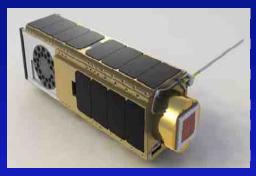


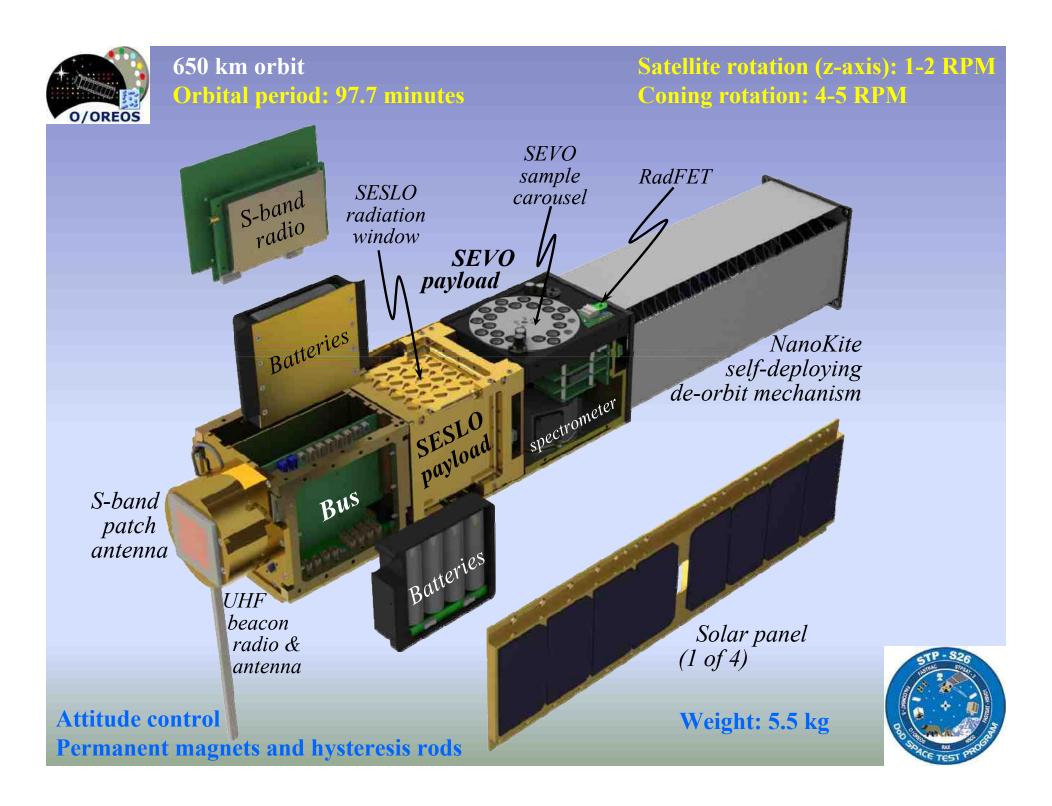
THE O/OREOS MISSION: ASTROBIOLOGY IN LOW EARTH ORBIT


P. Ehrenfreund¹, A.J. Ricco², D. Squires², C. Kitts³, E. Agasid², N. Bramall², K. Bryson⁴, J. Chittenden², C. Conley⁵, A. Cook², R. Mancinelli⁴, A. Mattioda², W. Nicholson⁶, R. Quinn⁷, O. Santos², G. Tahu⁵, M. Voytek⁵, C. Beasley², L. Bica³, M. Diaz-Aguado², C. Friedericks², M. Henschke², J.W. Hines², D. Landis⁸, E. Luzzi², D. Ly², N. Mai², G. Minelli², M. McIntyre², M. Neumann³, M. Parra², M. Piccini², R. Rasay³, R. Ricks², A. Schooley², E. Stackpole², L. Timucin², B. Yost², A. Young³

¹Space Policy Institute, Washington, DC, USA, ²NASA Ames Research Center, Moffett Field, CA, USA, ³Robotic Systems Laboratory, Santa Clara University, Santa Clara, CA, USA, ⁴Bay Area Environmental Research Institute, Sonoma, CA, USA, ⁵NASA Headquarters, Washington DC, USA, ⁶University of Florida, Gainesville, FL, USA, ⁷SETI Institute, Mountain View, CA, USA, ⁸Draper Laboratory, Cambridge, MA, USA

NASA Astrobiology Small Payloads (ASP)

Develop and fly small astrobiology payloads, from single-cube free flyers to suitcase-sized payloads, to address fundamental astrobiology objectives, using a variety of launch opportunities



SEVO

O/OREOS (Organism/Organics Exposure to Orbital Stresses) is the first technology demonstration mission for ASP

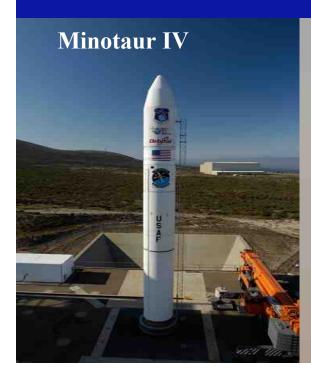
Launched: November 19, 2010
Nominal performance in orbit, 6 months
http://ooreos.engr.scu.edu/dashboard.htm

Kodiak lift off

Launch: 19 November 2010

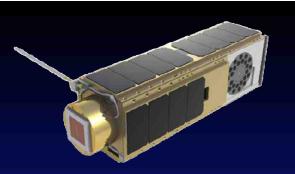
Launch Vehicle: Minotaur IV

Launch Site: Kodiak, Alaska


Mission duration: 6-12 months

Risk Class D, Category III

(\$2.5M)

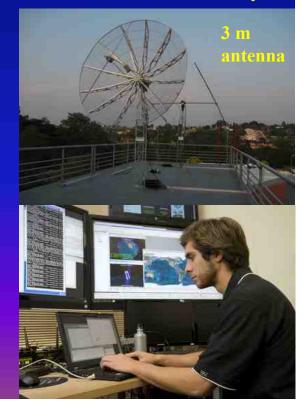


Spacecraft Operations

O/OREOS beacon sends an AX.25 packet every 5 seconds; the packet contains data about the spacecraft systems operation

Single 3-meter Dish Operations:

- Useful Contacts per day: 2 good contact
- Average time per contact: ~ 2 min


Data downlink: 6 MB

EPO: Beacon signal public operators

S-Band station: standard command

and telemetry operations for O/OREOS

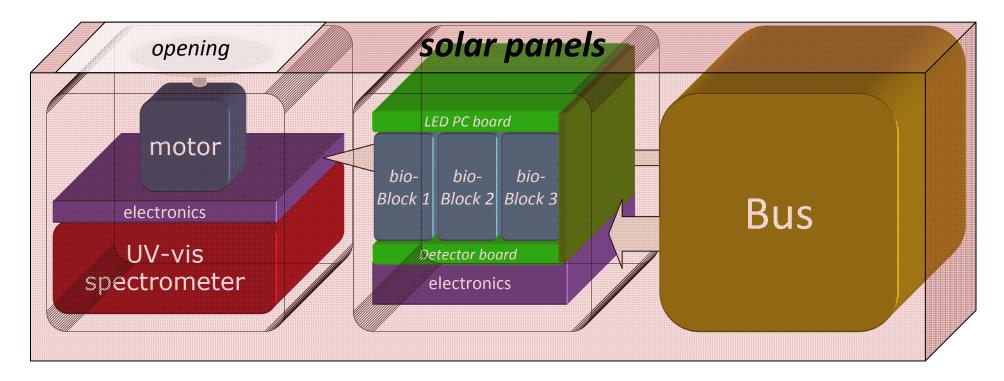
Santa Clara University

Mission science goals

O/OREOS Dual payload:

Monitor how exposure to space radiation and weightlessness changes biology and organic molecules

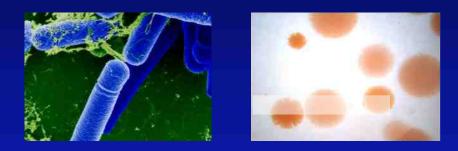
Goal 1: Measure the survival, growth and metabolism of two different microorganisms using in-situ colorimetry


Goal 2: Measure the changes induced in molecules and biomarkers using ultraviolet and visible spectroscopy

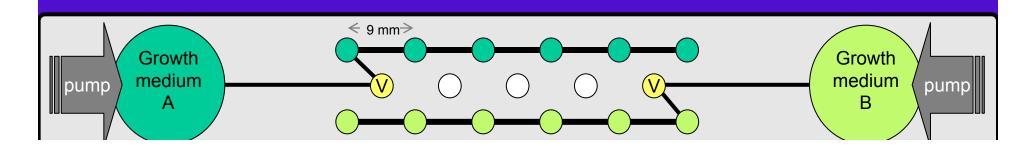
O/OREOS Dual-Payload Technology strobiology **Architecture**

Each payload experiment-plus-instrument contained in a single 10-cm cube

Organics payload (SEVO)

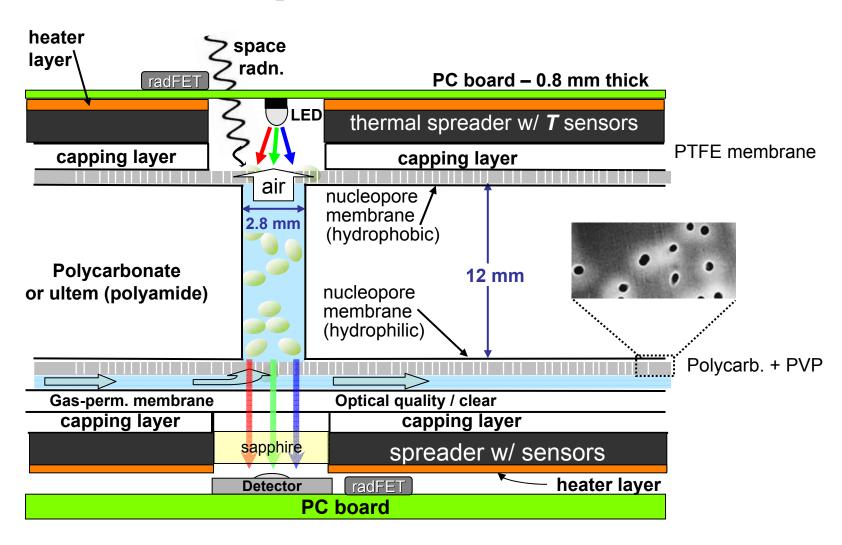

- 4 different organic molecules as thin films
- 4 reaction-cell-supported environments
- UV-visible spectroscopic characterization

Biology payload (SESLO)


- 2 different biological specimens
- 3 growth initiation times (test periods)
- optical measurement of growth, metabolic activity

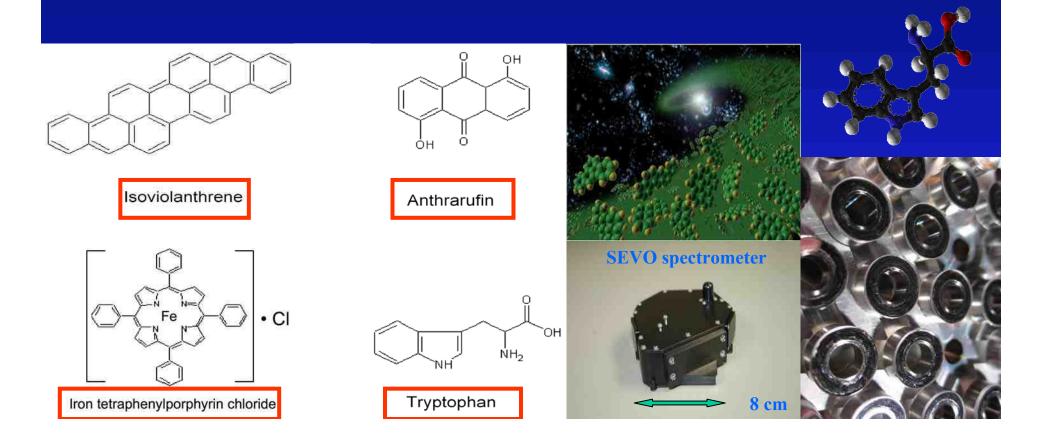
Space Environment Survivability of Live Organisms (SESLO)

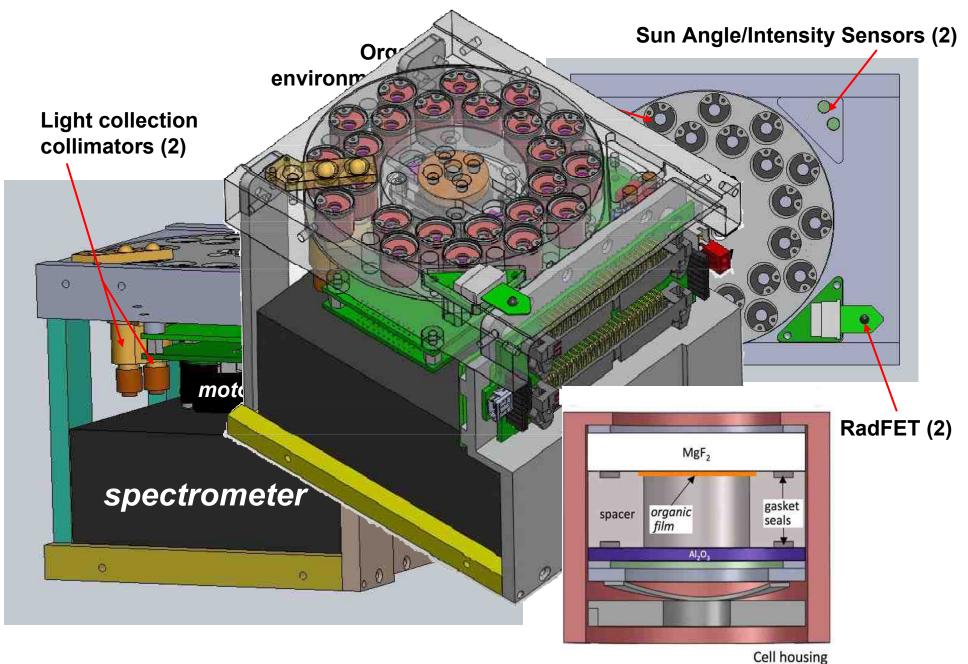
SESLO collected 3 datasets on the survival and metabolic activity for two micro-organisms during the 6-month mission



- Bacillus subtilis spores & Halorubrum chaoviatoris (each as wildtype and mutant) were launched in a dry state
- Rehydration in orbit: fluids were added to micro-organisms containing microwells at 2 weeks after launch, at 3 and 6 months

SESLO (bio) Fluidic/Thermal/Optical Architecture


Fluidic / optical / thermal cross-section


Space Environment Viability of Organics (SEVO)

SEVO provides a real-time analysis of the photostability of four classes of organic molecule to the space environment

SEVO houses the organic samples in "planetary micro-environments" (gas, humidity and mineral substrates are sealed into the individual sample cells)

SEVO: Integrated Instrument & Sample Disk

O/OREOS Science Return

- SESLO data contribute to our understanding of the environmental limits of life and will address many aspects of space biology and planetary protection
- SEVO data allow us to better understand the carbon chemistry in space environments, extraterrestrial delivery processes and prebiotic chemistry on the early Earth

Medium & Full Success Criteria

<u>Medium Success</u> (TRL 7) includes minimum success outcomes plus completion of ground experiments for establishing pre-flight experimental data baselines.

Organics Experiment Demonstration Medium Success Details:

Measure the degradation of (bio) organic molecules in at least one of the relevant space environments.

Organisms Experiment Demonstration Medium Success Details:

Demonstrate the ability for biology to survive in a 3-month mission, *maintaining stasis for up* to 4.5 months.

<u>Full Success</u> (TRL8) includes minimum and medium success outcomes plus *launch*, successful operation of the O/OREOS-Sat payload, and delivery of collected mission data to program management.

Organics Experiment Demonstration Extended Success Details:

Measure the degradation of (bio) organic molecules in all 4 selected space environments.

Organisms Experiment Demonstration Medium Success Details:

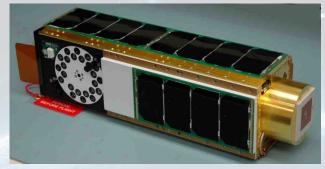
Demonstrate a third time series organism growth test that will be executable after 6 months on orbit. In this demonstration some of the organisms will have to be maintained in stasis for up to 7.5 months (1.5 months pre-launch, 6 months in space).

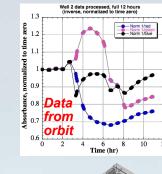
O/OREOS Nanosatellite Mission Update

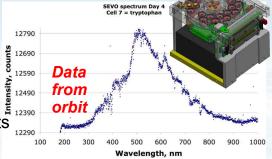
25 May 2011

- Launch: Nov. 19, 2010, Minotaur IV, Kodiak Launch Complex, Alaska
 - 5.5 kg nanosat deployed from PPOD @ 650 km, 72°, 98-min orbit
 - 1st science nanosatellite above the thermosphere
- Overall Status: Nominal
 - Full mission success criteria satisfied
 - Rotation rate has slowed from ~ 7 to ~ 1 RPM
 - Autonomous system resets ~ Dec. 27, Feb. 12, May 24

Communications Summary


- Beacon (EPO): ~ 100,000 packets submitted by amateurs in 22 countries
- S-band (WiFi): ~6 MB downlinked by Santa Clara University team
- Radiation dose, rotation data, temperatures, health, downlinked from bus
- Multiple command uplinks successful to tune operational parameters


• P/L 1: Space Environment Survival of Living Organisms


- -t=2 wk, 3 mo, 6 mo Biomodule exp'ts.: Dec. 3, Feb. 18, May 19
- Asynchronous ground controls: Jan. 11, Apr. 5, July 5
- Germination/growth of B. subtilis spores in all biowells; stable temp.

P/L 2: Space Environment Viability of Organics

- Nominal spectrometer function: 22 sets of 24 UV-vis spectra recorded
- > 500 spectra from 4 organics in 4 microenvironments downlinked to date
- Acquisition parameters tuned: best [signal background] now > 7500 counts

Mission heritage

Space Environment Survival of Living Organisms (SESLO)

Space Environment Viability of Organics (SEVO)

Mission type

Configuration

Experiment

Specimen

Measurement

Sample n

Sensors

Launch (Orbit)

Outcome

Fund. biology / Tech. demo.

2U payload, 1U bus (4.4 kg)

Gene expression

E. coli

OD; green fluorescence

10 wells

T, p, RH, accel., radiation flux

Dec. 2006 Minotaur I

Mission success Re-entry 2010 Fund. biology / Science

2U payload, 1U bus (5.1 kg)

Antifungal dose response

S. cerevisiae

RGB absorbance, metabolic indicator

48 wells (3 conc's.)

T, p, RH, radiation flux

May 2009 Minotaur I (430 km)

Mission success De-orbit ~ 2013

Astrobiology / Tech. demo. / 6-month experiment duration

2 x 1U independent payloads, 1U bus (5.5 kg)

Microbe survival & activity

B. Subtilis H. Chaoviatoris

RGB absorbance, metabolic indicator

3 x 12 wells

T, p, RH, radiation dose

Solar UV-induced organic degradation

PAH, amino acid, porphyrin, quinone

UV-vis spectroscopy 4 µenvironments

24 sample cells

T, radiation dose, intensity/sun angle

Nov. 2010, Minotaur IV (72° inclination, 650 km)

Mission success; subsystems operational Anticipated deorbit ~ 2032

CubeSat "Demographics"

- Total 55 of cubesats launched since 2003
 - Most are university satellites
 - Many launched for nominal fee < \$100k, some launched "free" on government launch vehicles</p>
- Since 2000, ~ 100 universities have developed or are active in the field of cubesats

- Since 2000, twelve new businesses/startups
- UN Basic Space Technology Initiative

Payload Technologies: Cross-Cutting Applications

PAYLOADS

Biology—grow & characterize survival, space environment effects: *cells*, *microbes*, *plants*, *multicellular organisms*

Chemistry—characterize *in situ*: *dust, soil, regolith, atmosphere*

Space environment—consequences for materials: *engineering, astrobiology*

Sensing: radiation, space weather, atmospheric studies

Spectroscopy: atmospheres, exospheres, soil volatiles, materials, molecules

Imaging & astronomy: Solar system bodies, stars, galaxies, interstellar medium

PLATFORMS

Free Flyers: LEO, Geo, Lpoints

ISS

Orbiters: NEO, lunar, planetary

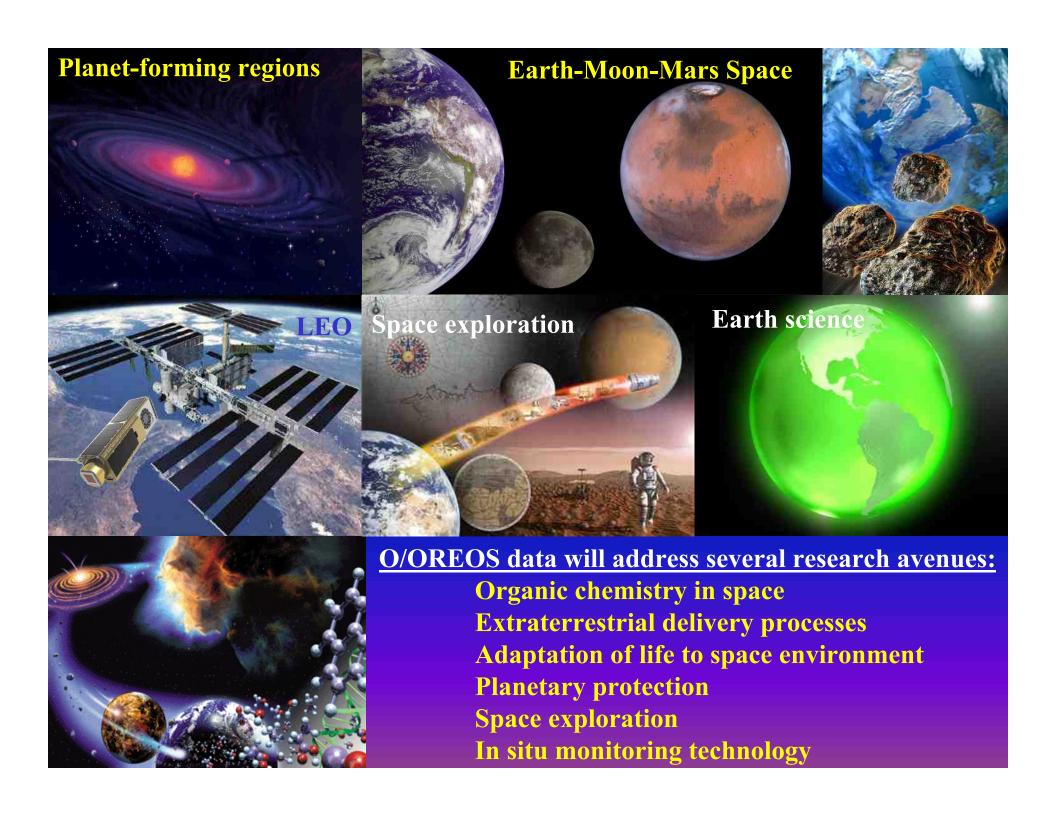
Landers

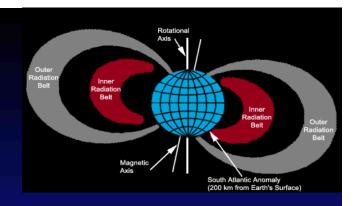
Impacters

Mission concept to space science results in 18-24 months

- Frequent access to space
- Ability to execute rapid response missions
- Ability to perform all aspects of a NASA mission
- Comparatively low-cost missions
 - ✓ Small core team with heritage knowledge
 - ✓ Parallel mission architecture (design and cost leveraging)
- Adaptable, modular payload designs

Multi-platform compatibility: Suborbital, ISS, Free Flyers, Planetary Landers/Impacters/Orbiters





Back-up

Space conditions

- Biology: Particle radiation and microgravity
 - $< 10^{-3} g$
 - 1.3 Gy total dose over 6 mo
 - 0.1 Gy is GCR, 1 Gy is trapped protons
- Organics: Particle and UV radiation, microgravity
 - $< 10^{-3} \text{ g}$
 - $\sim 15 \text{ Gy} = 1.5 \text{ krad}$
- 6-month exposure of organics to space
- Solar exposure $\sim 35\%$ of total time = 1500 h
 - 120 2800 nm