Interplanetary Small Satellite Conference bevond IFO

Aeroassist Technologies for Small Satellite Missions

Alan Cassell¹, Alicia Dwyer Cianciolo² Entry Systems and Vehicle Development Branch NASA Ames Research Center Moffett Field, CA 94035 ²Atmospheric Flight and Entry Systems Branch NASA Langley Research Center Hampton, VA 23681

Outline

- Aeroassist Overview
- Small Sat Class Entry Vehicle Technologies
 - Rigid Aeroshells
 - Deployable Entry Vehicles
 - New Entry System Technologies
- Summary

Rigid Aeroshells- HEEET

Inflatable DEVs- HIAD

Mechanical DEVs-ADEPT

Drag Devices-ExoBrake

Aeroassist Overview

- Aeroassist refers to the use of an atmosphere to accomplish a transportation system function using techniques such as aerobraking, aerocapture, aeroentry, and aerogravity assist.
- Aeroentry and Aerocapture offer an alternative approach for large ∆V maneuvers and could revolutionize the use of SmallSats for exploration missions and increase the science return while reducing costs for orbital or entry missions to Mars, Venus and return to Earth.
- Aeroassist technologies are power efficient and tolerant to the radiation and thermal environment encountered in deep space, can be integrated around or within SmallSat geometries, and can be packaged in secondary payload accommodation volumes.

Aeroassist Overview

Mission Concepts with Aerocapture & Entry Segments

Venus AeroEntry

evond LEO

Venus Aerocapture

Inner Planet Aeroassist Options

Sample Return Missions

Mars Aeroentry network probe mission

Mars Aerocapture for SmallSat Constellations

Chariot will demonstrate aerocapture for the first time using a separate cruise vehicle with a deployable drag skirt

ISSC 2019- Interplanetary Small Satellite Conference

Interplanetary Small Satellite Conference

ond LEO

Small Sat Class Rigid Aeroshell Entry Vehicles

6

Small Sat Class Deployable Entry Vehicles

	TechEdSat	Deorbit and Recovery System	HIAD w/in 6U	JAXA-EGG	ADEPT CubeSat Class
	M. Murbach, SmallSat 2016	Andrews, SmallSat 2011	S. Hughes, et al, IPPW 2016	Diameter : 80cm	ADEPT 3U
CubeSat Configuration	3.5U	3U	6U	3U	3U+ (could package around dispensers)
Entry System Volume	1.5U ExoBrake de-orbit system	10	3U	1U	Integrates around CubeSat or CubeSat Dispenser
TPS Material	N/A	Ablative Coating on Flexible Fabric	Woven SiC on C-Felt	Woven Ceramics?	High Temperature Capable 3D Woven Carbon Fabric
Flex TPS Temp Limit	N/A	?	~1600 °C	?	Test Capability Demonstrated to 2100 °C
Flight Heritage	TechEdSat 1-8	N/A	N/A	Sub-Orbital Demonstration	ADEPT 3U Sub-Orbital Demo September 2018
Comments	 Does not survive entry SPQR concept in development 	Designed for LEO entries3 U EDU Developed	 Concept Design Based on HIAD & IRVE heritage 	 Low Ballistic Coefficient < 5 kg/m² More details needed to determine feasibility for high speed entries 	 Capable of high speed entries (~11 km/s) Technology also useful for Aerocapture

eyond LEO

nterplanetary Small Satellite Conference

Heatshield for Extreme Entry Environments Technology (HEEET)

- Leverages advanced 3-D weaving and resin infusion.
- A dual layer system robust and mass efficient across a range of extreme entry environments.
- TRL 6 and ready for mission infusion.
- Development includes:
 - Requirements and verification
 - Testing Aerothermal and Thermo-structural
 - Manufacturing specifications from raw materials to weaving, tile fabrication (forming/resin infusion) and integration
 - Technology transfer to industry (BRM and FMI)
 - Heatshield (1m dia.) Prototype designed, built and tested
 - Material Thermal Response Model and Margins Policy
 - Validated thermo-structural tools to support design
 - Design Data Book

NASA ARC POC- Don Ellerby

Prototype in Thermal Vac Chamber

3d Weaving of Pre-form

 Springs (attached to each Heddle)

Heddles

Approx. 150 deep, 320 wide, total:

48.000 Heddles

Arc Jet Tested Specimen IHF 3" Stag Model 3600 W/cm^{2;} 5.3 atm

Woven Pre-form

Pterodactyl- Guidance & Control System Integration onto Deployable Entry Vehicles

- Utilizes **ADEPT 1 m Class** design for development.
- Leverages the ability to mount control system hardware on deployed structural elements.
- Project is assessing 3 control system approaches for challenging Lunar Sample Return Design Reference Mission.
- Developing Analysis Framework to Explore Design Feasibility & Entry Environments
- Development includes:
 - Aerodynamics & Aerothermodynamics Analysis
 - 3-DOF & 6-DOF Trajectory Analysis
 - Guidance & Control Algorithm Development
 - Control System Integration onto Technology Demonstrator
 - Ground Testing of Technology Demonstrator
 - Control System Software Testing on 6-DOF Simulation Testbed

REACTION CONTROL THRUSTERS

CONTROL

MASS

MOVEMENT

SURFACES

NASA ARC POC- Sarah D'Souza

Summary

- Aerocapture and Aeroentry are mission enablers for Small Satellite missions.
- Aerocapture and Aeroentry mission segments show promise for Small Satellite mission concepts:
 - PSDS3 Mission Concept Study Awards FY18 (3 of 9 Mars & Venus concepts utilized Aeroassist)
- NASA ARC and JPL are exploring Drag Modulated Aerocapture mission concepts to advance capabilities for exploration and science objectives.
- Cis-Lunar Sample Return is another promising mission class for the Small Satellite community.
- New technologies are being developed to enable Small Satellite missions.
 - <u>HEEET</u>
 - <u>ADEPT & Pterodactyl</u>
 - <u>HIAD</u>
 - Drag Assist Devices
- We encourage the Small Satellite community to contact us for concept studies and partnering to help further innovate Small Satellite technology.

<u>Alan.M.Cassell@nasa.gov</u> <u>AliciaMDwyerCianciolo@nasa.gov</u> Interplanetary Small Satellite Conference beyond LEO

Back-Up Charts

Drag Modulated Aerocapture at Venus

Trajectory Assumptions

- Pre-jettison Mass = 72 kg
- Post-jettison Mass = 34.7 kg, P-V aero database
- Basic mission, conditions at 150 km
 - V = 11 km/s, EFPA = -5.5°
- Jettison at time to reach 2000km apoapsis

Entry System Thermal Protection System Sizing Determine environments and assign materials

- C-PICA chosen for rigid aeroshell
- Carbon Fabric for deployable aeroshell

Cis-Lunar Sample Return

