

Heatshield for Extreme Entry Environment Technology (HEEET) TPS for Ice Giants Probe Missions

D. Ellerby§, T. Boghozian*, D. Driver§, J. Chavez-Garcia*, M. Fowler⁵, P. Gage[#], M. Gasch[§], G. Gonzales^{*}, Č. Kazemba, C. Kellermann^{\$}, S. Langston[%], J. Ma[§], M. Mahzari[§], F. Milos[§], O. Nishioka[§], G. Palmer*, K. Peterson[§], C. Poteet[%], D. Prabhu^{*}, S. Splinter[%], M. Stackpoole[§], E. Venkatapathy[§], J. Williams^{*}, and Z. Young[§]

• The entry flight path angle will be limited by the ability to demonstrate material performance in ground-test facilities, e.g., arc jets

In addition to limiting the ballistic coefficient to lie between 200 and 250 kg/m², it is better to keep the nose radius between 300 and 400 mm