estimating Forest Height

If lidar data are not available, then another form
of independent forest height measurement over the
training area needs to be identified or created. Since
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Figure 4.4 Examples of ground validation input for the FSH algorithm: (a) Optical image overlain with the
FNF mask (green areas indicate regions that will be estimated for FSH), and (b) image of Laser Vegetation
Imaging Sensor- (LVIS-) derived vegetation height, where blue indicates zero height, and dark red indicates
the maximum height of 25 m. Data such as these are used for determining coefficients for the empirical
models that relate the radar backscatter and interferometric coherence to vegetation height.

Percentage area

0 5 10 15 20
Tree height (m)

the FSH estimator is only accurate to the 3- to 5-m lev-
el, a simple solution would be to perform a land-cover
classification of a region using optical data. Stands of
different ages and species composition will have differ-
ent heights, which can be estimated from the ground
to the same accuracy as the FSH. During the develop-
ment and testing of the FSH algorithm described here,
this approach was used at times. However, the results
have been somewhat mixed in terms of success.

As a final approach, it should be noted that freely
available satellite resources of lidar data are either

Figure 4.5 Histogram of
lidar-derived tree heights
used for the training of
empirical models of FSH.
The spatial resolution of the
LVIS data used here is 30 m.

available or soon to become available. Notable
among these are ICESAT-1 and -2, as well as the up-
coming NASA GEDI mission.

4.1.2.3 Running Forest Stand Height
Algorithms

In order to run the FSH algorithms, itis assumed that
the first two steps of the process described in Section
4.1.2 have been accomplished: (1) the creation or ob-
taining of SLCs and (2) the obtaining of an FNF mask and
vegetation height ground validation data. Once these
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two steps have been accomplished, the data should be
organized in a file structure such that individual folders
hold results from individual interferograms between
two dates (the SLCs and ancillary data for individual
scenes (frames) and orbit (path) numbers). For any
one frame and path number, there may exist multi-
ple interferograms, related to multiple repeat-pass
combinations of data from two different dates. These
interferograms should be stored in subdirectories with
the naming convention: int datel date2.
Scenes from differing frames and paths can be interfer-
ometrically processed in order to create an estimate of
FSH over an extended geographic region.

The interferogram subdirectories will hold all of the
data and information necessary for creating and doc-
umenting interferograms made for an observation on
two specific dates (dateT and date2). For ROI_PACpro-
cessed data, the most important file looks like geo
datel-date2 2rlks.cor and geo
datel-date2 2rlks.cor.rsc. The
resource (“.rsc”) file is a text file that has information
on the location and size of the geolocated correlation
data held in geo_datel-date2 2rlks.
cor. The format of the correlation file is known as
“sample-interleaved,” or an RMG format file. An image
of interferometric coherence (color) overlain on a geo-
referenced image of radar backscatter cross-polarized
power is shown in Figure 4.6.

Because radar data is organized in terms of orbits
and scenes, in order to make a map of FSH over an ex-
tended geographic region, it is necessary to mosaic the
images. While the process of mosaicking can be done
either before or after the estimation of FSH, it is best
to do so beforehand to take advantage of the overlap
region between images in adjacent paths. In these re-
gions, while the value of the coherence magnitude may
vary due to the fact that the observations (and image
pairs) have occurred from different orbits (and hence
different dates), the overlap regions can be used to
correct for these temporal differences and to adjust the
coefficients for the empirical relationships of the SAR
products to estimates of FSH. An example of this pro-
cessis shown in Figure 4.7.

Once the data have been organized into directories
of scenes described by their individual row and path
numbers, and the interferograms have been examined

Figure 4.6 A combined image of interferometric coherence (color) and cross-polarized backscatter
power (brightness). The interferometric coherence in this image ranges between 0.1 (magenta) and
0.6 (cyan). Regions of low interferometric coherence are likely due to the presence of vegetation.

Figure 4.7 Example of FSH/coherence equalization through the use of overlapping image regions: (a)
optical image in central Maine, (b) an estimate of FSH for this region (color scale on the left extends
from blue (0 m) to red (35 m)) where lidar data were available from LVIS, (c) an unconstrained estimate
of FSH from an adjacent satellite pass, and (d) a corrected estimate of FSH for both scenes included in

the mosaic. Color scale for all figures is the same (from Lei & Siqueira 2014).

to determine which SLC pairs yield data with the highest
coherence (i.e., the least amount of temporal decorrela-
tion), there remains the task of creating what is known
asa “flagfile” and a “link file.”

In this context, the flag file is a listing of all of the
interferograms to be used in creating the region-wide
mosaic of FSH. In the case discussed here, there are
three such row/path combinations that will create a
three-scene mosaic of FSH located in central Maine. The
middle of the three scenes overlaps with the LVIS data
discussed in Section 4.1.2, and all scenes are within

001 890_120_20070727_HV_20070911_HV
002 890_119_20070710_HV_20071010_HV
003 890_118_20070808_HV_20070923_HV

the region where identification of FNF is used for deter-
mining geographic locations where the FSH algorithm
will be applied. An example of the contents of a flag file
(in text format) is at the bottom of the page:

In this example, the first column of numbers indi-
cates the interferogram number, the second column
is the root file name of the data that forms the inter-
ferogram, the third and fourth columns are the dates
that the data were collected for the interferometric
pairs, the fifth and sixth columns give the satellite
path and orbit numbers (respectively), and the last

070727 070911 890 120 HV
070710 071010 890 119 HV
070808 070923 890 118 HV

178

THE SAR HANDBOOK



column indicates the polarization of the data.

A question that may arise when looking at the flag
file is if it is possible to use other polarization com-
binations (e.g., HH and/or VW) for the determination
of FSH. Indeed, such combinations were tested in
the development stages of the algorithm, and it was
determined that cross-polarized data worked best
because of its higher sensitivity to volume scattering
than co-polarized data. Similarly, other polarization
combinations that emphasize the volume scattering
return over surface scattering components (such as
the circular polarization combination of LR) would be
equally appropriate for the algorithm. If only co-po-
larized data are available, however, then it is gener-
ally preferable to have HH-polarization over VVV, and
then to move forward with the FSH algorithm, with
the expectation that both accuracy and sensitivity will
be reduced.

The link file mentioned above provides informa-
tion on which files are expected to have some degree
of geographic overlap and hence be used in propa-
gating the coefficients of FSH. While many files may
have such a geographic overlap—and that, indeed,
this overlap can be automatically calculated—a sep-
arate link file is desired so that links can be added
or broken as necessary in order to account for the
varying quality of data in the overlap region used to
estimate the coefficients (e.g., a Scene with a partic-
ularly high degree of temporal decorrelation can be
removed from the link list). A simple example of the
text-formatted link file is as follows:

2 1
2 3

This indicates that image 2 is connected to image
1,and that image 2 is also connected to image 3 (and
also that images 1 and 3 are not connected).

In this context, the high degree of temporal decor-
relation referenced in the previous paragraph indi-
cates those situations in which the temporal decor-
relation is large enough to obliterate any information
content in the repeat-pass interferogram. Such is the
case when the average interferometric correlation
magnitude for a scene falls in the range of 0 t0 0.5.

Once these files are created and put into place, the
FSH set of scripts can be run by calling it in the com-
mand line and passing arguments that indicate the

various input file names as well as ancillary informa-
tion. An example of a call to the FSH algorithm call is

python forest_stand_height.py <#
scenes> <# edges> <start scene #>
<# iterations> <link filename> <flag
filename> <lidar heights file>
<forest/non-forest file> <directory
of input/output files>

<list of output formats>

--flag_proc=0

In the last line of the FSH algorithm call, the list
of output formats should be in quotes, and can con-
tain one or all of the following: “t1£ kml gif
mat Json”. In other words, output formats can
be created for any of these options. Further, the
command option —-flag_proc 0 indicates
that the input data has been processed into SLCs by
the ROI_PAC algorithm (as opposed to processing by
ISCE, which should have a value of 1 instead).

4.1.3 ALGORITHM DEVELOPMENT

The FSH algorithm described in Sections 4.1.1
and 4.1.2 are based on a combination of empir-
ical relationships between cross-polarized radar
backscatter power and interferometric coherence.
Through the development of the algorithm, and fol-
lowing analysis such as that shown in Figure 4.1,
it has been determined that FSH values below 10
m should be determined by the backscatter power
relationship, and values above this threshold should
be determined by interferometric coherence. In or-
der to determine if this threshold has been met, the
interferometric coherence version of FSH is first com-
puted, and in regions where that is determined to be
below the threshold value, the backscatter power
empirical relationship is used.

A block diagram for this approach is given in Fig-
ure 4.8. In the diagram, parallelograms refer to
inputs and outputs of the algorithm. Rectangles are
steps in the processing, and a diamond is a point of
evaluation. Also, in the diagram, the variable h refers
to the value of FSH, and p =[S, . (] is the set
of two values per scene that parameterize the model
that relates temporal decorrelation to the vegetation
height (Sec. 4.1.3.2) (see Lei etal. 2019).

In order to gain some appreciation of the simplicity
of the relationships described above, it is valuable to
specify what these equations are. A more detailed ex-
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Figure 4.8 Block diagram for the processing of FSH.

planation of this approach, complete with equations
and a statistical examination, can be found in Lei et
al. (2019).

4.1.3.1 Relationship of Backscatter to
Forest Stand Height

The backscatter power, after correcting for topo-

graphic and other geometric effects, is written as

B¢

A=p1—e " |, (4.1)

where ) is the terrain-corrected form of radar
cross section (e.g., see Small 2011),  is the vegetation
height, and the coefficients 4, 8, and Care determined
in the FSH algorithm using a least-squares fit between
the backscatter power and the vegetation height pro-
vided by the ground validation and/or overlap data
between scenes. Sample values for these coefficients
that have been automatically determined by the FSH
algorithm are A=0.11, 8=0.0622, and (=1.0143.

A common issue with the relationship of backscatter
to vegetation characteristics is that above a certain
threshold of biomass, there is no longer a sensitivity
of increasing ° to increasing biomass. This saturation
effect is wavelength-dependent. At L-band, an ac
cepted value for the saturation limit is for 100 tons of
biomass/hectare. Under the assumption that a rela-
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tionship exists between vegetation height and biomass,
whatever that may be, there is a similar saturation effect
that occurs between j* and A This is reflected in the
exponential relationship shown at the beginning of this
section. While the saturation limits of sensitivity of j°
to h are less well-characterized, nominal estimates for
these values provided in Table 4.1,

Note that values listed in the table are nominal val-
ues only and are strongly dependent on the biome,
stand age, soil moisture and surface roughness.

When working in a specific region, however, the cor-
rect approach for determining these limits is to make a
plot of radar backscatter as a function of lidar-derived
vegetation heights.

In this section, backscatter power is referred to as
)P This backscatter power is a measure of the power
that the radar receives from a particular region on the
Earth's surface that is reflecting energy back to the ra-
dar. These values are stored on the satellite or airborne
platform in digital values that are related to the power
recorded by the radar. After processing to put the data
into ground coordinates, and to perform aperture syn-
thesis (a critical part of SAR processing), these values
are transformed by the processor and provided to the
user either as Digital Numbers (DN values) or in terms
of calibrated radar backscatter power, either in units of
or )?, depending on the level of processing employed.
The term “calibration” refers to correcting the radar
power returns for gains that are internal to the radar
system and processing chain and making all measure-
ments proportional to the transmitted power. Values of
¢ are calibrated in terms of the range coordinate of the
radar system and have been normalized for the size of
the area reflecting the energy back to the system (larger
areas will reflect more energy). The units of o are inm?/
m?. The radar cross section gis not normalized for this
area and is in units of m?. When a DEM is used and the
value of the radar cross section is adjusted to account
for the intercepted surface area in the direction of radar
viewing, thisis what is termed * and is the form of radar
(ross section most appropriate for quantitative analysis
(Small 2011).

4.1.3.2 Relationship of Interferometric
Coherence to Forest Stand Height

The interferometric coherence is derived from

BAND m“ HV BACKSCATTER SATURATION LEVEL

X- (10 GHz)
C- (5.4 Ghz) 5.6 m m
L- (1.2 GHz) 24 m 10m

10cm

-10dB
-12dB
-13dB

Table 4.1 Nominal estimates for HV backscatter saturation levels for typical SAR wavelengths.

the interferometric correlation, which is the nor-
malized geometric average between two complex
images. Mathematically, the interferometric cor-
relation yis defined as

ﬂ , (4.2)
(1))

where £, and £, are the complex values of radar cross
sections observed by the SAR satellite and delivered
as SLCs, the brackets indicate averaging over multiple
looks, and * indicates a complex conjugation. Note
that the y defined in the interferometric correlation
expression above is not the same as the )? specified
for the terrain-corrected value of radar cross section
described in Section 4.1.3.1. When an image is
referred to as an interferogram, it indicates an im-
age of y as specified previously. This correlation is
complex-valued, with its magnitude (the coherence)
varying between 0 and 1, and the phase between
0 and 2m. A signal with low correlation will have a
coherence close to 0 and a random phase. A signal
with a high correlation will have a coherence close to
T and a well-determined phase that is related to the
viewing geometry.
A number of factors contribute to the general val-
ue of the interferometric correlation:
+ The geometric correlation due to incidence an-
gle and projection effects, y,
« The correlation related the proportion of noise
in the receive system, y;,,
« The correlation related to the interferometric
baseline and the volume scattering of the target, y.
« The temporal correlation (or decorrelation, as
the case may be), Vemo
The net effect of all of these sources of decorrela-
tion multiplied by one another make up the total
observed correlation y as described previously by

’y:

Eq. (4.2):

V=Voeom Vsp™ Viot ™ Viemp -
43)
When a satellite doing repeat-pass interferometry
and has an orbital repeat that minimizes the orbital
distance between repeat-orbits, the condition exists
known as “zero-baseline interferometry,” which is the
case for most repeat-pass SAR systems. In such cases,
the contribution of the volumetric decorrelation y, , to
the total correlation is minimal; hence, the best way for
relating interferometric correlation to FSH is through
the temporal decorrelation signature, which is a statis-

tical-empirical relationship by its nature.
In the FSH algorithm, the combination of volume
and temporal correlation (or coherence ) Vel =

|yvolylemp !
empirical equation:

| h
‘%&t‘ :Sscene ~S/ﬂ([(—”] ' (44)
scene

where the coefficients of S, and C, _ are scene-
wide coefficients (i.e., have only one value for the entire
radar scene) determined using a least-squares fit to the
ground validation data and/or overlap regions between

neighboring interferograms (e.g., Lei etal. 2019). Typical

08 . ; . 16
scene
0.7 * “scene | 14
06 12
H g
§os 10 8
[ o
04 8
03 6

00‘25 03 035 04 045 05 055 06 065
Correlation magnitude average

Figure 4.9 Typical values for the model coefficients
of S,... and C_, . used by the FSH algorithm for

relating vegetation height to the interferometric
coherence.
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Figure 4.10 A spatial comparison between lidar-derived tree height (RH100) from NASA’s LVIS instrument, and the FSH approach using either the ALOS-

1 or -2 sensors.

values of S, and C , _ as determined in a 37-scene,
statewide mosaic of FSH for Maine are shown in Fig-
ure 4.9, Note that values of S and C__vary due
to differing weather and soil moisture conditions that
happen throughout the year and observing period of
repeat-pass interferometry.

Once the coefficients for the empirical relationship
between  and |y, | have been established, it is a sim-
ple matter to invert the relationship (using a lookup table

or otherwise) to determine FSH over an extended region.

4.1.4 ACCURACY OF FINAL MEASUREMENTS

The accuracy of the estimates of FSH obtained using
the methods described above is a subject of contin-
ued study. One example of the accuracy assessment
is shown in Figure 4.1, which shows values for the
Root-Mean-Square Error (RMSE) (residual) error of
estimating FSH when compared to lidar data. In these
cases, the error for FSH is 3.8 m when measured at a
resolution of 400 x 800 m (32 ha) and using the inter-
ferometric correlation alone (i.e., not including the es-
timation improvement when backscatter power is used
to estimate FSH for values of FSH < 10 m). When data
from the coherence are combined with the backscatter
power, the estimated error is better than 3.5 m when
measured at a resolution of 6 ha, an improvement of
more than four times.

Factors that affect the accuracy of the FSH algorithm
are:

+ The degree that temporal conditions affect the
interferometric coherence

+ The availability of SAR data at wavelengths of
[-band (or P-band; C-band data from Sentinel-1a
for instance, is not appropriate for FSH determi-
nation using these methods)

+ Availability and quality of ground validation data

b

" ) ERE 3014

Figure 4.11 A qualitative comparison of (a) lidar-derived vegetation height from the GRANIT sensor
and (b) SAR-derived FSH for a site that is more than 300 km away from the location where the LVIS
lidar was used for determining the model coefficients. The 6-ha RMSE between the two measures of

FSH is 3.9 m (from Lei et al. 2019)

that can be used for determining model coeffi-
cents

+The spatial dimension (area) that the accuracy is
being assessed.

With respect to this last parameter that affects ac-
curacy, for many remote sensing applications, so long
as there are no biases in the data, resolution can be
traded for accuracy. In the case of the FSH algorithm,
the accuracy is quoted to be 3.5 m at a 6-ha resolution.
To determine the accuracy of the algorithm at a 1-ha
resolution, the reporting requirement for REDD+ MRV
(see Section 4.1.7), the extrapolated accuracy would
be \f 6 ha/1hax35 m=86 m.

An example of a wide-area application of the FSH
algorithm can be found in Lei et al. 2019, with some of
the salient results shown in Figure 4.10.

Asimple method of assessment is to show a spatial
comparison between lidar-derived heights and those
obtained from the FSH algorithm. For a transect ex-
tracted from the LVIS data shown in Figure 4.4 over
the Howland forest in Maine, a comparison is made in
Figure 4.9 between the lidar-derived height and the
height determined from the InSAR and SAR backscat-

ter power algorithm discussed here. The plot shows
excellent agreement between the two measures, but
may be unsurprising in that the lidar data were used to
calibrate the scene-wide coefficients used by the SAR/
InSAR FSH algorithm for estimating height.

A better comparison can be assessed by finding
a nearby region that is also sampled by lidar but not
used in determining the model coefficients. Such a site
exists in the White Mountain National Forest (WMNF)
in eastern New Hampshire, U.S., more than 300 km
away and distant from the originally trained SAR/InSAR
scene by 5 orbits (and equivalently, at least 5 scenes).
By using the overlap regions between adjacent pass-
es of the satellite, the coefficients determined from
the Howland Forest can be propagated to the WMNF
scenes and then compared to the lidar data that are
available there. Thisis shown in Figure 4.11inaqual-
itative sense. Quantitatively, the residual differences
between the two datasets have a standard deviation of
3.9 mwhen measured at a resolution of 6 ha.

Afinal comparison can be made for forest heights
assessed at the county level, as shown in Figure
4.12. Inthis case, data from the U.S. Forest Service's
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Figure 4.12 Comparison of county-level assessments of vegetation height obtained (a) by the U.S. Forest Service using FIA plots and (b) those obtained
using the FSH algorithm. At right is a quantitative comparison between the two datasets.

Field Inventory Analysis (FIA) program is used for creat-
ing an independent assessment of forest height for each
county in the region (see Lei et al. 2019). When these
county-level estimates are compared with the SAR/
InSAR estimates of FSH at the same scale, the RMSE is
measured to be 1.8 m, as shown in the figure.

In general, as shown in Figure 4.11, the differ-
ences between independently derived measures of
forest height and those determined using the SAR/
InSAR algorithm for FSH compare very well and have
residual errors on the order of 4 m for map resolutions
of 6 ha. Under the assumption that the independently
derived estimates of FSH are more accurate than the
SAR/InSAR approach, the dominant contributor to
this residual error is due to model error related to the
difficulty in capturing the effect of weather events on
the InSAR signature. One way to overcome this type of
error is for the repeat-pass observations to take place
over shorter timescales than the 46-day repeat period
of ALOS-1. Initial studies using ALOS-2 data (that has a
14-day repeat period) have shown that, indeed, the er-
ror is reduced. The observing plan and data distribution
policies of ALOS-2, however, have not enabled a fuller
assessment that could be applied over a region as large
as that shown in Figure 4.4, and so opportune data-
sets where the algorithm can be further tested remain
to be found.

4.1.5 SOURCES OF ERROR
After presenting the SAR/InSAR algorithm for deter-

mining FSH in Sections 4.1.1-4.1.4, it is important
to summarize the different sources of error that can
confound this measurement. These sources of error are:

o Spatially varying degree of temporal
decorrelation—The empirical models that re-
late SAR backscatter power and InSAR coherence
to FSH described in Section 4.1.3 rely on coeffi-
cients that are determined on a Scene-wide basis
(one radar scene or interferometric pair at a time).
When weather affects the temporal signature on
the radar imagery in a spatially varying manner
within a single scene, then the scene-wide coeffi-
cients determined for the model, while correct in
an average sense, will have a spatially varying error
within the scene. This error can be improved by
fitting the empirical models to the residual spatial
variation. Such afitwould depend on the availabil-
ity of ancillary data (e.g., lidar or ground validation)
and would require a considerable amount of care
during the fitting stage; hence, this is generally not
done. Asimpler approach to dealing with this type
of error source would be to discard the data that
suffer from this effect and substitute with data col-
lected during a different time period.

* Regions that are undergoing significant
landcover change—The InSAR component of
the FSH algorithm relies on the temporal decor-
relation signature to estimate vegetation height.
When temporal decorrelation is due to causes
other than the motion of vegetation proportion to

their height, an error in the estimation of FSH will
occur. An example of such error can occur in ag-
ricultural regions, where the degree of change in
the landcover and field management is high. Such
locations show a high degree of temporal decor-
relation and hence will be evaluated by the FSH
algorithm as having tall forest stands. Similarly,
urban areas and regjons of open water and flood-
ed areas will also display high degrees of temporal
decorrelation that will cause difficulties for the FSH
algorithm. A simple approach to dealing with this
type of error source is to use a landcover classi-
fication converted to an FNF map that eliminates
these regions from the estimation process.

* Regions undergoing selective logging
and clearcutting—Similar to the error sourc-
es indicated above, regions undergoing selective
logging and clearcutting will display a high degree
of temporal decorrelation, and the estimation
process will indicate unrealistically large values of
FSH (40 m and taller in regions where such tree
heights are not common). In these cases, an ad-
ditional post-estimation step should be exercised
to identify all of those regions estimated to have a
large value of FSH by the algorithm, evaluate them
independently to determine the cause (using op-
tical data or otherwise), and flag the regions as
being disturbed.

* Topographic effects—The InSAR portion of
the FSH algorithm works best when the interfer-
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ometric baseline is as close to zero as possible.
For this reason, the algorithm is not subject to
significant topographic relief. In regions of large
topographic variation, the degree of layover and
shadow is spatially varying and hence should be
accounted for in the assessment. One way of cor-
recting for topographic effects is to collect the data
from different aspect angles, such as can be done
between ascending and descending passes of the
satellite. Once an evaluation has been made as
to which regions have errors associated with the
viewing geometry, these errors can be minimized
by combining the results from the different orbital
directions of the satellite.

4.1.6 COMBINATION WITH OPTICAL DATASETS

The SAR/InSAR method for estimating FSH lends
itself very well to combining with optical datasets,
whether active (lidar) or passive (e.g., Landsat, MO-
DIS and Sentinel-2). In general, both serve important
roles in the estimation of FSH. As explained in Section
4.1.2, lidar is important in the determination of model
coefficients, and optical data are often used for creating
landcover classification products to derive forest cover
maps. These maps are then used to determine regions
where the FSH algorithm should be exercised.

After calculating FSH using the algorithms de-
tailed here, optical data (espedially lidar (as shown
in Fig. 4.11)) can serve the role of validation, an im-
portant component of the MRV system necessary for
monitoring natural resources within a county’s borders
and meeting various United Nations agreements with
developing countries.

4.1.7 MRV SYSTEMS IN THE CONTEXT OF
REDD+

The United Nations Framework Convention on Cli-
mate Change (UNFCCC) describes the need for Mea-
surement, Report, and Verification (MRV) of forest
carbon stocks, implemented through the Reducing
Emissions from Deforestation and Forest Degradation
in Developing Countries (REDD+) program. This pro-
gram seeks methods for independently verifying the
status and change of carbon stocks within developing
countries, espedially as they undergo varying economic,
population, and climate challenges.
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The methods described here, especially as demon-
strated in Figure 4.11, can be used for addressing this
MRV need. Although in the context of this treatment,
the methods have been demonstrated for an 11.6-mil-
lion-ha region in the northeastern U.S., the same meth-
ods can be applied elsewhere in the world. What is
required to achieve this reach are (1) the availability of
repeat-pass L- or P-band SAR data, (2) an assessment of
the regions where the FSH algorithms would be applied
(e.g., a global/regional landcover map), and (3) the col-
lection of ground validation or lidar data over regions
near where the estimation of FSH would be applied.

4.1.8 LOOKING AHEAD

In recent years, the availability of spaceborne remote
sensing data—both in terms of data distribution pol-
icy and collection of the data—has been expanding
considerably. Along with this expanded availability has
been an increasing need to apply these assets to bet-
ter monitor natural resources on a global basis. Such
monitoring is important for understanding the effects
of dimate, public policy, and population pressure on a
changing environment.

Through the launching of NASA's GEDI and NISAR
missions in 2018 and 2021, respectively, the monitoring
of forest structure and FSH through the approach dis-
cussed here is well-positioned to address these needs.
Figure 4.13 illustrates how this can be accomplished
using the side-looking mapping capability of NISAR
and the nadir-looking sampling measures of vegetation
height that will come from GEDI. The figure also shows
how GEDI's 14-beam lidar samples will overlap the
NISAR data, which will have a 250-km swath, a 12-day
repeat period, and operate at L-band.

The baseline NISAR mission will create interfero-
grams over most of the Earth’s landcover surface ev-
ery 12 days at dual-polarization. In this scenario, the
cross-polarized (HV) interferometric coherence and
backscatter power from NISAR will be compared with
forest heights measured from GEDI and used to cal-
culate the coefficients that parameterize the empirical
equations described in Section 4.1.3. Even though
the two missions may not be operating concurrently, the
degree of change in the world forests will not be so large
as to adversely affect the model parameterization.

Prior to the availability of data from these two mis-

Figure 4.13 Illustration on how NISAR and

GEDI data can be combined to create a global
estimate of FSH using the algorithms described
here. Viewing geometries of NISAR and GEDI are
displayed, along with an inset overlap schematic
of NISAR data (red) with GEDI 14-beam lidar
data (green) (Lei et al., 2019).

sions, there are in principal sufficient resources from
JAXA's ALOS-1 and -2 satellites as well as CONAE's SAO-
(OM satellite that can be combined with airborne lidar
for obtaining results similar to those presented here and
in published papers. The largest caveat at present is the
availability of L-band SAR data, which is fairly restrict-
ed due to governmental policies, especially in the dis-
tribution of raw data. The larger scientific community,
consisting of ecosystem and other Earth scientists, have
been lobbying the governmental agencies of Japan and
Argentina to free up some of these resources, however,
and hence there is hope that some of these data will
become more available, especially over the countries
where the assessment and monitoring of forest resourc-
es with remote sensing data are critically important.

4.2 Python Scripts

A GitHub website with Python scripts written by Y.
Lei, the principal developer of the FSH technique, has
been set up. These scripts can be freely downloaded,
along with an example-driven tutorial on the process, at
https://github.com/leiyangleon/FSH.

183


http://gedi.umd.edu/
http://nisar.jpl.nasa.gov/
https://github.com/leiyangleon/FSH

4.3 References

Cloude, S. R. R, & Papathanassiou, K. P. P. (2001). Single-baseline polarimetric SAR interferome- large-scale modlerate-resolution forest hejght mosaic with spaceborne repeat-pass SAR
{ry. IEEE Transactions on Geostience and Remote Sensing, 39(11), 2352-2363. htip.//doi. interferometry and lidar. IEEF Transactions on Geoscience and Remote Sensing, 57(2),
01g/10.1109/36.964971 770-78]. hitp://doi.org/ 10.1109/TGRS.2018.2860590

Lei, ¥, & Siqueira, P. (2014). Estimation of forest height using spaceborne repeat-pass -band  Lei, ¥, Lucas, R, Siqueira, P, Schmidt, M., & Treuhaft, R. (2018). Detection of forest disturbance
InSAR correlation magnitude over the US state of Maine. Remote Sensing, 6(11), 10252~ with spaceborne repeat-pass SAR interferometry. IEEE Transactions on Geoscience and
10285. hiip.//dor.org/10.3390/rs61110252 Remote Sensing, 56(4), 2424-2439. http://doi.org/10.1109/TGRS.2017.2780158

Lei, ¥, & Siqueira, P. (2015). An automatic mosaicking algorithm for the generation of a large-scale - Small, D,, (2017) "Flattening gamma: Radiometric terrain correction for SAR imagery” IFEF Transac-
forest height map using spaceborne repeat-pass InSAR correlation magnitude. Remote tions on Geoscience and Remote Sensing49(8), 30813093
Sensing, 7(5), 5639-5659. htip://doi.org/10.3390/1s70505639
TreuhaftR. N, Siqueira, P.R.(2000). Vertical structure of vegetated land surfaces frominterferometric
Lei, Y, Siqueira, P, Torbick, N., Ducey, M., Chowdhury, D, & Salas, W. (2019). Generation of and polarimetricradar. Raclio Science 35, 141-177. htfps.//doi.org/10.1029/1999RS900108

184 THE SAR HANDBOOK



THE SAR HANDBOOK 185



APPENDIX C

Estimating Forest Stand
Height Using L-band SAR
~ Chapter 4 Training Module

Developed by Helen Baldwin and Sarva Pulla with data and
scripts from Paul Siqueira and Yang Lei

Input datasets:
+ ALOS PALSAR or equivalent L-band
dual-polarized imagery

* Forest height data (lidar or
ground collection; GeoTlFF)

« Aforest/non-forest mask (optional; GeoTlFF)

Software:
+ AUnix/Linux environment required
to run the Python scripts

* QGIS/ArcGIS/GoogleEarth
(suggested for visualization)

* Anaconda for Python and packages

In this tutorial, we will estimate forest stand height
(FSH) using L-band SAR data. The most accurate way to
estimate FSH with repeat pass interferometry is by using
a combination of SAR backscatter power and InSAR co-
herence. For this reason, the approach described here
can be referred to as a combined SAR/INSAR estimation
of FSH. Since the backscatter power relationship is most
appropriate to calculate values of FSH below 10 m and
values above this threshold are best determined by in-
terferometric coherence, this algorithm computes FSH
from interferometric coherence first, and the backscatter
power empirical relationship is used if the FSH is below
that threshold.

1 DATA ACQUISITION

One L-band SAR scene and one ancillary dataset are
necessary for this tutorial. An additional ancillary data-
set is recommended. To download an example dataset,
please see section 2.5 of this module.

1.1 ALOS PALSAR

Since the structure of vegetation is on the order of
10's of centimeters, forest vegetation is often best ob-

served with P- or L-bands (=24 cm). At this bandwidth,
the Japanese Aerospace Exploration Agency (JAXA)'s
JERS-T and ALOS-1 & -2 satellites are available, but geo-
graphically limited. This tutorial utilizes ALOS-1. Please
refer to Marc Simard's Training Module in Appendix E for
for an explanation of how to acquire ALOS PALSAR data
and select the Single-Look Complex (SLC) product. This
tutorial could also potentially apply to NISAR data in the
future.

Processing InSAR data to estimate FSH requires either
raw satellite data that have been downlinked, but not
processed, or SAR data that have been processed into
SLC imagery appropriate for forming interferograms.
If you have access to SLCs, it is recommended that you
skip section 4 and proceed to section 5. If only raw data
are available, then the additional processing explained
in section 4 of this tutorial is necessary. One advantage
of beginning with raw data are that the output formats
of the interferograms and ancillary data make it easy to
follow on the processing methods with additional steps
implemented to estimate FSH.

1.2 Ancillary Datasets

FSH ground validation data are an important compo-
nent of the FSH estimation methodology. There are two
types of ancillary data utilized in the algorithm. Locations
where forest height has been previously determined are
required to train the empirical models. A forest/non-for-
estmask indicating where the estimates should be calcu-
lated is an optional dataset.

1.2.1 Forest Hejght Data

Independent measurements of forest height are
necessary to determine values for the empirical models
that relate radar backscatter power and interferometric
coherence to FSH. Lidar data are preferred, since they
acquire accurate measurements of vegetation height
over an extended geographic region. Freely-available
satellite resources of lidar data are currently or about to
become accessible, including ICESAT-1 and -2, and the
upcoming NASA GEDI mission. This dataset should be in
a GeoTIFF format and resampled to the same resolution
as the InSAR image. The margin/NoData values must be
set to NaN or some number less than zero. Within the
FSH scripts, this data set is referred to as “ref_file.”

If lidar data are not available, then another form of
independent forest height needs to be identified or
created. A simple method is to perform a land cover
classification of a region using optical data sets. Stands
of different ages and species composition will have
different heights, which can be estimated from the
ground to the same accuracy as the FSH. This approach
was used during the development and testing of the
FSH algorithm with mixed results.

1.2.2 Map of Forest/Non-forest

The forest/non-forest map can be derived from
a number of sources, or made independently by the
user. Examples of sources that can be used to derive
a forest/non-forest mask are i. JAXA's FNF mask, ii. the
US National LandCover Dataset, and iii. The ESA's (Ci
Landcover (formerly GlobCover). These datasets are
used to identify where forests are situated and, hence,
where to estimate FSH. The forest/non-forest mask
must be classified so that all regions where FSH should
be estimated have avalue of zero and all regions where
FSH should not be estimated have a value of 1.This op-
tional dataset should be a GeoTIFF and resampled to
the same resolution as the InSAR image. This file must
be in degrees; e.g., EPSG 4326. The margin/NoData
values must be set to NaN or some number less than
zero. Within the FSH scripts, this dataset is referred to
as “mask_file".

2 LINUX ENVIRONMENT AND PYTHON SETUP

While Python scripts can be run in the Windows,
0SX, and Unix environments, the methods in this
module require a Unix or Linux environment. Please
follow the instructions in section 2.1 to setup a Linux
environment on your computer using Oracle Virtual-
Box, section 2.2 to install Anaconda, and section 2.3 to
install dependencies for the FSH scripts. If you already
have a Linux environment, or have completed any of
the other setup steps, please proceed to the next ap-
plicable section.

2.1 Download and Install VirtualBox

1. First, go to https://www.irtualbox.org/ to
download Oracle VM VirtualBox. Choose the
host appropriate for your computer.

2. Next, go to https://www.ubuntu.com/down-
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load/desktop and download the latest version of
Ubuntu. We will use this later on while setting up
our virtual machine.

Follow along with the Oracle VM VirtualBox instal-
lation wizard. Once installation is finished, open
the Oracle VM VirtualBox.

Click “New” in the menu located at the top of the
Oracle VM VirtualBox Manager window to create
the virtual machine you will use for this exercise.
This menu bar is shown below.

TRrY

8.

Leave the Hard disk selection on “Create a virtual
hard disk now” and click create, as shown below.

€ Create Virtual Machine

Hard disk

1f you wish you can add a virtual hard disk to the new machine. You can
either create a new hard disk file or select one from the list or from another
location using the folder icon.

If you need a more complex storage set-up you can skip this step and make
the changes to the machine settings once the machine is created.

The recommended size of the hard disk is 10.00 GB.
(O Do not add a virtual hard disk
@ Create a virtual hard disk now
(O Use an existing virtual hard disk file
sar.vdi (Normal, 40.50 GB) v

&«

12.

Create Virtual Hard Disk

File location and size

Please type the name of the new virtual hard disk file into the box below or dick
on the folder icon to select a different folder to create the file in.

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk,

' ‘ 20j00G8

2.00T8

FSH

' '
4.00MB

Notice that your new virtual machine has been
added to the list of virtual machines along the
left side of your Oracle VM VirtualBox Manag-
er. As shown below, | have a virtual machine

9. Leave the Hard disk file type selection on “VDI named “sar” alone with the virtual machine
A : . . ) . wi virtu i
New Settings Discard Start (VirtualBox Disk Image)” and click next, as shown P , 6
FSH" that I just created.
below.
The “Create Virtual Machine: Name and operating ¥ Oracle VM VirtualBox Manager
system” window shown below should pop up. Create Virtual Hard Dk File Machine Help
Enter a name for your virtual machine. For this ex- Hard disk file type
ercise, we chose “FSH”. Browse to a folder where Please choose the type of e that you wouid ik to use fo the new virtal 858 Tools
. . " ” hard disk. If you do not need to use it with other virtualization software you
youwould like to save your machine, select “Linux canleave this settng unchanged.
. @ VDI (VirtualBox Disk Image) =2 sar
from the dropdown meng as the type of Imachme, P © Powered OFF
and select “Ubuntu (64-bit)" as your version. O VMDK (Virtual Machine Disk)
) ) 2, g FSH
Creste Vit Machine 10 Leave the Storage on physical hard disk selec- © Powered Off
tion on “Dynamically allocated” and select next, ‘ _ _
Name and operating system 13, Select your new virtual machine from the list.
B B as shown below. S
Pesse chose» descrtve: ame and desraton e o the new vt It should appear highlighted, as shown above.
Then_ame you choose will be used throughout VirtualBox to identify this ) ) .
medine: I | € Create Virtual Hard Disk 14, Click“Settings” in the menu located at the top of
Name: |FSH . .
Macine Fodr: [ T C-YsmroPbanVuabon we 7 Storage on physical hard disk the Oracle VM VirtualBox Manager window to
Type: [linx v\ e o st e ool e e ek 1o o1 adjust the settings of your new virtual machine.
Version: | Ubuntu (64-bit) v (dynamically allocated) or if it should be created at its maximum size (fixed L . . .
s 15. Within the settings pop up window, navigate to
A dynamically allocated hard disk file will only use space on your physical
. hard disk as it fills up (up to a maximum fixed size), although it will not shrink the advanced tab
Once the name and operating system for your new again automatically when space on tis freed.
machine are set Up as shown in the Mage above,  anes e seame ™ e ros oesteensamesysemsintis 16, Undeer “Shared Clipboard,” choose “Bidirection-
dick next. The “Create Virtual Machine: Memory  © Pl s al” from the drop down menu. This will allow
Fixed si
size” window should pop up. e you to copy and paste between your host sys-
_ tem and your virtual machine.
Enter the amount of memory you would like toal- 11 Set up the file location and size as shown below.
locate to your machine. | chose 8192 MB, as shown Your file name should automatically populate, :m _ T x
below. Click next. but you can also navigate to a new folder to | [@ swm | s st oocorn  cmeropn
3 . (W) Display napsh : | napet v
€ Create Vitunt Machioe creatg the file if qece;sary. I selected 40GB for P
the virtual hard disk size. Select create, and the g = '
M i " H el H H ek
ey Create Virtual Hard Disk” pop up window will | & sesee
vs:l;dalrl“:da;n:ntnfmmy (RAM) in megabytes to be allocated to the CIOSG é? :::zmdmdm
The recommended memory size is 1024 MB. [T vserinterface
““““““““““ ' 8192 [+ | M8
4MB 16334 MB
o
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17. Navigate to “System” from the left hand menu.
Choose the processor tab. Increase your num-
ber of CPUs; I chose 4, as that was the maximum
within the suggested green range.

@ FSH - Settings ? X

[ Genernt
e
W) oisplay Processor(s): ] s

| 1ou sous
&) storage
Execution Cap: 0 [100% 2

P audio = 100%
i‘) Network Extended Features: (] Enable PAEINX

£ seriaipons e

& uss

2] shared Folders

[ userinterface

System

Motherbord  Processor  Acceleration

e e
18. Navigate to “Storage” from the left hand menu.

19.  Select the “Empty” disk icon under the COntrol-
ler IDE option. Under Attributes, click on the
disk icon next to the optical drive selection “IDE
Secondary Master.” Navigate to the Ubuntu for
desktop that you downloaded in step 2 using
the “Choose Virtual Optical Disk File” option.

20. Navigate to “Shared Folders” from the left hand
menu.

21, Click the add folder icon [Z®  along the right
of the shared folders window to get to the “Add
share” pop up window as shown below.

[ Generat
[®] system
() Oisplay
Storage
Qo avdio
@ Network
£ seritpors
& uss

[T shared Folders

Shared Folders
Shared Foiders
Neme Path Access AutoMount At | @
l @ Add Share ? %
Foder Path: || v
Folder Neme: |
[ Read-only

[ Auto-mount

Mount point: ]

[ user nterface o Cancel

22. Navigate to the folder where your virtual ma-
chine is stored within the Folder Path option.
The name of the folder will be automatically
populated. Choose the “Auto-mount” option as

shown below.
€3 Add Share ? X
Folder Path: | C:\Users\hb...ualBox VMs\FSH l

Folder Name: |FSH I

[[] read-only
Auto-mount

Mount point: | ]

23. Click OK to return to the Shared Folders page.
Your folder should now appear in the list of Ma-
chine Folders as shown below.

@ FSH - Settings ? X

[ Generat
[&] spem
g Displ Name Path

i ¥ Machine Folders
&) storage FSH  C:\Users\hbaldwin\VirtualBox VMs\FSH
(Dl Audio
& Network
£ serislpons
L us
[ shared Folders

[T vser interface

Shared Folders
Shared Folders
Access AutoMount At | @

a8

Full  Yes

=

24, To avoid a blank screen after installing Guest
Additions in a later step, navigate to “Display”
from the left hand menu. Use the drop down
menu for the Graphics Controller to select
“VBoxXVGA."

25. Click "OK" to apply these setting changes and
return to the Oracle VM VirtualBox Manager.
Click “Start” in the menu located at the top of
the Oracle VM VirtualBox Manager window to
run your new virtual machine.

26. The welcome pop up shown below should ap-
pear. Choose your preferred language from the
list and click “Install Ubuntu.”

3 554 Runving) - Orace VM Vitusion - o x

Fle Machine View Input Devices Help

Welcome

Espanol
Esperanto

Try Ubuntu

B

Install Ubuntu

this CD.

 if you're ready, you can install Ubuntu alongside (or instead of) your current
operating system. This shouldn't take too long.

Youmaywish to rea

(o (Ol FPd=10] v SO L]

27. (Click continue to utilize the default keyboard
layout.

28.  Click continue to utilize the default installation
and update options.

29.  Click “Install Now" with the default selections
as shown below.

Quit Back

Install Now

FIer e IEora
30.  Click continue when the pop up window “Write
the changes to disk?” appears.

31, Click continue after selecting your time zone.
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32. Fill'in your prefered name and password for
your virtual box as shown below.

Fri 15355

Install

LR¥SS/OER0 @ rece

33, Once installation is complete, the window be-
low should appear. Choose “Restart now” to
use the new installation.

Frl 16102

QRS S/OWR 0 G @Irercy

34. After a few minutes, the “What's new in Ubun-
tu” window shown below should appear. Click
next.

les @ Welcome to Ubuntu ~

What's new in Ubuntu

Ubuntu 18.04 works differently from older versions.

apps button (RS

35, (lick next to proceed past the Livepatch window.

36. Click next to proceed past the “Help improve

THE SAR HANDBOOK

Ubuntu” window after choosing whether or
not to report information to developers for im-
provement.

37. Click “Done” on the “Ready to go” window.

38, Click “Devices” in the menu on the top of your
running machine and choose “Insert Guest Ad-
ditions CD Image” from the drop down menu,
as shown below.

9
«
C
Q
is}
fa
?
2

[FI8 FE T e

39. The VirtualBox Guest Additions CD (here:
VBox_GAs_6.0.1) should appear on the desk-
top of your virtual machine and a warning win-
dow may appear as shown below. Click “run” to
proceed. You may be prompted to enter in your
password to run the Guest Additions disk.

VA Fs
[

Fri16:19

“VBox_GAs_6.0.4" contains software intended to
[l be automatically started. Would you like to run it?

D9FPOmMAEC

#OOWwcr_

40. Once the Guest Additions disk has finished
running, the warning, “This system is currently
not set up to build kernel modules” may appear
at the end of the messages in the terminal, as
shown below. If this is the case, press enter to
close the window, and follow steps 40 through
48. If this warning does not appear, you may

move on to installing Anaconda in section 2.2.

3 FSH [Running] - Oracle VM VinualBox - o x

42.

43.

44,

FIEE R PO

Open the terminal using ctr, alt, and t. Then

type in the command sudo apt-get in-

stall linux-headers-"uname -r°

dkms build-essential 0f sudo apt-
get install linux-headers-$(uname
-r) dkms build-essential

N

You should be prompted to enter “y" to contin-
ue. The packages identified as missing in step
39 should now be installed. Press enter to close
the window.

In order to use these packages, you will have
to restart the virtual machine. Select the arrow
along the top right menu (shown below).

An additional menu, shown below, should
open.

Wired Connected

Fully Charged
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45, Click on the power icon to open the Power Off window, and choose “Re-
start”. When the VM restarts, rerun the VirtualBox Guest Additions CD by
clicking on the file icon in the menu on the left hand side. Click the Guest
Additions disk in the left hand menu on the pop up window. Then select
“Run Software”, as shown below.

e VM VirtualBex - o x

Mon 17:45

Activities

W Files ~

b

¢ © VBox GAs 604
Recent
Home
Desktop
Documents
Downloads
Music
Pictures
Videos

Trash

9
<
=
B
S
»
3]

Other Locations

46. The VirtualBox Guest Additions Installation window should open as shown
below. Press enter to close the window.

VirtualBox Guest Additions installation

File Edit View Search Terminal Help

Verifying archive integrity... All good.

Uncompressing VirtualBox 6.0.4 Guest Additions for Linux
VirtualBox Guest Additions installer

Removing installed version 6.0.4 of VirtualBox Guest Additions...
update-initramfs: Generating /boot/initrd.img-4.15.0-29-generic
update-initramfs: Generating /boot/initrd.img-4.15.0-46-generic
Copying additional installer modules ...

Installing additional modules ...

VirtualBox Guest Additions: Building the VirtualBox Guest Additions kernel

modules. This may take a while.

VirtualBox Guest Additions: To build modules for other installed kernels, run
VirtualBox Guest Additions: /sbin/rcvboxadd quicksetup <version>

VirtualBox Guest Additions: Building the modules for kernel 4.15.0-46-generic.
update-initramfs: Generating /boot/initrd.img-4.15.0-46-generic

VirtualBox Guest Additions: Running kernel modules will not be replaced until
the system is restarted

VirtualBox Guest Additions: Starting.

Press Return to close this window...

47 Restart the machine as described in steps 42 through 45.

2.2 Download and Install Anaconda

48. Open your web browser on your virtual machine, and navigate to https://www.
anaconda.com/distribution/#linux or search for “install Anaconda.” Make sure to
select the tab for the Linux operating system.

49. Right dlick on the download button for the 2.7 version of Python as shown below,
as the FSH scripts were developed and tested using this version. From the menu

/‘

that appears, choose “Copy Link Location.”
:

< C @ = ¥\ @ =

anaconda.com,

28 Window ® macos O Linux

Anaconda 201812 for Linux Installer

Python 3.7 version

Download

Python 2.7 version

Download
Open Link in New Tab

indow

w Private Window

<
B
*®
8

50.  Open the terminal using ctr, alt, and t. Type in the the command “wget”, and then
paste the location of the download for Python 2.7 version, as shown below.

51. The “Welcome to Anaconda” text should display in your terminal as shown below.
Copy the highlighted “Anaconda2-2018.12-Linux-x86_64.sh.1" text.

fsh@fsh-virtualBox:~$S wget https://repo.anaconda.com/archive/Anaconda2-2018.12-L
inux-x86_64.sh
--2019-63-31 12:18:57--
ux-x86_64.sh

Resolving repo.anaconda.com (repo.anaconda.com)...
606:4700::6810:8303, ...

Connecting to repo.anaconda.com (repo.anaconda.com)|104.16.131.3]:443...
ed.

HTTP request sent, awaiting response... 200 OK

Length: 658699654 (628M) [application/x-sh]

Saving to: ‘Anaconda2-2018.12-Linux-x86_64.sh.1’

https://repo.anaconda.com/archive/Anaconda2-2018.12-Lin
104.16.131.3, 104.16.130.3, 2

connect

==>] 628.18M 21.1MB/s in 30s
2019-63-31 12:19:28 (20.8 MB/s) -

58699654/658699654]

‘Anaconda2-2018.12-Linux-x86_64.sh.1’ saved [6

fsh@fsh-virtualBox:~$ l

52. Enter the command “bash” and paste in the “Anaconda2-2018.12-Li-
nux-x86_64.sh.1" text. Follow the prompts to review the Anaconda license
information, and enter “yes” to confirm the installation of Anaconda when
prompted.

53. Enter the location where you would like Anaconda to be saved. I chose the

cryptography
A Python library which exposes cryptographic recipes and primitives.

Do you accept the license terms? [yes|no]
[no] >>>

Please answer 'yes' or 'no':"

>>>

Please answer ' 'or 'mo':"

>>>

Please answer
>>>

Please answer
>>> yes

yes' or

' '

yes' or

[Anaconda2 will now be installed into this location:
/home /fsh/anaconda2
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default as shown on the previous page.

54.  After the installation is finished, you will be prompted to initialize Anaconda2
in your .bashrc, as shown below. Enter “yes.”

installing: blaze-0.11.3-py27_0 ...
installing: jupyter_console-5.2.0-py27_1

: notebook-5.7.4-py27_0 ...

: qtconsole-4.4.3-py27_0 ...

: seaborn-0.9.0-py27_0 ...

: sphinx-1.8.2-py27_0 ...

: spyder-kernels-0.3.0-py27 06 ...

: anaconda-navigator-1.9.6-py27_0 ...
installing: anaconda-project-0.8.2-py27 0 ...
installing: jupyterlab_launcher-06.11.2-py27h28b3542_06 ...
installing: numpydoc-0.8.0-py27_0 ...

: widgetsnbextension-3.4.2-py27_0 ...

: ipywidgets-7.4.2-py27_0 ...
jupyterlab-0.33.11-py27_6 ...

: spyder-3.3.2-py27_0 ...

: _ipyw_jlab_nb_ext_conf-0.1.0-py27 0 ...

jupyter-1.0.0-py27_7 ...

anaconda-2018.12-py27_0 ...

installing: conda-4.5.12-py27 0 ...

installing: conda-build-3.17.6-py27 0 ...

installation finished.

Do you wish the installer to initialize Anaconda2

in your /home/fsh/.bashrc ? [yes|no]

[no] >>>

installing:

55. When prompted to proceed with the installation of Microsoft VSCode, as
shown below, please enter “no.”

[no] >>> yes

Initializing Anaconda2 in /home/fsh/.bashrc

A backup will be made to: /home/fsh/.bashrc-anaconda2.bak

For this change to become active, you have to open a new terminal.

Thank you for installing Anaconda2!

Anaconda is partnered with Microsoft! Microsoft VSCode is a streamlined
code editor with support for development operations like debugging, task
running and version control.

To install Visual Studio Code, you will need:
- Administrator Privileges
- Internet connectivity

Visual Studio Code License: https://code.visualstudio.com/license

Do you wish to proceed with the installation of Microsoft VSCode? [yes|no]
>>>

56.  Close your terminal and open a new terminal (ctr, alt, and t) for your instal-
lation of Anaconda to become active.
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2.3 Download and Import Dependencies

1. To create a python environment named “sar” where we will store all the depen-
dencies necessary to run the FSH scripts, enter the command “conda create -n
sar python=2.7" You can choose to name your environment something other than
sar.

i1

y

3. To activate this python environment in the future, use the command “conda ac
fivate sar” to enter the environment and “conda deactivate” to leave it. Notice as
you use these commands that you will move from “base” to “sar” environments,
as shown below.

2. When prompted, enter “y" to proceed with the installation.

(base) fsh@fsh-virtualBox:~$ conda activate sar

(sar) fsh@fsh-virtualBox:~S$S conda deactivate
(base) fsh@fsh-virtualBox:~$

4. Now, let's set up our “sar” environment with the required python packag-
es: NumPy, SciPy, SimPy, json, pillow, 0sGeo/GDAL, simplekml, mpmath.
Activate the “sar” environment by entering the command “conda activate
sar” into the terminal. Install gdal, numpy, pillow, simplekml and scipy by
entering the command “conda install -c conda-forge gdal numpy=1.15 pillow
simplekml scipy” as shown below.

(base) fsh@fsh-vVirtualBox:~$ conda activate sar
(sar) fsh@fsh-virtualBox:~$ conda install -c conda-forge gdal numpy=1.15 pillow

simplekml scipyll

5. When prompted, enter “y” to proceed.

6. Enter the command “pip install simpy mpmath” to install additional prereq-
uisites.

7. To confirm that you have installed all of the Python packages, you can enter
the command “python.” Then enter “import gdal” or “import” followed by
any of the other packages. If no errors pop up in your terminal and the ar-
rows that indicate a new line appear, then the packages have been installed
correctly.

8. Enter the command “exit ()" to leave python.

9. Toview the version and other information about the packages you have in-
stalled, in the “sar: environment of the terminal, enter the command “conda
list pillow” or “conda list” plus any of the packages, as shown below.

(sar) fsh@fsh-virtualBox:~$ conda list pillow

# packages in environment at /home/fsh/anaconda2/envs/sar:
#

# Name Version
pillow 5.4.1
(sar) fsh@fsh-virtualBox:~$ l

Build Channel

py27he0a061d_1000 conda-forge



3 DOWNLOAD MATERIALS FOR THE TUTORIAL

The Python scripts needed for this tutorial, written by Y. Lei the principal developer
of the FSH technique, and an example dataset can be freely downloaded from GitHub
or from the SERVIR Global website. The example data are preprocessed, and using
these data allow you to skip sections 4 and 5 and proceed to section 6.

3.1 Obtaining the Scripts from GitHub

1.

Navigate to the GitHub page https://github.com/leiyangleon/FSH using FireFox
or another internet application on your virtual machine.

Click the green “Clone or download” button and copy the link shown under the
“Clone with HTTPS” pop up window, as shown below.

<
=
B
A
"
a
-

(sar) fsh@fsh-VirtualBox:
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lefyangleon / FSH Owacn 5 ksw 10 Yrak 3

© Code 1 Pull requests 0 Projects 0

E

Join GitHub today
GitHub is home to over 31 millon developers working together to host
and review code, manage projects, and buid software together.

the automated forest d mosaicking repeat-pass L-band HV-pol INSAR
correlation magnitude data (e.9. JAXA's ALOS-12, and the future NASA-ISRO's NISAR) that have been pre-processed by JPL's ROI_PAC
andlor ISCE programs.

This pe

D0 V1ba 0 relea: 281 contrbu

-

Clone with HTTPS @
Use Gt o

Download 1P

68 README.md

Forest Stand Height (FSH) Python Scripts

Produced by the University of Massachusets Microwave Remote Sensing Laboratory

Open a terminal, and if you are not already in the “sar” environment created in
section 2.3, navigate to the “sar” environment by entering the command “conda
activate sar”

Enter the command, “git clone” followed by pasting in the link you copied from
the GitHub: https://github.com/leiyangleon/FSH.git, as shown below.

$ git clone https://github.(om/leiyangleon/FSH.gitl

If git does not exist on your virtual machine, follow the prompts to install it using
the command “sudo aptinstall git,” followed by your virtual machine’s password.

If you navigate to “Home" under the “Files” tab from the menu on the left hand
side, you should be able to see the “FSH” folder that you downloaded with all of
the scripts necessary for this tutorial.

-]
D
dd
o]
-
(w]
_]
(-]

+

o DG & P S ¢<«DWN B O A

+

i Q =
Recent
al l O O 3 -
anaconda2 Desktop  Documents Downloads FSH Music Pictures
Desktop
Documents ‘! -1 d
Downloads Public Templates Videos Anaconda2- Anaconda2- Anaconda2- Examples
s 2018.12- 2018.12- 2018.12-
Music Linux-x86_  Linux-x86_  MacOSX-
64.sh 64.sh.1 x86_64.pkg

Pictures.
Videos
Trash
sf_fsh
VBox_G

Other Locations

Within your FSH folder, there should be three folders (scripts, test_exam-
ple_ISCE, and test_example_ROIPAC) and three files (LICENSE, preview.jpg,
README.md) inside, as shown below.

@ Home FSH-master scripts (o} = =
Recent .
_— ] =]
test_ test_ LICENSE  preview.jpg
Desktop example_  example_
ISCE ROIPAC
Documents
Downloads
Music README.
md

Pictures
Videos

Trash

sf_SAR

VBOX_G...

Other Locations

“scripts” selected (containing 60 items)

While there are two folders that seem like they should contain data (test_ex-
ample_ISCE and test_example_ROIPAC), if you open these folders than you
will find that they only include a text file, and no SAR data or other required
files, as shown below.

FSH  test_example_ISCE

Recent

Home
NOTES_
Desktop ISCE.txt

Documents

Downloads

Music

To download the example data, please proceed to the next section (3.2).
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3.2 Downloading Example Data

The example data consists of three scenes, including a central scene with overlap-
ping NASA LVIS LiDAR data and two adjacent scenes.

1. You can access the link to download the example data by opening the
text document within the test_example_ROIPAC and test_example_ISCE
folders respectively. See below for the location of the link within the text
file for the ROIPAC data.

NOTES_ROIPAC.txt

2. Under test_example ROIPAC/, you will find the flag_file (“flagfile.txt”), link_file
(“Unkfile.txt”), ref_file (“Howland_LVIS_NaN.tif”), mask_file (“Maine_NLCD2011_nonwildland.tif").
A1l of the associated files for three ALOS PALSAR HV-pol InSAR coherence scenes are grouped by
their ALOS (“fSframe_oSorbit™) and their acquisition dates (under the subfolder
“int_Sdate1_Sdate2”). For each scene, there are seven assoctated files outputted by ROI_PAC:
“$date1_Sdate2_baseline.rsc”, “$datel-Sdate2_2rlks.amp.rsc”, “$Sdatel-Sdate2-
sin_SIM_2rlks.int.rsc”, "$datel-$date2.amp.rsc”, "geo_Sdatel-$date2_2rlks.amp”, “geo_Sdate1-
Sdate2_2rlks.cor™, “geo_Sdatel-$date2_2rlks.cor.rsc”. This "NOTES_ROIPAC.txt" serves as the
instructions for running the FSH software over this test example directory. Finally, a image
“ROI_PAC. jpeg™ shows the final output of 3-scene mosaic map (GeoTiff format) overlaid on Google
Earth in a QGIS window.

***AlL of the ALOS images files have already been margin-cropped and geocoded in the pre-
processing by ROI_PAC (Step 2 & 3 of the general workflow in Section II on the GitHub webpage,
{.e. "README.nd" file).***

3. Run the 1-command FSH auto-inversion (Step 4 of the general workflow in Section II on the
GitHub webpage, i.e. "README.md" file)

python .../forest_stand_height.py 3 2 2 § "linkfile.txt™ "flagfile.txt" "Howland_LVIS_NaN.tif"
"Matne_NLCD2011_nonwildland.tif" “.../test_example_ROIPAC/" “gif json kal mat tif" --flag_diffei --
flag_error=1 --flag_proc=0

n the 1-command FSH mosaicking (Step 5 of the general workflow in Section II on the GitHub
. "README.nd" file)

...[create_mosalc.py “.../test_example_ROIPAC/" “3sc_nosalc.tif"
£890_0118/890_118_20070808_HV_20070923_HV_fsh. tif
£890_0119/896_119_20070710_HV_20071010_HV_fsh.tif
1890_0120/890_120_20070727_HV_20076911_HV_fsh.tif"

“.../test_exanple_ROIPAC/
.../test_example_ROIPAC/
... /test_example_ROIPAC/

5. Open the final output “3sc_mosalc.tif” in QGIS.

PlainText v Tab width:8 v Ln2, Col 78 ». NS

2. You can also navigate to this link through the GltHub, following the same
folder tree, as shown below.

Branch: master v

FSH /test_example_ROIPAC / NOTES_ROIPAC.txt

Ix] leiyangleon Update NOTES_ROIPAC..txt

1 contributor

15 lines (9 sloc) 2.13 KB

1. Download the directory “test_example ROIPAC” from the link:
https://drive.google.com/file/d/0B6s-Z6YHST12MFhxZzNgNjdIaUU/view?usp=sharin

2. Under test_example ROIPAC/, you will find the flag file (“flagfile.txt”),
***All of the ALOS images files have already been margin-cropped and geocode

3. Run the 1-command FSH auto-inversion (Step 4 of the general workflow in §
python .../forest_stand_height.py 3 2 2 5 "linkfile.txt" "flagfile.txt" "How

4. Run the 1-command FSH mosaicking (Step 5 of the general workflow in Secti
python .../create mosaic.py ".../test_example ROIPAC/" “3sc_mosaic.tif" "...

5. Open the final output “3sc_mosaic.tif” in QGIS.
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Desktop

Downloads
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Pictures
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Either way you choose to find the link to the data, copy and paste this link
into the web browser on your virtual machine. While both datasets are
compatible with the FSH scripts, we will use the ROI_PAC as our example
for this tutorial.

Choose the download icon to download the dataset from the Google
Drive link. When prompted for confirmation due to the large size of the
file, select “download anyway”. When prompted to open the file, choose
“save file” and press “0K."

Within “Files,” navigate to “downloads.” Right click on the example data
2ip, and from the pop up menu, choose “Extract to..”

Downloads Qe e

G

r Locations

“test_example_ROIPAC.zip" selected (293.1 MB)

Navigate to “Home" and press the green “Select” button to extract the
example data there.

Within the “test_example_ROIPAC" folder , you will find “flagfile.txt”
(referred to as the flag_file in the scripts),“linkfile.txt” (link_file ), “How-
land_LVIS_NaN.tif" (ref file), and “Maine_NLCD2011_nonwildland.tif”
(mask_file). All of the associated files for the three ALOS PALSAR HV-pol
InSAR coherence scenes are grouped by their ALOS (“f$frame_o$orbit”)
and their acquisition dates (under the subfolder “int_$datel1_$date2").
For each scene, there are seven associated files outputted by the ROI_
PAC software: “$datel_$date2_baseline.rsc”, “$datel-$date2_2rlks.
amp.rsc”, “$datel-$date2-sim_SIM_2rlks.int.rsc”, “$datel-$date2.amp.
rsc”, “geo_$datel-$date2_2rlks.amp”, “geo_$datel-$date2_2rlks.cor”,
“geo_$datel-$date2_2rlks.cor.rsc”. Finally, “ROI_PAC,jpeg” shows the
final output of 3-scene mosaic map (GeoTiff format) overlaid on Google
Earth in a QGIS window. Please see below for the file layout.

test_example_ROIPAC

test_example_ROIPAC

Recent

f890_0118 f890_0119 f890_0120 flagfile.txt Howland_ linkfile.txt Maine_
LVIS_NaN. NLCD2011_
Documents tif nonwildl...

©)

ROI_PAC.
ipeg

Videos
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4 PROCESSING RAW SAR DATA

When processing SAR data, corrections are made for the motion of the satellite
and image projection effects that arise from the atmosphere, viewing geometry and
topography of the Earth. The steps of processing of ALOS SAR data from raw samples
for the satellite include range compression, azimuth compression resulting in an SLC,
and finally projection into map coordinates. Software for processing raw data into SLCs
can be obtained both commercially and through open-source licensing agreements. Of
the open source licensing processors, there are two that have been used for process-
ing raw ALOS data into SLCs and then into estimates of FSH. These are the ROI_PAC
(Repeat Orbit Interferometry PACkage) and ISCE (InSAR Scientific Computing Envi-
ronment). In this tutorial, we focus on ROI_PAC as it has completed its development
lifetime and is somewhat easier to obtain than ISCE. At the time of this writing, ISCE
remains under development. With this in mind, the preprocessing scripts in section 3.2
and the scripts in section 4 that estimate FSH from SLCs have been designed to work
with outputs from both ROI_PAC and ISCE.

4.1 Obtaining the Scripts from GitHub
1. Obtainthe ROI_PAC processing software in tgz (gzipped tar) format from: http://

www.openchannelfoundation.org/projects/ROI_PAC

2. Download and install a fortran compiler (e.g. gfortran) and the fftw library. See
http://roipac.org/cgi-bin/moin.cgi/installation for additional details on the in-
stallation of ROI__PAC software.

3. Utilize the test data set that comes with the ROI_PAC software distribution to test
the software installation. You can find the details of how to test the software in
the ROI_PAC installation subdirectory: fullpath/contrib/multtest.sh where full-
path refers to the folder where you unzipped the ROI_PAC installation archive.

4.2 Processing ROI_PAC/ISCE outputs with Python scripts
1. Toopen the terminal within your virtual machine, press ctr, alt and t.

2. (rop the ROI_PAC/ISCE output and eliminate the image margins by running the
standalone python scripts CROP_ROIPAC.py and CROP_ISCE.py respectively.
Please note that the amount cropped is hard coded based on the dimensions of
the ALOS SAR image. The code would need to be adjusted for ALOS-2 and future
NISAR images.

+ For ROI_PAC processed results enter the command python directo-
ry_of_scripts/CROP_ROIPAC.py dirname datel date2

+ ForISCE-processed results, run the following command within the execution
of insarApp.py python directory_of_scripts/CROP_ISCE.py

You will need to replace three parameters in these commands:

* Replace directory_of_scripts with the location of the ROI_PAC amp/cor files
* Replace datel with the date for the 15t SAR acquisition

* Replace date2 with the date for the second SAR acquisition

For information on how to geocode the ROI_PAC/ISCE output, please see the
Chapter 2 training module.

5 FILE CREATION & ORGANIZATION

5.1 File Structure

The data should be organized in a file structure such that the individual fold-
ers hold results from individual interferograms between two dates (the SLCs and
andillary data for individual scene (frame) and orbit (path) numbers). For any
one frame and path number, there may exist multiple interferograms, related to
multiple repeat-pass combinations of data from two different dates. These inter-
ferograms should be stored in sub-directories that have the naming convention:
int_dateT_date2. Scenes from differing frame and paths can be interferometrical-
ly processed in order to create an estimate of FSH over an extended geographic
region.

The interferogram subdirectories will hold all of the data and information nec-
essary for creating and documenting interferograms made for an observation on
two specific dates (datel and date2). For ROI_PAC-processed data, the most im-
portant file looks like geo_datel-date2_2rlks.cor and geo_datel-date2_2rlks.cor.
rsc. The resource “.rsc” file is a text file that has information the location and size of
the geolocated correlation data held in geo_datel-date2_2rlks.cor. The format of
the correlation file is known as sample-interleaved, or an rmg-format file.

Since radar data are organized in terms of orbits and scenes, in order to make
a map of FSH over an extended geographic region it is necessary to mosaic the
images. While the process of mosaicking can be done either before or after the
estimation of FSH, itis best to do this beforehand to take advantage of the overlap
region between images in adjacent paths. In these regions, while the value of the
coherence magnitude may vary due to the fact that the observations (and image
pairs) have occurred from different orbits (and hence, different dates), the overlap
regions can be used to correct for these temporal differences and to adjust the co-
efficients for the empirical relationships of the SAR products to estimates of FSH.

For each ROI_PAC-processed scene, the following files should be located in a
directory with the format “f$frame_o$orbit/int_$date1_$date2":

$datel_$date2_baseline.rsc
$datel-$date2.amp.rsc
$datel-$date2_2rlks.amp.rsc
$datel-$date2-sim_SIM_2rlks.int.rsc
geo_$datel-$date2_2rlks.amp
geo_$datel-$date2_2rlks.cor
geo_$datel-$date2_2rlks.cor.rsc

Please note that the ROI_PAC's process_2pass.pl should be run with 2 range looks
and 10 azimuth looks in both coherence estimation and multi-looking (equivalent to a
30m-by-30m area for JAXA's ALOS), with the following lines added to the process file:

Rlooks_int=2
Rlooks_sim=2
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Rlooks_sml=2

pixel_ratio=5

A 5-point triangle window is hardcoded in ROI_PAC, which is equivalent to a
2-point rectangle window. For further details on running ROI_PAC, refer to the
ROI_PAC manual. For each ISCE-processed scene, the following files should be
located in a directory with the format “f$frame_o$orbit/int_$date1_$date2”:

isce.log
resampOnlylmage.amp.geo
resampOnlylmage.amp.geo.xml
topophase.cor.geo
topophase.cor.geo.xml

Please note that ISCE's insarApp.py should be run with 2 range looks and 10
azimuth looks in both coherence estimation and multi-looking (equivalent to a
30m-by-30m area for JAXA's ALOS), with the following lines added to the process
file:

<property name="range looks">1</property>

<property name="azimuth looks">5</property>

A5-point triangle window is hardcoded in ISCE, which is equivalent to a 2-point
rectangle window. The .amp/.cor images then need to be multilooked by a factor
of two. For further details on running ISCE see the ISCE manual.

The location of the output files depends on whether they are related to the
overall processing of the entire dataset, or are directly associated with a single
scene. Examples of each would be the SC iteration files as a general output, and
asingle forest stand height image as a scene-specific output. The general outputs
will be stored in a directory named “output” located within the main file directory
(file_directory). The scene specific outputs will be stored with the other scene
data as described earlier.

5.2 Create Flag File

Once the data have been organized into directories of scenes described by
their individual row and path numbers, and the interferograms have been ex-
amined to determine which SLC pairs yield the data with the highest coherence
(i.e. least amount of temporal decorrelation), there remains the task of creating
whatis known as a “flag file” and a “link file.” In this context, the flag file is a listing
of all the interferograms that will be used in creating the region-wide mosaic of
FSH. In the example dataset, there are three such row/path combinations that will
(reate a three-scene mosaic of FSH located in central Maine. The middle of the
three scenes overlaps with the forest height data (ref_file) discussed in Section
1.2, and all scenes are within the region where identifications of forest/non-forest
(mask_file) is used for determining geographic locations where the FSH algorithm
will be applied. An example of the contents of a flag file in text format is:

601 §90_120 20070727 _KV_20070811 %V
052 $90 119 20070710 BV 20071010 =V
003 8907118 20070808 EY_20070923_My

G70727 0708211 8%0 120 ¥V
070710 971010 890 119 MV
70808 070923 8390 118 LU
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In this example, the first column of numbers indicates the interferogram num-
ber, the second is the root file name of the data that forms the interferogram, the
third and fourth are the dates that the data were collected for the interferometric
pairs, the fifth and sixth are the satellite path and orbit respectively, and the last
indicates the polarization of the data.

5.3 Create Link File

The link file provides information on which files are expected to have some
degree of geographic overlap, and will be used in propagating the coefficients of
FSH. While many files may have such a geographic overlap, and that indeed this
overlap can be automatically calculated, a separate link file is desired so that links
can be added or broken as necessary in order to account for the varying quality
of data in the overlap region used to estimate the coefficients (e.g. a scene with a
particularly high degree of temporal decorrelation can be removed from the link
list). A simple example of the test-formatted link file is:

2 1
2 3

This indicates that image 2 is connected to image 1, and that image 2 is also
connected to image 3 (and also that images 1 and 3 are also not connected).

6 ESTIMATE FOREST STAND HEIGHT

Once the SLC, forest/non-forest mask, vegetation height, link file, and flag files
are created and put into place, you can run the FSH scripts by calling them in the
terminal and passing the input file names and ancillary information as arguments.
You can run each script one at a time, or call the main script. For this tutorial,
we will run the FSH scripts from Anaconda in the virtual machine we set up. All
five possible final output data types are produced. Please note that runtime does
not increase linearly with each additional scene. Runtime for most of the steps
are linear in the number of scenes; however, the core part of the inversion and
mosaicking depends on the number of edges, which increases a bit faster as the
number of scenes increases.

6.1 Access the Anaconda Environment
1. Pressthe green arrow to run your virtual machine.
2. Toopen the terminal press ctr, alt, and t.

3. Typeinthe command “conda activate sar” to access the Anaconda environ-
ment and dependencies that you installed in section 2.2. Notice that your
terminal should change from “base” to “sar” environment as shown below.

dev@dev-VirtualBox: ~

File Edit

(CEED)
(sar) d

al Help
:~$ conda activate sar
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6.2 Find the Directory of Scripts and Example Data

1.~ Inorder to run the scripts from your terminal, you will need the directory to your
scripts and the directory to your example data. To get to the directory of your files,
right dlick within the folder that they are stored.

2. Fromthe popup menu that appears, choose “Properties.”

3. You can then copy and paste the Parent Folder plus the folder name from the
properties window into your script. Below is the properties window for the folder
that holds my scripts.

scripts Properties X

Basic Permissions Local Network Share
Name: scripts

J Type: Folder (inode/directory)
Ca e Sgltems, totalling 175.6

Parent Folder: |/home/dev/FSH-master

Free space: 20.8GB

6.3 Run Main FSH Script

1. Now let's call the first script! For the ROI_PAC processed example files, enter
the command into the terminal “python .../forest_stand_height.py 3225
“linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif" “Maine_NLCD2011_non-
wildland.tif".../test_example_ROIPAC/ “gif json kml mat tif” --flag_proc=0"
into the terminal, where “..." is the path to your forest_stand_height script
and your example ROI_PAC data respectively, as shown below. For the ISCE
data this would look like “python /home/dev/FSH-master/scripts/forest_
stand_height.py 3 2 2 5 “linkfile.txt” “flagfile.txt” “Howland_LVIS_NaN.tif"
“Maine_NLCD2011_nonwildland.tif”  /home/dev/Downloads/test_exam-

ple_ISCE/test_example_ISCE/ “gif json kml mat tif” --flag_proc=1"

(sar) fsh@fsh-VirtualBox: $ python /home/fsh/FSH/scripts/forest_stand_height.py

3 225 "linkfile.txt" "flagfile.txt" "Howland_LVIS_NaN.tif" "Maine_NLCD2011_non
wildland.tif" /home/fsh/test_example_ROIPAC/test_example_ROIPAC/ "gif json kml m
at tif" --flag_proc=0

2. Let's review what each of these inputs mean:

« First, we call “python” in order to run the python scripts within the ter-
minal. The following parameters for the FSH scripts listed in brackets are
optional, while the other parameters require input.

« file_directory/forest_stand_height.py calls the main FSH script that in
turn calls the rest of the scripts necessary to calculate FSH. You must pro-
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vide the appropriate file directory to this script. For this example, the file
directory is “/home/fsh/FSH/scripts/forest_stand_height.py.”

Scenes - enter the number of scenes in the dataset. This must be an in-
teger. If using a single radar scene, enter 1. In this example, we have 3
scenes.

Edges - enter the number of scene to scene borders. If using a single
radar scene, enter 0. In this example, we have 2 scene to scene borders.

start_scene (int) - flag value of the central scene that overlaps the forest
stand height ground truth (e.g. LiDAR, field) data. In this example, the
central scene is 2.

iterations (int) - number of iterations to run the nonlinear least squares
part of the model. In this example, we want to run the nonlinear least
squares part of the model 5 times.

link_file - a text file that lists all the edge scene pairs. Each line consists
of the two numbers that correspond to the flag numbers for those two
scenes. (e.g. "2 1" would be the line for the edge of the above scenes 001
and 002). If using a single ALOS scene, this file is unneeded, and input -
instead of the file name for the terminal arguments. For this example, the
file name is “linkfile.txt.”

flag_file - a text file that lists all the flags and corresponding full file
names and associated file information (dates, scene location (frame#,
orbit#), polarization). In this example, the file name is “flagfile.txt.” Ex-
amples of what this text file would contain are:

001890_120_20070727_HV_20070911_HV 070727 070911 890 120 HV
002 890_119_20070710_HV_20071010_HV 070710 071010 890 119 HV
003 890_118_20070708_HV_20070923_HV 070708 070923 890 118 HV

ref_file - reference tree height data (lidar or field inventory) in raster
format. Currently the code is set up to use a GeoTIFF file, but other ref-
erence data in raster format could potentially be used with some code
adjustments. In this example, the reference tree height data is “How-
land_LVIS_NaN.tif."

mask_file - land cover mask that excludes all water areas and areas of
human disturbance (urban, agriculture). This is currently set up to be a
GeoTIFF file. Other reference data in raster format could potentially be
used with some code adjustments. File must be in degrees (i.e., EPSG
4326). This file is recommended, but optional. If unused, put “-" in place
of the file name for the terminal arguments. For this example, the fine
name is “Maine_NLCD2011_nonwildland.tif.”

file_directory - the root directory to folders containing the individual SAR
scenes. Each scene should have a directory named “f$frame_o$orbit”
(e.g. "f890_0120" for the above scene 001). This directory contains ei-
ther the input ROI_PAC processed or ISCE processed files and is also the
output location for all files that are associated with that scene. For this
example, the directory is: /home/fsh/test_example_ROIPAC/test_ex-
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ample_ROIPAC/. Please note that no quotes are used in the terminal for
this parameter.

+ Outputfile types - the list of output formats should be in quotes, and can
contain one or all of the following: “tif kml gif mat json”. In other words,
output formats can be created for any of these options. For this example,
all options are listed.

+The command option --flag_proc 0 indicates that the input data has been
processed into SLCs by the ROI_PAC algorithm. If the data was processed
by ISCE, please use 1instead. For this example, we use a 0 to indicate that
the data was processed by ROI_PAC.

uu

3. Thescriptsare also able to be run with a single radar scene. To do this use "
instead of a link_file name, and in the input have 0 edges.

« For example: python .../forest_stand_height.py 10 15 - “flagfile.txt”
“Howland_LVIS_NaN.tif" “Maine_NLCD2011_nonwildland.tif" /directo-
ry_of_files/ “gif json km! mat tif" --flag_proc=1

4. Inthe case that you are running the FSH scripts on your own data, or would
like to call each FSH script individually in the command line, please find the
inputs, outputs, and terminal command lines in section 6.5. Please note that
there are additional, unrequired parameters for the forest_stand_height.
py that are explained in section 6.5 that are not included in the example.
Otherwise, proceed to section 6.4 to generate a mosaic of your forest stand
height estimation.

6.4 Generate Mosaic

1. To create a mosaic of the generated forest height maps for all the scenes in
GeaoTiff format, run the following command “python directory_of_scripts/
create_mosaic.py directory mosaic_file list_of_files” in the terminal. You
will need to replace three parameters.

* Replace directory_of_scripts with the location of the scripts.

* Replace mosaic_file with the name you would like to give your final mo-
saic of forest stand heights.

* Replace list_of_files with paths to each map that you would like to be
combined within the mosaic in the format “file1 file2 file3.”

2. Forexample:

/home/dev/test_example_ROIPAC/test_example_ROIPAC//
(reate_mosaic.py /home/dev/test_example_ROIPAC/test_ex-
ample_ROIPAC/ “3sc_mosaic.tif" “.../test_example_ROIPAC/
f890_0118/890_118_20070808_HV_20070923_HV_fsh.tif
../test_example_ROIPAC/f890_0119/890_119_20070710_
HV_20071010_HV_fsh.tif .../test_example_ROIPAC/
f890_0120/890_120_20070727_HV_20070911_HV_fsh.tif"

3. Following is a snapshot of the expected mosaicked forest stand height re-
sults using the example dataset.
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6.5 Overview of Scripts

Let's review the scripts in the general order that they are called, including their main
purpose, inputs, outputs, and terminal commands.

1. forest_stand_height.py is the main script, which in turn calls nine other
scripts with a total runtime of around 23 minutes 22 secs for the example
data. Some of the other scripts call additional scripts.

The command line callis:

python file_directory/forest_stand_height.py scenes edges start_scene
iterations link_file flag_file ref_file mask_file file_directory “output_
file_types” [--Nd_pairwise] [--Nd_self] [--N_pairwise] [--N_self]
[--bin_size] [--flag_sparse] [--flag_diff] [--flag_error] [—numLooks]
[—noiselevel] [--flag_proc] [--flag_grad].”

The inputs for this scriptin the order entered into the terminal are:

scenes (int) - number of scenes in the data set
edges (int) - number of edges (aka scene-scene borders)

start_scene (int) - flag value of the central scene that overlaps the ground
truth (e.g. LIDAR, field) data

iterations (int) - number of iterations to run the nonlinear least squares
part of the model

Link_file (string) - file name of the file that lists all the edge scene pairs or
“'if processing a single scene

flag_file (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

ref_file (string) - filename of reference data raster file (ground truth data,
e.g. LiDAR, field)

maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable; if no mask is a available input ' as the
filename)

file_directory (string) - directory path of where the input and output files
are located
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a. filetypes (string) - list of the desired output file types formatted as a single
string with quotation marks (e.g. “kmljson tif")

b. [--Nd_pairwise] (int) - optional pixel-averaging parameter for edge fitting
(default=20)

¢ [--Nd_self] (int)- optional pixel-averaging parameter for central scene fitting
(default=10)

d. [--N_pairwise] (int) - optional pixel-averaging parameter for edge error met-
rics (default=20)

e. [--N_self] (int) - optional pixel-averaging parameter for central scene error
metrics (default=10)

f. [—-bin_size] (int) - optional bin size for density calculation in sparse data
cloud fitting (default=100)

g. [--flag_sparse] (int) - optional flag for sparse data cloud filtering (choose 0 or
1, default=0)

h. [-flag_diff] (int) - optional flag for exporting differential height maps
(choose 0 or 1, default=0)

i, [--flag_error] (int) - optional flag for exporting.json error metricfiles (choose
0or 1, default=0)

j. [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

k. [--noiselevel] (float) - sensor thermal noise level (ALOS's value hardcoded as
defaultif no value provided)

. [-flag_prod] (int) - flag for INSAR processor selection (choose 0 for ROI_PAC
or 1for ISCE, default=0)

m. [--flag_grad] (int) - flag for correction of large-scale temporal change gradi-
ent (choose 0 or 1, default=0)

There are no direct outputs from this script, as all the file outputs are created within the
scripts that are called by this main script.

The scripts called by forest_stand_height.py are: auto_tree_height.py, read_linkfile.
py, intermediate.py, intermediate_self.py, auto_mosaicking_new.py, write_deltaSC.
py, write_mapfile_new.py, write_diff_height_map.py, and cal_error_metric.py

2. auto_tree_height_many.py is called by the forest_stand_height. This script ex-
tracts data from ROI_PAC/ISCE output files and formats them for use in the rest
of the scripts. For each scene, this script runs auto_tree_height_single.py, and
then saves the output correlation magnitudes, kz, and coordinates in a.mat file,
and geo data (lines, samples, corner latitude and longitude, and latitude and
longitude step size) in a text file.

The command line call for this script is python directory_of_scripts/auto_tree_height_
many.py scenes flagfile directory

The inputs for auto_tree_height_many.py are:
¢ scenes (int) - number of scenes in the data set

«flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

« directory (string) - directory path of where the input and output files are
located

 [--numLooks] (int) - number of looks in the correlation estimation (de-
fault=20)

* [--flag_prod] (int) - flag for InSAR processor selection (input 0 for ROI_
PACor 1 for ISCE, default=0)

+ [--flag_grad] (int) - flag for correction of large-scale temporal change
gradient (input 0 or 1, default=0)

The outputs for this script are:

* scenename_orig.mat - .mat file that stores correlation map, kz value, and
corner coordinates

* scenename_geo.txt - text file that stores the geodata (width, lines, corner
lat and lon, and lat and lon step values)

Auto_tree_height_many.py calls auto_tree_height_single_ROIPAC and auto_tree_
height_single_ISCE.

3. auto_tree_height_single_ROIPAC.py calls the script read_rsc_data.py in order
to read the value of the given parameter from the rsc file produced by ROI_PAC
processing of SAR data. This script also calls remove_corr_bias.py to remove cor-
relation bias associated with ROI_PAC. This script is called by auto_tree_height_
many.py and cannot be run in the terminal on its own as it needs to be iterated
for each scene in the analysis.

The inputs for this script are:

« directory (string) - directory path of where the input and output files are
located

« datel (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

+ date2 (string) - date of the second image of the interferogram (same for-
mat as date)

numLooks (int) - number of looks in the correlation estimation

« noiselevel (float) - sensor thermal noise level (ALOS's value hardcoded
as default)

« flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (inputOor 1)
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The outputs for this script are:

corr_vs (numpy array) - aray of the correlation magnitudes
kz (float) - kz parameter

coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

geo_width (int) - number of columns of image data
geo_nlines (int) - number of rows of image data
corner_lat (float) - max latitude value (north)
corner_lon (float) - min latitude value (west)
step_lat (float) - latitude pixel size in decimal degrees

step_lon (float) - longitude pixel size in decimal degrees

4. read_rsc_data.py reads a parameter from the ROI_PAC.rsc text output file. This
script is called by auto_tree_height_single_ROIPAC.py and is not meant to be
runin the terminal.

Inputs for this script are:

filename (string) - file name of the ROI_PAC text output file containing
the desired parameter (may include subdirectories containing the ROI_
PAC output files - everything lower than the main file directory)

directory (string) - directory path of where the input and output files are
located

param (string) - name of the desired parameter

Qutputs for this script are the parameter values as floats (result)

5. auto_tree_height_single_ISCE.py calls remove_corr_bias.py to remove correla-
tion bias associated with ISCE. This scriptis called by auto_tree_height_many.py
and cannot be runiin the terminal on its own since it needs to be iterated for each
scene in the analysis.

The inputs for this script are:

directory (string) - directory path of where the input and output files are
located

datel (string) - date of the first image of the interferogram (format how-
ever they are listed in the scene data text file, such as 070911 for Sep-
tember 11, 2007)

date? (string) - date of the second image of the interferogram (same for-
mat as datel)

numLooks (int) - number of looks in the correlation estimation

noiselevel (float) - sensor thermal noise level (ALOS's value hardcoded as

default if no value provided)

flag_grad (int) - flag for correction of large-scale temporal change gradi-
ent (input 0 or 1)

The outputs for this script are:

corr_vs (numpy array) - aray of the correlation magnitudes
kz (float) - kz parameter

coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

geo_width (int) - number of columns of image data
geo_nlines (int) - number of rows of image data
corner_lat (float) - max latitude value (north)
corner_lon (float) - min latitude value (west)
step_lat (float) - latitude pixel size in decimal degrees

step_lon (float) - longitude pixel size in decimal degrees

6. intermediate.py calculates the overlap between each pair of images. This scriptis
called by forest_stand_height.py.

Torunin the terminal, enter the command: python directory_of_scripts/intermediate.
py edges start_scene linkfile maskfile flagfile ref_file directory

The inputs for this script are:

edges (int) - number of edges (aka scene-scene borders)

start_scene (int) - flag value of the central scene that overlaps the ground
truth forest height data

linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scenel, scene3], etc])

maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

ref_file (string) - filename of the reference data raster file

directory (string) - directory path of where the input and output files are
located

There's no direct output for this script since allfile outputs are created in subprocesses.

Intermediate.py calls intermediate_self.py and intermediate_pairwise.py.
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7. remove_corr_bias.pyremoves the correlation bias associated with processing by
ROI_PACor ISCE.

The inputs for this script are:
+ C(numpy array) - correlation magnitude array
 numLooks (int) - number of looks in the correlation estimation

The output for this script is YC (numpy array) - correlation magnitude array (with bias
removed)

8. intermediate_pairwise.py calculates the overlap between each pair of scenes,
reading the data directly from auto_tree_height_single rather than from an in-
termediary file. This script in turn calls flag_scene_file.py and remove_nonfor-
est.py. This scriptis called by auto_tree_height_single.py and is not meant to be
run from the terminal.

The inputs for this script are:
« flagl (int) - flag value of one scene in the pair
« flag2 (int) - flag value of the other scene in the pair

«flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

«maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

«  directory (string) - directory path of where the input and output files
are located

«  filename1_orig.mat: correlation map and associated parameters for the
first scene (generated in previous steps)

« filename2_orig.mat: correlation map and associated parameters for the
second scene (generated in previous steps)

The outputs for this script are link files: one for each overlapping edge region, with the
filename format flag!_flag2.mat

9. intermediate_self.py calculates the overlap between the forest height validation
data and central scene. This scriptin turn calls flag_scene_file.py and remove_
nonforest.py. This script is called by intermediate.py and is not meant to be run
from the terminal.

The inputs for this script are:

« start_scene (int) - flag value of the central scene that overlaps the ground
truth data

« flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

« directory (string) - directory path of where the input and output files are
located

« filename_orig.mat: correlation map and associated parameters for the
central scene (generated in previous steps)

« reference data raster file (already exists; main input)

The output for this script is self.mat, a link file for the central scene-ground truth over-
lap region

10.  flag_scene_file.py associates flag numbers with the name, dates, ALOS location
(frame and orbit), and polarization of each scene. This script is called by inter-
mediate_pairwise.py, write_deltaSC.py, and write_mapfile_new.py and is not
meant to be run from the terminal.

The inputs for this script are:

« flagfilename (string) - file name of the file that lists all the flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

« flag (int) - flag of the desired scene

« directory (string) - directory path of where the input and output files are
located

The outputfor this scriptis a data_array (list) - list of the data associated with the given
flag number.

11, remove_nonforest.py removes all non-forest areas from the image based on
the non-forest mask_file. This script is called by intermediate_pairwaise.py and
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:
* | (numpy array) - the image data
+func_coords (numpy array) - array of corner coordinates

+maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable)

« directory (string) - directory path of where the input and output files are
located

The output for this scriptis O (numpy array) - image without the non-forest sections.

12, auto_mosaicking_new.py calculates the S and C parameters automatically by
iterating through all the scenes in preparation for forest height estimation. This
scriptis called by forest_stand_height.py. auto_mosaicking_new.py calls Is_del-
taSC.py and read_linkfile.py

To run in the terminal, enter the command: python directory_of_scripts/auto_mosa-
icking_new.py scenes edges start_scene N linkfile directory
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The inputs for this script are:
o scenes (int) - number of scenes in the data set
+ edges (inf) - number of edges (aka scene-scene borders)

«start_scene (int) - flag value of the central scene that overlaps the ground
truth data

N (int) - number of iterations to run the nonlinear least squares part of
the model

« Linkfile - the filename of the file that lists all the edge scene pairs.

« linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scenel, scene3], etc])

« directory (string) - directory path of where the input and output files are
located

* [--Nd_pairwise] (int) - pixel-averaging number for image fitting between
two overlapped radar scenes (default=20)

* [--Nd_self] (int) - pixel-averaging number for image fitting between sin-
gle radar scene and the overlapped ground truth data (default=10)

*[--bin_size] (int) - bin size for density calculation in scatter plot fitting
when ground truth data are sparse (default=100)

« [--flag_sparse] (int) - flag for sparse data cloud fitting (input 0 or 1, de-
fault=0)

The outputs produced by this script are iteration files (json format; e.g. “SC_# iter.
json” for “#"th iteration) that store the increment steps of S and C parameters and the
residual; no values are returned by the function.

13, Is_deltaSC.pyruns least squares on the change in S and C parameters. This script
in turn calls cal_KB.py. This script is called by auto_mosaicking_new.py and is
not meant to be run from the terminal.

The inputs for this script are:
+ dp (numpy array) - array of increment steps of S and C parameter values
edges (int) - number of edges (aka scene-scene borders)
«scenes (int) - number of scenes in the data set

« start_scene (int) - flag value of the central scene that overlaps the ground
truth data

« linkarray (numpy array) - array of the scene pairs that correspond to each
edge in the format array([[scene1, scene2], [scenel, scene3], etc])

« directory (string) - directory path of where the input and output files are
located

+Nd_pairwise (int) - pixel-averaging number for image fitting between
two overlapped radar scenes

+ Nd_self (int) - pixel-averaging number for image fitting between single

radar scene and the overlapped ground truth data
* bin_size (int) - bin size for density calculation in scatter plot fitting
« flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)
The outputs for this script are:

+ changeSC (numpy array) - updated S and C parameters as referenced to
the average S (=0.6) and C (=13)

+res (float) - residual k and b error compared tok=Tand b =0

14.  cal_KB.py calculates the K and B parameters. This script in turn calls cal_KB_
pairwise_new.py and cal_KB_self_new.py. This script is called by Is_deltaSC.py
and is not meant to be run from the terminal.

The inputs for this script are:
* R(float) - R parameter for this edge
* RSME (float) - RSME parameter for this edge

R_RSME_files: one for each edge with the filename format scenel_
scene2_I1andI2.json

The output for this scriptis YY (numpy array), an array of k and b values.

15, cal_KB_pairwise_new.py calculates K and B between image pairs. In turn, this
script calls arc_sinc.py, mean_wo_nan.py, extract_scatterplot_density.py, and
remove_outlier.py. This script is called by cal_KB and is not meant to be run in
the terminal.

The inputs for this script are:
+scenel (int) - flag value of one scene in the pair
+ scene? (int) - flag value of the other scene in the pair
+ deltaST (float) - change in S value for one scene in the pair
« deltaC1 (float) - change in Cvalue for one scene in the pair
+ deltaS2 (float) - change in S value for the other scene in the pair
deltaC2 (float) - change in Cvalue for the other scene in the pair

« directory (string) - directory path of where the input and output files are
located

«Nd_pairwise (int) - pixel-averaging number for image fitting between
two overlapped radar scenes

*bin_size (int) - bin size for density calculation in scatter plot fitting

«linkfiles: one for each overlapping edge region, with the filename format
scenel_scene2.mat (generated in previous steps)

The outputs for this script are:
k (float) - k parameter for this edge
* b (float) - b parameter for this edge
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16.  cal_KB_self_new.py calculates K and B between the central image and the for-
est height validation data. In turn, this script calls arc_sinc.py, mean_wo_nan.
py, extract_scatterplot_density.py, and remove_outlier.py. This scriptis called by
cal_KBand is not meant to be run in the terminal.

The inputs for this script are:
+ deltaS2 (float) - change in S value for the central scene
+ deltaC2 (float) - change in Cvalue for the central scene

« directory (string) - directory path of where the input and output files are
located

+Nd_self (int) - pixel-averaging number for image fitting between single
radar scene and the overlapped ground truth data

+ bin_size (int) - bin size for density calculation in scatter plot fitting
+ flag_sparse (int) - flag for sparse data cloud filtering (input 0 or 1)

+ self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The outputs for this script are:
* k(float) - k parameter for this edge
b (float) - b parameter for this edge

17 arc_sinc.py calculates the inverse sinc function as part of calculating K and B val-
ues. This script is called by cal_KB_pairwise and write_mapfile_new.py and is
not meant to be run in the terminal.

The inputs for this script are:

+ X-Anumpy array of x values for the inverse sinc function

* _parama - C parameter (float) from the Forest Stand Height model
The outputs for this script are:

* y-anumpyarray of yvalues of inverse sinc function satisfying x=sinc(y/C)

18. mean_wo_nan.py calculates and returns the mean of all number values in an
array as part of calculating K and B values. This script is called by cal_KB_pair-
wise_new.py and is not meant to be run in the terminal.

Inputs for this script are:
A(numpy array) - input array of values
QOutputs for this script are:

+mean of B (A excluding NaN values) (float)

19 extract_scatterplot_density.py calculates the 2D histogram of the scatterplot
between pairs of forest height and returns the forest height pairs with relatively
large density. This scriptis intended to replace remove_outlier.py in order to dis-
tinguish between forest disturbance and forest height estimation. This script is
called by cal_KB_pairwise and is not intended to be run in the terminal.

The inputs for this script are:
X (numpy array) - array of x values of points
* y(numpy array) - array of y values of points

+bin_size (int) - bin size for density calculation in scatter plot fitting (de-
fault=100)

« threshold (float) - density threshold (default = 0.5)
The outputs for this script are:

Hm_den (numpy array) - array of x values of the points with densities
above the inputted threshold

« Pm_den (numpy array) - array of y values of the points with densities
above the inputted threshold

20. remove_outlier.py this script is called by cal_KB_self_new.py, cal_KB_pair-
wise.py, cal_KB_pairwise_new.py, cal_error_metric_pairwise.py, and cal_er-
ror_metric_self.py to remove outliers, and is supplemented by the function of
extract_scatterplot_density.py.

The inputs for this script are:
*x(numpy array) - array of x values of points
* y(numpy array) - array of y values of points

*win_size (float) - window size to search for neighboring points (defaults
t0 0.5)

« threshold (int) - number of neighboring points needed within the win-
dow to not count as an outlier (defaults to 5)

The outputs for this script are:

« XX(numpy array) - array of x values of the points excluding those counted
as outliers

*YY(numpy array) - array of y values of the points excluding those counted
as outliers

21, read_linkfile.py reads in a text file containing a list of all the scene pairs and
returns a 20 array of the pairs. This scriptis called by auto_mosaicking_new.py

To run this script in the terminal, use the following command: python directory_of
scripts/read_linkfile.py edges filename directory
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The inputs for this script are:
+edges (inf) - number of edges (aka scene-scene borders)
« filename (string) - file name of the file that lists all the edge scene pairs

« directory (string) - directory path of where the input and output files are
located

The outputs for this script is linkarray (numpy array) - array of the scene pairs that
correspond to each edge in the format array([[sceneT, scene2], [scenel, scene3], etc])

22, write_deltaSC.py calculates the temporal change parameters (S and C) as refer-
enced to the average values: 5=0.6, <13 based on the final iteration. This scriptis
called by forest_stand_height.py. write_deltaSC.py in turn calls flag_scene_file.

Py-
To run in the terminal, enter the command: python directory_of_scripts/write_del-
taSC.py scenes N flagfile directory
The inputs for this script are:

*scenes (int) - number of scenes in the data set

« N(int) - number of iterations to run the nonlinear least squares part of
the model

«flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

« directory (string) - directory path of where the input and output files are
located

« SC_i# iter,json: final iteration file (generated in previous steps)

The output for this scriptis one file per scene that contains delta S and C. The file name
format is “scenename_tempD.json”

23, write_mapfile_new.py calculates and writes the tree height map to a file. This
script is called by forest_stand_height.py. This script calls flag_scene_file.py,
arc_sinc.py, remove_nonforest.py and write_file_type.py.

The inputs for this script are:
«scenes (int) - number of scenes in the data set

« flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

« maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable) (optional - if no mask available use '
as an input to forest_stand_height.py)

« directory (string) - directory path of where the input and output files are
located

output_files (string) - list of the desired output file types formatted as a
single string (e.g. “kml json tif")

* scenename_orig.mat: correlation map and associated parameters for the
central scene (generated in previous steps)

« scenename_tempD.json: delta S and Cfiles produced (generated in pre-
vious steps)

There's no direct output (all file output created in write_file_type.py).

24, write_file_type.py writes the input array from the tree height map or the diff_
height map to a file, with the file type depending on input parameters: gif, json,
kml, mat, or tif. In turn this script calls read_geo_data.py. This script is called by
write_mapfile_new.py and is not meant to be run in the terminal.

The inputs for this script are:
« data (numpy array) - array to be written to the file

outtype (string) - string to signify which input (tree height “stand_height”
or differential height “diff_height") is being output

« filename (string) - scene file name

« directory (string) - directory path of where the input and output files are
located

« filetype (string) - file extension for the desired output file type (.gif, .json,
kml, .mat, and .tif accepted -> input without the “." (e.g. “kml" instead

of “kml")

|//

coords (numpy array) - array of max lat and lon values in the format
[north, south, west, east]

«reffile (string) - reference filename containing ground truth data (option-
al; only needed for differential height map)

The outputs for this script are output files(s) of the array image saved in the file type
specified in the input.

25. read_geo_data.py reads in latitude, longitude, pixel size, and image size from a
GeoTlFF or text file based on ROI_PAC output. This script s called by write_file_
type.py and is not meant to be run in the terminal.

Inputs for this script are:

«coord_file (string) - file name of the input data file with the location infor-
mation (lat/long, step size, image size)

« directory (string) - directory path of where the input and output files are
located
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QOutputs for this script are:
*width (int) - width/number of columns of the image
+ nlines (int) - lines/number of rows of the image
«corner_lat (float) - latitude of the upper left corner
+ corner_long (float) - longitude of the upper left corner
post_lat (float) - latitude step Size

+ post_long (float) - longitude step Size

26. write_diff_height_map.py writes the forest differential height map between SAR
and overlapping forest height ground truth images. This script is called from for-
est_stand_heightif the parameter --flag_diff is entered.

Inputs for this script are:

«start_scene (int) - flag value of the central scene that overlaps the ground
truth data

reffile (string) - reference filename containing ground truth data

«flagfile (string) - file name of the file that lists all the scene flags and cor-
responding full file names and associated file date (dates, scene location
(frame#,orbit#), polarization)

maskfile (string) - filename of the mask file that excludes all non-forest
areas (mask excluding water and human disturbed areas such as urban
and agriculture is also acceptable) (optional; if no masks are available,
use " as an input to forest_stand_height.py)

« directory (string) - directory path of where the input and output files are
located

«output_files (string) - list of the desired output file types formatted as a
single string (e.g. “kml json tif")

Thereis no direct output for this script, as all file outputis created in write_file_type.py.

27, cal_error_metric.py calculates the R and RMSE error metrics for the model. This
script is called from forest_stand_height.py if the parameter --flag_error is en-
tered. This script calls cal_error_metric_pairwise.py and cal_error_metric_self.

Py
The inputs for this script are:
+ dp (numpy array) - array of increment steps of S and C parameter values
edges (int) - number of edges (aka scene-scene borders)

+start_scene (int) - flag value of the central scene that overlaps the ground
truth data

« link (numpy array) - array of the scene pairs that correspond to each edge
in the format array([[scene, scene?], [scenel, scene3], etc])

« directory (string) - directory path of where the input and output files are

located
+ N_pairwise (int) - pixel-averaging number for scatter plot
* N_self (int) - pixel-averaging number for scatter plot

The output for this scriptis YY, a numpy array of R and RMSE values.

28, cal_error_metric_pairwise.py calculates the R and RMSE error metrics. This
script calls arc_sinc.py, mean_wo_nan.py and remove_outlier.py. Itis called by
cal_error_metric.py and is not meant to be run in the terminal.

The inputs for this script are:
scenel (int) - flag value of one scene in the pair
+ scene? (int) - flag value of the other scene in the pair
+ deltaST (float) - change in S value for one scene in the pair
+ deltaC? (float) - change in C value for one scene in the pair
« deltaS2 (float) - change in S value for the other scene in the pair
+ deltaC2 (float) - change in Cvalue for the other scene in the pair

directory (string) - directory path to where the input and output files are
located

+N_pairwise (int) - pixel-averaging number for the scatter plot

«linkfiles: one for each overlapping edge region, with the filename format
scenel_scene2.mat (generated in previous steps)

The outputs for this script are:
¢ R(float) - R parameter for this edge
¢ RSME (float) - RSME parameter for this edge

« R_RSME files: one for each edge, with the filename format scenel_
scene?_I1andI2.json

29.  cal_error_metric_self.py calculates R and RMSE between the central image and
the forest height ground validation data. This script calls arc_sinc.py, mean_wo_
nan.py, and remove_outlier.py. This scriptis called by cal_error_metric.py and is
not meant to be run in the terminal.

The inputs for this script are:
+ deltaS2 (float) - change in S value for the central scene
+ deltaC2 (float) - change in Cvalue for the central scene

directory (string) - directory path of where the input and output files are
located

* N_self (int) - pixel-averaging number for scatter plot

+ self.mat: link file for the central scene-ground truth overlap region (gen-
erated in previous steps)

The output for this scriptis YY (numpy array) - array of R and RMSE values.
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