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VCCTEF Concept

* Variable Camber Continuous Trailing Edge Flaps
* Flaps distributed over most of the span of the wing

e Elastomer material between flaps to seal gaps

* Tallors spanwise lift distribution throughout mission

Common Research
Model (CRM)

Generic Transport
Model (GTM)
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Motivation

e Early application of VCCTEF on GTM on overspeed case
iIndicated wave drag could also be significantly reduced

e More effective if circular deflection relaxed
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Goals and Methods

e Determine how complex a distributed flap system
must be to be effective for overspeed drag
reduction

 how many spanwise flaps?

 how many chordwise segments per flap?

e Flap layout trade study

 |nstall various layouts with different numler
of spanwise flaps and chordwise segments

o Optimize flap deflections on all layouts at
overspeed condition

e Examine results for trends
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Platform for Trade Study

« Common Research Model (CRM) fuselage/wing/horizontal tail configuration)

* Assume compaosite wing
e remove built in deformation from original CRM geometry

* develop structural model that exhibits greater deformation (about twice original)

* Develop new baseline wing

 start with original CRM geometry

e re-optimize twist distribution for
cruise using methods that
address aeroelastic effects

e minimize drag
e constrain lift

e maintain trim
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Static Aeroelastic Analysis Architecture
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Aerodynamic Shape Optimization Architecture
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Geometry

Aeroelastic Aeroelastic
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Modeling the VCCTEF
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Modeling the VCCTER

Flap deflections controlled by Blender “armature” (analogous to a skeleton)

Surface triangulation is bound to “bones”

* Bones can only rotate about hinge lines

» Sequential flaps bones linked to each other

» Blended transition between flaps to mimic elastomer material
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Establishing a New Baseline CRM Design §

CRM wing twist distribution re- minimize: Cp (a, 0,, i)

optimized with more flexible structure
subjectto: C;(a, 0., 1) = Cpeise = 0.5

* Minimize drag (Cp) at cruise condition Cy(a,8,,i)=0
(M., = 0.85) a<a,,
* maintain cruise lift (C; = 0.5) e[\ Root
Outboard 1
e maintain longitudinal trim (Cy, = 0 Outboard 2 |
* cabin deck angle constraint (@ = 3°) \ \ \
* Design variables Tip Broak

e section incidence at 6 spanwise
stations (including root), while
linearly vary change in incidence
between stations

e angle of attack (helps satisfy lift
constraint)

e tail incidence (helps satisfy trim)
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Convergence of Twist Optimization
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Convergence of Twist Optimization
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Optimized Twist Distribution
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Optimized Spanwise Lift Distribution
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Surface Pressure Distribution
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Flap Layout Trade Study

 |nstall systems with varying numbers
of spanwise flaps (4, 8, 12) and
chordwise segments (1, 2, 3)

* |ncrease cruise speed

* M.=0.85->M.=0.88 ——
e would save 10 minutes on a 5 hour flight /
1 1 1 /
e Optimize the flap deflections
e minimize drag minimize:  Cp (&, Agyps, i) @ M, = 0.88
e maintain cruise lift subject to: C; (Cl, Aﬂaps, l}) = (C; =0.4665

Cor (@, Ay, 1) = 0

e maintain trim q0<a. =3°
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Performance of Optimized 4-Flap Layouts &
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Section Lift
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Pressure Distributions on 4-Flap Layouts
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Optimized 4-Flap Geometry

e

e

48% span
P 83% span

no flaps
4 x 1
4x2
4x3

vertical scale is 4 times greater than horizontal for clarity

e 3-segment deflected flap profile very similar to 2-segment

* 1-segment deflected flap somewhere in between undeflected
geometry and deflected 2-segment flap

» Deflecting flaps moves reflex backward (consistent with
supercritical airfoil theory)
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Performance of All Optimized Flap Layouts
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Performance of All Optimized Flap Layouts
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Performance of All Optimized Flap Layouts

Inviscid Drag Coefficient
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Spanwise Lift Distribution on 2-Segment Systems &
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Optimized 4 x 2 Flap Layout Deflections
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Conclusions and Future Work

* Flap layout trade study on highly flexible CRM conducted for
overspeed off-design case

e 2-segment tlaps found to be much more effective than
1-segment flaps, but 3-segment flaps provided only
iIncremental improvement

* 4 spanwise flaps are almost as effective as 12, suggesting
iInduced drag is either already near optimal or wave drag
reduction dominates

» \ferification with viscous analysis

e Consider other off-design conditions (e.qg. maneuver condition)
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