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Abstract. This work presents a general framework for model reduction of non-equilibrium energy transfer and dissociation pro-
cesses. The multi-group maximum-entropy method is coupled with the quasi-classical trajectory method to directly construct a
reduced order model for chemical non-equilibrium. Kinetic data is calculated by applying detailed balance at a microscopic level,
overcoming the limitation of calculating recombination kinetic data. This approach enables the construction of a reduced order
model for kinetics which bypasses the need to compute state-to-state kinetic data. This physics based reduced order model ensures
that an equilibrium distribution is reached given infinite time, while allowing for non-equilibrium distributions during the relax-
ation and dissociation processes. A proof-of-concept test case demonstrates the applicability of this model by comparison with
state-to-state kinetic data for the N2(X1Σ+

g ) − N(4Su) system with excellent agreement.

INTRODUCTION

Using the quasi-classical trajectory (QCT) method allows for the direct computation of microscopic state-to-state (StS)
reaction rate coefficients or cross-sections. This approach in conjunction with the potential energy surface provided by
solving the Schrödinger equation has been used to construct a highly accurate StS model for the N2(X1Σ+

g ) − N(4Su)
system. [1, 2] This data has enabled StS studies of the non-equilibrium energy transfer and dissociation processes.[3,
4, 5] However, this approach has two main limitations: first it is not practical for application to a multi-dimensional
computational fluid dynamics (CFD) or direct simulation Monte Carlo (DSMC) study, and second, extending this
approach to interactions between molecules (e.g., diatom-diatom interactions) becomes impossible due to the massive
number of collisions which need to be simulated. There has been work to overcome this limitation by using approaches
such as applying scaling factors to rates for a subset of the full system, [6] or using the maximum entropy formulation
described by Levine and Bernstein[7] to retrieve state-specific reaction rates. [8] However, because these approaches
strive to retrieve the StS kinetic mechanism, the problem of using the data remains.

The limitations of the StS approach has motivated the development of reduced order models which aim to cap-
ture the same physics as StS models at a fraction of the cost. The multi-group maximum entropy coarse-grain model
(MGME-CGM), first proposed by Panesi et al [9] and generalized by Liu et al [10], aims to accomplish this by group-
ing energy states together, reducing the number of governing equations. The distribution of states can be retrieved
using a functional form derived by maximizing the entropy of the system. One of the advantages of this approach
is that it encompasses both the StS and multi-temperature models, with each of these being a particular case of the
MGME-CGM. For example, a vibrational StS model is derived by assuming that each group contains a single vibra-
tional state. This has been demonstrated and used to study the N2(X1Σ+

g )−N2(X1Σ+
g ) system in the work of Macdonald

et al. [11, 12] Multi-temperature models are constructed by assuming that all states are contained in the same group,
but that the time scale of rotational and vibrational processes are different, resulting in a two-temperature distribution
within each species. [13, 14, 15] The MGME-CGM has previously been applied to study both electronic atomic states
as well as rovibrational states of diatomic molecules. [9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 23, 24]

Previous studies using the MGME-CGM method for the N2(X1Σ+
g ) − N(4Su) system made use of kinetic data

calculated by applying the appropriate weighting to StS data. [10] However, due to the limitations on calculating StS
data, this was impossible for the N2(X1Σ+

g )−N2(X1Σ+
g ) system. Therefore, previous studies on N2(X1Σ+

g )−N2(X1Σ+
g )

relied on directly computing kinetic data for the MGME-CGM using the coarse-grain quasi-classical trajectory (CG-



QCT) method. [11, 12] This approach relied on the assumption that the internal temperature within each group was
in thermal equilibrium with the translational mode, requiring only reaction rate coefficients to complete the model.
However, this approach meant that to achieve good agreement with the direct molecular simulation (DMS) method[25,
26, 27, 28] required 60 groups. Relaxing this assumption in studies of the N2(X1Σ+

g ) − N(4Su) system achieved good
agreement with as few as 2-3 groups. Because the ultimate goal of this approach is application to CFD or DSMC,
reducing the number of groups is paramount. The primary challenge with allowing the temperature to vary within the
groups is the breakdown of the detailed balance condition among groups: we can no longer apply detailed balance at
a group level. Therefore, to simulate recombination for example, we need to apply detailed balance at a microscopic
level to tabulate recombination rates.

In this paper we propose an extended framework for coupling the coarse-grain model with scattering calculations
to construct the full maximum entropy linear coarse-grain model for general molecule-molecule (e.g., diatom-diatom)
systems. The result is a general framework for obtaining grouped kinetic data for the coarse grain model called
the Multi-Group Maximum-Entropy Quasi-Classical Trajectory (MGME-QCT) method. This extends upon previous
work by the authors, [11, 12] by computing all kinetic data for the linear coarse grain model by sampling QCT
and invoking detailed balance at a microscopic level. There are two key advantages to this approach: first, it allows
for the calculation of recombination rates from dissociating trajectories, eliminating the need to run recombination
trajectories, and second, it allows for the calculation of all the kinetic data for excitation type reactions from only
trajectories in one direction (e.g., only exothermic trajectories) ensuring the model is self-consistent. First, we present
the general framework for calculating kinetic data for the grouping model from QCT calculations. Second, we present
sample calculations of the grouped kinetic data with comparison against grouped known StS kinetic data for the
N2(X1Σ+

g ) − N(4Su) system.

MULTI-GROUP MAXIMUM ENTROPY QUASI-CLASSICAL TRAJECTORY
METHOD

The MGME-QCT method couples the MGMG-CGM with the QCT method to construct a reduced order model for ki-
netics without the calculation intensive step of pre-computing StS kinetic data for a system. The multi-group maximum
entropy coarse grain model has previously been described in detail in Ref. [10]. This approach to model reduction can
be summarized in two steps:

1. Local representation and reconstruction: energy states are lumped into groups containing states which share
some properties (e.g., similar energy, vibrational quantum number, etc.) and the distribution within the group is
derived by maximizing the entropy within the group subject to some constraints.

2. Macroscopic governing equations: macroscopic governing equations are derived by taking moments of the
master equation and making use of the distribution of states within each group derived in step 1.

This work will make use of the maximum entropy “linear” coarse grain model (MEL-CGM). In this approach, states
within the same group are assumed to equilibrate quickly, resulting in an equilibrium Boltzmann distribution within
each group. However, equilibrium is not assumed among all groups, and the temperature within each group varies.
In this work we will focus on the N2(X1Σ+

g ) − N(4Su) system because it has known state-to-state kinetics and can be
used to verify this approach to computing kinetic data. Therefore, the nitrogen molecules are grouped according to the
MEL-CGM. The distribution of states within each group is denoted by F i

N2(p) within group p of species N2 molecules
and is given by:
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where set Ip contains the states in group p, gi
N2

and Ei
N2

denote respectively the degeneracy and energy of state i,
kB denotes the Boltzmann constant, and m denotes the order of the moment for the partition function which will be



used later when writing the conservation equations for the groups. This is derived by maximizing the entropy within
a group subject to constraints on the group mass and energy:

np
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(3)

where ep
N2

denotes the energy density of group p. This work is not concerned with the manner in which states are
grouped and will make use of a simple energy based grouping scheme in which states close in energy are lumped
together. Details on the influence of grouping strategy on the results can be found in Refs. [11, 12], and details on
advanced grouping strategies can be found in Ref. [24].

In this work, we consider the interaction between atomic and molecular nitrogen with internal states of the
molecules (e.g., rovibrational) denoted by global indices (i, j). The interaction between the atom and molecule can
result in excitation or dissociation processes:

N2(i) + N
κei, j


κej,i

N2( j) + N

N2(i) + N
κdi


κri

3N

The reaction rates for these interactions are denoted by κei, j, κ
e
j,i, κ

d
i , and κri for excitation, de-excitation, dissociation,

and recombination respectively, and are a function of the translational temperature, T . The conservation equations
are derived by taking moments (denoted by m) of the master equation and making use of the reconstruction function
in Eq. (1). The group governing equations for the molecules comprise group mass conservation and group energy
conservation:
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Where 0Kp,q and 1Kp,q (0K̄p,q and 1K̄p,q) denote respectively the depleting (replenishing) reaction rates and energy
transfer coefficients due to excitation processes, 0Cp and 1Cp (0C̄p and 1C̄p) denote respectively the dissociation
(recombination) reaction rates and energy transfer coefficients, and the set I denotes the set of all groups. The con-
servation of mass equations, Eq. 4, considers only excitation reactions among groups, hence the summation is taken
only over groups different from p. However, it is important to note that excitation reactions within a group can change
the energy of that group. Therefore, in the conservation of group energy equations, Eq. 5, we consider excitation from
group p to all possible final groups, including group p. In addition, the dissociation and recombination reactions only
pertain to a single group, and each rate or energy transfer coefficient only shows up in the respective group equations.
Conservation equations can be written in this manner for each species considered in the MEL-CGM model (e.g.,
N2(X1Σ+

g ) in this work).

The reaction rates and energy transfer coefficients from Eqs. (4) and (5) (mKp,q, mK̄p,q, mCp, mC̄p) are weighted



averages of the microscopic reaction rates (κei, j, κ
e
j,i, κ

d
i , κri ).
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The forward group rates, mKp,q and mCp, can be obtained by sampling the initial states for scattering trajectories from
the distributions given by F i

A(p)(T
p
A). This process is detailed in Ref. [11]. This approach poses a problem for obtaining

reverse reaction rates and energy transfer coefficients for two reasons: (1) it is impractical to obtain recombination rates
through QCT when we have dissociation data and (2) to construct a self consistent model, we would like a relationship
between forward and reverse reaction rates and energy transfer coefficients. Because the group rates and energy
transfer coefficients are in general a function of two parameters (T and T p

N2
), a detailed balance relationship does not

hold at a group level. Therefore, by invoking detailed balance on a microscopic level, we can obtain expressions for
the reverse reaction rates and energy transfer coefficients (mK̄p,q and mC̄p) based on the forward microscopic rates (κei, j
and κdi ):
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where Qtrans
S (T ) denotes the translational partition function for species S at temperature T :

Qtrans
S (T ) =

2πmS kBT
h2

P

3/2
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where mS denotes the particle mass of species S and hP denotes Planck’s constant. The advantage is that now Eqs. (10)
and (11) are written in terms of forward rates at the translational temperature with a scaling factor on the final state
which can be applied in post-processing the trajectories. This ensures that detailed balance will hold and the system
will proceed to equilibrium given enough time, and eliminates the need to run recombination trajectories, overcoming
both of the problems described earlier. Equations (6), (8), (10), and (11) comprise the expressions used to obtain
grouped kinetic data in the MEL-CGM. The averaging over the initial states is done by sampling the initial states at
the prescribed temperature (e.g, for Eq. (6) at T p

N2
, or for Eq. (10) at T ). Everything else can be obtained as a post-

processing step after many trajectories have been calculated (e.g., the summation over the final states). Further details
on the QCT process and sampling approach to the initial states can be found in Refs. [29, 30, 31, 11].

In addition to constructing the full MEL-CGM through QCT calculations, we can quantify the error due to
sampling through the relationship:

var(x) = 〈x2〉 − 〈x〉2 (13)

Where x is the quantity of interest (e.g., reaction rate, energy transfer coefficient, etc.), and the 〈x〉 denotes the mean
value of x. In the results, error bars for the rates and energy transfer coefficients will denote one standard deviation,
s =
√

var(x).



GROUPED KINETIC DATA

In this work, we are focused on validating the MGME-QCT method using the N2(X1Σ+
g ) − N(4Su) system which

has known state-to-state (StS) kinetics. Therefore, we will compare the kinetic data obtained using the MGME-QCT
method with the StS data grouped in the same manner. The StS data for excitation processes comprises only data
which results from exothermic trajectories due to the increased accuracy of this data. Further details on the StS kinetic
data can be found in Ref. [3]. The MGME-QCT data is available for both exothermic and endothermic data for the
excitation data because the QCT trajectories occur in both directions. Therefore, two kinetic mechanisms for excitation
can be constructed by using either only exothermic or only endothermic data. This will be done for comparison. The
results will make use of a simple energy based grouping scheme using either 60 or 6 groups, denoted by MEL(60) and
MEL(6) respectively. The trajectory data was calculated for the MEL(60) model using 192,000 trajectories from each
initial group (p) at translational temperature T = 10 000 K and group internal temperatures of T p

N2
= (2000 K, 5000 K,

10 000 K). The kinetic data for the MEL(6) model was retrieved by re-grouping the kinetic data for the MEL(60)
model with the appropriate weighting.

Figure 1 shows the forward energy transfer coefficients for the excitation reaction for the MEL(6) model from
a fixed initial group (q = 2). The rates computed from exothermic trajectories are in excellent agreement with the
rates computed from the StS data. Moreover, the statistical error associated with the exothermic rate data is generally
very low (the mean error for all energy transfer coefficients computed using exothermic trajectory data is 1.5%).
The rate data computed using endothermic trajectories is in very good agreement with the grouped StS data as well.
However, the higher energy jumps exhibit higher error (the mean error for all energy transfer coefficients computed
using endothermic trajectory data is 14.1%).
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FIGURE 1. Grouped energy transfer coefficients for excitation reaction MEL(6), N2(p = 2) + N 
 N2(q) + N (1Kp−q) at T =

10 000 K and Tp
N2

= 5000 K; error bars denote one standard deviation.

Figure 2 shows the dissociation and recombination energy transfer rates for the MEL(60) model. Similar to what
was observed for the excitation reaction, the energy transfer coefficients for high energy jumps (e.g., dissociation from
groups below around 4 eV) exhibit high statistical error. Despite this fact, Fig. 2 highlights the key advantage to this
framework: reaction rates and energy transfer coefficients for the recombination process can be computed. Because the
recombination rates are obtained from dissociating trajectories through detailed balance, there are two key advantages:
first, this ensures that detailed balance is obeyed, ensuring that the system will reach equilibrium given enough time;
second, recombination rates and energy transfer coefficients can be obtained from dissociating trajectories, eliminating
the need to run recombination trajectories. Because the recombination energy transfer coefficients are obtained from
dissociation trajectories, the error of the recombination rates mirrors that observed for the dissociation rates.

Figure 3 shows the variation of the excitation forward energy transfer coefficient for the MEL(6) model from
group 2 to group 3 with the group internal and translational temperatures. This was computed by grouping the StS
data to enable calculation at many internal temperatures. The variation of the rate with translational temperature is
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quite strong, as expected. However, the internal temperature also has a significant impact on the rates, particularly
at high translational temperatures. The inset shows the variation of the coefficient due to internal temperature at T
= 10 000 K from the MGME-QCT models and the grouped StS as well as the variation at T = 20 000 K from the
grouped StS data. This demonstrates the importance of calculating kinetic data at various internal and translational
temperatures, as the impact of both parameters on the kinetic data is significant.

CONCLUSIONS

In this paper, a general model reduction framework for studying non-equilibrium dissociation and energy transfer
has been presented. In this approach, the multi-group maximum-entropy linear coarse-grain model is coupled with
quasi-classical trajectory calculations to directly obtain the complete set of kinetic data for the multi-group maximum-
entropy linear coarse-grain model. We apply detailed balance at a microscopic to ensure a self consistent model which
will proceed to equilibrium given enough time. Moreover, this allows the coarse grain model to be constructed using
the exothermic trajectory data which are characterized by lower statistical error. Finally, the MGME-QCT model is
compared to the grouped StS kinetic data for the N2(X1Σ+

g ) −N(4Su) system for validation, with excellent agreement.
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[22] A. Munafò, Y. Liu, and M. Panesi, Physics of Fluids 27, p. 127101 (2015).
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