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I. Introduction to LSP and GN&C 

Beginning in 1998, NASA’s Launch Service Program (LSP) was established in the Kennedy Space Center to 
oversee launch operations and countdown management ensuring quality and mission assurance. Their principle 
objectives are providing safe, reliable, cost-effective, and on-schedule processing mission analysis, spacecraft 

integration and launch services for payloads seeking transportation to space commercial launch vehicles. It operates 
under the Human Exploration and Operations (HEO) mission directorate of NASA and has produced expendable 
launch vehicle such as the Atlas V, Delta IV, Pegasus, and the Taurus. Their work is considered earth’s bridge to 

Space! 

II. PENNY Robot Overview 

The study and control of inverted pendulum dynamics is of interest to NASA to better control the stability of a 
rocket. The different compartments of a rocket can move within a rocket during launch (i.e., rocket fuel slosh) and 
can affect its overall trajectory. Focusing on the inverted pendulum robot, PENNY, the dynamics are reduced to a 

simpler model which can prove to be more insightful for deriving more complex models and control laws. From the 
inverted pendulum bot, we can incorporate complexity into our physical model and approximate to the dynamics of a 

rocket (i.e., flexible inverted pendulum, multistage pendulum). 

A. Penny Robot Theory Modeling and Simulink implementation  
 

The study and control of inverted pendulum dynamics is of interest to NASA to better control the stability of a 
rocket. The different compartments of a rocket can move within a rocket during launch (i.e., rocket fuel slosh) and 
can affect its overall trajectory. Focusing on the PENNY bot the dynamics are reduced to a simpler model which can 

prove to be more fruitful and pedagogical for deriving more complex models and control laws. From the inverted 
pendulum bot, we can incorporate complexity into our physical model and approximate to the dynamics of a rocket 

(i.e., flexible inverted pendulum, multistage pendulum).  

B. Penny Robot Theory Modeling and Simulink implementation  
 

An inverted pendulum bot follows dynamics resembling that of a regular pendulum, having angular displacement 

away from equilibrium , however there are additional degrees of freedom including angular velocity, angular 
acceleration, linear displacement of the bot (for stability), linear velocity, and linear acceleration.  
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The model schematic portrayed 

in figure 1 depicts the different 

degrees of freedom of the PENNY 
bot. The approach to modeling the 

dynamics of the system relies on 
the physical concept of a 
LaGrangian equation and 

implementation of the Euler-
LaGrange formula, i.e., 
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Where the R term is the 

Rayleigh dissipation term and the 
Q term is the external force for the 

𝑗th degree of freedom. The LaGrangian takes the form: 
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Where the second dissipation term becomes negligible due to the friction on the pendulum being negligible (small 

coefficient of friction 𝑏𝜃). After implementing the Euler-LaGrange formula the equations become: 
 

q1=x: 

(𝑀 + 𝑚)�̈� − 𝑚ℓ�̈�cos𝜃 + 𝑚ℓ�̇�2+ 𝑏𝑥�̇� = 𝑢𝑥 
 

q2= 𝜃: 
−�̈�+ ℓ�̈�− 𝑔 sin𝜃 = 0 

 

Note the external force has taken the form 𝑢𝑥 as the force we can manipulate in the system.  
 

C. PID preliminaries  

Crucial to the concept of PID (Proportional Integral Derivative) Control is the error variable defined as 𝑒𝑥 = 𝑥 −
𝑥∗. Here the variable x is the variable in consideration (linear displacement, angular displacement, etc.) and 𝑥∗ is the 
desired state of the variable (held constant). Upon applying this transformation the controller can interpret this as an 
input. It is worth noting the PID controller is a single input single output controller, so for a system with n variables, 
n PID controllers would be needed.  

 

 
 
Each of these terms are incorporated in the PID controller so the error converges to 0 (otherwise known as x 

converging to 𝑥∗). The proportionality term linearly pushes x to 𝑥∗, yet the integral term “excites” convergence at a 
quicker pace. This can lead to overshooting, which is the purpose of the derivative term on the far right. That term 
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Figure 1. Model of Basic Inverted Pendulum with angular displacement and cart width 
linear displacement 
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acts as a dampener in the case of overshoot or steady-state oscillation. In this manner the PID has earned the “gold” 
standard for general control methods.  

The setup of the controller relative to the plant model is shown below: 

 
This way it follows an iterative process and can be easily implemented in MATLAB Simulink.  

 

D. Penny Robot Hardware2 
The inverted pendulum robot is built on a metal chassis, covered in the front and back with bumpers to blunt any 

inadvertent impact. It is powered by a 4-cell 14.8 volt battery, which subsequently powers two voltage regulators. The 
first, a 12-volt regulator, provides power to the electronic speed controllers (ESCs) and four 12-volt motors. The ESCs 

and the motors are separated by a bus that facilitates connections in the robot.  
A second 5-volt regulator powers an Arduino Mega 2560 and four sensors that act like the central and peripheral 

nervous system of the inverted pendulum robot. The microcontroller board receives data from the sensors, processes 

it, and then sends out signals to the ESCs to control motor speed. The on-board sensors consist of three rotary encoders 
and one 6-DOF inertial measurement unit (IMU). Two encoders measure the motion of the front left and right wheels 
of the robot. One encoder measures the motion and direction of motion of the inverted pendulum that is mounted on 

the top-front. The IMU board is mounted on the inverted pendulum and contains an MPU 6050 with an integrated 3-
axis accelerometer and 3-axis gyroscope, whose data can be fused for pendulum angle estimation.  

The robot uses an encoder to measure angular displacement, but the true vertical shifts over time due to sensor 
drift. In order to correct for this drift over time, an IMU was introduced to measure true vertical with respect to the 
local gravity vector. The accelerometer contains a sensitivity of 16384 least-significant-bit (LSB) per unit gravitational 

force (LSB/g), while the gyroscope’s sensitivity is 131 LSB/°/s.  
All of the data interpretation and visualization is done through Matlab/Simulink. 

E. Penny Robot Future Steps – Flexible Pendulum and Multistage Pendulum 

Future work on the PENNY bot will include introducing complexity into the models currently at hand. This 
includes modeling an inverted pendulum with a flexible rod and modelling one with a multistage pendulum. This will 

help to better approximate and control the dynamics of real aerospace structures.  
The flexible inverted PENNY bot is represented in the following figure with an additional degree of freedom to 

the rigid inverted pendulum previously considered: 

Incoming
Signal

Controller Plant

u x
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Figure 2. The schematic for Flexible Inverted Pendulum Model 

 For such a system with more degrees of freedom than previously considered, state space was implemented5: 

�̇� = 𝐴𝑋 + 𝐵𝑢 

where,  
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For the given system the LaGrangian was found to be: 
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With the Rayleigh Damping Terms: 
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 After implementing Jacobian approximation and small angle approximation, the linearization of the state space 

model produced the following A and B matrices: 
 
 

 
 

𝐵 =  −𝛼1
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III. Universal Robots UR10 Robotic Arm Overview2 

Guidance, navigation and control (GN&C) plays an important role at NASA; it is part of every launch vehicle and 
spacecraft system. GN&C deals with the design of systems to control the movements of objects in space. It provides 
multiple capabilities, such as mission planning, guidance, ascent trajectory for design and dynamics simulation, 

navigation, control, and even sensor hardware. However, present methods used to describe the translation and rotation 
of objects are defined in matrices and Euler-angles, which can be cumbersome in calculation, processing time, and 
computer memory space. Here, dual-quaternions are considered to describe a Universal Robots (UR) arm’s equations 

of motion, which includes multiple advantages over previous methods used. 
The UR10 robotic arm is part of a Mars lander mock-up that is located in the Granular Mechanics and Regolith 

Operations (GMRO) laboratory that supports research and development of technologies that are instrumental for in-
situ resource utilization (ISRU). The UR10 is located on top of an octagonal lander deck, being one of the multiple 
stations on deck. The UR10 plays an essential role in the movement and transport of objects and materials needed to 

support a simulated Martian habitat. The UR10 supports different mechanisms and robotic technologies that make up 
the integrated system, such as a simulated Atmospheric Processing Module (APM) that separates in-situ resources 
into volatiles for fuel and water for usage, and a simulated Soil Processing Module that uses carbon dioxide and 500 

°C to extract water from soil mined by the low-gravity excavator, Regolith Advanced Surface Systems Operations 
Robot (RASSOR). Dual-quaternion descriptions of translation and rotation will play an important role in space 

exploration where size and power limitations are present, such as in GN&C and ISRU. 

A. Euler-Angles and Gimbal Lock 
The Euler-angle method is one of the most common ways to represent rigid-body rotation by fusing three 

sequential angles around the principle orthogonal axes (x, y, and z). This application requires the conversion of angles 
into matrices in which the product of the three angle-matrices produces the Euler-angle set. Euler-angles in 3D do not 
commute under composition, so order of execution is determined by convention and sequentially executed for the 

transformations to be correctly computed. One of the advantages of Euler-angles is that they are easy to comprehend, 
are minimalistic, and require only three parameters.  

The disadvantages of Euler-angles include the following. First, converting, combining, and extracting Euler-angles 
is computationally expensive. Second, Euler-angles suffer from singularities at certain rotation angles, known as 
“gimbal lock,” which happens when one degree of freedom is lost due to the overlap of another degree of freedom. 

Finally, when Euler-angles are interpolated linearly, the resulting path may not be the shortest path. 

B. Dual-Quaternions 
Dual-quaternions are known to solve most of the disadvantages mentioned above. Dual-quaternions are used for 

multiple reasons, which include the following: singularity free; un-ambiguous; shortest path interpolation; most 
efficient and compact form for representing rigid transforms (3x4 matrix floats compared to a dual-quaternion 8 

floats); unified representation of translation and rotation; can be integrated into a current system with little coding 
effort; and lastly, the individual translation and rotational information combines to produce a single invariant 
coordinate frame.  

 As found in literature, the rigid rotational and translational information for the unit dual-quaternion is: 
 

𝑞𝑟 = 𝑟 𝑎𝑛𝑑 𝑞𝑡 = 
1

2
𝑡𝑟 

 

where r is a unit quaternion representing the rotation and t is the quaternion describing the translation. The dual-
quaternion can represent a pure rotation and pure translation, as shown in the following formulae: 
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In order to represent a rotation followed by a translation, the following transform can be used to convert each part into 
a single unit quaternion: 

 

𝑞 = 𝑞𝑡 ×𝑞𝑟  
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which is used to define how to transform a point p, using a single unit quaternion: 
 

𝑝′ = 𝑞𝑝𝑞∗ 
 

where q and q* represent a dual-quaternion transform and its conjugate, whereas p and p’ represent an initial and 
rotated orientation, respectively. 

C. Universal Robotics – UR10 Internship Work 
During my time at this spring internship, I first went through safety training to have unescorted access at the 

GMRO and ESPL labs. Once the literature review was done, I went on to research robotic arm kinematics, which 

included forward and inverse kinematics. As part of this assigned project, it was critical to have a basic understanding 
of the different methods used to describe the rotation and translation of objects in space. Therefore, matrices, axis-
angles, Euler-angles, and quaternions reading was necessary. Once that was done, I needed to review the tutorial and 

user-manual for the UR10 robotic arm located in the GMRO. I then continued to learn how to manipulate the UR10 
through a series of prescribed movements using the manufacturer’s manual, includ ing the definition of the safety 

boundaries to prevent the harm of the UR10.  

D. UR10 Future Work 
 Future steps for control systems research using the UR10 robotic arm includes finding a way to bypass the 

manufacturer’s controller and access the UR10 robotic arm’s actuators and sensors through Matlab/Simulink. Next, it 
will be helpful to implement Denavit-Hartenberg (DH) parameters and methods to shore up our understanding of 
forward and inverse kinematics. Once the DH method has been demonstrated, further research will develop and 

describe the UR10 kinematics in dual-quaternion space. Lastly, an adaptive control of the UR10 in dual-quaternion 
space should take place to test the difference of translation and rotation in space between DH transformation matrices 

and dual-quaternions. 

IV. FIRST Robotics Competition Experience2 

During the period of the internship, I have been helping mentor the KSC FIRST Robotics Competition (FRC) 

team, known as the Pink Team, No. 233. FIRST is a 501(c)(3) not-for-profit public charity that mixes innovation and 
participation in science and technology. This motivates primary and secondary education students pursue Higher 

Education in the fields of science, technology, engineering, and mathematics. FIRST Robotics is the highest of four 
levels, where high school students have a six-week time limit to design, build, program, and test industrial-sized 
robots, meeting specific guidelines and rules to develop a fair competition against other high school robotic teams.  

This project has been completely voluntary, requiring as much time needed to reach our goals. As part of this 
volunteer work, I have witnessed the process of designing a robot, building it, and testing it locally and in competitions, 
where the team notices improvements needed on the robot. This realization involves the redesigning, rebuilding, and 

retesting of the robot for consecutive competitions. Each person’s skills and background benefits the team. According 
to this experience, being an expert is not the essence of becoming successful, rather collaboration and diversity in 

skills, attitudes, and backgrounds that make up a whole have evidently propelled us to perform great during match-
playing. 

This year’s 30th season is themed “Destination: Deep Space,” presented by the Boeing Company. The match play 

demands robots to place hatch panels on rockets and cargo ships, load cargo for transport off the planet, and return to 
the safety of their habitat. Hatch panels are large disks, while cargo are large inflated balls. The habitat has a flat level, 
low level, and high level, where a climb would be needed for both the low and high levels. Teams can concentrate on 

playing offensively or defensively. The Team Pink is able to place hatchels and load cargo dexterously, becoming a 
main target to robotic teams that play defensively. This was evident at the Orlando Regionals and Wisconsin Regional. 

At the Orlando Regionals, we not only ranked 14th place, but also won champions along two other teams that formed 
our alliance. Furthermore, at the Wisconsin Regionals, the Pink Team ranked 6th place, while also winning the Judges’ 
Award. 

My responsibilities have been many. The characteristic I find most relevant is the willingness to learn and help. I 
did not know the name of tools nor how to go about different machinery. I have been fortunate enough to be surrounded 
all the time by mentor, colleagues, and friends that do not shame me for my lack of knowledge, rather encourage me 

to pick up a new set of skills, such as tapping, milling, drilling, and putting gearboxes together to name a few. My 
biggest contribution has been my organizational skills and lightened sense of humor. I believe that a clean and 

organized workspace provides room for creativity and innovation. At the same time, I find a lightened sense of humor 
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critical for teamwork; a tense, gloomy environment is not healthy psychologically, which automatically diminishes 
the motivation for physical tasks at hand. 

As a result of this experience, I have grown my understanding of tools and mechanical hardware since my 
background consists of electrical engineering principles. What I have valued the most is the idea used by FIRST: 
“coopertition,” which is commonly known as a cooperative competition. I saw this in action firsthand during the 

Orlando Regionals inside the pits. Teams collaborated, providing materials and tools between each other during times 
of need. Moreover, I have been able to be a living example to the high school students of what comes after high school 

and before employment. It gives me the opportunity to advise and encourage the students to pursue higher education 
on whatever subject they find passionate.  

V. Conclusion 

As an introduction to the description and control of dynamical systems, an inverted pendulum robot (Penny) was 
modeled by Newtonian and simple LaGrangian mechanics, resulting in solutions that reasonably agree with previously 

measured system dynamics. Having produced models to simulate the dynamics of an inverted pendulum robot, we 
have begun focusing on developing higher-fidelity models through exciting the actual system hardware and measuring 
output responses.  We are now beginning to implement basic control laws starting with the gold standard: PID control, 

state-space control, and ultimately adaptive control. More of the hardware modeling side of Penny still needs to be 
determined, such as the conversion of control signal to force. Once complete, increased model complexity will be 

introduced (i.e., the flexible inverted pendulum model and the multi-stage inverted pendulum model). Additionally, 
the introduction of dual-quaternion descriptions of rotation and translation has been very enriching, and will eventually 
be attempted on the UR10 robotic arm, as well as on Penny. Robotic technologies will continue to develop, so being 

part of a robotics research team has been an invaluable experience that not only will help the interns grow 
professionally in their careers, but also personally as individuals. 
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