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Nomenclature 

CCS = Command and Control System 

GUI = Graphical User Interface 

IP = Internet Protocol 

KSC = Kennedy Space Center 

LCC = Launch Control Center 

NASA = National Aeronautics and Space Administration 

SLS = Space Launch System 

TAS = Test Automation System 

I. Introduction 

 The Kennedy Space Center (KSC) has developed its own Command and Control System for the launch of the 

Space Launch System (SLS) and Orion capsule. The Command and Control System (CCS) is used by console 

engineers for the launch and system checkout of aerospace vehicles. The CCS allows console engineers to read data 

from the flight hardware on the launch pad and from the ground control systems and allows console engineers to issue 

commands, like opening a valve, to the flight hardware and ground control systems. The CCS needs to interact with 

thousands of devices and hardware controllers for the spacecraft and ground systems, receive data from these devices, 

distribute the data to console engineers in real-time, and allow console engineers to issue commands to manipulate 

hardware on the launch pad. The system needs to be robust, fault tolerant, responsive, and fast.  

 In order to keep up with the pace of development of the CCS, a Test Automation System (TAS) is needed to 

validate the integrity of the system as a whole along with its individual components. Automated tests allow for faster 

development time, since tests can be ran through a Continuous Integration system and allow developers to check their 

code faster. Currently, the different modules, classes, and functions that make up the CCS are tested at the unit level, 

and the system level, with all the modules working together. My project was to implement a system for the data 

protocol layer of the Command Control System to be tested as a complete functional unit, with all of its classes and 

functions working together, but independent of the other modules of the CCS.  

II. Objectives 

The end goal for my implementation of a Test Automation System for the CCS is to automate testing for the data 

protocol layer between the end hardware devices for the spacecraft and ground control systems and the message bus 

for the CCS. The data protocol layer receives data from the flight hardware and translates it into a common format to 

be used in the CCS, and is also capable of translating the common format back to the format the hardware devices 

understand. In order to test the functionality, validity, and correctness of the data protocol layer, the following need to 

be accomplished first: 

o Remotely start the data protocol layer 

o Develop the simulated or mock vehicle and ground systems hardware 

o Listen for and read output from the protocol data layer 

III. Approach 

A. Training and Setup 

I spent the first month of my tenure at the National Aeronautics and Space Administration (NASA) waiting for 

access to source code, development tools, and a computer I could use for developing software. While I was waiting to 

receive access, I attended meetings and training for the CCS. After I received access to the software and a development 

unit, I took the time to explore the source code and learned how to start the data protocol layer. I found it difficult to 

use the provided online wiki for the CCS, since the setup section wasn’t up-to-date and the instructions were left in a 

                                                           
1 Software Development Intern, NE-XS, John F. Kennedy Space Center, Oregon State University 



NASA KSC – Command and Control System Automated Testing 

3 

John F. Kennedy Space Center  04-12-2019 

breadcrumb fashion, where one instruction would lead to another webpage or email and so on. I found that the best 

way to learn how to use the end product was to speak with the engineers and architects of the software. 

B. Remotely Starting the Data Protocol Layer 

In order to automate testing for the data protocol layer, the data protocol layer needs to be able to be consistently 

started using software. Typically, a software engineer for the data protocol layer would start the software from the 

terminal using a particular set of environment variables and commands. This is simple to implement in code, since 

many languages support executing commands from the command line. The most challenging portion for this task is 

making sure that the environment the software is executing on is consistent. The data protocol layer is intended to be 

used on a special implementation of the UNIX operating system, and it requires a large series of environment variables 

to be set. Fortunately, NASA provided development units with the special implementation of UNIX installed, which 

could be accessed through Secure Shell. The necessary environment variables needed for the data protocol layer to 

run could also be stored in a file that can be executed after successfully accessing the UNIX server. After I was able 

to demonstrate that I was able to do this manually, I implemented these steps in a higher level programming language 

that is human readable, so the process can be easily used, repeated, and abstracted for Test and Software Engineers to 

use when writing automated tests. 

C. Mocking Vehicle Data 

In order to test the functionality and validity of the data protocol layer, the TAS needs to be able to mock the input 

data the data protocol layer expects to receive from the flight hardware and ground control systems. Fortunately, 

NASA created a tool to simulate the SLS and other vehicles. Additionally, this tool does not require a Graphical User 

Interface (GUI) and can be used from the command line. The most difficult apart about mocking the vehicle data for 

the data protocol layer is mocking the production environment the data protocol layer expects to run in and receive 

vehicle data. The data protocol layer expects incoming data to come from certain Internet Protocol (IP) addresses 

using a specific networking protocol, which requires connected devices to be under a specific subnet. From speaking 

with the software architect of the CCS, I learned that NASA keeps its development servers on a particular set of 

subnets, which would allow me to run the vehicle mocking program from one of the servers and broadcast data to all 

of the other servers. After I learned about this configuration, I was able to manually start the vehicle mocking program 

from the command line and see that the data protocol layer is connected and receiving data from the mocking program. 

After I was able to validate my results, I implemented the software changes necessary for Test and Software Engineers 

to start up the vehicle mocking program and have it connect to the data protocol layer using the TAS. 

D. Validating Output 

The last requirement for testing the functionality, validity, and correctness of the data protocol layer is having a 

method to autonomously validate the translated output of the data protocol layer. Fortunately, the software architect 

for the CCS created a tool that can validate the output of the data protocol layer. The most difficult task for this portion 

of my project was getting the tool to start. Unfortunately, there were some environment variables that needed to be set 

that were not documented. Once I found the environment variables that needed to be set, I was able to get the tool to 

successfully start and keep running. However, I was unable to see the data the data protocol layer was sending or issue 

commands to the data protocol layer. With the help of the software architect, I learned that the server I was using to 

host the validation tool overwrites some environment variables, and that I would need to reset the values of these 

environment variables before I could start the validation tool. After I made sure that all the proper environment 

variables were set, I was able to start the validation tool, send commands to the data protocol layer to start sending 

data, and read the data the data protocol layer was sending through the validation tool. After I was able to make sure 

that my approach worked consistently, I implemented the software changes in the TAS to consistently open the 

validation tool and have it read data from the data protocol layer. 

E. Bringing it All Together 

After I was able to verify that I could remotely start the data protocol layer, send mock data to the data protocol 

layer, and validate the output of the data protocol layer, I needed to make sure that all of these separate tasks could be 

used autonomously and that the results of each task were consistent and repeatable. I needed to make sure that each 

portion was able to properly and successfully start up, and if any portion of setup failed, the test environment would 

be neatly cleaned up, so processes wouldn’t be left orphaned and running on their respective servers. Once I 

implemented the software changes necessary to make sure that the setup and teardown for the TAS was consistent, 

resilient, and repeatable, I created a demonstration test. The test showed that once all the required setup components 

successfully started, a Test or Software Engineer can issue a command to the vehicle mocking program, which sent 
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data to the data protocol layer, and programmatically read the output of the validation tool to verify the functionality 

and correctness of the data protocol layer. 

IV. Conclusion 

Testing is an important part of the software development lifecycle. Even though it doesn’t involve creating new 

features, it’s not a trivial task and writing incorrect tests can have a large impact on the success of a project. Test 

Engineers should take great care in ensuring that their tests target the correct portion of code and that their test cases 

do not yield any false positives or false negatives. Currently, the data protocol layer for the CCS is tested at a unit and 

system level. That is to say that the individual classes and functions for the data protocol layer are tested at the unit 

level, and the data protocol layer is manually tested by users as part of the entire CCS at the system level. By the end 

of my project, Test and Software Engineers for the CCS will be able to effectively write tests against the data protocol 

layer and verify the validity and correctness of the data protocol layer as a complete functional unit independent of 

the rest of the CCS. Test and Software Engineers will now be able to write automated tests that can start the data 

protocol layer in an environment that’s similar to production, receive vehicle data in a manner that’s similar to the 

way it receives data in production, and validate the translated data output of the data protocol layer. 
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