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Motivation

NASA CFD 2030 Vision
The use of CFD in the aerospace design process is
severely limited by the inability to accurately and reliably
predict turbulent flows with significant regions of

separation. [Slotnick et al., 2014].

Key advances that will help solve this problem at non-prohibitive

computational cost include:
» Large-eddy simulation (LES) and scale-resolving methods
(e.g. hybrid RANS LES)

» Higher order accurate numerical methods

» Minimizing or controlling numerical dissipation
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What is numerical dissipation? @/

We generally want the solution to the compressible Navier-Stokes
equations

aVVI aFconv aFvisc
= +

ot Ox; Ox;

but if we use centered interpolation to the faces and centered flux
differences, we get numerical instabilities.
So instead, we solve different equations that limit what values the
fluxes can take

8VVI . 0 aFvisc:

— T a9 Fconv F*
gt = oyt FFO T

to stabilize the scheme, and given fine enough resolution, solution
should converge to the original equation because generally
F*=1f(Ax"), and r >= 2.
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Why should anyone care? @/

> Success of LES methodology hinges on the amount and
location of dissipation

» added by numerics (in the case of implicit LES)

» by a subgrid-scale (SGS) model (in the case of explicit LES)
being just enough to account for the unresolved dissipative
scales.

» The interplay between dissipation due to numerical scheme,
SGS model, and grid resolution is the primary suspect for why
researchers report non-monotonic convergence of LES results
to DNS or experimental benchmarks
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How do we solve this problem? @

1. Increase the mesh resolution in key areas,
2. Decrease or remove contribution from SGS model,

3. Modify the numerics so we don't add ANY dissipation away
from discontinuities.
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What is the benefit of conserving kinetic energy? @/

» A scheme that conserves mass, momentum, total energy, and
kinetic energy (when p = 0) is numerically stable for any
smooth flow at any Reynolds number (on periodic grids)
[Morinishi, 2010, Brouwer et al., 2014]

» Schemes that consistently use skew-symmetric form for
momentum and energy equation do not suffer from spurious
transfer of energy from kinetic to internal energy even when
shocklets are present [Pirozzoli, 2011, Kuya and Kawai, 2018]

» Achieve better results at lower resolution: target dissipation to
SGS turbulence and shocks only
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Method: Exploiting skew-symmetry

Start from momentum equation in divergence form:

opu; 0
o = axj(—puj'u,' — p5U + Tij)

Use product rule on all quadratic or higher terms

1 [ Opu; ou; op 1/ 0 ou; 0
= < + uj > -3 <(9 (PUJUI)+PU18 +U18XJ(:0“J))

o ot T Yo
0
Substitute in % = —(%(puj) to obtain skew-symmetric form

ou;

1 (Opu; oui\ 1[0 . ouj K
- < + > =_= (axj(puju,)—i-pujaxj> + 8Xj( pdjj + Tij)

ot pat 2
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Method: Integration by parts @/

Let pQu + Opu = Au, where A is a skew-symmetric operator.
Use integration by parts with test functions v, w to show that

/vAWdQ:/ v(pow + dpw) dQ
Q Q

= —/ w(pOv + d¢pv) dQ2
Q
= / wAv dQ,
Q
such that
/ uAudQ =0.
Q
In practice, need to use symmetric derivative operators: D = —DT,

where Du = Qu for this property to hold [Brouwer et al., 2014].
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Method: Kinetic energy conservation @/

To obtain the kinetic energy equation we multiply both sides of
skew-symmetric momentum equation by u;

1 Opu; Oui\ 1 8p%u,-u,- 8%u,-u,-
LHS_Q”’( ot +p6t>_2< ot "ot

and use integration by parts to show that the momentum
contribution to RHS goes to zero for periodic BC

1 0 8U,‘ .
/\/—2U,' <8XJ(pUJU,) +pUJ8XJ> dv =0

meaning that kinetic energy is only affected by friction and
pressure work terms

J (1 0
| spuiuidV = [ ui—(=pdj;+ 7;)dV
at/vzpuu Vuaxj( poji + Tij)
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Method: /p scaling @/

We use the [Morinishi, 2010] trick to simplify the LHS of the
momentum equation

1 8,0u,-+ Oui\ 8pu;_ﬂ@
2\at Par ) Uor 2 Ot

8”’ +ﬂ@
8t 2 Ot

d+/pu;
YR
And the resulting momentum equation then becomes:
0./pu; 1/ 0 ou; 0
= =—- | 7= (puju; i=— ——(—pdjj + 7
VP ot 2<8Xj(puju)+'guJaxj)+8xj( pojj + 7ij)
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Method: Energy equation @

We start from the total energy equation, and expand Ej terms:

5 9 8Ek
S (0E) =5 (ple + B)) = - (pe) +

0
= gy louile Ek> +puj = “fof)

0
= — ——(puje + puj — uiTjj)

R
1 OEy Opu;
~5 < -(pujEx) + puj—— O + Ex o )
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Method: From total to internal energy equation @

Then we substitute in equation for %, eliminate terms, and
expand internal energy terms for consistency

@_ 1/ 0 OE Opu; 0
<(9 (puJEk)—i-puJ8 + Ex ox; +u'8xj

ot 2

(—pdij + 7ij)

So we obtain a different equation for internal energy than previous

authors
Ei(pe) :_% (;{j(puj’e) + pngj + e%{?)
- aaxj(PUj — uiTjf) = gfg
+Ui§5j szj
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Method: Internal energy equation @/

We use the product rule to expand and cancel pressure and friction
¢ _ NG,
terms and use 57 = 2\/¢ 5%

1/ 0 Oe Opu;

2\ﬁ __2<8 (puJe)—l—puJ8 +e pJ)
1/ 0 ' j i ou; 8qJ
2 <8w(p%)+_ ox o > Tox ~ ox

But terms leftover from the kinetic energy equation are volumetric
terms, not fluxes:

g 2P 0 Oui
J ox;’ ax, Y Ox;

So we cannot use the Pirozzoli trick [Pirozzoli, 2011] and
efficiently use fluxes at the half-points/faces...
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Method: Conservative finite differences @/

So instead we take the high-order conservative finite difference
approach and solve this set of equations where each derivative

operator % is a 6t order centered difference stencil D = —D':
J
NP _ ii( u;)
ot 2./p0x; 17




Method: Implementation details @/

Cartesian immersed boundary treatment

> Deal with immersed boundary with simple ghost cell method
(GCM) [Mittal et al., 2008] and ghost-in-fluid (GIF)
[Nakahashi, 2011] method for thin geometry

» Drop order close to body to ensure central difference stencil
doesn't go beyond valid ghost cell data

Boundary conditions and adaptive mesh refinement (AMR)

» Use a sponge layer or add explicit 5t order artificial
dissipation (AD) [Pulliam, 2011] surgically near non-periodic
boundary points with e5 = 0.01

> Use higher order interpolation or surgical addition of AD near
2:1 fine-to-coarse interfaces [Pantano et al., 2007]
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Results: Method of manufactured solutions (MMS) @
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Cut of the two spheres in the domain used for MMS tests with geometry
and the starting mesh (before any refinement).
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Results: MMS convergence with geometry

&

L., norm of the discretization error obtained from inviscid MMS with two
spheres close together. Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons
m0 1.9E-02 7.0E-05 4.4E-01 4.0E-02 1.3E403 6.2E+00
m1 1.0E-02 (0.89)  1.8E-05 (2.01)  2.1E-01 (1.03)  1.0E-02 (2.00)  6.7E+02 (0.97)  1.5E-400 (2.01)
m2 5.0E-03 (1.00)  4.4E-06 (2.01)  1.1E-01 (1.02)  25E-03 (1.99)  3.4E+02 (0.98)  3.8E-01 (2.00)

L., norm of the discretization error obtained from MMS for the Navier-Stokes
equations with = 10'° and with two spheres close together.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons
m0 1.9E-02 7.0E-05 1.2E408 1.3E408 7.7E+12 3.6E+12
m1 1.0E-02 (0.89)  1.8E-05 (2.01)  3.1E+07 (1.99)  3.2E+07 (1.97)  2.0E+12 (1.99)  8.6E+11 (2.07)
m2 5.0E-03 (1.01)  4.4E-06 (2.01)  7.9E+06 (1.99)  8.1E+06 (1.99)  4.9E+11 (2.00)  2.1E+11 (2.02)
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Results: Isentropic vortex propagation @
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Inviscid isentropic vortex propagation in Mach 0.5 flow (max Mach =
0.75) in periodic domain discretized with 322 evenly-spaced cells,
integrated in time for 10 flow-throughs with At = 0.01 (CFL=0.28 at
start) with explicit RK4.
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Results: Inviscid Taylor-Green Vortex @
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Non-dimensional integrated kinetic
energy

Integrated enstrophy
Inviscid Taylor-Green vortex at Mach 0.1, performed with 323 resolution

and integrated in time using RK4 for 20 flow-throughs with At = 0.0014,
which gives a CFL number near 0.5.
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Results: Taylor-Green Vortex at Re = 1600

0.014 T T T
&= Spectral 512
m—m KECons 256
0.012f s
v¥—¥ KECons 128
¢—¢ KECons 64
0.010f »—> KECons 32
i3
T
< 0.008
c
)
g
‘@ 0.006
o
a
0.004
0.002f

H H
0'OOGO 5 10
time

Taylor-Green Vortex results for kinetic energy conserving scheme
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(KECONS) with the dynamic o SGS model at different grid resolutions,

integrated in time with RK4 and fixed CFL=0.5
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Results: Taylor-Green Vortex at Re = 1600 @
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Results: Turbulent Channel Flow at Re; = 180 @

M

. { -

Y

Mean velocity profile: KECons run at Mach= 0.2 with & model at 643
resolution Ax™, Ayt Azt = 17, 5.8, 8.7 and RK4 with CFL=0.5
(diamonds), law of the wall u™ = 2.5In(y™) + 5.5 (dashes), u* = y™
(dash-dots).

22 /26



Results: Turbulent Channel Flow at Re; = 180 @

G SRR RPN
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Kreplin & Eckelmann (1979) corrected experimental data

[Kim et al., 1987]: . (triangles), vf{ns (right triangles), w;f . (left
triangles); DNS [Kim et al., 1987]: v . (line), v, . (dashes), w;
(dash-dots); KECons 643: uﬁ;,,s (circles), v;h. (diamonds), w . (squares).
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Results: Flow Past a Cylinder at Rep = 3900 @
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Time-averaged velocity profiles for flow past a cylinder at Rep = 3900.
Experimental PIV Measurements [Parnaudeau et al., 2008] (squares),
DNS at Re = 3300 [Wissink and Rodi, 2008] (circles), LES
[Parnaudeau et al., 2008] (triangles), LES [Kravchenko and Moin, 2000]
(diamonds), LAVA WENOG6 (dashes), LAVA KECons + o model (line).
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Lessons Learned @/

» Cross-derivatives are tricky when close to potentially
under-resolved immersed boundary geometry

> Implicit Runge-Kutta with Gauss quadrature is not
worthwhile: too expensive and too sensitive to sub-iteration
convergence (see paper and [Jameson, 2017])

» Moving away from flux at faces requires complete re-write of
codebase and different thinking in terms of performance
optimization

» Stability of consistent skew-symmetric form is impressive, but
perhaps it can be obtained without eschewing flux-form using
[Pirozzoli, 2011] trick
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Questions? @
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Backup Slides
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Method: High order viscous terms @/

In order to have consistent 6™ order derivatives for all terms
without requiring more ghost cells, we use the product rule to
expand the viscous and diffusion terms

oTjj :8< (8u, N auj)_i_ﬂ@uk&l)

Ox;  Ox; ox;  Ox; Oxk
_Op (Ou; | Oy; 00 Ou
O (8}9 + 8X,') + Ox; Ox i
82 j 82uj

uj
+ (,u,(l + (5,"]') + Bé;,j) Txf + (,LL + ﬁ)(l - 51,.1)37)9,7

9 _ 0 ( OT
ox; B Ox; Ox;

_oxoT T
Ox; Ox; 8xj2
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Method of manufactured solutions (MMS)

&

L., norm of the discretization error obtained from inviscid MMS without
geometry. Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons
mO0 3.6E-08 3.3E-08 2.6E-06 2.6E-06 8.4E-04 1.3E-03
ml 5.2E-10 (6.11)  5.3E-10 (5.96)  4.2E-08 (5.98)  4.1E-08 (5.99)  6.1E-06 (7.11)  2.1E-05 (5.97)
m2 8.2E-12 (5.98) 8.3E-12 (5.99) 6.7E-10 (5.98) 6.5E-10 (5.99) 9.9E-08 (5.94) 3.3E-07 (5.99)

L. norm of the discretization error obtained from MMS for the Navier-Stokes
equations with 1 = 10%°. Convergence rates are shown in parenthesis.

Mesh Mass Momentum Total Energy
WENO6 KECons WENO6 KECons WENO6 KECons
mO0 3.7E-08 3.3E-08 1.3E+08 3.0E+04 7.8E+12 1.2E+09
ml 5.3E-10 (6.12)  5.3E-10 (5.96)  3.2E+07 (1.99)  4.7E402 (5.98)  2.0E+12 (1.99)  1.9E+07 (5.98)
m2 8.3E-12 (5.98)  8.3E-12 (5.99)  7.9E+06 (2.00)  7.6E4+00 (5.96)  4.9E+11 (2.00)  3.1E-405 (5.95)
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Method: Kinetic energy conservation in time
Need a time integrator that preserves the integration by parts
property:
/V(¢atW -+ aﬂbW) dt = — / W(¢atV + 8t¢V) dt

t t

/u(d)@tu + Orpu)dt =0

t
Which restricts us to fully implicit Runge-Kutta schemes:

S
y"h=y"+ Atz biki
i—1

s
Yi=y"+ AtZa,-jkj
j=1

That satisfy bjajj + bjaji = b;b;j, e.g. Gauss quadratures
[Brouwer et al., 2014]
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Effect of kinetic energy conservation in time @
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Comparison of inviscid isentropic vortex propagation results for KECons
with explicit RK4 (squares), Gauss4 (crosses), Gauss4 using a 4 times
larger time step (triangles), and Gauss4 using a 4 times larger time step
and a limit of 10 sub-iterations (diamonds).
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Flow Past a Cylinder at Rep = 3900 @/
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Instantaneous snapshot of iso-surfaces of Q-criterion colored by Mach
number for flow past cylinder at Rep = 3900.
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Future Work @/

» Implement shock capturing that will not break conservation
properties (e.g. local artificial diffusion (LAD), conservative
filtering)

» Implement and validate a wall-model for turbulent boundary
layer flows

» Research and implement an energy-stable higher-order
interior-only immersed boundary method
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