Flight Deck Surface Trajectory-Based Operations (STBO): A Four-Dimensional Trajectory (4DT) Simulation

Deborah L. Bakowski, M.A.
San José State University
NASA Ames Research Center

Becky L. Hooey, Ph.D.
NASA Ames Research Center

David C. Foyle, Ph.D.
NASA Ames Research Center

Human-Centered Systems Lab
https://hsi.arc.nasa.gov/groups/HCSL
Flight Deck Simulation:

- Pilot-in-the-Loop Simulation
- Far-Term Concept for Surface Operations
- Human-Centered Systems Lab (HCSL)
- Airport and Terminal Area Simulator (ATAS)
Airport Surface Operations

– Concepts, research efforts, programs, and activities aimed at improving operations on the airport surface:

• Coordinate surface movement to:
 – reduce congestion and excessive queues at departure runways

• Improve the predictability of surface operations:
 – specifically, takeoff time

• Reduce the environmental impacts of taxi operations:
 – reduce inefficient stop-and-go-taxi

Surface Trajectory-Based Operations (STBO) Concept:

– Incorporates a time-component into taxi operations
Increasing Use of Time Information in Surface Trajectory-Based Operations (STBO)
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

Current-Day Surface Operations

Near-Term w/ Target Times

Far-Term with Flight Deck Component

Far-Term Full 4DT Operations

Flight Deck:
1. Pushback Time

ATC:
1. Manage departure sequence

Image: Okuniak et al. (2016)
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

Current-Day Surface Operations

Near-Term w/ Target Times

Wheels-Up Time

Far-Term with Flight Deck Component

Far-Term Full 4DT Operations

ATC:
1. Manage to ensure flight meets its assigned wheels-up time

Flight Deck:
1. Pushback Time
2. Wheels-up Time

No information about:
- taxi duration
- queue size

Image: Okuniak et al. (2016)
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

Current-Day Surface Operations

Near-Term with Target Times

Far-Term with Flight Deck Component

Far-Term Full 4DT Operations

Flight Deck:
1. Pushback Time

No information about:
- taxi schedule

ATC/Ramp manages with Scheduling/Decision Support Tools (DSTs):
- Pushback Time (TOBT)
- Airport Movement Area Time (TMAT)
- Target Take-Off Time (TTOT)

Example: ATD2 IADS system to be deployed Charlotte Fall 2017.

Image: Okuniak et al. (2016)
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

Current-Day Surface Operations

Near-Term w/ Target Times

Far-Term with Flight Deck Component

Far-Term Full 4DT Operations

Flight Deck: Avionics Display/Algorithm to support schedule conformance.
- Pushback
- AMA Time
- Takeoff Time
- Merge Points
- Active RWY
- RWY Queue

Flight Deck / ATC Coordination
Times included in Taxi Clr

ATC/Ramp: Scheduling / Decision Support Tools (DSTs):
- Pushback Time (TOBT)
- AMA Time (TMAT)
- Target Take-Off (TTOT)
- Merge, Queue, Active RWY

Image: Okuniak et al. (2016)
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

- Current-Day Surface Operations
- Near-Term w/ Target Times
- Far-Term with Flight Deck Component
- Far-Term Full 4DT Operations

Flight Deck / ATC Coordination

- Times included in Taxi Clr

4DT Operations: \(\infty \) # of time points

ATC:
Surface Management System generates conflict-free 4DT taxi clearances.

Flight Deck: Avionics Display/Algorithm to support 4DT schedule conformance.

- Expected 4DT Location

Image: Okuniak et al. (2016)

Expected 4DT Location

Allowable 4DT Tolerance
Surface Trajectory-Based Operations

Increasing Use of Time Information in STBO

Current-Day Surface Operations

Near-Term w/ Target Times

Far-Term with Flight Deck Component

Flight Deck / ATC Coordination

Times included in Taxi Clr

4DT Operations: # of time points

4DT Operations: ∞ of time points

ATC:
Surface Management System generates conflict-free 4DT taxi clearances.

Flight Deck: Avionics Display/Algorithm to support 4D Taxi conformance.

Expected 4DT Location

允许4DT Tolerance

Expected 4DT Location

Image: Okuniak et al. (2016)
4DT Surface Trajectory-Based Ops

Four-Dimensional Trajectory (4DT) Concept:

- Expected Location \((x, y)\) based on 4DT Speed Profile
- At all times, \(t\), along the taxi route
- Altitude is fixed on the surface

Allowable Tolerance around 4DT Speed Profile

Expected 4DT Location

\((x, y) \text{ at all times along the taxi route}\)

Hooey, Cheng, & Foyle (2014)
Four-Dimensional Trajectory (4DT) Concept:

- Enables coordination of all surface traffic
- Ensures conflict-free taxi routes
- Goals: Improve efficiency, predictability; reduce fuel burn
Four-Dimensional Trajectory (4DT) Concept:

- Assumes the use of an ATC surface management system
- Schedules surface traffic, generates a 4DT clearance for each aircraft, monitors conformance, resolves conflicts

Allowable Tolerance around 4DT Speed Profile

Expected 4DT Location

4DT Speed Profile

\((x, y \text{ at time } t)\)

Surface Management System

- German Aerospace Center (DLR)
 – Research prototype system, TRACC

Gerdes & Temme (2012)
4DT Surface Trajectory-Based Ops

4DT Concepts of Operations (ConOps)

Far-Term Surface Trajectory-Based Operations (STBO) ConOps

Hooey, Cheng, & Foyle (2014)

Harmonized U.S. / European Trajectory-Based Taxi Operations ConOps

Previous Flight Deck 4DT Study

Supporting 4DT STBO on the Flight Deck:

- Previous pilot-in-the-loop 4DT Flight Deck simulation
- Airport Moving Map (AMM) augmented with 4DT taxi clearance information.

4DT Speed Profile and Taxi Routing Information

Allowable Deviation around Speed Profile

Expected 4DT Location \((x, y\text{ at all times})\)

Flight Deck Display: Airport Moving Map (AMM)
Airport Moving Map (AMM)

Flight Deck Display: Airport Moving Map (AMM)

- Ownship Speed
- Airport Layout to aid with Navigation
- Traffic displayed within de-clutter circle
Airport Moving Map (AMM)

4DT Information on Airport Moving Map (AMM)

Cleared-to-Taxi Route

4DT Reference Markers (Expected 4DT Location)

Allowable Deviation (Tolerance Bound) (moving at 4DT Speed) (Ownship's "Real Estate")

4DT Clearance Speed

<table>
<thead>
<tr>
<th>4DT Clearance Speed</th>
<th>4DT Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 KTS</td>
<td>15 KTS</td>
</tr>
</tbody>
</table>

Start 18:26:51
Queue 18:35:44
Previous Flight Deck 4DT Study

Previous Pilot-in-the-Loop 4DT Simulation:
 – Along-Route Conformance: % Time in Allowable Tolerance

Speed-Advisory
(No 4DT on AMM)

4DT +/- 30 sec

4DT Info on AMM

Verbal Clearance:
"Taxi at 14 kts"

4DT +/- 30 sec

4DT Info on AMM

4DT +/- 15 sec

4DT Info on AMM
Previous Pilot-in-the-Loop 4DT Simulation:

- Along-Route Conformance: % Time in Allowable Tolerance

Speed-Advisory (No 4DT on AMM)

Along-Route Conformance

- +/-30 sec: 72%
- +/-15 sec: 20%
- 4DT +/-30 sec: 99%
- 4DT +/-15 sec: 99%
Present Flight Deck 4DT Study

Previous Simulation

- **One 4DT Display Format**
- **4DT Straightaway Speed** held constant in each trial
- **4DT Speeds**: 14, 15, or 16 kts
- **4DT Route Start**: Spot
- **Time-based Tolerance**
- **Dallas/Fort-Worth Airport**

Present Simulation

- **4DT Format Comparison**
- **4DT Speed Changes Mid-Taxi**
- **Range of Realistic Taxi Speeds**: 8 kts – 25 kts
- **4DT Route Start**: at Gate
- **Distance-based Tolerance**
- **Charlotte Douglas Airport**

Bakowski, Hooey, Foyle, & Wolter (2015)

Bakowski, Hooey, & Foyle (2017)
Airport and Terminal Area Simulator

Out-the-Window View
- 4 LCD Displays
- 140° viewing angle

Tiller

PFD (Inactive)

Airport Moving Map (AMM)

EICAS

CDU

DataComm Interface

Eyetracker Cameras

B737NG Flight Deck

Human-Centered Systems Lab (HCSL)
4DT Display Formats

Defined-Conformance Display Format

– Distance-based Tolerance Bands (length constant)

Proposed distance threshold in DLR's TRACC system for conformance monitoring.

Approximates the length of smaller band from the previous study.
4DT Display Formats

Undefined-Conformance Display Format

- 4DT Indicator: Expected 4DT location \((x, y)\) at all times, \(t\)
- No Allowable Tolerance displayed; Undefined 4DT deviation
4DT Display Formats

Instructions to Pilots

Defined-Conformance Format

- "You are in compliance with the 4DT clearance when the ownship icon is within the tolerance band."

- "No need to track the 4DT reference markers precisely."

Undefined-Conformance Format

- "You decide how "close is close enough” to taxi to the dot and you can taxi ahead of, or behind, the 4DT dot."

- Pilots defined conformance as they saw fit.
4DT Taxi Route

4DT Taxi Clearance

– One continuous clearance from Gate to RWY Queue

Average Taxi Distance: 6,633 ft
Average Trial Duration: 12 min
4DT Speed Changes During Taxi

4DT Speed Changes
- Each trial included 2 or 5 4DT Speed Changes during taxi
- Flight deck alerted to speed change by auditory tone

2 Speed Changes
(Segment distance: 1,645 ft – 2,834 ft)

5 Speed Changes
(Segment distance: 887 ft – 1,630 ft)
4DT Taxi Speeds

Range of Realistic Taxi Speeds, 8 kts – 25 kts

- Assigned speeds to taxi segments in such a way as to create 'Slow' and 'Fast' average speed trials.
- Slower speeds used in the Ramp Area than in AMA because of proximity to terminal, other aircraft, and turns.

<table>
<thead>
<tr>
<th>Speed (kts)</th>
<th>Ramp 'Slow' Avg. Speed</th>
<th>Airport Movement Area (AMA) 'Fast' Avg. Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>14</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Pilot Participants

- Assumed the role of Captain in the simulation
- 12 Commercial/Cargo Pilots participated in the simulation:
 - 11 were Captains, one was a First Officer
 - 11 were Current, one was recently retired
 - Average age: 56 years
 - All 12 pilots had taxi experience

A member of the research team assumed the role of the First Officer in the simulation to create 2-person crews:

- First Officer provided navigation and traffic awareness support in a consistent manner to each pilot
- Acknowledged 4DT speed changes, "Speed Change"
Experimental Taxi Scenario

4DT Taxi Clearance

- 4DT Taxi Clearance sent to the Flight Deck via DataComm
- 4DT information propagates into Flight Deck Avionics

4DT Taxi Clr. DataComm

- Taxi Route/RWY
- 4DT Schedule Info

12:01:30 Z FROM KCLT

ATS227
RWY 18L
VIA M C
TOBT 12:03:15
FWD TAXI 12:05:30
TTOT 12:12:00

COMM OK

UNABLE | STBY | WILCO

Clear-to-Taxi Route

4DT Clearance Information

18L via M > C
FWD TAXI 12:05:30 00 KTS TTOT 12:12:00
4DT Clearance Info on the Flight Deck

DataComm Enables Flight Deck / ATC Coordination in 4DT Operations

Flight Deck Avionics: Airport Moving Map

ATC Surface Management System: Generates conflict-free 4DT taxi clearances

4DT Clearance to Flight Deck via DataComm

4DT Clearance Loaded into Flight Deck Avionics
Airport Environment

Charlotte Douglas Airport (KCLT)

- Departure taxi-out trials
- Two taxi routes
- 4DT Route extends from Gate to RWY queue
- Traffic in the Ramp Area and at the RWY (did not conflict)
Taxi Simulation Trials

12 Experimental Trials

- Created by repeating the four Speed Change/Speed trials:
 - 2 Speed Changes / 'Slow' Average Speed
 - 2 Speed Changes / 'Fast' Average Speed
 - 5 Speed Changes / 'Slow' Average Speed
 - 5 Speed Changes / 'Fast' Average Speed

- In each of the three Display Format conditions:
 - Display conditions were blocked and counterbalanced
 - Practice trial before each Display Format block
Present Study

Taxi Simulation Variables

– 4DT Display Formats
 • Defined Tolerance +/- 164 ft (+/- 50 m)
 • Defined Tolerance +/- 405 ft (+/- 123 m)
 • Undefined Tolerance (dot)
– 4DT Speed Changes (2 or 5 per trial)
– 4DT Speeds (8 kts – 25 kts) ('Slow' or 'Fast')

Results

➢ Conformance to the 4DT Clearance
 • Distance between Ownship and Expected 4DT Location
 • Percent Time Ownship within a Distance Range
➢ Eyes-Out Time (eye-tracker data)
➢ Pilot ratings of eyes-out time, safety, and workload
Results

Distance (Absolute Value) from 4DT Indicator

- Distance between Ownship and Expected 4DT Location
- Distance from 4DT Location recorded during taxi (20 hz)
- Absolute Value: Ownship in front of or behind 4DT location
Results

Distance (Absolute Value) between Ownship and Expected 4DT Location

Two 4DT Speed Changes

![Graph showing distance (absolute value) between ownship and expected 4DT location for two 4DT speed changes with defined and undefined tolerances and slow and fast speeds.]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Defined +/- 164 ft</th>
<th>Defined +/- 405 ft</th>
<th>Undefined Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Speed</td>
<td>80</td>
<td>100</td>
<td>60</td>
</tr>
<tr>
<td>Fast Speed</td>
<td>90</td>
<td>110</td>
<td>70</td>
</tr>
</tbody>
</table>

Five 4DT Speed Changes

![Graph showing distance (absolute value) between ownship and expected 4DT location for five 4DT speed changes with defined and undefined tolerances and slow and fast speeds.]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Defined +/- 164 ft</th>
<th>Defined +/- 405 ft</th>
<th>Undefined Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Speed</td>
<td>90</td>
<td>120</td>
<td>80</td>
</tr>
<tr>
<td>Fast Speed</td>
<td>100</td>
<td>140</td>
<td>100</td>
</tr>
</tbody>
</table>

3 (4DT display format) by 2 (4DT speed) by 2 (4DT speed changes) repeated-measures ANOVA:

4DT speed by number of 4DT speed changes interaction, $F(1,11) = 5.13, p < .05^*$

Pilots taxied a greater distance from the expected 4DT location:

- In the +/- 405 ft Defined-Tolerance Condition (92.2 ft) than in +/- 164 ft (67.5 ft).
 - However, in both conditions, pilots taxi well-within the defined-conformance bounds.
- In the 'slow' avg. speed condition (93.8 ft) than in 'fast' avg. speed (75.9 ft).
 - Pilots indicated that it may be challenging to maintain slower speeds (8 or 9 kts) and may require more control inputs (e.g., braking). Pilots use their brakes sparingly during taxi.
- In the 5 4DT speed change condition (86.3 ft) than with 2 changes (83.3 ft).
 - Considerations for the frequency, and magnitude of, 4DT speed changes in 4DT operations.
Results

Distance (Absolute Value) between Ownship and Expected 4DT Location

<table>
<thead>
<tr>
<th>Two 4DT Speed Changes</th>
<th>Five 4DT Speed Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (Absolute Value) (ft)</td>
<td>Distance (Absolute Value) (ft)</td>
</tr>
<tr>
<td>Defined +/- 164 ft</td>
<td>Defined +/- 405 ft</td>
</tr>
<tr>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

3 (4DT display format) by 2 (4DT speed) by 2 (4DT speed changes) repeated-measures ANOVA:
4DT speed by number of 4DT speed changes interaction, F(1,11) = 5.13, p < .05*

Pilots taxied a greater distance from the expected 4DT location:

- Average distance in the +/- 405 ft and Undefined (dot) are similar.
 - However, the range of distances was larger in the Undefined-Tolerance Format (taxi strategy).
 - The Undefined-Tolerance (dot) Display Format allowed pilots to interpret ‘conformance’ and employ different taxi strategies.
 - One pilot maintained a distance well ahead of the 4DT indicator in the 'slow' average speed/five-speed change trial to ensure precise arrival at the queue.*
Results

Percent Time Ownship in a Distance Range

– Percentage of total route time the ownship taxied within:
 • A tolerance bound in the Defined-Tolerance Display condition, or
 • A given distance range (+/- x ft) around the expected 4DT location

e.g.,
+ 300 ft

e.g.,
− 300 ft

+/- 405 ft
Defined-Tolerance
Results

Percent Time the Ownship was in a given Distance Range

Percent Time Ownship within each +/- Distance Range (ft)

Defined +/- 164 ft
Defined +/- 405 ft
Undefined Tolerance

[Graph showing the percentage of time spent within different distance ranges]
Results

95% Conformance: Distance Range in which Pilots Taxied 95% of Route

Percent Time Ownership within each +/- Distance Range (ft)

95% Conformance

+/- 164 ft
Defined-Tolerance Display

+/- 175 ft

+/- 405 ft
Defined-Tolerance Display

+/- 250 ft

+/- 300 ft
Undefined-Tolerance (dot) Display
Results

Conformance in the Defined-Tolerance Band Conditions

Percent Time Ownership within each +/- Distance Range (ft)

<table>
<thead>
<tr>
<th>Distance Range</th>
<th>Conformance</th>
</tr>
</thead>
<tbody>
<tr>
<td>+/- 164 ft</td>
<td>93.4%</td>
</tr>
<tr>
<td>+/- 405 ft</td>
<td>99.7%</td>
</tr>
</tbody>
</table>
Eyes-Out Time

Time spent scanning Out-the-Window (OTW) during taxi

Percent Time Eyes-Out

<table>
<thead>
<tr>
<th>Condition</th>
<th>Eyes-Out 61.84%</th>
<th>Eyes-Out 65.53%</th>
<th>Eyes-Out 65.23%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined Tolerance +/-164 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defined Tolerance +/-405 ft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined Tolerance (Dot)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Less Time Scanning OTW:

- In the smaller +/- 163 ft Defined-Conformance Condition (61.8%).
- In the five-speed change condition (63.1%) vs. two changes (65.3%).

3 (4DT display format) by 2 (4DT speed) by 2 (4DT speed changes) repeated-measures ANOVA:
Main effect of 4DT Display Format $F(2,16) = 3.17$, $p = .069$; Main effect of 4DT Speed Changes $F(1,8) = 5.24$, $p = .051$
Pilot Assessment of Eyes-In Time

Eyes-In Time Frequency
During this trial, how often did you find yourself focusing on the speed and/or time displays when you should have been paying attention to the external taxiway environment?

<table>
<thead>
<tr>
<th>Acceptability</th>
<th>Most of the Time</th>
<th>Frequently</th>
<th>Sometime</th>
<th>Seldom</th>
<th>Rarely</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined Tolerance</td>
<td>2.63</td>
<td>2.02</td>
<td>2.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/-164 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/-405 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined Tolerance (Dot)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Eyes-In Time Acceptability
Rate the acceptability of the eyes-in time required for each 4DT display format.

<table>
<thead>
<tr>
<th>Acceptability</th>
<th>Very Acceptable</th>
<th>Acceptable</th>
<th>Borderline</th>
<th>Unacceptable</th>
<th>Very Unacceptable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defined Tolerance</td>
<td>3.33</td>
<td>4.25</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/-164 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+/-405 ft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Undefined Tolerance (Dot)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Pilots rated the +/- 405 ft band as more acceptable than +/- 164 ft band.
Workload / Safety (Subjective Ratings)

Workload

Overall workload required to successfully taxi each trial.

*Pilots perceived workload to be higher with the +/- 164 ft band than with the +/- 405 ft band or the dot.

Safety

Rate the safety of taxiing with each of the 4DT display formats.

*Pilots perceived safety to be higher with the +/- 405 ft band than with the +/- 164 ft band or the dot.
Results

Summary:

– The larger +/- 405 ft Defined-Tolerance display afforded several positive findings:

 • 4DT Conformance was higher than the smaller band.
 • More "eyes out-the-window" time than the smaller +/- 164 ft Defined-Tolerance band.
 • The "eyes-in" time associated with the larger Defined-Tolerance band was rated as more acceptable than the smaller Defined-Tolerance band.
 • Pilots also rated taxiing with the larger Defined-Tolerance band as safer than the smaller Defined-Tolerance Band.
Summary:

– Considerations for Pilots / Aircraft in 4DT Operations:

• Frequency and magnitude of 4DT speed changes.

• Pilots indicated that it may be challenging to maintain slower speeds (e.g., 8 or 9 kts) in an actual aircraft, and may require more control inputs (e.g., braking) to do so.

• Pilots reported that they would be unlikely to maintain faster taxi speeds (e.g., 21–25 kts) while approaching a turn or the departure queue area, and therefore would increase brake use.

• Might managing safety concerns on the flight deck (e.g., hot brakes) make pilots less responsive to 4DT speed changes (braking / throttling)?
Future Research

Flight Deck / ATC Communications
- Rejecting a 4DT clearance (before, or during, taxi)
- Renegotiating a 4DT clearance with ATC
- DataComm vs. voice communication

Mixed-Equipage

Traffic
- How to communicate an aircraft's intent? "Is that guy going to stop?"
- How to display another aircraft's 4DT?

Contaminated Taxiways

4DT Conformance
- How is non-conformance defined?
- What will the system do in the event of non-conformance?

4DT Revisions
- How much notice does the Flight Deck need for speed or taxi route revisions?
- How long does it take for the Flight Deck to make a speed or taxi route change?

Aircraft Safety Considerations (e.g., hot brakes)
- Slower / fast taxi speeds
- Airport geometry

Flight Deck Off Nominals
- Mechanical issue
- Passenger stands-up during taxi
- Final weights are late; fix changes

Weather, Low-Visibility
Flight Deck Surface Trajectory-Based Operations (STBO): A Four-Dimensional Trajectory (4DT) Simulation

Deborah L. Bakowski, M.A.
San José State University
NASA Ames Research Center

Becky L. Hooey, Ph.D.
NASA Ames Research Center

David C. Foyle, Ph.D.
NASA Ames Research Center

Human-Centered Systems Lab
https://hsi.arc.nasa.gov/groups/HCSL
Future Research

Additional Slides
Conformance to the 4DT

Definition of Conformance to the 4DT:

– Ownship icon is within the Allowable Tolerance Band

Ownship Out of Conformance with 4DT

Ownship In Conformance with 4DT
Previous Pilot-in-the-Loop 4DT Simulation:

- Taxied on the surface of Dallas/Fort Worth (DFW) Airport
- 4DT Speeds: 14, 15, 16 kts

<table>
<thead>
<tr>
<th>15 kts</th>
<th>+/- 30 sec</th>
<th>=</th>
<th>+/- 760 ft (+/- 232 m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4DT Straightaway Speed (kts --> ft per sec)</td>
<td>Allowable Time Deviation</td>
<td>Distance (Length) of Allowable Tolerance Band</td>
<td></td>
</tr>
</tbody>
</table>

K > K8 > L > B > F > WP
Start 23:08:06 14 KTS Queue 23:13:36

K > K9 > L > B > F > WP
Start 23:08:06 14 KTS Queue 23:13:36
Experimental Taxi Scenario

4DT Start Time

- Accompanied by an auditory chime on the flight deck
- 4DT Indicator begins to accelerate

4DT Indicator

+/- 164 ft
Defined-Tolerance Band

Cleared-to-Taxi Route
(Gate to RWY)

Concourse A

18L via M > C
FWD TAXI 12:05:30 11 KTS TTOT 12:12:00
Experimental Taxi Scenario

4DT Speed Changes

- Predetermined locations along the taxi route (speed profile)
- Two or five speed changes per trial

- Accompanied by an auditory tone on the flight deck
- AMM text display updated
- First Officer acknowledged, "Speed Change"
- Accel / Decel Rate = 1 kt/sec
Results

Percent Time the Ownship was in a given Distance Range

Example

72%
Results

Percent Time the Ownship was in a given Distance Range

Percent Time Ownship within each +/- Distance Range (ft)

+/- 164 ft Defined-Tolerance Display Format:
More time taxiing closer to the expected 4DT location

Defined +/- 164 ft
Defined +/- 405 ft
Undefined Tolerance
Results

Percent Time the Ownship was in a given Distance Range

Percent Time Ownship within each +/- Distance Range (ft)

 +/- 405 ft Defined-Tolerance and Undefined-Tolerance Displays

Pilots taxied at a similar distance from the expected position, however the range of distances was larger with the Undefined-Conformance Display.