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Yael Eisenberg1 

Yeshiva University, New York, NY, 10016 

and 

Michael Dupuis2 

Kennedy Space Center, Cape Canaveral, FL, 32899 

Abstract—This paper is the final report for my Spring 2019 internship at the Kennedy 

Space Center in Cape Canaveral, Florida. The official title of my internship is ‘Launch 

Vehicle Control Study internship,’ and I spent the spring working in GMRO- Granular 

Mechanics and Regolith Operations. There are two components to my project involving 

developing an adaptive control law for a PID controller. The first component involves 

performing a deep study and analysis of adaptive control laws, with the goal of developing 

stability proofs about the control law and the gain and phase margins. The second 

component involves analyzing the data received after implementing the adaptive control 

law. Unfortunately, as of the time of writing this paper, the data is not considered ‘clean’ 

enough to analyze. Therefore, in this paper I will give an overview of adaptive control law 

stability proofs and will write about the data analysis separately. Section II includes several 

general definitions, and the later sections have additional definitions at the end of each 

section. 

  

I. Introduction 

A PID (proportional integral derivative) controller is a common control algorithm which is 

implemented in NASA’s rocket launch system. The idea behind the PID controller is to calculate 

the error (current position – desired position) and drive it to zero by using proportional, integral, 

and derivative influences on the controller. For example, when a sailor steers a ship which is 

heading towards location 𝑥 but would like to turn the ship to reach location 𝑥∗, he/she would 

initially turn the wheel significantly, and as the ship proceeds towards 𝑥∗ the sailor would slowly 

shift the wheel back to its original position, and thereby drive the error, 𝑥∗ − 𝑥, to zero. 

The mathematical formula for PID is: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖∫𝑒(𝜏)𝑑𝜏 

𝑡

0

+ 𝑘𝑑
𝑑𝑒

𝑑𝑡
 

 

                                                           
1 Launch Vehicle Control Study intern, Granular Mechanics and Regolith Operations, Kennedy Space 

Center, Yeshiva University 

2 PI- Robotics and Autonomous Systems, NEL, EDL, Kennedy Space Center 
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Where 𝑢 is the control signal, 𝑒 is the error (desired position – current position, or 𝑥∗ − 𝑥) and 

𝑘𝑝, 𝑘𝑖 , 𝑘𝑑 are constants (proportional gain, integral gain, derivative gain). 

A diagram of the PID controller with an adaptive control law in red is pictured below. 
 

 

 

 

 

 

 

 

 

 

There are many mathematical proofs regarding the stability of PID-controlled systems and well-

established robustness metrics, for example gain and phase margins. In general, we are trying to 

make the inherently linear infinite dimensional system asymptotically approach the output of a 

finite-dimensional reference model in a robust fashion. The difference between these two 

systems is the error which we are trying to drive to a neighborhood around zero. 

There are two important theorems in [1] regarding stability of an infinite dimensional plant on a 

Hilbert space with disturbances of known waveform and unknown amplitude and phase. The first 

is Theorem 2, in which we assume almost strict dissipativity (ASD which we’ll define later in 

this paper) and prove a robust stabilization result for linear dynamic systems on infinite-

dimensional Hilbert spaces. Secondly, in Theorem 3 we show that adaptive model tracking is 

possible with very simple direct adaptive controller that knows very little specific information 

about the system it is controlling. Instead of having the error signals converging to 0, we will 

have them converge exponentially to a neighborhood of zero with a specific radius depending on 

the norm of the unknown disturbance.  

 

II. Definitions 

In order to begin going through the proofs, we must start out with several definitions. 

General definitions of mathematical terms (closed linear operator, bounded linear operator, 

separable Hilbert space, dense topological space, marginally stable matrix, positive definite 

matrix, adjoint of an operator): 

• Linear: an operator 𝐿 is linear if for every pair of functions 𝑓, 𝑔 and every scalar 𝜆, the 

following conditions are satisfied: 

Adaptive 

control law 
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i. 𝐿(𝑓 + 𝑔) = 𝐿𝑓 + 𝐿𝑔 

ii. 𝐿(𝜆𝑓) = 𝜆𝐿𝑓 

A linear operator 𝐴 is closed where 𝐴:𝐷𝐴 → 𝑌 with 𝑋, 𝑌 being Banach spaces (complete3 

normed vector space) over the same field of scalars, when we have: 

𝑥𝑛 ∈ 𝐷𝐴 

𝑥𝑛 → 𝑥 

𝐴𝑥𝑛 → 𝑦 

Then: 

𝑥 ∈ 𝐷𝐴 

𝐴𝑥 = 𝑦 

A bounded linear operator fulfills 
‖𝐿𝑣‖𝑌

‖𝑣‖𝑋
≤ 𝑀 < ∞ for some 𝑀 ≥ 0. A bounded linear 

operator is closed. 

 

• Hilbert space is a Banach space with inner product (⋅,⋅) which guarantees the norm: 

‖𝑢‖ = (𝑢, 𝑢)
1

2  

The norm must fulfill the following properties: 

(i) (𝑢, 𝑣) = (𝑣, 𝑢)  ∀
𝑢
𝑣
∈ 𝐻 

(ii) (𝑢, 𝑣) is linear ↔ (𝑢, 𝛼𝑣1 + 𝛽𝑣2) = 𝛼(𝑢, 𝑣1) + 𝛽(𝑢, 𝑣2) 

(iii) (𝑢, 𝑢) ≥ 0  ∀𝑢 ∈ 𝐻  
(iv) (𝑢, 𝑢) = 0 ↔ 𝑢 = 0 

A Hilbert space is separable  ↔ the space has a countable orthonormal4 basis. Any 

separable infinite dimensional Hilbert space is isometric to the space 𝑙2 (square integrable 

functions). 

• Dense: We have a topological space 𝑋 with a subset 𝐴 ⊆ 𝑋. 

𝐴 is called dense in 𝑋 if every point 𝑥 ∈ 𝑋 we have either 𝑥 ∈ 𝐴 or x is a limit point of A. 

In other words, 𝑐𝑙𝑜𝑠𝑢𝑟𝑒(𝐴) = 𝑋. 

• Matrix 𝐹 is a marginally stable matrix ↔ all the eigenvalues5 of 𝐹 are zero or have 

negative real parts. The eigenvalues that have zero real parts are simple roots of the 

minimal polynomial of 𝐹. A minimal polynomial 𝑃 of matrix 𝐹 is a monic polynomial 

(polynomial with leading coefficient 1) of least degree such that 𝑃(𝐹) = 0. Sometimes, 

the characteristic polynomial is the minimal polynomial. 

                                                           
3 Limit of every convergent sequence is in the space 
4 Basis where all vectors are unit vectors and orthogonal to each other. Every vector in the infinite Hilbert space can 

be written as an infinite linear combination of the vectors in the basis. 
5 To find the eigenvalues of matrix 𝐴, take the determinant of (𝐴 − 𝜆𝐼), set it equal to 0 and solve for 𝜆.  
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• Positive definite matrix: a symmetric 𝑛 × 𝑛 matrix 𝐴 is considered positive definite when 

for all non-zero column vector  𝑥 with 𝑛 real numbers, 𝑥𝑇𝐴𝑥 is strictly positive. This 

definition is equivalent to saying that the determinants of all upper-left submatrices (there 

will be 𝑛 upper-left submatrices) of 𝐴 are positive. 

• Adjoint of an operator: Suppose we have 𝐿: 𝑋 → 𝑌 with 𝑋, 𝑌 being Hilbert spaces. The 

adjoint operator is 𝐿∗: 𝑌 → 𝑋 such that 〈𝐿(𝑥), 𝑦〉 = 〈𝑥, 𝐿∗(𝑦)〉, ∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌. The 

adjoint 𝐿∗ is unique. 

 

 

III. Framework for proofs 

𝑋 is an infinite dimensional separable Hilbert space with inner product (𝑥, 𝑦) and corresponding 

norm ‖𝑥‖ = √𝑥, 𝑥. Let A be a closed linear operator with domain 𝐷(𝐴) dense in 𝑋. 

Consider the linear infinite-dimensional plant with persistent disturbances: 

(1) {

𝜕𝑥(𝑡)

𝜕𝑡
= 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + Γ𝑢𝐷(𝑡) + 𝑣, 𝑥(0) = 𝑥0 ∈ 𝐷(𝐴) 

𝐵𝑢 = ∑ 𝑏𝑖𝑢𝑖
𝑚
𝑖=1

𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑦𝑖 = (𝑐𝑖, 𝑥(𝑡)), 𝑖 = 1,… ,𝑚

 

 

𝑥 ∈ 𝐷(𝐴) is the plant state 

𝑏𝑖 ∈ 𝐷(𝐴) are actuator influence functions 

𝑐𝑖 ∈ 𝐷(𝐴) are sensor influence functions 

𝑢, 𝑦 ∈ ℝ𝑚: 𝑢 is the control input, and 𝑦 is the plant output 

𝑢𝐷 is a disturbance with known basis functions 𝜙𝐷 

Assume 𝑣 is bounded and has unknown disturbance such that ‖𝑣‖ ≤ 𝑀𝑣 < ∞ 

Persistent disturbances: a disturbance vector 𝑢𝐷 ∈ ℝ
𝑞 is said to be persistent if it satisfies the 

disturbance generator equations: 

(2) {
𝑢𝐷(𝑡) = 𝜃𝑧𝐷(𝑡)

�̇�𝐷(𝑡) = 𝐹𝐷(𝑡) or 𝑧𝐷(𝑡) = 𝐿𝜙𝐷(𝑡)
  

 

𝐹 is a marginally stable matrix.  

𝜙𝐷(𝑡) is a vector of known functions forming a basis for all such possible disturbances, known 

as a ‘disturbance with known waveform but unknown amplitudes’. 

We use the following linear finite-dimensional reference model: 
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(3) {
�̇�𝑚 = 𝐴𝑚𝑥𝑚 + 𝐵𝑚𝑢𝑚

𝑦𝑚 = 𝐶𝑚𝑥𝑚, 𝑥𝑚(0) = 𝑥0
𝑚 

Where the reference model state 𝑥𝑚 is an 𝑁𝑚 dimensional vector with model output 𝑦𝑚(𝑡) 

having the same dimension as plant output 𝑦(𝑡). (In general the plant and reference models do 

not need to have the same dimension.) 

The excitation of the model is accomplished via vector 𝑢𝑚(𝑡), generated by: 

(4) �̇�𝑚 = 𝐹𝑚𝑢𝑚, 𝑢𝑚(0) = 𝑢0
𝑚 

The model parameters (𝐴𝑚, 𝐵𝑚, 𝐶𝑚, 𝐹𝑚) are assumed to be known.  

The objective is to cause the output of the plant 𝑦(𝑡) to robustly asymptotically track the 𝑦𝑚(𝑡) 
reference model output defined above.  

For this purpose, we will define the output error vector as: 

(5) 𝑒𝑦 ≡ 𝑦 − 𝑦𝑚 

As time goes to infinity, we will want 𝑒𝑦 → 𝑁(0), where 𝑁(0) is a neighborhood of the zero 

vector (of a specific radius which we will define later). 

The direct adaptive control law will take the form of: 

(6) 𝑢 = 𝐺𝑚𝑥𝑚 + 𝐺𝑢𝑢𝑚 + 𝐺𝑒𝑒𝑦 + 𝐺𝐷𝜙𝐷 

The direct adaptive controller will have adaptive gains given by: 

(7) 

{
 
 

 
 
�̇�𝑢 = −𝑒𝑦𝑢𝑚

∗ 𝛾𝑢, 𝛾𝑢 > 0 

�̇�𝑚 = −𝑒𝑦𝑥𝑚
∗ 𝛾𝑚,     𝛾𝑚 > 0

�̇�𝑒 = −𝑒𝑦𝑒𝑦
∗𝛾𝑒, 𝛾𝑒 > 0

�̇�𝐷 = −𝑒𝑦𝜙𝐷
∗ 𝛾𝐷 , 𝛾𝐷 > 0

 

 

 

IV. SD, ASD, Theorem 2, Theorem 3 

In this section, we will define ‘strict dissipativity’ and ‘almost strict dissipativity’, and state 

theorem 2 and theorem 3.  

Firstly, we can combine two equations to create the following system regarding the error: 

(8)  {

𝜕𝑒

𝜕𝑡
= 𝐴𝑒 + 𝐵Δ𝑢 + 𝑣

𝑒𝑦 ≡ 𝑦 − 𝑦𝑚 = 𝑦 − 𝑦∗ = 𝐶𝑒
 

 

Strictly Dissipative (SD): 
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The triple (𝐴𝑐, 𝐵, 𝐶) is said to be strictly dissipative (SD) if 𝐴𝑐 is a densely defined, closed 

operator on 𝐷(𝐴𝑐) ⊆ 𝑋. 𝑋 is a complex Hilbert space with inner product (𝑥, 𝑦) and 

corresponding norm ‖𝑥‖ ≡ √(𝑥, 𝑥) and generates a 𝐶0 semigroup of bounded operators 𝑈(𝑡), 

and (𝐵, 𝐶) are bounded input/output operators with finite rank6 𝑀. 

𝐵:ℝ𝑚 → 𝑋 
𝐶: 𝑋 → ℝ𝑚 

Additionally, there exist symmetric positive bounded operators 𝑃, 𝑄 on 𝑋 such that they are 

bounded and coercive, meaning: 

0 ≤ 𝑝min  ‖𝑒‖
2 ≤ (𝑃𝑒, 𝑒) ≤ 𝑝max  ‖𝑒‖

2 

0 ≤ 𝑞min  ‖𝑒‖
2 ≤ (𝑄𝑒, 𝑒) ≤ 𝑞max  ‖𝑒‖

2 

And: 

(9) 

{
 
 

 
 𝑅𝑒(𝑃𝐴𝑐𝑒, 𝑒) ≡

1

2
[(𝑃𝐴𝑐𝑒, 𝑒) + (𝑃𝐴𝑐𝑒, 𝑒)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ] =

1

2
[(𝑃𝐴𝑐𝑒, 𝑒) + (𝑒, 𝑃𝐴𝑐𝑒)] =

−(𝑄𝑒, 𝑒) ≤ −𝑞min‖𝑒‖
2; 𝑒 ∈ 𝐷(𝐴𝑐)

𝑃𝐵 = 𝐶∗

  

𝐶∗ is the adjoint of the operator 𝐶. 

Almost Strictly Dissipative (ASD): 

We say that (𝐴, 𝐵, 𝐶) is almost strictly dissipative (ASD) when there exists a 𝐺∗ ∈ ℝ
𝑚×𝑚 such 

that (𝐴𝑐, 𝐵, 𝐶) is strictly dissipative, where 𝐴𝑐 ≡ 𝐴 + 𝐵𝐺∗𝐶 

 

Definitions for IV: 

• 𝐶0 semigroup: a semigroup is a set 𝑆 together with a binary operation (for example, ⋅ 

such that 𝑆 × 𝑆 → 𝑆) that satisfies the associative property: ∀𝑎, 𝑏, 𝑐 ∈ 𝑆: (𝑎 ⋅ 𝑏) ⋅ 𝑐 = 𝑎 ⋅
(𝑏 ⋅ 𝑐) 

𝐶0 semigroup is also known as a strongly continuous one-parameter semigroup, it is a 

representation of the semigroup (𝑅+, +) on a Banach space 𝑋 that is continuous in the 

strong operator topology.  

Formally, a strongly continuous semigroup on Banach space 𝑋 is a map 𝑇: 𝑅+ → 𝐿(𝑋) 
such that the following conditions apply: 

a. 𝑇(0) = 𝐼 (identity operator on 𝑋) 

b. ∀𝑡, 𝑠 ≥ 0: 𝑇(𝑡 + 𝑠) = 𝑇(𝑡)𝑇(𝑠) 

c. ∀𝑥0 ∈ 𝑋: ‖𝑇(𝑡)𝑥0 − 𝑥0‖ → 0 as 𝑡 → 0 

• Bounded operators: Suppose we have two normed vector spaces 𝑋, 𝑌 and a linear 

transformation 𝐿: 𝑋 → 𝑌, 𝑣 ∈ 𝑋. If the ratio of ‖𝐿(𝑣)‖ to ‖𝑣‖ is bounded above by the 

                                                           
6 Bounded operator such that the range is finite dimensional 
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same number over all nonzero vectors  𝑣 ∈ 𝑋 then 𝐿 is a bounded operator. More 

formally, ∃𝑀 ≥ 0 such that ∀ 𝑣 ∈ 𝑋,
‖𝐿(𝑣)‖𝑌

‖𝑣‖𝑋
≤ 𝑀 < ∞.   

• Symmetric operator on Hilbert space: A linear operator 𝐴 acting on Hilbert space 𝐻 with 

dense domain 𝐷𝑜𝑚(𝐴) is symmetric if: 〈𝐴𝑥, 𝑦〉 = 〈𝑥, 𝐴𝑦〉 ∀𝑥, 𝑦 ∈ 𝐷𝑜𝑚(𝐴) 

• Positive operator: a symmetric operator 𝐴 is called positive if 〈𝐴𝑥, 𝑦〉 ≥ 0 ∀𝑥 ∈ 𝐷𝑜𝑚(𝐴) 

 

Hypothesis: 

We have an ideal trajectory defined as: 

(10)             {
𝑥∗ = 𝑆11

∗ 𝑥𝑚 + 𝑆12
∗ 𝑢𝑚 + 𝑆13

∗ 𝑧𝐷 = 𝑆1𝑧

𝑢∗ = 𝑆21
∗ 𝑥𝑚 + 𝑆22

∗ 𝑢𝑚 + 𝑆23
∗ 𝑧𝐷 = 𝑆2𝑧

 

With:  𝑧 = [𝑥𝑚 𝑢𝑚 𝑧𝑑]𝑇 ∈ ℝ𝐿 

Where the ideal trajectory 𝑥∗(𝑡) is generated by the ideal control 𝑢∗(𝑡) from: 

(11) {
𝜕𝑥∗

𝜕𝑡
= 𝐴𝑥∗ + 𝐵𝑢∗ + Γ𝑢𝐷

𝑦∗ = 𝐶𝑥∗ = 𝑦𝑚
 

 

Assume: 

1. (𝐴, 𝐵, 𝐶) is is ASD, meaning there exists a gain 𝐺𝑒
∗ such that the triple (𝐴𝐶 ≡ 𝐴 +

𝐵𝐺𝑒
∗𝐺, 𝐵, 𝐶) is SD. 

2. 𝐴 is a densely defined, closed operator on 𝐷(𝐴) ⊆ 𝑋 and generates a 𝐶0 semigroup of 

bounded operators 𝑈(𝑡). 

3. 𝜙𝐷 is bounded. 

We can combine equations (6),(7),(10) to obtain: 

Δ𝑢 = 𝑢 − 𝑢∗ = ⋯ = 𝐺𝑒
∗𝑒𝑦 + Δ𝐺𝜂 

Where:  

Δ𝐺 ≡ 𝐺 − 𝐺∗ 

𝐺 = [𝐺𝑒 𝐺𝑚 𝐺𝑢 𝐺𝐷] 

𝐺∗ ≡ [𝐺𝑒
∗ 𝑆21

∗ 𝑆22
∗ 𝑆23

∗ 𝐿] 

𝜂 ≡ [𝑒𝑦 𝑥𝑚 𝑢𝑚 𝜙𝐷]𝑇 

Additionally, we can combine equations (1),(6),(7),(8),(9) so that the error system becomes: 
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{
 
 
 

 
 
 
𝜕𝑒

𝜕𝑡
= (𝐴 + 𝐵𝐺𝑒

∗𝐶)𝑒 + 𝐵Δ𝐺𝜂 + 𝑣 = 𝐴𝑐𝑒 + 𝐵𝜌 + 𝑣

Δ�̇� = �̇� − �̇�∗ = �̇� = −𝑒𝑦𝜂
∗𝛾

𝛾 ≡ [

𝛾𝑒 0 0 0
0 𝛾𝑚 0 0
0
0

0
0

𝛾𝑢
0

0
𝛾𝐷

] > 0

 

 

With: 𝑒 ∈ 𝐷(𝐴), 𝜌 ≡ Δ𝐺𝜂, 𝑒𝑦 = 𝑐𝑒 

Theorem 2 (Robust stabilization) 

Statement: 

Consider the coupled system of differential equations: 

{

�̇� = 𝐴𝑐𝑒 + 𝐵∆𝐺𝑧 + 𝑣, ∆𝐺 = 𝐺(𝑡) − 𝐺∗

𝑒𝑦 = 𝐶𝑒

�̇�(𝑡) = −𝑒𝑦𝑧
𝑇𝛾 − 𝑎𝐺(𝑡)

 

 

𝑒
𝑣
∈ 𝐷(𝐴𝑐) 

𝑧 ∈ ℝ𝑚 

[
𝑒
𝐺
] ∈ �̅� ≡ 𝑋 × ℝ𝑚×𝑚 is a Hilbert space, 

with inner product  ([
𝑒1
𝐺1
] , [
𝑒2
𝐺2
]) ≡ (𝑒1, 𝑒2) + 𝑡𝑟7(𝐺1𝛾

−18𝐺),  

and norm ‖
𝑒
𝐺
‖ ≡ (‖𝑒‖2 + 𝑡𝑟(𝐺1𝛾

−1𝐺))
1

2 

𝐺(𝑡) is the 𝑚 ×𝑚 adaptive gain matrix 

𝛾 is any positive definite constant matrix of appropriate dimension. 

Assume: 

1. (𝐴, 𝐵, 𝐶) is ASD with 𝐴𝑐 ≡ 𝐴 + 𝐵𝐺∗𝐶 

2. There exists 𝑀𝐺 > 0 such that √𝑡𝑟(𝐺∗𝐺∗𝑇) ≤ 𝑀𝐺  

3. There exists 𝑀𝑣 > 0 such that sup
𝑡≥0

9‖𝑣(𝑡)‖ ≤ 𝑀𝑣 < ∞ 

                                                           
7 Tr = trace of a matrix = the sum of all the diagonal elements 
8 Inverse of matrix A is the matrix that when multiplied with A will produce the identity matrix 
9 Sup = supremum = lease upper bound  
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4. There exists 𝛼 > 0 such that 𝑎 ≤
𝑞min  

𝑝max  
, where 𝑞min  , 𝑝max  are defined in the strictly 

dissipative definition 

5. The positive definite matrix 𝛾 satisfies 𝑡𝑟(𝛾−1) ≤ (
𝑀𝑣

𝑎𝑀𝐺
)
2

  

Then: 

The gain matrix 𝐺(𝑡) is bounded, and state 𝑒(𝑡) approaches the ball of the radius exponentially 

at the rate 𝑒−𝑎𝑡: 

Radius: 𝑅∗ ≡
1+√𝑝max  

𝑎√𝑝min  
𝑀𝑣 

Theorem 3: 

Using the framework we set forth in Hypothesis 1 and applying Theorem 2, we have a robust 

state and output tracking of the reference model, meaning the error system approaches the zero 

vector with radius 𝑅∗ as time goes to infinity: 

lim
𝑡→∞

[
𝑒
∆𝐺
] = 𝑁(0, 𝑅∗) 

Since 𝐶 is a bounded linear operator, we have: 

𝑒𝑦 = 𝑦 − 𝑦𝑚 = 𝐶𝑒 

lim
𝑡→∞

𝐶𝑒 = 𝑁(0, 𝑅∗) 

With bounded adaptive gains:  

𝐺 ≡ [𝐺𝑒 𝐺𝑚 𝐺𝑢 𝐺𝐷] = 𝐺∗ + ∆𝐺 

 

V. Conclusion 

In theorem 2, we showed that if we have a linear infinite dimensional system which is almost 

strictly dissipative, we have a robust stabilization result of the error approaching a specific 

neighborhood around the zero vector. In theorem 3, we have a simple direct adaptive controller 

which knows very little information about the system and we show that the adaptive model 

tracking is still possible in this case. These theorems, together with the future data analysis, have 

many potential applications to improve PID systems which are implemented in a wide range of 

industries across the world. 
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