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ABSTRACT 16 

    To identify the unusual climate conditions and their connections to air pollutions in a remote 17 

area due to wildfires, we examine three anomalous large-scale wildfires in May 2003, April 2008, 18 

and July 2014 over East Eurasia, as well as how products of those wildfires reached an urban city, 19 

Sapporo, in the northern part of Japan (Hokkaido), significantly affecting the air quality. NASA’s 20 

MERRA-2 (the Modern-Era Retrospective analysis for Research and Applications, Version 2) aerosol 21 

re-analysis data closely reproduced the PM2.5 variations in Sapporo for the case of smoke arrival in 22 

July 2014. Results show that all three cases featured unusually early snowmelt in East Eurasia, 23 

accompanied by warmer and drier surface conditions in the months leading to the fires, inducing 24 

long-lasting soil dryness and producing environmental conditions conductive to active wildfires. 25 

Due to prevailing anomalous synoptic-scale atmospheric motions, smoke from those fires 26 

eventually reached a remote area, Hokkaido, and worsened the air quality in Sapporo. In future 27 

studies, continuous monitoring of the timing of Eurasian snowmelt and the air quality from the 28 

source regions to remote regions, coupled with the analysis of atmospheric and surface conditions, 29 

may be essential in more accurately predicting the effects of wildfires on air quality.  30 
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Introduction 31 

    On July 25-26, 2014, Hokkaido (the northernmost prefecture in Japan) suffered a serious air 32 

pollution and Sapporo city (the most urbanized city in Hokkaido) cautioned its citizens on July 26 for 33 

the first time 34 

(http://www.city.sapporo.jp/kankyo/taiki_osen/chosa/documents/140912_pm_youin.pdf; 35 

hereafter called, Website1) since the elevated levels of PM2.5 were observed in Sapporo in 2010 36 

(the information only available in Japanese: http://www.nies.go.jp/igreen/tj_down.html). On July 37 

25, the maximum observed PM2.5 in Sapporo was 155 μg m-3 (Website 1). The report released by 38 

the city of Sapporo on the event suggested that this worsening in air quality was due to smoke 39 

transported from Siberian wildfires (Website 1). This study was motivated by this event and aims to 40 

better understand the cause of the wildfires, as well as how the smoke reached a remote place, 41 

Hokkaido, which significantly affected the air quality in Sapporo. 42 

    The recent reports1,2 published by the Intergovernmental Panel on Climate Change (IPCC) have 43 

attracted much attention, and many people have large concerns regarding the impact of 44 

anthropogenic activities on climate change. Today, anthropogenic emissions are higher in India and 45 

China3, but these emissions will be hopefully reduced in the future, as both countries cut emissions 46 

as many developed countries have already done (e.g., Europe4, North America4, etc.). On the other 47 
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hand, biomass burning, which includes human-made5 and naturally generated (e.g., 48 

lightning-induced6) wildfires, as well as agricultural waste burnings7, also impacts the concentration 49 

of particulate matter in the atmosphere7,8. Because of developments in technology, satellite 50 

remote sensing has been used to detect global distributions of fire hot spots (Fire Counts9, FC, with 51 

burned area information10 or Fire Radiative Power11,12, FRP) from various biomass burnings. Those 52 

satellite-retrieved data have further been used to develop emission inventories of air pollutants11-15 53 

from wildfires. Such emissions inventories11-15 have been used in modeling the transport of aerosols 54 

and their impact on snow as well as in producing re-analysis data with global models16-21. 55 

A previous notable study by Westerling et al. reported that early snowmelt could generate 56 

more wildfires in the following season over the US22. Specifically, they found a negative correlation 57 

between the center of mass of stream flow, an indicator of the timing of spring snowmelt, and 58 

wildfire frequency in western North America, implying that early snowmelt is relevant to wildfire 59 

activities22. Furthermore, they also reported that warmer conditions in spring and summer with 60 

reductions in winter precipitation often happen in years with early snowmelt, during which 61 

long-lasting dry season provides more opportunities for active wildfires22. This can likely be 62 

explained by the early snowmelt induced Wet-First-Dry-Later hydro-climate feedbacks, which was 63 

recently suggested by Lau et al. (ref. 23). In fact, drought (i.e., highly dry conditions) is known to be 64 
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associated with wildfire activities24,25, and wildfires can even be predicted using drought 65 

information in regions like southern Europe26. Based on the these studies22-26, early snowmelt, 66 

warm and dry conditions, and wildfire activities are very likely connected with each other. In 67 

addition, some modeling studies reported that biomass burning significantly impacts global and 68 

regional climates by changing near-surface temperature and cloud properties27 and by altering 69 

hydro-climate monsoon systems, accelerating snowmelt over the Himalayas and Tibetan Plateau 70 

regions due to the mixture of anthropogenic and biomass burning aerosols28,29. A global model 71 

study recently reported that in the future, wildfires will be more active in the extratropics if global 72 

warming exacerbates30. Therefore, in the future, it will be more important to monitor the extent of 73 

biomass burnings, which can occur via both natural6 and human5,7 activities. That will be a large 74 

concern of general public in terms of air quality and human health around the world. 75 

    In this study, we start by focusing on the large-scale wildfires that produced the smoke 76 

transported from Siberia to Japan in July 2014, and their significant impact on the air quality in a big 77 

urban city in Sapporo, Japan (Website 1). We will also investigate two more similar cases of fires 78 

over East Eurasia, both of which produced smoke that reached Hokkaido in Japan and increased 79 

levels of PM2.5 there31. Then, we examine the climatological context in which these three 80 

large-scale wildfires with significant impacts on air pollution in a remote place, Hokkaido, could 81 
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happen. Although our study is based on a limited number of cases, the preliminary knowledge 82 

found in this study will give us valuable insight into what we should focus on for future air quality 83 

projections and/or its measures and mitigations in regions downwind from the wildfire source 84 

regions. More comprehensive study of the relationships among wildfires, surface and atmospheric 85 

conditions, and air quality, which is out of focus of this study, would be important for future works. 86 

Our outcomes would also provide a basis for future scientific discussion in studying the effect of 87 

wildfires on air quality, especially in the region spanning from East Eurasia to Japan. 88 

 89 

Results 90 

The impact of wildfires on air quality in Sapporo in July 2014 and the pollution events since 2003 91 

    In July 2014, significantly large-scale wildfires occurred in the Sakha Republic (Russia) and 92 

elevated PM2.5 levels were observed on July 25, both in the areas directly affected by the fire (i.e., 93 

as seen in hot spots) and in faraway locations such as Hokkaido (Japan) (Fig. 1). The observed PM2.5 94 

in Sapporo due to the smoke transport peaked on July 25 (Fig. 2; also see Website 1 and ref. 32), 95 

which was closely reproduced by the calculated PM2.5 (see the method of ref. 17) with NASA’s 96 

reanalysis data, MERRA-2 (refs. 20,21,33; see Method). Based on the MERRA-2 data (Fig. 1b), in 97 

large areas from the Sakha Republic to Hokkaido, the calculated daily mean PM2.5 exceeded the 98 
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daily environmental standard in Japan (35 μg m-3, available in Japanese at: 99 

http://www.env.go.jp/air/osen/pm/info.html#STANDARD). It is known that this Siberian smoke 100 

included much higher amounts of organic carbon (OC) relative to Elemental Carbon (EC) or Black 101 

Carbon (BC) (refs. 32,34-37; Supplementary Fig. S1). This is consistent with levels of OC and BC 102 

reported in other biomass burning cases from previous studies7,38. It is also known that OC and EC 103 

has a highly correlated relationship (e.g., the case of agricultural waste burning) (ref. 7). The 104 

MERRA-2 re-analysis data on those carbonaceous aerosol surface mass concentrations in Sapporo 105 

well captured the time-varying characteristics of the observed OC and EC increases, although the 106 

magnitudes of modeled values were overestimated (Supplementary Fig. S1). These transported 107 

carbonaceous aerosols were deposited over Sapporo on July 26, mainly through wet depositions by 108 

precipitation rather than through dry deposition and sedimentation processes (Supplementary Fig. 109 

S1). The Japan Meteorological Agency (JMA) actually measured the increased precipitation at 110 

Sapporo in the afternoon on that day (available in Japanese at: https://goo.gl/2JYNYQ). This July 111 

2014 case, based on our analysis, confirmed that the air quality over larger areas from Eastern 112 

Siberia to Northern Japan were significantly affected by highly increased PM2.5 due to the Siberian 113 

wildfires, which broke out in the Sakha Republic (Fig. 1). 114 
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    Then, other questions emerged: What are the main causes of such big wildfires which also 115 

significantly impact the air quality in remote places like Hokkaido, Japan? In a previous report31, 116 

instances of higher levels of PM2.5 at Rishiri Island in Hokkaido due to the transport of wildfire 117 

smoke were also reported in May 2003 and April 2008. The smoke from the April 2008 case was 118 

also transported to Arctic region39. Before 2003, the transport of wildfire smoke to Japan was also 119 

reported in 1998 and 2002 in a few previous studies40-42. Further analysis in this study with the 120 

MERRA-2 data at Sapporo also showed that concentrations of Particulate Organic Matter (POM = 121 

1.4 x OC in GEOS-5 model43) were significantly increased, and that this, together with increases in 122 

BC, contributed to the increases in PM2.5 in May 2003 and April 2008, as well as in July 2014 (Fig. 3). 123 

We only used the MERRA-2 data from 2003 in this study because of the availability of MODIS fire 124 

data from both TERRA and Aqua satellites20,21 (see Method). All three cases exhibited highly 125 

increased OC, implying that the air quality in Sapporo (Hokkaido)—at least in these three 126 

months—was significantly affected by smoke created by wildfires, based on knowledge from 127 

previous studies7,32,34-38. Although one previous paper37 reported aerosol transport including OC 128 

from biomass burning from the Siberian region in August 2005, the increase of OC seems to be 129 

much smaller compared to these three months above as seen in Fig. 3. Therefore, in the study, we 130 

focus on these three months to identify the reasons why these three pollution events happened, 131 
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and more deeply analyze the environmental conditions over East Eurasia that contributed to the 132 

wildfires and the long-range transport of pollutants from the fires. Note that in general, it is very 133 

difficult to identify the causes of wildfire ignitions, such as whether they are human-made5 or 134 

lightning-induced6. Therefore, we only identify the characteristics of environmental conditions, 135 

which are likely preferable for wildfire ignitions. 136 

 137 

The relationships among snow amounts, environmental conditions, wildfires over Eastern Eurasia, 138 

and air pollutions in Hokkaido 139 

    In the cases of the May 2003, April 2008, and July 2014 wildfires, we can categorize the spatial 140 

smoke characteristics into two patterns. The smoke outbreaks were seen in the eastern parts of 141 

Lake Baikal in the latitude zone of 45-55°N due to the May 2003 (ref. 31) and April 2008 (refs. 142 

31,39) wildfires, and anomalously high pressure systems were dominant over and around Japan 143 

(Figs. 4, 5, and Supplementary Figs. S2 and S3). On the other hand, the wildfires in July 2014 144 

occurred in the Sakha Republic in the latitudes of 60-70°N, a higher latitude than the location of 145 

Hokkaido, with a dominant negative geopotential anomaly in the lower troposphere (centered 146 

around Amur Oblast) (Fig. 6 and Supplementary Fig. S4). The horizontal OC fluxes in Figs. 4-6 clearly 147 

showed the smoke transport from the fire-ignition areas all the way to Hokkaido, which is 148 
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consistent with the locations of positive and negative anomalies of geopotential heights at 850 hPa 149 

in Figs. S2-4. However, all three cases share the following common spatiotemporal environmental 150 

relationships: (1) unusually small snow cover fractions (SCF) at the location of the large-scale 151 

wildfires compared to the SCF climatology (i.e., implications of early snowmelt) (Figs. 4b, 5b, and 152 

6b) accompanied by significantly warm air temperatures near the surface (Figs. 4c, 5c, and 6c) in 153 

the months preceding the fire; (2) long-lasting unusually low surface soil moisture (i.e., drier 154 

conditions) before, during, and after the fires (i.e., from the beginning of the year to the fire 155 

month); and (3) worsening of air quality in Sapporo (Hokkaido, Japan) after the fires due to the 156 

transport of smoke from the wildfires along synoptic atmospheric circulation motions (Figs. 2 and 3). 157 

Based on these three cases, these common and clear relationships among early snowmelt, warmer 158 

surface conditions, long-lasting drier environmental conditions, trans-boundary particulate matter 159 

transport, and worsened air quality in Sapporo gave us important insights for future studies on the 160 

connections of climate and air quality due to wildfires over East Eurasia. 161 

 162 

Discussion 163 

    Based on some previous studies31,32,34 and our analysis, at least three extreme air quality 164 

episodes identified in Hokkaido since 2003 were significantly affected by the long-range transport 165 
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of pollutants from large-scale wildfires in the remote regions of Siberia and East of the Lake Baikal. 166 

In Fig. 1b, we can see that broad areas suffered from high PM2.5 in July 2014. This implies that 167 

large-scale wildfires have enormous impacts on the air quality in both local source areas as well as 168 

in remote places.  169 

    Our findings here indicate that all three large-scale wildfires in Eastern Eurasia were catalyzed 170 

by unusually early snowmelts, as seen in Figs. 4b, 5b, and 6b. As summarized in the introduction, a 171 

previous study22 over the western United States concluded that an increase in wildfire frequency is 172 

associated with warming in the spring and summer and early snowmelt. In addition, a previous 173 

study mention that the fire season in Siberia and Russia started early in 2008 because of unusually 174 

low amounts of snow39. The results of our three cases on the relationships between early snowmelt 175 

and the following wildfires over Eastern Eurasia are consistent with the discussions by those 176 

studies22,39. Furthermore, in all three cases, unusually early snowmelt over the active wildfire areas, 177 

coupled with significant surface warming, likely induced the long-lasting drier conditions in the soil 178 

surface (Figs. 4-6). These characteristics are also consistent with the known relationship between 179 

drought and wildfire activities shown in previous studies24-26. Snow amount reductions and surface 180 

warming occur simultaneously because snow albedo reductions induce more solar absorption at 181 

the surface, as explained in a previous study19 and suggested as the Wet-First-Dry-Later mechanism 182 
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on hydro-climate feedbacks23. Although these studies simulated the snow reductions by modeling 183 

the snow-darkening effect19,23, the physical mechanism on the relationship between early 184 

snowmelt and surface warming would be the same and can be essentially applied to this study. In 185 

our three cases, drier conditions were already seen in January, implying that these three years were 186 

unusually dry years. However, the early snowmelt over the fire-ignition areas can somewhat 187 

mitigate the dryness for short time periods in the early months because the snowmelt deposit 188 

water into the soil. In other words, early snowmelt and stronger surface warming can quickly 189 

introduce meltwater to the soil and offset the dry conditions to some extent temporarily, but 190 

surface warming can also increase the rate of evaporation from the surface and can eventually 191 

return the soil to its unusually dry state. The aforementioned previous studies19,23 actually showed 192 

the increases in evaporation under the snow reduction conditions as a physical mechanism. This 193 

could likely maintain the long-lasting drier conditions as shown in this study (Figs. 4d, 5d, and 6d), 194 

which would be explained by the Wet-First-Dry-Later mechanisms on hydro-climate feedbacks23. 195 

Under these dry conditions, ignitions of wildfires can easily occur and the fires may spread further 196 

(i.e., becoming large-scale wildfires) under certain synoptic weather conditions such as blocking 197 

high related to Rossby wave breaking, which was reported in the case of Alaskan wildfire44. For the 198 

2003 and 2008 cases, smoke from the wildfires likely easily reached Hokkaido because the fires and 199 
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Hokkaido were located in closer latitudes from West to East (Figs. 4 and 5), though high pressure 200 

systems also helped transport the smoke to Hokkaido (Figs. S2 and S3). However, for the 2014 case, 201 

the combination of the fire and pre-fire conditions above and the location of the prevailing negative 202 

geopotential anomaly (Figs. 6a and S4) were likely essential for the smoke transport to Hokkaido 203 

(Fig. 6) because of the long latitudinal distance between the fire areas and Hokkaido. 204 

Early snowmelt in spring is largely affected by albedo reductions, which cause the surface to 205 

absorb more solar radiation and accelerate atmospheric heating through a feedback system45. In 206 

addition, light-absorbing aerosols (LAAs), such as BC and OC have relatively larger contributions to 207 

absorptions of solar radiation in a visible band from East Asia to the southern Siberian region 208 

compared to LAAs of other regions in the northern hemisphere19. A recent study46 with a very fine 209 

horizontal resolution global model showed that conventional global models in lower horizontal 210 

resolutions underestimated the transport of BC to higher latitudes because they failed to accurately 211 

model cloud systems around low-pressure systems. This recent study46 implies to us that modelled 212 

snow-darkening effect caused by BC depositions in higher latitudes would tend to be 213 

underestimated in current global models in lower horizontal resolutions. This, of course, will 214 

underestimate the simulated snowmelt at higher latitudes in global models in turn. In either case, 215 

once early snowmelt enhanced, unusual surface heating should be likely and this further causes the 216 
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long-lasting drier conditions22,23. These characteristics were observed in three cases over East 217 

Eurasia in this study. Our conclusions are that all three events of significant air pollution in Sapporo 218 

can be traced back to early snowmelt together with surface heating in the fire-ignition areas over 219 

East Eurasia under the unusual drier soil conditions starting from the beginning of the years in 220 

which the three wildfires occurred. These early snowmelts, along with surface heating in those 221 

years, further contributed to the maintenance of long-lasting drier conditions and would likely have 222 

provided preferable environmental conditions for active wildfires in the following months. 223 

In the future, if the modelled projections of snow-darkening effect will be stronger in higher 224 

latitudes with improved global models (i.e., those that induce more snowmelts) as implied in a 225 

previous study46, the frequency of large-scale wildfires, like the July 2014 fire, would likely increase, 226 

in addition to the global warming impact on wildfires30. Furthermore, if events like the May 2003 227 

and April 2008 fires in the mid-latitudes (i.e., fire outbreaks in the eastern part of the Lake Baikal31) 228 

will become more frequent in the future, the BC and OC aerosols emissions from the wildfires 229 

caused by early snowmelts will increase more and that will likely be transported more to higher 230 

latitudes in the spring and deposit onto the existing snow as also discussed by a previous study39, 231 

under some specific atmospheric conditions. Anomalous snow reductions in higher latitudes during 232 

spring to later spring (April-May) was clear for the case of 2014 wildfire (Fig. 6b), though the reason 233 
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for the reduction in snow in this case is out of the scope of this study and will be discussed in future 234 

studies. Visible snow albedo can further be reduced and stronger surface heating is possible if the 235 

light-absorbing aerosols (LAAs) additionally deposit more onto the snow in higher latitudes, as the 236 

fundamental role of the snow-darkening discussed by Yasunari et al. (ref. 19). Such a positive 237 

snow-albedo feedback system with snow itself and LAAs on snow can further accelerate snow 238 

melting47 in addition to ongoing global warming1,2. 239 

In this study, we identified the climate and air pollution characteristics of three large-scale 240 

wildfires from source regions to a remote place. We first started focusing on the transport of 241 

Siberian wildfire smoke and its impact on the air quality in Hokkaido in July 2014 (Website 1). We 242 

found that monthly variations of POM, PM2.5, and BC concentrations from MERRA-2 showed other 243 

peaks in May 2003 and April 2004 at Sapporo, which were consistent with the observed PM2.5 244 

increases at Rishiri Island in Hokkaido and implied the impact of wildfire smokes31. All three cases of 245 

the wildfire events had several spatiotemporal characteristics in common, and abnormally low 246 

amounts of snow (i.e., snow cover fraction in this study) and dry soil conditions were observed in 247 

the locations in the months leading up to and following the fires. Early snowmelts, coupled with 248 

stronger surface heating, could somewhat mitigate the dryness temporarily, but the heating effect 249 

likely also enhanced evaporation. As a result, these conditions could eventually lead to long-lasting 250 
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drier conditions because of the Wet-First-Dry-Later hydro-climate feedbacks23; that is, the months 251 

following unusually low snow conditions can be conducive to wildfires. Eventually, large-scale 252 

wildfires happened under these environmental conditions, worsening air quality in remote 253 

locations in Hokkaido31,32,34 (Website 1; Fig. 2). However, even though all three extreme air quality 254 

events investigated here are correlated with earlier snow melt in the regions of the fires, not all 255 

wildfires affect air quality in Hokkaido. In addition to the severity of fire associated with dry 256 

conditions, synoptic atmospheric circulation conditions are also important, as weather determines 257 

the transport and deposition of aerosols. Therefore, starting from this study, we absolutely need 258 

more comprehensive studies on these relationships in the future to obtain general relationships 259 

between wildfires and environmental and climate conditions. 260 

In the future, the frequency of wildfires has been projected to increase based on global model 261 

projections, though the extent of increase in wildfires depends on global warming scenarios30. This 262 

suggests that we need to continue monitoring changes in climate and environmental conditions 263 

relevant to wildfires and in air quality caused by wildfires (i.e., biomass burning), and to develop 264 

better monitoring technologies and climate models to accurately project future emissions of smoke 265 

(i.e., air pollutions) in advance of international and/or multidisciplinary collaborations with other 266 

countries. Over East Eurasia, early snowmelt conditions may be one of many important factors–267 
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with combinations of the other environmental factors shown in this study–that likely contributes to 268 

wildfires and, ultimately, changes in air quality in regions even far away from the source region. 269 

Therefore, in future studies more cases are needed to be analyzed in order to examine more 270 

detailed and comprehensive relationships among snow amounts, environmental conditions, fire 271 

outbreaks, and the impact of the smoke produced on the air quality in remote places. This study 272 

would hopefully be the impetus study for such future studies. Better future projections of 273 

large-scale wildfire outbreaks with climate models are essential in order for the people living near 274 

wildfire regions and regions downwind to take advance action for more sustainable, healthy lives in 275 

those region. 276 

  277 
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Methods 278 

    In this study, we use the NASA’s state-of-the-art gridded aerosol and meteorological 279 

re-analyses data, the Modern-Era Retrospective analysis for Research and Applications, Version 2 280 

(MERRA-2), which was produced by NASA’s Global Modeling and Assimilation Office (GMAO) (ref. 281 

33), using NASA Goddard Earth Observing System, version 5 (GEOS-5) (ref. 48). Its horizontal 282 

resolution is 0.5° × 0.625° in latitude and longitude33. The MERRA-2 includes not only 3D 283 

meteorological components but also five aerosol species20,21,49 (dust, BC, OC, sulfate, sea salt), using 284 

the GOddard Chemistry Aerosol Radiation and Transport (GOCART) Model43,50-52 and the following 285 

aerosol data assimilation. Both satellite-retrieved and ground-based aerosol optical depth data are 286 

assimilated to improve aerosol distribution in MERRA-220,21,49. For the aerosol data assimilation of 287 

MERRA-2, the MODIS Aqua and Terra data over both the land and ocean are available for full years 288 

starting in 2003, and MODIS Terra and/or AVHRR data only over the ocean were available before 289 

2003 (see Fig. 3 of Randles et al., ref. 21). So in order to use the best aerosol data of MERRA-2, we 290 

only use the data from 2003 for our discussion in this study. About more information on the 291 

aerosols, aerosol data assimilation method of MERRA-2, and validations of MERRA-2 with aerosol 292 

observations, see the relevant papers20,21,49. The PM2.5 from the MERRA-2 data above were 293 

calculated based on the method of Buchard et al. (ref. 17). For the analyses in this study, the 294 
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absorbing Aerosol Optical Thickness (AOT) at 550 nm was calculated by subtracting the total 295 

scattering AOT (variable name: totscatau; non-unit) from the total extinction AOT (variable name: 296 

totexttau; non unit). The 2-m air temperature (variable name: t2m; in K), geopotential height at 850 297 

hPa (variable name: h850; in m), and surface soil wetness (variable name: gwettop; non-unit) were 298 

also used. The combined monthly MODIS Snow Cover Fraction (SCF) (see at: 299 

https://modis.gsfc.nasa.gov/data/dataprod/mod10.php; ref. 53) retrieved by Terra (MOD10CM) 300 

and Aqua (MYD10CM) and the number of fire pixel data (see at: http://feer.gsfc.nasa.gov/) 301 

retrieved by the MODIS Terra and Aqua were also used. These MODIS-based data were further 302 

re-gridded to the horizontal resolution of the MERRA-2 data (ref. 33). The main analyses of the 303 

MERRA-2 data and MODIS SCF were mainly carried out on the NASA Center for Climate Simulation 304 

(NCCS; https://www.nccs.nasa.gov/). 305 

    The measured PM2.5 (validated data) in Sapporo and Japan were collected and maintained by 306 

the National Institute for Environmental Studies (NIES) in the Ministry of Environment (ME) and the 307 

daily mean data were calculated in Japan Standard Time (JST). The processes of the observed PM2.5 308 

data from provisional data to validated data were reported in the online manual by ME (see its 309 

Chapter 6, which is only available in Japanese at: http://www.env.go.jp/air/osen/manual_6th/). 310 

The PM2.5 data in Sapporo have only been available since 2010 311 
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(http://www.nies.go.jp/igreen/tj_down.html). Therefore, comparisons between the observed PM2.5 312 

and calculated PM2.5 (with the method of ref. 17) from the MERRA-2 aerosol data20,21,49 were only 313 

possible in Sapporo for the case of July 2014 in time series. The MODIS True Color Image in Fig. 1a 314 

was obtained from the NASA’s Worldview (see at: https://worldview.earthdata.nasa.gov/). The 315 

observed EC and OC were measured in Sapporo by the Institute for Environmental Science in 316 

Sapporo and obtained from the previous study32. 317 

    For Figs. 4-6, we calculated the monthly climatologies for 2003-2015 (13 years) and the 318 

anomalies of a variable are defined as deviations from the monthly climatology of the variable for 319 

2003-2015 (13 years). For the statistics, because we have only three cases of the large-scale wildfire 320 

events in this study (May 2003, April 2008, and July 2014), it is hard to carry out a t-test for the 321 

mean differences. Therefore, we alternatively calculated the corrected sample standard deviations 322 

of the monthly climatologies, CSSD (i.e., number of sample, n, minus 1), divided by the square root 323 

of number of sample, n, which is the so-called Mean Standard Error (MSE). Then, we used a 324 

threshold value of the MSE times 3.055 (i.e., 99% t-based confidence intervals of the data) to judge 325 

whether the data at a certain grid points or a certain time were statistically significant or not (i.e., 326 

extracting unusual case data). If the absolute value of the anomaly of a variable is greater than 327 

MSE*3.055, the data are considered as statistically unusual cases beyond 99% of the t-based 328 
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confidence intervals of the population mean, i.e., population climatology of the variables (See zero 329 

marks in panels b-d in Fig. 4-6 and shaded contour areas in Supplementary Figs. S2-S4). For the SCF 330 

data, we further exclude the zero marks for the monthly zonal mean of SCF anomaly under the 331 

MSE*3.055 condition above when values of the monthly zonal mean SCF climatology are smaller 332 

than of 1%. 333 

  334 
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Figure legends 496 

Fig.1. Characteristics of the smoke transport to Hokkaido in Japan and PM2.5 distributions on July 25, 497 

2014. (a) The Aqua MODIS True Color image with the Fires and Thermal Anomalies (Day and Night) 498 

(obtained directly from the NASA Worldview under its “open data policy” with the following 499 

permalink (i.e., Google URL Shortener was used to shorten the URL): https://goo.gl/QGfjaj). (b) 500 

Calculated daily mean PM2.5 [μg m-3] in Japan Standard Time (JST) with MERRA-2 reanalysis 501 

data20,21,33,49 and the calculation method of Buchard et al. (ref. 17). The location of Sapporo is 502 

shown in white filled circle. (c) Daily mean PM2.5 [μg m-3] on July 25, 2014, from the Japanese 503 

observations by the Ministry of the Environment (see Method). Panel (b) was produced with 504 

OpenGrADS (http://opengrads.org/; Version 2.1.0.oga.1), which is a sub-project of the main 505 

software, Grid Analysis and Display System (GrADS; http://cola.gmu.edu/grads/). Panel (c) was 506 

produced with the Generic Mapping Tools (GMT; http://gmt.soest.hawaii.edu), Version 4.5.14. 507 

 508 

Fig.2. Time series of the observed (eight stations; the validated data) and calculated 1-hourly mean 509 

(MERRA-2 with the method of Buchard et al.: ref. 17) PM2.5 in Sapporo (Hokkaido, Japan) in July 510 

2014. The solid line in pink is the daily mean environmental standard of PM2.5 in Japan (i.e., 35 μg 511 

m-3; see the URL in the main text). 512 
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 513 

Fig. 3. Monthly mean surface BC and POM mass concentrations, and calculated surface PM2.5 with 514 

the method of Buchard et al. (ref. 17) at Sapporo, Hokkaido, Japan. The top three POM peaks were 515 

seen in May 2003, April 2008, and July 2014, respectively. 516 

 517 

Fig. 4. Anomaly relationships among absorbing aerosols, OC (POM) fluxes, fires, snow, and 518 

meteorological components for the biomass burning case in May 2003. (a) Monthly anomalies from 519 

the 2003-2015 climatologies on absorbing Aerosol Optical Thickness (AOT) at 550 nm (shaded 520 

contour), Fire Pixel Counts (yellow contour; counts per grid), and geopotential height at 850 hPa 521 

(gray contour; m) , and longitudinal and latitudinal components of OC (POM) column mass flux 522 

(green vector; plotted every two data in longitudes and latitudes if either of the UV components 523 

satisfying with the defined unusual condition, see below). (b) Zonal mean monthly MODIS Snow 524 

Cover Fraction (SCF) anomaly (shaded contour) from the 13-year zonal mean monthly climatology 525 

(green contour)in the latitudes of 45-55°N. (c) Same as (b) but for the MERRA-2 2-m surface air 526 

temperature anomaly (K). (d) Same as (b) but for the MERRA-2 surface soil wetness anomaly. The 527 

mark, 0, in black in Panels (b)-(d) denote that the absolute values of the zonal mean monthly 528 

anomaly data from zonal mean monthly climatologies were greater than 3.055*MSE corresponding 529 
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to the 99% t-based confidence intervals of the climatology (i.e., unusual cases) (see Method). In 530 

Panel (b), we further excluded the 0 marks where the monthly zonal mean SCF climatology is 531 

smaller than 1% (see Method). Fig. 4 was produced with OpenGrADS (http://opengrads.org/; 532 

Version 2.1.0.oga.1), which is a sub-project of the main software, GrADS 533 

(http://cola.gmu.edu/grads/). 534 

 535 

Fig. 5. Same as Fig. 4 but for the biomass burning case in April 2008. Fig. 5 was also produced with 536 

OpenGrADS (http://opengrads.org/; Version 2.1.0.oga.1), which is a sub-project of the main 537 

software, GrADS (http://cola.gmu.edu/grads/). 538 

 539 

Fig. 6. Same as Fig. 4 but for the biomass burning case in July 2014. Zonal mean calculations were 540 

carried out in the latitudes of 60-70°N for this figure in Panels (b)-(d). Fig. 6 was also produced with 541 

OpenGrADS (http://opengrads.org/; Version 2.1.0.oga.1), which is a sub-project of the main 542 

software, GrADS (http://cola.gmu.edu/grads/). 543 
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