Tool Localization for Robotic Manipulation

PHIL STRAWSER

ROBOTICS AND INTELLIGENCE FOR HUMAN SPACECRAFT LAB

NASA – JOHNSON SPACE CENTER

Background – Robonaut2

Started in 2007 with GM

- Leveraged Robonaut 1 technology
- Launched R2B to ISS in 2011

• Common goals

- Use humans' tools
- Safety share humans' workspace
- Do physical work
 - interact with the environment in meaningful ways
- Future objectives
 - Improve command modalities (speech, vision processing, haptic feedback, command interfaces)
 - Use model-based learning to quickly expand robotic capabilities (identify tools, manipulation)
- In order to create a useful robotic system, the robot must interact with tools
- To *interact* with a tool, the robot must first *find* the tool

Vision Pipeline Overview

Segmentation

- Break the input into smaller meaningful chunks
- Separate the foreground from the background, etc

Classification

- Identify what the chunks are, and what is important
- "Classic" techniques local features like SIFT, SURF, etc.
- More modern Techniques Deep Learning
 - Some DL techniques can simultaneously do segmentation AND classification

Localization

- Once you know *what* you are looking at, you need to know *where* is it in the environment
- Stereo pair, LIDAR, Depth Cameras, etc

(ASUS)

Segmentation and Classification

Object Selection and Localization

Interactive Tool Gather

Deep Pose Estimation

B. Okorn – Carnegie Mellon

Network Architecture

Symmetric Distributions

B. Okorn – Carnegie Mellon

Preliminary Results

B. Okorn – Carnegie Mellon

Future Work

Surgical Tool Gathering

- Collaboration with University of Louisville to investigate identification and hand-off of simple surgical instruments
- This is part of a larger effort in how robots can assist as a medical assistant

Deep Learning pose estimation

Deep Learning for Semantic Segmentation

Leverage advances in Deep Learning for a complete scene segmentation

Datasets

- Deep learning requires LOTS of data!
- Create / augment existing datasets with NASA-relevant data