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Three-dimensional (3D) woven composites are an attractive means of achieving superior 
mechanical performance in aerospace structures. Limited analysis capability currently exists 
to predict both effective elastic and strength properties for these complex composites. In this 
study, a comparison of three modeling strategies was performed to assess the ability of the 
different methods to predict the effective elastic properties of four distinct 3D orthogonal 
woven composites. Two finite element techniques (in-plane and triply-periodic boundary 
conditions) and one method of cells technique, the Multiscale Generalized Method of Cells, 
were considered.   

I. Introduction 
 

Three-dimensional (3D) woven composites are increasingly being considered for implementation into aerospace 
structures due to their enhanced performance (e.g., delamination resistance) over traditional laminated composites. 
However, limited analysis capability exists to predict properties required for large structural models. A significant 
portion of the literature focuses on using analytical or finite element (FE) techniques to explicitly model a 3D woven 
architecture (e.g., Refs. [1-5]). This study explores three techniques for predicting effective properties of 3D 
orthogonal woven composites.  
 

Determining effective properties of heterogeneous materials is a key goal of all micromechanics techniques.  As 
such, numerous methods have been developed to calculate these properties based on constituent material properties 
and geometric arrangements (i.e., perform a homogenization procedure). The principle of scale separation is essential 
to determining effective properties and assessing their application to a problem of interest [6].  This principle states 
that a characteristic microscale length (i.e., individual constituents) should be much smaller than that of the macroscale 
(i.e., homogenized).  In such a scenario, macroscale applied loadings are assumed to be constant over some microscale 
volume and uninfluenced by external boundaries.  Triply-periodic (TP) boundary conditions (BCs) are commonly 
implemented in homogenization approaches to remove the influence of any external boundaries.  However, these BCs 
may not be appropriate for 3D woven composites since periodicity in the through-thickness direction often does not 
exist.  

 
One key challenge in modeling 3D woven composites is addressing the issue of scale separation.  For these 

composites, the repeating unit cell (RUC) geometry is significantly larger than that of traditional composite materials.  
This size differential can easily lead to a scenario where effective properties determined from a particular “microscale” 
volume are used over a similarly sized macroscale volume (e.g., in a FE model of a large structure).  Should these 
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volumes become similar, either nonlocal constitutive relationships should be employed or the woven architecture 
should be explicitly simulated. Despite this limitation, it is common for hierarchical multiscale modeling approaches 
to use homogenized effective properties. This challenge remains to be fully explored.  

 
In this work, three modeling strategies are explored as a means to estimate effective properties of 3D orthogonal 

woven composites. Both FE and the Multiscale Generalized Method of Cells (MSGMC) approaches are considered. 
The connection between material properties determined using such techniques and their incorporation into larger scale 
structural analyses is a topic of current research. 

II. Analysis Methods 
 

In this section, the modeling approaches used to determine effective properties of 3D orthogonal woven composites 
are described.  

A. Finite Element 
 

FE approaches are commonly used to calculate effective properties of heterogeneous composites due to their wide 
availability, ease of understanding, and accuracy provided an appropriate mesh is generated.  In this work, Digimat-
FE [7] was used to create the geometries, predict yarn properties, and generate FE meshes of 3D woven composites. 
Abaqus [8] was used as the FE solver. Scripts were developed in order to implement TP BCs and calculate effective 
properties from simulation results.  These BCs, consistent with Stier et al. [9], were implemented in Abaqus for a 
parallelpiped mesh of a unit cell.  In general, this requires specifying a series of displacement constraint equations on 
individual surface nodes in the model.  Three Abaqus reference points were created and are used to impose unique 
BCs. Displacements, consistent with a prescribed average strain level, were applied at these reference points and used 
to calculate the effective stiffness matrix of the composite. 
 

Consider a heterogeneous material comprised of linearly elastic, orthotropic constituents only.  The principles of 
local action and scale separation indicate that a uniform applied average strain state (𝜺𝜺�) produces a uniform average 
stress state (𝝈𝝈�).  The stresses and strains are related to each other through the average stiffness matrix (𝑪𝑪�) as shown in 
Eq. (1). 
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In practice, both 𝝈𝝈� and 𝜺𝜺� can be determined by volume averaging local quantities (e.g., over elements).  𝑪𝑪� is 

inverted to give the average compliance matrix, 𝑺𝑺�.  Nine effective constants can then be defined using the following 
relationships: 

 𝐸𝐸�11 = 1/𝑆𝑆1̅1 
𝐸𝐸�22 = 1/𝑆𝑆2̅2 
𝐸𝐸�33 = 1/𝑆𝑆3̅3 

𝜈̅𝜈12 = −𝑆𝑆2̅1/𝑆𝑆1̅1 
𝜈̅𝜈13 = −𝑆𝑆3̅1/𝑆𝑆1̅1 
𝜈̅𝜈23 = −𝑆𝑆3̅2/𝑆𝑆2̅2 
𝐺̅𝐺12 = 1/𝑆𝑆4̅4 
𝐺̅𝐺13 = 1/𝑆𝑆5̅5 
𝐺̅𝐺23 = 1/𝑆𝑆6̅6 

 

(2) 

where 𝐸𝐸� and 𝐺̅𝐺 are effective longitudinal and shear moduli respectively, and 𝜈̅𝜈 are effective Poisson ratios. 
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In order to determine 𝑪𝑪� for the composite, a series of analyses are performed by independently varying the 

components of 𝜺𝜺� and volume averaging the resulting element stresses.  For example, if 𝜀𝜀1̅1 = 1 and all other strain 
components are set to zero, the volume-averaged stress in the composite is equal to the first column of the stiffness 
matrix.  Note that the applied displacements can be scaled to a smaller value for numerical stability, but this scaling 
factor must be accounted for when establishing the stiffness tensor.  As a consequence of using periodic BCs, the 
volume averaged strain will approximately correspond to the applied strain and can be used to verify correct model 
implementation.  

 
A Python script was developed to volume-averaged element stresses and strains by utilizing the Abaqus Python 

Application Programming Interface (API).  By default, Abaqus outputs field quantities in the material coordinate 
system.  A coordinate transformation was first performed in order to rotate the stress and strain tensors into the global 
coordinate system.  Volume-averaged strains and stresses were then determined using the following equations: 
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(3) 

where Nelms is the number of elements in the mesh, Ninti is the number of integration points for the ith element, IVOLi,j 
is the volume associated with the jth integration point in the ith element (an Abaqus output variable), and 𝜀𝜀 and σ are 
the integration point strain and stress tensors, respectively, in the global coordinate system.  Effective properties for 
the composite can then be calculated using the relationships in Eq. (2). 
 

3D woven composites are often comprised of a single ply. As a result, the use of periodicity in the thickness 
direction may lead to different material property predictions. Additional simulations were performed that utilized in-
plane periodic (IPP) BCs only. Unlike the TP BCs, IPP BCs allow faces normal to the thickness direction to be free 
and to independently expand/ contract. Digimat-FE [7] was used to both impose these boundary conditions and 
calculate effective in-plane material parameters for the composite. For a given geometry, the influence of the external 
boundaries in the thickness direction may not be negligible. Hence, these predicted material parameters may or may 
not be consistent with the actual material properties (i.e., those uninfluenced by external boundaries). 
 

B. Multiscale Generalized Method of Cells 
 
The Generalized Method of Cells (GMC) micromechanics theory is an efficient, semi-analytical method that 

provides the homogenized, nonlinear constitutive response of a composite material.  Its foundations for single scale 
analysis, along with validation of its results, are well-established in the literature (cf., Ref. [10]).  The GMC method 
considers the composite microstructure, on a given length scale, to be periodic, with an RUC as shown (at a given 
length scale) in Fig. 1.  The unit cell is discretized into Nα  x  Nβ  x Nγ subcells, each of which may contain a distinct 
material.  However, as indicated in Fig. 1, the unique feature of the MSGMC is that the materials occupying the 
subcells on a given length scale may themselves be heterogeneous composite materials, represented by a unique RUC. 
A given analysis may consist of k arbitrary explicit length scales (see Fig. 1).  The highest length scale considered is 
denoted as Level 0, whereas, the current length scale under consideration is length scale i, where i = 0, 1,…, k. 
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Fig. 1  MSGMC repeating unit cells (RUCs) and subcells across an arbitrary number of length scales. 

 
The GMC theory assumes a first-order displacement field in the subcells at a given scale, resulting in constant 

stresses and strains per subcell [10].  Assuming infinitesimal strains, the constitutive equation for the subcells at Level 
i is given by, 

𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖) = 𝑪𝑪𝑖𝑖

(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖)𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖) 

  (4) 
where σi is the stress tensor, Ci is the stiffness tensor, and εi is the total strain tensor for the ith Level.  The superscript 
(αi βi γi) denotes the particular subcell at Level i. Note that inelastic and thermal strains are not considered herein. 
Satisfaction of displacement and traction continuity between subcells in an average (integral) sense, and imposition 
of periodicity conditions along the RUC boundaries enable the establishment of a system of linear algebraic equations, 
which can be solved to determine the elastic strain concentration tensors, 𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖).  The reader is referred to Aboudi 
et al. [10] for more details regarding this formulation.  At a given level (i.e., scale), i, these concentration tensors 
characterize the local strain tensors in the subcells in terms of the RUC-averaged total strain tensor, 𝜺𝜺�𝑖𝑖, i.e., 
 

 𝜺𝜺𝑖𝑖
(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖) = 𝑨𝑨𝑖𝑖

(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖)𝜺𝜺�𝑖𝑖 
 

(5) 

In a multiscale analysis, all terms in Eq. (5) depend on the location of the Level i RUC within all higher scale 
RUCs.  In essence, the strain in a given subcell at Level k depends on the path taken down the length scales from 
Level 0. Eq. (4) can be recast in terms of average strains by substituting Eq. (5) into Eq. (4), 
 

 𝝈𝝈𝑖𝑖
(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖) = 𝑪𝑪𝑖𝑖
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The RUC-averaged stress tensor is given by,  

 
 

𝝈𝝈�𝑖𝑖 =
1

𝑑𝑑𝑖𝑖ℎ𝑖𝑖𝑙𝑙𝑖𝑖
� � � 𝑑𝑑𝛼𝛼𝑖𝑖 ℎ𝛽𝛽𝑖𝑖𝑙𝑙𝛾𝛾𝑖𝑖𝝈𝝈𝑖𝑖

(𝛼𝛼𝑖𝑖𝛽𝛽𝑖𝑖𝛾𝛾𝑖𝑖)
𝑁𝑁𝛾𝛾𝑖𝑖

𝛾𝛾𝑖𝑖=1

𝑁𝑁𝛽𝛽𝑖𝑖

𝛽𝛽𝑖𝑖=1

𝑁𝑁𝛼𝛼𝑖𝑖

𝛼𝛼𝑖𝑖=1
 (7) 

 
where 𝑑𝑑𝛼𝛼𝑖𝑖, ℎ𝛽𝛽𝑖𝑖 , and 𝑙𝑙𝛾𝛾𝑖𝑖  are the dimensions of subcell (αi βi γi) and 𝑑𝑑𝑖𝑖, ℎ𝑖𝑖, and 𝑙𝑙𝑖𝑖 are the RUC dimensions for Level i.  
Eq. (6) and Eq. (7) lead to, 
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The effective constitutive equation at Level i is given by, 
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 𝝈𝝈�𝑖𝑖 = 𝑪𝑪𝑖𝑖∗𝜺𝜺�𝑖𝑖 (9) 
 

A comparison of Eq. (8) and Eq. (9) indicates that the effective stiffness tensor, 𝑪𝑪𝑖𝑖∗, at Level i is given by, 
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In the MSGMC, the scales are linked by considering the RUC-averaged stress, strain, and stiffness tensors at scale 

i to be equal to the local subcell stress, strain, and stiffness tensors of the applicable subcell from the next higher length 
scale (i-1).  An appropriate coordinate transformation is used to account for the potential coordinate system change 
from scale to scale.  That is, 
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where 𝑻𝑻2𝑖𝑖  and 𝑻𝑻4𝑖𝑖  are the appropriate second and fourth-order coordinate transformation tensors, respectively.  Hence, 
starting with the lowest scale (k) RUC (see Fig. 1), whose subcells contain only monolithic materials, the effective 
stiffness tensor can be calculated using the standard GMC method.  This stiffness tensor (after an appropriate 
coordinate transformation) then represents the homogenized material in one of the subcells within an RUC at the next 
higher length scale (k-1).  Given the transformed effective stiffness tensors of all subcells at the successively higher 
length scale, the effective stiffness tensor of the RUC at this Level can be determined.  This stiffness tensor can then 
be transformed and passed along to the next higher length scale in a similar fashion, and the process repeats until the 
highest length scale considered (i = 0) is reached. As an example, for an MSGMC analysis considering three length 
scales (i = 0, 1, and 2), the overall effective stiffness tensor can be written using Eq. (10) and Eq. (11) as, 
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where a contracted notation has been used for the triple summation at each scale.  Note that, in Eq. (11), the superscript 
on the bracketed terms indicates that all variables within the brackets are a function of the subcell indices from the 
next higher length scale (including lower scale dimensions and subcell indices).  The intent of this notation is to fully 
define the location of a subcell at a given scale as one progresses down the length scales.  For example, using this 
notation, the effective stiffness tensor at Level 2, from Eq. (11) can be written as, 
 

 [ ]( ){ }( ) [ ]( ){ }( ) ( ){ }( )000111
000111000111

1
2
42

γβαγβα
γβαγβαγβαγβα CTC =∗

 
(13) 

 
as there are distinct 𝑪𝑪2∗  values for every Level 1 subcell, while there are distinct Level 1 RUCs present within each 
Level 0 subcell.  
 

Additionally, MSGMC can perform multiscale localization of the stress and strain tensors. The stress tensor for 
any subcell at any length scale can be determined through localization relationships [10], or by simply using the strain 
tensor, along with the constitutive equation, at the appropriate length scale. 
 

In order to develop a model of a 3D woven composite in MSGMC, voxel-based finite element meshes were 
converted into an appropriate RUC for an MSGMC analysis.  A series of Matlab scripts were written to import a finite 
element mesh (e.g., from TexGen, Abaqus, or MSC Marc), determine unique material orientations, modify the 
orientations to be consistent with MSGMC definitions, and generate the MSGMC model.  A two-step homogenization 
procedure was used to determine the effective mechanical response for the composite by homogenizing subcells in 
the thickness direction prior to homogenizing in-plane.  This procedure was shown by Bednarcyk and Arnold [11] to 
improve the prediction of in-plane properties and is typically used in conjunction with the MSGMC.  This required 
defining a number of “stacks” (i.e., single columns of subcells in the thickness direction). An example of these stacks 
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for a plain weave fabric is shown in Fig. 2.  Duplicate stacks (same material/ orientation distributions) were identified 
and removed from the model to reduce memory requirements. 

 
 

 
Fig. 2  MSGMC plain weave fabric representation. 

III. Simulation Details 
 

For comparison purposes, each analysis method was used to predict effective material parameters or properties for 
four distinct IM7/ RTM6 3D orthogonal woven composite panels. Baseline weave architecture designs were proposed 
by Bally Ribbon Mills, Inc. Digimat-FE was used to generate an idealized/ simplified woven geometry for each panel. 
A typical 3D orthogonal geometry is determined by specifying an arrangement of layered, straight warp and weft 
yarns. One or more linker yarns then are woven through the thickness (Z-direction) of the composite at pre-determined 
locations. The warp, weft, and through-thickness portion of the linker yarns are designed to be orthogonal to one 
another. 

 
In this study, two woven architectures were considered. Two variants on each architecture were generated by 

assuming each yarn to be comprised of 6K or 12K fiber tows. The geometric parameters associated with the warp, 
weft, and linker yarns, as used in Digimat-FE, are shown in Table 1 for each of the four panel geometries considered 
in this study. In practice, during the weaving process, yarns are competing for the same space and some overlap may 
occur. This overlap is difficult to numerically simulate. In order to better match the proposed unit cell sizes, the linker 
yarns were altered by lowering the filament count (e.g., 1200 instead of 6000) and adjusting the linker yarn 
dimensions. These yarn modifications, however, were compensated for by increasing the fiber modulus in the axial 
dimension to match that of the idealized 6K or 12K yarn. Elastic material properties were obtained from the literature 
for the transversely isotropic IM7 fiber [12, 13] and isotropic RTM6 matrix [14]. Digimat-FE calculated yarn material 
properties based on constituent properties, filament count, and tow geometry using a mean-field homogenization 
technique [7]. The calculated warp, weft, and linker yarn orthotropic elastic constants for each of the four panels are 
shown in Table 2. 
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Table 1  Yarn Parameters 

Parameter Panels 1, 3 Panels 2, 4 

Warp 
Filament Count 6000 12000 

Yarn Height (mm) 0.18 0.36 
Yarn Width (mm) 1.2 1.2 

Weft 
Filament Count 6000 12000 

Yarn Height (mm) 0.174 0.285 
Yarn Width (mm) 1.24 1.5 

Linker 
Filament Count 1200 2200 

Yarn Height (mm) 0.1 0.2 
Yarn Width (mm) 0.43 0.4 

Fiber Diameter (μm) 5.2 
 

 
Table 2  Calculated Yarn Material Properties  

Property 
Warp Yarn Weft Yarn Linker Yarn 

Panels 1, 3 Panels 2, 4 Panels 1, 3 Panels 2, 4 Panels 1, 3 Panels 2, 4 
E11 (MPa) 208040 208040 208270 210200 1027000 1079000 
E22 (MPa) 9999 9999 10016 10164 10544 10295 
E33 (MPa) 9999 9999 10016 10164 10544 10295 

v12 0.233 0.233 0.232 0.232 0.232 0.233 
v13 0.233 0.233 0.232 0.232 0.232 0.233 
v23 0.363 0.363 0.363 0.36 0.369 0.373 

G12 (MPa) 3707 3707 3713 3770 3734 3649 
G13 (MPa) 3707 3707 3713 3770 3734 3649 
G23 (MPa) 3668 3668 3675 3737 3852 3749 

 
Fig. 3(a-b) shows the woven geometry for one 3D woven architecture comprised of idealized yarns with 6K 

(Panel 1) and 12K (Panel 2) fiber tows, respectively. Fig. 4(a-b) contain similar images of a separate architecture 
represented by Panels 3-4. The Digimat-FE calculated unit cell sizes and fiber volume fractions are given in Table 3. 
Each geometry was discretized into 140 x 60 x 60 voxels in the warp, weft, and Z directions, respectively, for a total 
of 504,000 voxels. The resulting discretizations (excluding the matrix) are shown in Fig. 3(c-d) and Fig. 4(c-d). For 
all FE and MSGMC analyses, each voxel was represented by a single reduced-integration isoparametric brick element 
and subcell, respectively. One of the challenges associated with simulating 3D woven composites is that voxel-based 
methods often require a large number of voxels in order to accurately capture the geometry of a relatively large unit 
cell size (when compared to traditional unidirectional or 2D woven composites). Furthermore, when combined with 
FE techniques, some non-physical fluctuations in the local fields can occur [15] due to element discontinuities. 
Although not considered in this study, these fluctuations can significantly influence damage initiation and growth [15]. 
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Fig. 3  3D woven geometries for a) Panel 1 and b) Panel 2. Voxelized discretizations for c) Panel 1 and d) 

Panel 2 (matrix voxels not shown).  
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Fig. 4  3D woven geometries for a) Panel 3 and b) Panel 4. Voxelized discretizations for c) Panel 3 and d) 

Panel 4 (matrix voxels not shown).  

 
Table 3  Geometric and Discretization Parameters 

Parameter Panel 1 Panel 2 Panel 3 Panel 4 

Unit Cell Size (mm) 
Warp 8.45 10.71 8.51 10.62 
Weft 2.54 3.55 5.00 4.80 

Z 3.91 3.30 3.24 3.30 

Number of Voxels 

Warp 140 
Weft 60 

Z 60 
Total 504,000 

Overall Fiber Volume Fraction 0.39 0.41 0.45 0.43 
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IV. Results 
 

Predicted effective material parameters/ properties using both FE techniques (IPP and TP BCs) and the MSGMC 
are shown in Table 4 for each of the four panels. The in-plane properties obtained from using both IPP and TP BCs 
implemented in a classical FE framework were nearly identical across all panels. This indicates that the difference in 
periodic BC choice for the FE calculations has a minimal impact on in-plane material properties for the architectures 
considered in this study. However, the effect on through-thickness properties remains to be explored. 

 
In general, the MSGMC technique yielded consistent predictions for most of the nine elastic constants (excluding 

E33 and several of the out-of-plane Poisson ratios) when compared to the TP FE calculations. For example, the 
predicted E33 for MSGMC was 7-19% lower than that of the TP FE technique while both in-plane moduli (E11 and 
E22) were within 2%. The exact cause of these discrepancies are unknown, but could be due to the lack of normal/ 
shear coupling inherent to the MSGMC technique [10]. Higher-fidelity method of cells techniques, such as the 
parametric high-fidelity generalized method of cells [16], would likely attain more agreeable results for all material 
properties. This topic will be addressed in a future study. A detailed comparison to experimental data is currently in 
progress. 
 

Table 4  Predicted Material Parameters/ Properties 

Geometry Method 

Material Parameter/ Property 

E11 
(MPa) 

E22 
(MPa) 

E33 
(MPa) v12 v13 v23 G12 

(MPa) 
G13 

(MPa) 
G23 

(MPa) 

Panel 1 
FE (IPP) 41857 72877 - 0.027 - - 2201 - - 

FE (TP) 41785 72851 8450 0.027 0.354 0.326 2190 1891 1868 

MSGMC 43299 72788 6885 0.025 0.409 0.395 2272 1777 1739 

Panel 2 
FE (IPP) 55073 64287 - 0.028 - - 2249 - - 

FE (TP) 54971 64245 7707 0.028 0.402 0.368 2238 1944 1947 
MSGMC 55869 64410 6965 0.028 0.406 0.401 2360 1801 1789 

Panel 3 
FE (IPP) 57617 72613 - 0.026 - - 2378 - - 

FE (TP) 57580 72592 7883 0.026 0.388 0.369 2365 2047 2045 

MSGMC 58381 72691 7278 0.026 0.400 0.394 2456 1918 1899 

Panel 4 
FE (IPP) 58440 64817 - 0.027 - - 2264 - - 

FE (TP) 58367 64798 7593 0.027 0.408 0.378 2252 1991 1978 

MSGMC 59138 65089 7053 0.028 0.404 0.401 2400 1835 1824 
 

V. Summary and Conclusions 
 
 Three-dimensional (3D) woven composites architectures present unique challenges when trying to predict material 
properties. In this study, two different methods were evaluated for predicting effective material properties: a finite 
element (FE) technique using triply-periodic (TP) boundary conditions (BCs) and the Multiscale Generalized Method 
of Cells (MSGMC) technique. A separate FE technique using in-plane periodic BCs (independent expansion/ 
contraction allowed on opposite faces in thickness direction) was used to predict in-plane effective material 
parameters. Four separate 3D orthogonal woven geometries were considered. Both FE techniques yielded consistent 
in-plane effective properties suggesting that the periodicity assumption in the thickness direction did not significantly 
influence the in-plane properties. However, the effect on out-of-plane properties remains to be explored. The MSGMC 
technique yielded consistent predictions for in-plane material properties with the FE results while some discrepancies 
were observed in the out-of-plane property predictions. While effective property estimates for all methods considered 
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in this study were in general agreement, the incorporation of such properties for 3D woven composites into higher-
level structural models remains an issue to be addressed. 
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