#### NASA's Small Spacecraft Systems Virtual Institute and Small Spacecraft Enterprise



#### 69<sup>th</sup> International Astronautical Congress

Bremen, Germany October 5, 2018

NASA Space Technology Mission Directorate and NASA Science Mission Directorate

Bruce D. Yost

S3VI Director www.nasa.gov/smallsat-institute

National Aeronautics and Space Administration







## S3VI Charter

- Advance clear communications, coordination, and consistent guidance regarding small spacecraft activities across NASA.
- Provide the US smallsat research community with access to mission enabling information.
- Maintain engagement with small spacecraft stakeholders in industry and academia. Support the overall small spacecraft community.

S3VI is a NASA-wide institute managed at NASA Ames Research Center, with participation from LaRC, GSFC, JPL, MSFC, and GRC.

S3VI is jointly sponsored by NASA's Space Technology Mission Directorate (STMD) and the Science Mission Directorate (SMD).



69th IAC

#### S3VI Management and Governance

NASA Small Spacecraft Technology Program Executive: Christopher Baker, NASA HQ

NASA Science Mission Directorate Assistant Deputy Associate Administrator for Small Spacecraft Programs: Charles Norton, NASA HQ







## S3VI Focused Tasks

- S3VI Web Portal (www.nasa.gov/smallsat-institute)
- Small Spacecraft Technology State of the Art Report
- Small Spacecraft Community of Practice
- Small Spacecraft Coordination Group (SSCG)





#### 69th IAC



## Web Portal Implementation

- Small Spacecraft Body of Knowledge
- Working Groups
  - Small Satellite Reliability Initiative
  - Access to Space (in work)
  - Debris Mitigation (proposed)
- Federated Parts Databases
  - Smallsat Parts on Orbit Now (SPOON)
  - NASA Electronic Parts Packaging (NEPP)
  - TechPort
- Common / Federated Search Capability





DINITY SPONSORED BY THE SCIENCE MISSION DIRECTORATE AND THE SPACE TECHNOLOGY MISSION DIRECTORATE



www.nasa.gov/smallsat-institute







## Small Spacecraft Technology State of the Art

#### Select 2015 state of the art technologies targeted for deep space small spacecraft

<page-header>

| Subsystem                         | Technology                | Product           | FOM*                               | TRL*                            | Comments                                                                                                                                                                                |
|-----------------------------------|---------------------------|-------------------|------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comms                             | Deep Space<br>Transponder | IRIS V2           | X Band<br>62.5 – 256k BPSK         | 6                               | No other radios compatible with DSN have been<br>successfully researched.                                                                                                               |
| Electric<br>Propulsion<br>Systems | Ion Engine                | BIT-3 &<br>RIT-μX | 1 – 10 mN<br>1000 – 3500 s         | Xenon TRL<br>8, Iodine<br>TRL 4 | Provides high Isp and thrust, good for interplanetary transfer; BIT-3 has 3km/s dV capability for a 6/12U to reach lunar orbit from GTO/GEO.                                            |
|                                   | Hall Effect<br>Thruster   | BHT-200           | 10 – 50 mN<br>1000 – 2000 s        | Xenon TRL<br>8, Iodine<br>TRL 4 | Provide high Isp and thrust, good for interplanetary<br>transfer; lodine propellant is attractive due to its high<br>density, providing high dV maneuvers for transfer<br>trajectories. |
|                                   | Resiojets                 |                   | 5 mN – 0.5 mN<br>70 – 1140 s       | Xenon TRL<br>8, Iodine<br>TRL 4 | Resistojets and pulsed plasma thrusters provide small thrust good for orbit corrections, or attitude control                                                                            |
| GNC                               | Reaction<br>Wheels        | BCT RWA           | Up to 1Nm-s<br>momentum<br>storage | 9                               | BCT Zero momentum RWA = 100mNm-s and 15mNm-<br>s (x3) BCT wheels to be used on NEA Scout.                                                                                               |

Current Small Spacecraft Technology State of the Art Report is available at https://sst-soa.arc.nasa.gov







## Small Spacecraft Community of Practice and Coordination Group

- Community of Practice Virtual Seminar Series
- CubeSat 101 Complementary Video Series
- Investigator Lessons Learned
- Swarms for Science and Exploration Workshops (under consideration)
- High Volume Manufacturing of Small Spacecraft Workshop (under consideration)





69th IAC



# Small Spacecraft Enterprise

Collectively advancing the utility of small spacecraft instruments, technologies, and missions to enable NASA to achieve its exploration and science goals.

- Science Mission Directorate
- Space Technology Mission Directorate
- Human Exploration and Operations Mission Directorate







# NASA Small Spacecraft Investments

- Science Mission Directorate (SMD)
- ESTO InVEST
- Planetary Deep Space Smallsat Studies (PSDS3)
- PICASSO/MatISSE
- Astrophysics Smallsats
- SMEX, SALMON, MOO
- Undergraduate Student Instrument Project (USIP)

Human Exploration Mission Directorate (HEOMD)

- Cubesat Launch Initiative
- EM-1 Deep Space missions

#### Space Technology Mission Directorate (STMD)

- Small Spacecraft Technology Program (SSTP)
  - Flight Capability Demonstration Projects
  - Smallsat Technologies Partnerships
  - Technology development
- Small Business Innovative Research (SBIR)
- Tipping Point and Public/Private Partnerships
- **Centennial Challenges Program** 
  - CubeQuest Challenge





# Utility of Small Spacecraft for Cis-Lunar and Deep Space Applications

- Scout Terrain
- Characterize the Environment
- Identify Risks
- Prospect for Resources
- Provide Cost Effective Communications, Monitoring, and Inspection Infrastructure





## Critical Technology Gaps for NASA Small Spacecraft Missions

- Advanced / High △V Propulsion for Deep Space Small Spacecraft
- Affordable Radiation Tolerance for Small Spacecraft Missions
- Deep Space Navigation and Attitude Determination for Small Spacecraft
- Affordable Distributed Spacecraft Missions





# Planned U-class Exploration and Technology Demonstration Missions

- Deep Space Propulsion Technology Development and Demonstration
  - Geostationary Transfer Orbit to Cis-Lunar Demonstration
  - High AV Propulsion for Deep Space Small Spacecraft
- Lunar Communications Relay Demonstration
- Lunar Surface / Subsurface Mapping







#### **SBIR Smallsats**







## Plans for 2019

- Survey of NASA Investments in Small Spacecraft
- Continued Database Federation
- Launch Portal Development
- Virtual Seminar Series
- Small Business Innovation Research (SBIR) study follow-on
  - S3VI Quarterly Newsletter







## Acknowledgements and Websites

S3VI acknowledges the following NASA Centers and individuals for continued support and guidance

NASA Headquarters: Christopher E. Baker, Charles D. Norton Ames Research Center: Roger C. Hunter, Elwood F. Agasid Glenn Research Center: Frederick Elliot Goddard Space Flight Center: Larry Kepko, Michael A. Johnson Jet Propulsion Laboratory: Anthony Freeman Langley Research Center: Stephen Horan

#### Website References

- Space Technology Mission Directorate www.nasa.gov/directorates/spacetech/home/index.html
- Science Mission Directorate science.nasa.gov
- Human Exploration and Operations Mission Directorate www.nasa.gov/directorates/heo/index.html
- Small Spacecraft Systems Virtual Institute www.nasa.gov/smallsat-institute
- CubeSat Launch Initiative www.nasa.gov/directorates/heo/home/CubeSats\_initiative
- Small Business Innovation Research Program sbir.nasa.gov
- Small Spacecraft Technology State of the Art Report 2015 https://sst-soa.arc.nasa.gov