UAV Panel

PHM Conference 2018

Kai Goebel NASA Ames Research Center kai goebel@nasa.gov 1/A

Emerging Aviation Markets

Proposed Crawl, Walk, Run Build-Up

2020

Demonstration flights

- Experimental flights
- Establish community & user acceptance
- Reduced payload and/or range
- Modular energy storage solution

2023

- Commercial flights
- All-electric on day 1
- 60-mile range
- Commercial pilot + 4 pax
- Fleets with several manufacturers across 3+ cities

2025

Early scaled operations

5+ cities

- 300-500 aircraft per city
- 60,000+ passenger trips per day per city

2030-2035

Fully-Scaled Operations

12+ cities

1000+ aircraft per city

100,000+ passenger flights per day per city

No pilot in vehicle (5 pax per flight)

- Air-ground integrated concept of operations
- Roles/responsibilities
- Federated, networked, and interoperable data exchange
- Information architecture
- Airspace configuration (static and dynamic geo-fencing)
- Weather and wind (actual and predicted)
- Demand/capacity imbalance management
- 3D maps
- Track and locate (cell, ADS-B, satellite, psudo-lites)
- Conflict (V2V, sense and avoid) and hazard avoidance
- Last and first 50 feet operation
- Contingency management

Research Platform that

- Gives situational awareness of all airspace constraints and info about other operations to UAS operators, support service suppliers, and regulators
- (2) Allows to exchange data among UAS operators as well as regulator
- (3) Allows UAS operators to submit flight plans to execute a specific mission in low-altitude airspace, and
- (4) Determines how to safely enable such single or multiple UAS operations either within visual line of sight or beyond visual line of sight
- (5) Integrates airspace and vehicle operations

- Low Size, Weight, Power, and cost Sense and avoid
 - Detection of obstacles such as wires as well as other moving objects
- Tracking: Cell phone, ADS-B, Satellite, pseudo-lite
- Reliable control system
- Safe landing under failure or safety under malfunction
- Long endurance (45 min current battery life)
- Cyber secure/spoof free vehicles
- Graceful landing in case of failure with low kinetic energy safe flying around people
- Ultra-low noise vehicles
- Operations under GPS-free or degraded conditions
- Last/first 50 feet safe autonomous operation

• Continuous System-wide Safety Awareness (Monitor)

Technical approaches and required architecture to support comprehensive safety monitoring through acquisition, integration and assurance of sensitive data from heterogeneous sources.

• Safety Risk Identification and Evaluation (Assess)

Assured tools that improve the accuracy of real-time detection, diagnosis and prediction of hazardous states and the impact of these states on system safety.

• Coordinated Prevention, Mitigation and Recovery (Mitigate)

Trusted methods for dynamic, multi-agent planning, evaluation, and execution of real-time risk mitigating response to hazardous events.

• Experimentation, Demonstration and Assessment

Experimentation, demonstration, benefits analysis and transition of new RSSA technologies within all elements of the airspace.

Objectives:

- Apply PHM principles to safety within the UAM domain.
 - Identify relevant in-time risk assessment metrics
 - On-vehicle subsystems considered
 - Electrical powertrain
 - Positioning sensors
 - Communications equipment
- Integrate such a safety framework with the UTM architecture
 - Consider safety assessment a "service" within that architecture
- · Conduct flight test to demonstrate feasibility of approach
 - Collect data and publish where possible
 - Flight test planned for Fall 2018
 - Plan to participate in UTM campaign

Notional SWS Risk Assessment SDSP Architecture

Objective:

• Predict effect of UAV system health on airspace safety in-time for decision-making

Approach:

- Leverage health management framework to predict faults in subsystems of UAV electric powertrain
- Identify components within sub-systems that may affect its operation and airspace safety
 - Understand propagation timing of fault
 - Some faults progress over a single flight (fast),
 - battery state of charge (SOC)
 - Motor faults (some)
 - Some faults progress over several fights (slow),
 - battery state of health (SOH)
 - electronic speed controllers (ESC)
 - power conditioning circuits (PCC)
- Select type of sensors and determined needed data rates required for vehicle based on identified faults
- Model components, simulate, lab tests, flight tests

•

٠

Onboard ISSA-enabling Technologies

UAS Operator Station

Objective: (1) Test and evaluate baseline architecture and selected functional elements; (2) Collect data to support future development of envisioned capabilities

Status:

- Precursor tests • conducted;
- Verification tests in fall ٠

Ground Infrastructure and ISSA-enabling Information Services (within UTM ecosystem)

