
1

Cluster Node Computing for Target Generation Systems in

Aircraft Simulations

Spencer Monheim1, Michael Feher2, and James R. Murphy3,

NASA Ames Research Center, Moffett Field, CA, 94035, USA

Bonnie Andro-Avila4

MIRACORP, Inc., Moffett Field, CA 94035

Target generation systems provide virtual position and state reports of aircraft for air

traffic simulations. As the scope and scale of the simulation domains expand, there is a need

to develop systems that can generate position reports for thousands of simulated aircraft

simultaneously at high update rates that support out-the-window visualization. This paper

discusses the motivation and reasoning behind investigating development of a next generation

target generator through distributed computing using clustered node processing and the

benefits such a target generation system has on future research that utilizes human-in-the-

loop simulations.

I. Nomenclature

ATG = Airspace Target Generator

MACS = Multi-Aircraft Control System

ATM = Air Traffic Management

FFC = FutureFlight Central

Hz = Hertz (cycles per second)

UAM = Urban Air Mobility

SimLabs = NASA Ames Research Center’s Simulation Laboratories

Go = The Go Programming Language

TCP = Transmission Control Protocol

IPC = Inter Process Communication

DASE = Distributed Aircraft Simulation Engine

II. Introduction

NASA utilizes air traffic management (ATM) simulations to evaluate potential future air transportation concepts

and decision support tools intended to improve the efficiency and safety of the National Airspace System (NAS) and

future, non-traditional airspace operations. Target generation systems are used to provide air vehicle position data for

ATM simulations. Designed to compute the vehicle dynamics and provide positions of many aircraft simultaneously,

they generally produce lower update rates than the flight simulators used for pilot training, which are focused on

modeling a single vehicle’s performance. High fidelity for a target generation system is desired for greater simulation

realism and therefore, presumably, more accurate evaluation, and is represented in this study by the update rate. The

fidelity for a target generation system is determined by the requirements for the given simulation and is always relative

to the research questions under consideration. Presently NASA Ames Research Center’s Simulation Laboratory

(SimLabs) utilizes two different target generators, the Airspace Target Generator (ATG) [1], which can be used for

airport surface and airspace operations, and the Multi-Aircraft Control System (MACS) [2] for airspace operations

only. While both of these systems provide coverage for their intended domains, each has specific limitations which

1 Aerospace Software Engineer, NASA Ames Research Center
2 Aerospace Engineer, NASA Ames Research Center
3 Project Manager, NASA Ames Research Center
4 Technical Writer, NASA Ames Research Center

2

constrains their utility for simulations that span across multiple airspaces. In addition, both target generators were

designed to be extremely effective for their use cases of driving radar simulations, but were not designed with the

scale, number of aircraft a generator can handle, or update rates, for ensuring smooth out-the-window visuals,

anticipated to be needed in future simulations. In particular, recent interest in Urban Air Mobility (UAM)[3]

simulations is coupled by an increasing interest in smooth, out-the-window visualizations for human subjects and for

realistic flight demonstration. SimLabs operates a simulation and visualization facility, FutureFlight Central (FFC),

as seen in Figure 1, to simulate air traffic control operations from a control tower view-point.

Fig. 1 – NASA Ames Research Center’s FutureFlight Central

UAM simulations are anticipated to require an order of magnitude greater traffic density than is currently typically

modeled and simulated in FFC experiments. This requirement will necessitate that simulation facilities like FFC

provide smooth out-the-window visuals, more closely to that typically found in cockpit flight simulators. Such

simulators benefit from low-latency smooth out-the-window visuals due to not requiring extrapolation or interpolation

to provide smoothing, or update at the rate of the displays, 30 Hz and 60 Hz being the most common.

In contrast, neither MACS nor ATG update rates (of 1 Hz and 4 Hz, respectively), is anticipated to meet the UAM

simulation requirements of being able to provide smooth out-the-window visuals with the estimated number of aircraft.

These target generators have performed adequately for most ATM simulations, which do not generally have hard real-

time requirements, or the frame rate requirements that are common in flight simulators. Further, some ATM

simulations may only require rates matching the update rates of real-life systems like Automatic Dependent

Surveillance-Broadcast (ADS-B). Currently, both target generators burden the image generation systems at FFC with

the need to heavily utilize extrapolation in order to best predict and approximate positional data between updates in

order to smooth the out-the-window visuals.

This paper describes the design and development of a new target generation system that utilizes existing aircraft

and trajectory models but provides a framework for managing a range of position update rates, while also increasing

the number of aircraft that can be supported, through the inclusion of modern computing development practices and

technology.

3

III. Background

For simulation of ATM tools and concepts, the Simulation Laboratory at NASA Ames Research Center [4] utilizes

two different target generators, ATG and MACS, which were independently created by two groups at NASA Ames

Research Center. ATG was developed in the 1980’s/1990’s from the Pseudo Aircraft System [5], to manage the traffic

scenario for an ATM simulation, providing pilot stations used to support the “flying” of multiple virtual aircraft by a

single pseudo pilot and connecting to radar displays for virtual controllers. It was used to conduct En Route and

Terminal air traffic control simulations, providing position updates for aircraft once every 12 seconds, matching the

Federal Aviation Administration’s (FAA’s) en route host computer system update rate. During later development,

ATG increased the position report update rate to 4 Hz and added ground operations, as well as a ground pilot station,

as seen in Figure 2, to enhance the initial tower out-the-window visualizations required for simulations run at FFC.

MACS, like ATG, utilizes pilot stations, a radar display for controllers (as seen in Figure 3) and a simulation manager.

MACS is used to simulate position reports from an ADS-B system and provides the data at a 1 Hz update rate. MACS

is predominantly used for simulations of airspace operations. The controller station display and pseudo pilot display

enable a simulated controller and pilot-in-the-loop air traffic simulation [6].

Fig. 2 - ATG Ground Pilot Station

4

Fig. 3 - MACS Controller Station

 In addition to update rate concerns noted above, ATG and MACS have other limitations for future ATM

simulations. MACS does not simulate airport surface operations. In addition, MACS development has been motivated

by a wide range of applications, and so its capabilities have grown and diverged from one of its core functions as a

target generator. The software baseline is highly fragmented and thus creates performance issues.

In comparison, ATG is capable of airport surface modeling. However, its development was also driven by specific

projects, and its architecture is a 32-bit version that was not systematically modernized and thus limits scalability.

Both target generators were also developed with a focus on the pilot display to control aircraft. Though this

capability is not required to generate targets, that is, aircraft position reports can be generated in an automated fashion

by both tools, the underlying system architecture makes it cumbersome to scale the number of aircraft supported

beyond a few hundred.

In order to leverage the best features of each system to accommodate the requirements of recent simulation

experiments, SimLabs engineers have been utilizing MACS and ATG simultaneously, incorporating a complicated

hand-off scheme. A hand-off area was defined and specifically adapted to the simulation airspace that continuously

tests the location and timing of the hand-offs to ensure a smooth transition, as seen in Figure 4. ATG provides the

aircraft position locations for aircraft within the three-dimensional polygon, while MACS provides targets outside the

polygon. The handoff messaging and interactions between the target generators is facilitated by the High Level

Architecture (HLA) [7] middleware. As an example, NASA’s Airspace Technology Demonstration 2 (ATD-2)

Human-in-the-loop simulations, MACS was used to handle the Center and Terminal airspace, while ATG handled the

airport airspace and ground operations [8].

5

Fig. 4 - Example of the Handoff Between Target Generators

IV. Design Options

Although the combined ATG and MACS target generation system works well for the ATD-2 simulations, using

both target generators require twice the number of pseudo-pilot workstations and participants for a typical ATM

simulation, which has tremendous cost and logistical impacts. In addition, NASA researchers are anticipating that the

planned UAM simulations will require an increase in the number of simulated aircraft, which may make this solution

unfeasible. As such, the SimLabs development team is considering alternative solutions, each with their own pros and

cons:

1.) Continue the two-target generator paradigm, developing additional compatibility between the two target

generators, improving the hand-off mechanism, reducing the amount of overhead in the middleware, and

attempting to scale up to UAM density levels. This still does not address the issue of requiring higher

update rates, which inversely impacts the ability to scale.

2.) Choose one target generator, removing the necessity of handoffs, and attempting to scale up to UAM

density levels and the required update rates for smooth out-the-window visuals. However, neither of the

two target generators design architectures are optimized to take advantage of computers with increasingly

higher number of cores and utilize parallel processing, but instead are designed to take advantage of

processor speed.

3.) Develop a new target generator, leveraging the architectural benefits of clustered computing and

parallelization to improve scalability and update rates. Where possible, it should cut out any high level of

overhead that middleware solutions may impose on simulations by offering a standardized interface for all

external services, such as the controller displays and pilot stations.

The SimLabs development team is in fact moving forward with all three of these options. The existing two-target

generator solution works well for simulations of similar scope and airspace as the ATD-2 simulations and can be

improved with limited system refactoring. SimLabs is also investigating potential mitigations for MACS and ATG

limitations with respect to update rate and system scalability. The focus of this paper is the investigation and prototype

development of a new target generator (Option #3).

If one were to develop a new target generator, one of the key technologies to consider is clustered computing and

parallelization. Cluster computing is the method of utilizing multiple instances to provide additional resources for

highly parallelized computations. By networking multiple computer systems and scheduling tasks in a controlled

manner via a centralized server, a software system can benefit from scaling based on the number of nodes in a cluster.

The nodes are managed using a specialized implementation of a load balancer, a system that can intelligently maintain

proper scheduling between each of the nodes in a cluster and can spin-up additional nodes to help scale the system as

demand increases. The scalability of clustering, when combined with parallelized computation, allows for greater

6

computational power and update rates through the principles of distributed computing. Major performance increases

can be attained by utilizing clustered and parallelized computing for target generation.

When designing a prototype target generator, the features of programming languages desired were: first class

parallelization, strict typing, and compiled binaries and cross-platform compilation, both desired for easy distribution.

With these features in mind, languages like The Go programming language[9], C, and Java were considered. Go was

ultimately chosen for the prototype due to its similarity to C, allowing for easy adoption, rapid developer velocity, and

strong native parallelization. By using Go, each aircraft target can independently run its dynamics in its own micro-

thread and be multiplexed onto the Operating System threads to highly parallelize execution and utilize multiple CPU

cores. This removes the necessity to have one extremely powerful main system running an entire simulation.

To focus the target generator development objectives to meet NASA’s research and simulation needs, and building

upon lessons learned (and software components) from ATG and MACS, the following three primary tasks were

identified to develop an improved target generation system prototype and test with a representative simulation

scenario:

1.) Based upon the last-gen target generators, implement the dynamics code for the new stack, especially with

non-traditional and futuristic air transportation operations in mind

2.) Architect a networking system to leverage clustered computing and parallelization

3.) Develop clients, such as controller and pilot stations, using previous target generators as templates

V. Target Generation Design

This section describes the output of the primary tasks to create the Target Generation System Prototype, called the

Distributed Aircraft Simulation Engine (DASE). DASE is divided into four main components shown in Figure 5,

namely the Simulation Server, the Processing Nodes, External Interface, and the External Services (e.g. Pilot Stations).

These main components enable parallelization of workloads by separating the core target generation processing from

the management of the virtual aircraft and interface to the user.

A. Processing Node

The Processing Nodes, as seen in Figure 5 as the “Node” boxes, contain the core aircraft and trajectory generation

models. These are designed to be modular to allow for different types of models to be used and support extending the

framework as new models are developed. Individual nodes are given multiple aircraft by the DASE server to process

dynamics, act on input requests that would impact dynamics, and output the aircraft state data to the Simulation Server.

Multiple processing nodes can be created to enable scalability of the system. Analysis of this scalability will be

presented in Section VII.

B. External Server

The External Server, as seen in Figure 5 as the “External Server” box, provides the connectivity between the

simulation and any external services. The external interface acts as the broker and message translator in order to allow

for different services to utilize different connection types such as Hyper Text Transfer Protocol (HTTP) requests,

websockets, etc., while maintaining a single type of messaging protocol internally. In addition, the external interface

validates all external service message syntax in order to ensure that the Simulation Server does not receive invalid

requests that may impact performance.

C. External Services

External Services, as seen in Figure 5 by the 4 dark blue layered boxes labeled “External Services,” are any piece

of software that interfaces with the simulation but that the simulation can function independently without. These can

be pilot stations, conflict detection and resolution functions, autopiloting, or controller stations. As an example, pilot

stations provide the interface between the simulation and the pilot (or algorithm) that is virtually flying the aircraft.

Maneuver commands for the aircraft are input into the Pilot Station and then sent to the external interface.

A. Simulation Server

The Simulation Server, also known as the DASE Server, seen in Figure 5 by the light green box labeled as “DASE

Server,” acts as a broker and manager, overseeing all aspects of the simulation system. This includes managing the

processing nodes and load balancing the nodes in order to ensure no node has an exceedingly high load compared to

the other nodes. The Simulation Server also acts as the router for messages between the core target generation nodes

and the external interface. For the prototype system, the Simulation Server provides the interface for controlling the

7

simulation runtime via pause, start, stop commands, as well as scenario and configuration selection. In the future,

these functions could be provided by external services and managed by the simulation server.

Fig. 5 - High level target generation system design.

VI. Performance Comparison of Serial, Parallel, and Distributed Processes in Computing

A. Computing Performance Description

Performance has become a major consideration in modern server infrastructure, with respect to serial (sequential,

or single threaded), parallel (multi-threaded), and distributed computations. This is similarly a consideration in air

traffic management simulations [10]. With the advent of modern web technologies, the utilization of parallelized

workloads over distributed systems has increasingly become more important to scale technologies to the levels of

network traffic seen in the modern web. The messaging density and scaling problems are very similar to that of a

target generator in that sequentially processed events scale poorly with increased density. Parallelization provides

additional scalability by offering multiple local instances of certain tasks in a computation pipeline, especially when

calculations are independent of each other between parallelized threads. Additional threads do require additional

memory, but can scale better than serial processing. Distributed processing allows the utilization of multiple hardware

8

systems to parallelize even further than a machine having multiple parallelized local instances. A graphical comparison

of these computational methods can be seen in Figure 6.

Fig. 6 - Serial, Parallel, and Distributed Parallel Execution

Fig. 7 - Parallel and Distributed system architectures.

9

B. Computing Performance Comparison

One key consideration is in optimization of the networking overhead between a single node and multiple nodes.

Considering a computation, the total time to update all aircrafts’ dynamics state once, with the total state update time

T, where processing a single dynamics state for one aircraft takes time t, for n number of aircraft, using m number of

machines, p number of threads per machine dedicated to updating aircraft states, and C the network overhead factor

is described below for the three architectures:

𝑇𝑠𝑒𝑟𝑖𝑎𝑙(𝑛, 𝑡) ~ (𝑛 × 𝑡)

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙(𝑛, 𝑝, 𝑡) ~ (
𝑛

𝑝
× 𝑡) 𝑠. 𝑡. 𝑛 ≥ 𝑝

𝑇𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑(𝑛, 𝑚, 𝑡, 𝑝) ~ (
𝑛

𝑝 × 𝑚
× 𝑡) × 𝐶 𝑠. 𝑡. 𝑛 ≥ 𝑝 × 𝑚 & 𝐶 < 1

These architectural descriptions illuminate the benefit of having distributed parallelized workloads. In addition, the

importance of engineering the architecture to minimize the system and networking overhead is necessary to ensure

scalability.

 To compare serial, parallel and distributed architectures, a prototype system (as described in Figure 7) was

developed. This prototype used a stand-in for a look-up trajectory model in which state-updates are generated through

look-ups on performance tables. To isolate and uniformly benchmark the networking architecture performance, the

stand-in operates via a standard library sleep function for a duration of time that emulates a look-up in a hash table

and a three degree-of-freedom dynamics model calculation. The Target Generation system was benchmarked in two

configurations, single system and dual system (See Figure 7). For the single configuration, we used one System76

workstation with 192GB of DDR4 RAM, two Intel Xeon Gold CPU’s with a total of 72 threads, and running CentOS

7. Aircraft scenarios of 400 and 1000 aircraft were created to run through the systems to measure how well each

system is able to scale. The primary focus of these analyses was the aircraft target update rate. Update rates of 60HZ

or higher can be considered for high fidelity visuals for out-the-cockpit-window simulation. Rates above 4 Hz can be

used for populating the visuals for out-the-window simulations at FFC.

C. Computing Performance Results

1. Summary of Performance Benchmarks

The summary of the test results in which one node and two node configurations were tested with 400 aircraft and

1000 aircraft scenarios is listed in Table 1.

 Table 1. Summary of System Performance Results

Scenario Name Number

of Nodes

Number of Aircraft, Aircraft

Per Node

Average Update Rate

(Hz)

oneNode400 (Unix socket) 1 400, 400 125.4

twoNode400 (TCP socket) 2 400, 200 79.7

oneNode1000 (Unix socket) 1 1000,1000 48.9

twoNode1000 (TCP socket) 2 1000, 500 32.0

2. Single Node Parallel System Performance

This test uses a system on a single machine with a multithreaded workload with 400 aircraft. The results from five

different test-runs is shown in Table 2. The average update rates for the aircraft targets all had low coefficients of

variation, <1%, across each of the five data runs, more than twice the desired 60Hz rate, and more than four times the

desired 30Hz for smooth visuals. The highest and lowest update rates are represented in bold text in the table.

Table 2. Single Node Parallel System Performance Results: 400 Aircraft

10

Single System (Unix) Average Update

Rate (Hz)

Std. Deviation (Hz) Max Update Rate

(Hz)

Min Update Rate

(Hz)

Run 1 124.937 0.102 125.271 124.819

Run 2 125.252 0.071 125.494 125.165

Run 3 125.370 0.133 125.758 125.204

Run 4 125.320 0.095 125.562 125.201

Run 5 126.254 0.085 126.503 126.155

All Runs 125.427 0.097 126.503 124.819

When running the same system with 2.5 times the number of aircraft (1000), the outcome from 5 different test-

runs shows a similar 2.5 times decrease in the target update rate (Table 3). The average update rates for the aircraft

targets all had low coefficients of variation, <1%, across each of the five data runs, and exceeded 30Hz. The highest

and lowest update rates are represented in bold text in the table.

Table 3. Single Node Parallel System Performance Results: 1000 Aircraft

Single System (Unix) Average Update

Rate (Hz)

Std. Deviation (Hz) Max Update Rate

(Hz)

Min Update Rate

(Hz)

Run 1 48.867 0.192 49.467 48.659

Run 2 48.725 0.210 49.297 48.503

Run 3 48.778 0.187 49.299 48.579

Run 4 48.982 0.134 49.370 48.831

Run 5 48.997 0.142 49.419 48.839

All Runs 48.870 0.173 49.467 48.503

3. Distributed/Parallel System Performance Results

This test system demonstrates running multiple Target Generation Nodes on separate machines in a multithreaded

workload, with 400 aircraft, 200 per system. The outcome from five different test-runs is shown in (Table 4). The

highest and lowest update rates are represented in bold text in the table. As shown, the variability of the update rate is

almost four times that from the single node test system, and the overall update rate is less than the single node system

running on one machine. The reason for this is discussed in Section VII.

Table 4. Two Node Distributed/Parallel System Performance Results: 400 Aircraft

Dual System (TCP) Average Update

Rate (Hz)

Std. Deviation (Hz) Max Update Rate

(Hz)

Min Update Rate

(Hz)

Run 1 80.346 0.671 81.732 79.833

Run 2 79.530 0.245 80.455 79.467

Run 3 79.314 0.238 80.079 79.339

Run 4 79.336 0.295 80.245 79.247

Run 5 79.226 0.458 80.416 78.883

All Runs 79.550 0.381 81.732 78.883

(Table 5) illustrates the results from the two node, distributed/parallel system test. As before, when running the

same system with 2.5 times the number of aircraft (1000), the outcome from five different test-runs shows a similar

2.5 times decrease in the target update rate relative to the 400 aircraft case. Notice that the variability is still elevated

compared to the single node case with 1000 aircraft, but is three times the amount of the 400 aircraft distributed system

test. The reason for this is difference still under investigation.

Table 5. Two Node Distributed/Parallel System Performance Results: 1000 Aircraft

Dual System (TCP) Average Update

Rate (Hz)

Std. Deviation (Hz) Max Update Rate

(Hz)

Min Update Rate

(Hz)

Run 1 31.955 0.164 32.415 31.698

Run 2 31.835 0.188 32.407 31.518

11

Run 3 31.933 0.199 32.614 31.638

Run 4 32.234 0.250 32.971 31.834

Run 5 32.119 0.216 32.811 31.778

All Runs 32.014 0.203 32.971 31.518

VII. Language Decisions and Benchmarking of Prototypes

One of the limitations of the parallelized architectures outlined above is the necessity for a programming language

with a strong parallelization model. Standard operating system threads have a memory footprint on the order of one

megabyte and do not support the amount of parallelization needed for each aircraft to have its own co-routine.

Deterministic execution between co-routines is not necessary: if aircraft A finishes updating its aircraft state before

aircraft B finishes updating its aircraft state this does not result in invalid execution, although it does violate

determinism if aircraft A does not always precede aircraft B; however, each update on aircraft A must be sequentially

executed to avoid leap-frogging. These requirements brought forward the necessity of a parallelization model that a

language like The Go Programming Language (Go), supports. Go is expressive, concise, clean, and efficient. Its

parallelization mechanisms make it easy to write programs that get the most out of multicore and networked machines,

while its novel type system enables flexible and modular program construction. The language supports a high level of

parallelization thanks to “goroutines,” a lightweight thread-like routine that can take advantage of multiple CPU cores,

and are multiplexed by the Go runtime scheduler into operating system threads. While having 100,000 or 1,000,000

operating system threads would lead to large-scale memory requirements – due to each thread requiring on-the-order

of megabytes – each goroutine has a memory footprint on the order of single kilobytes. A simplified pseudo Go-like

example of utilizing goroutines for a runtime-loop executing aircraft state updates is as follows:

for {
 for _, aircraft := range aircraftArray {
 go aircraft.UpdateAircraftStateLoop()
 }
}

 For serial execution, the pseudocode is the same, sans the “go” keyword. For the goroutine version the completion

of execution for each iteration is non-deterministic, as each iteration is independently spawned and concurrently

executed – as outlined in the above paragraph – while in serial execution, the execution order is deterministic and

sequential. Clustering provides the ability for scaling via increasing the number of machines available for processing,

while parallelization provides the per-machine scaling. A prototype target generator was developed in which a

constant-time, O(1), state-update stand-in was implemented using a standard library sleep function in Go based on

projected expectations that, like other target generators, dynamics are based on a look-up table, which operates in

O(1). The prototype uses the constant time state-update stand-in in order to specifically demonstrate scaling and

increased fidelity based on the network and system architecture.

 The single configuration also utilizes Unix domain sockets for the inter-process-communication protocol (IPC).

For the dual system, two of these identical workstations were used, with the Transmission Control Protocol (TCP) as

the IPC protocol. For the single configuration, all processes are run on a single system, including the processing node,

simulation server, external interface, and an external service; in this case the external service is simply a websocket

connection in Google Chrome that prints the state data into the Chrome javascript console. In the dual system

configuration, one system is running the simulation server, the external server, an external service, and one processing

node, while the second system is running only a single processing node. When the number of aircraft tested were

increased in the single node configurations by two and a half times, a clear decrease in the average update rate by

roughly two and a half times was observed. With two processing nodes the average update rate similarly scales in

performance. However, when comparing the performance of the single node to the two node configurations, we see a

one and a half times increase in performance due to a known discrepancy [7] between Unix Domain Sockets and TCP.

When packets are larger than the ethernet packet size of 1500 bytes, a difference of fifty percent can be seen between

the two protocols. This observed impact also increases as packet size and number of packets increases. However,

when communicating between two computers Unix Domain Sockets, by design, are not usable.

VIII. Conclusion

In order to facilitate future air traffic management human-in-the-loop simulations which require greater scalability

and update rate requirements than past, more traditional ATM simulations, NASA Ames Research Center’s SimLabs

12

is evaluating enhancements to target generation systems. Technologies such as clustered and highly parallelized

computing offer improvements to scalability and update rates for future simulations, such as urban air mobility which

are anticipated to require modeling an order of magnitude more vehicles and smooth out-the-window visual systems.

Testing and analysis demonstrated promise in the improvement and further development of potential target generators

through the use of clustering and parallelization. The prototype provided update rates greater than 30Hz in all test

conditions, and greater than 60Hz in the 400 aircraft test conditions. All tests had a low coefficient of variation, <1%,

indicating stability. Moving forward, continued development of the prototype of such a system may provide tangible

benefits in future simulations. Additional testing and development on the networking implementation in the prototype

might yield a lower impact on performance due to TCP and allow for competitive scaling of nodes versus socket types.

Relative to the high-end capabilities of the test systems, the networking performance acted as the limiting factor.

Additional testing with multiple lower-end systems, such as single-board-computers, could yield comparable

performance.

Acknowledgments

The authors of this paper would like to thank Carla Ingram, Karen Cate, Alan Lee, and Steven Beard for their

expertise and feedback in the field of target generation at NASA Ames Research Center.

References

[1] Prevot, T., Smith, N., Palmer, E., Mercer, J., Lee, P., Homola, J., Callantine, T., “The Airspace Operations Laboratory (AOL)

at NASA Ames Research Center,” AIAA 2006-6112, AIAA Modeling and Simulation Technologies Conference, August 2006

[2] Lehmer, R. D., Malsom, S. J., “Distributed System Architecture in VAST-RT for Real-Time Airspace Simulation,” AIAA

2004-5436, AIAA Modeling and Simulation Technologies Conference, August 2004

[3] Thipphavong, D., et al., “Urban Air Mobility Airspace Integration Concepts and Considerations,” AIAA 2018-3676, Aviation

Technology, Integration, Operations Conference, June 2018

[4] Weske, R. A., and Danek, G. L., "Pseudo Aircraft Systems: A Multi-Aircraft Simulation System for Air Traffic Control

Research," AIAA-93-3585-CP, AIAA Flight Simulation Technologies Conference, August 1993

[5] Mercer, J., Prevot, T., Jacoby, R., Globus, A., and Homala, J., "Studying NextGen Concepts with the Multi-Aircraft Control

System", AIAA 2008-7026, AIAA Modeling and Simulations Technologies Conference, August 2008

[6] NASA (2006) NASA Ames Simlabs URL: http://www.simlabs.arc.nasa.gov/index.html

[7] Pitch (2012) High Level Architecture URL: http://www.pitch.se/hlatutorial/

[8] NASA (2018) ATD-2 URL: https://www.aviationsystemsdivision.arc.nasa.gov/research/atd2/index.shtml

[9] Google (2018) Go Programming Language URL: https://golang.org/doc/

[10] Coa, Y., Sun, D., “A parallel computing framework for air traffic flow management,” IEEE Transactions on Intelligent

Transporation Systems, July 2011

http://www.simlabs.arc.nasa.gov/index.html
http://www.pitch.se/hlatutorial/
https://www.aviationsystemsdivision.arc.nasa.gov/research/atd2/index.shtml
https://golang.org/doc/

