A Brief History of Space Climatology: From the Big Bang to the Present

Michael Xapsos, NASA Goddard Space Flight Center, Senior Member, IEEE

Abstract— Review of space climatology is presented with a view toward spacecraft electronics applications. The origins and abundances of space radiations are discussed and related to their potential effects. Significant historical developments are summarized leading to the inception of space climatology and into the space era. Energetic particle radiation properties and models of galactic cosmic rays, solar energetic and geomagnetic trapped particles are described. This includes current radiation effects issues that models face today.

Index Terms— Big Bang, galactic cosmic rays, solar particle events, space climatology, space radiation models, trapped electrons, trapped protons.

I. INTRODUCTION

HIS review is focused on space climatology - the A radiation environment observed over an extended period of time for a given location, corresponding to a space mission duration and orbit. Electronic devices and integrated circuits must be designed for this climatology in order to operate reliably. This will be developed by following a timeline starting with the Big Bang and ending at the present. A description of the early universe from a radiation effects perspective will be presented, featuring the origin and abundances of relevant particles - electrons, protons, neutrons and heavy ions. An interesting feature here is a recent development that is changing the view of the origin of ultra-heavy elements in the Periodic Table. It will be seen that the origin and abundances of radiations are generally related to the effects they cause in electronic devices and even some of the design requirements that are levied. A transitional period leading to modern times will then be discussed that involves the discovery of sunspots, the solar cycle and the sun's pervasive influence on space climatology. This leads to the main discussion about modern space climatology for galactic cosmic rays, solar particle events and trapped particles. Radiation properties such as elemental composition, fluxes, energies, and dependence on solar cycle phase and spacecraft orbit will be described, with emphasis on variability of these properties. Radiation models used for space system design will be presented along with some current issues

and applications. This will bring the reader up to date and complete the journey along the space climatology timeline.

II. THE EARLY UNIVERSE

It is now well established that the size of the universe is expanding with time. Therefore looking backward in time would reveal a universe that encompasses smaller and smaller volumes the farther back we go. Remarkably, scientists have been able to explain many phenomena by continuing to trace this contraction back to a time about 13.8 billion years ago, considered to be the age of the universe. At this point it is assumed to be a singularity of infinitesimal size and infinitely dense mass. This generally accepted Big Bang Theory of the birth and evolution of the universe is described in a number of interesting publications for a general audience [1]-[5]. Fig.1 shows an overall timeline beginning with the Big Bang and continuing through different eras to the present [6].

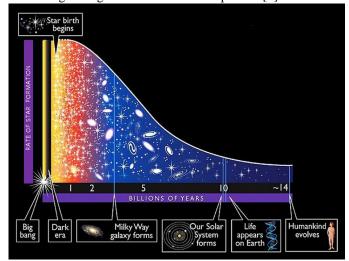


Fig 1: Timeline from the Big Bang to the present [6].

The following discussion of the early universe is limited to the origin and abundances of radiations that are significant for radiation effects in electronic devices and circuits – electrons, protons, neutrons and heavy ions. It involves three types of nucleosynthesis processes – Big Bang, stellar and extreme event nucleosyntheses.

This paper was submitted for review on September 27, 2018. This work was supported in part by the NASA Living With a Star Space Environment Testbed Program

M. A. Xapsos is with the NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA (e-mail: michael.a.xapsos@nasa.gov).

A. Big Bang Nucleosynthesis

A tiny fraction of a second after the Big Bang it is theorized that elementary particles called quarks existed. There are 6 types of quarks – up, down, top, bottom, strange and charm. The most stable of these are the up and down quarks, which are the building blocks of nucleons. At times on the order of microseconds after the Big Bang the early universe had expanded and cooled enough to allow quarks to come together and form stable nucleons. Two up quarks and one down quark form a proton while two down and one up quark form a neutron. Electrons, which are known to be particles with no internal structure, also existed a tiny fraction of a second after the Big Bang along with other elementary particles and energy in the form of light. Continued expansion and cooling allowed protons and neutrons to coalesce into simple nuclei. At an age of about 380,000 years the universe had cooled enough to allow electrons to orbit nuclei and form simple atoms, mainly hydrogen and helium. This portion of the timeline is shown in Fig.2.

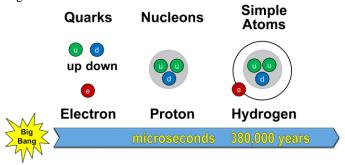


Fig 2. Timeline for the first 380,000 years after the Big Bang.

B. Stellar Nucleosynthesis

The formation of the elements in the Periodic Table is a complex subject and there can be more than one pathway to the synthesis of an element. The purpose of the next two sections is not to exhaustively describe this for each element but to simply give a general description of elemental origins so they can ultimately be connected to the radiation effects they cause.

Over a long period of time on the order of hundreds of millions of years, the elements created after the Big Bang, primarily hydrogen, began accumulating into gaseous structures such as the iconic image shown in Fig.3 taken by the Hubble Space Telescope and known as the "Pillars of Creation". These features of the Eagle Nebula are about 4 to 5 light years in their largest dimension. A star will be born within these structures when the density of hydrogen atoms is high enough to start fusing. It is believed this is how the first stars formed.

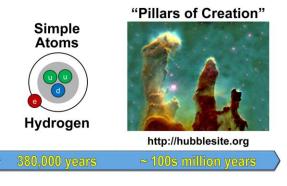


Fig. 3. Timeline for the formation of the first stars.

At this point in time stars would have consisted almost entirely of hydrogen and helium. The gravitational attraction of the star's enormous mass is balanced by the energy release of fusion reactions to form helium, and keeps the star from collapsing in on itself. When the hydrogen is mostly used up, the star begins to contract. This raises the temperature of the core and if the star is large enough (much larger than our sun) helium begins to fuse and additional energy is released to balance the gravitational force. Thus, during the lifetime of large stars a chain of nuclear fusion reactions starting with hydrogen and helium produce elements from carbon to iron in the star's core. Iron is the element with the highest binding energy in the Periodic Table and is therefore the most stable. When the star's core is entirely iron, fusion is no longer possible because the reaction requires energy to be provided rather than resulting in its release. The star's life is then over. It implodes and becomes a supernova as described in the next section. This production of the elements from C to Fe was first proposed by Hoyle [3], [7].

C. Extreme Event Nucleosynthesis

There are two basic conditions that are required for the production of ultra-heavy elements, i.e., those heavier than iron. The first is that there must be enormous energy available in order to overcome the unfavorable energetics of forming these ultra-heavy elements from lighter elements. The second is that there must be an abundance of neutrons available, which is seen by examining the excess of neutrons relative to protons in the nuclei of the ultra-heavy elements in the Periodic Table. There are few known processes in the universe where this could occur. The two most likely happen after the active lifetimes of large stars. One is due to a supernova explosion, which is initiated when a star's fuel is used up and the core consists entirely of iron. With no remaining energy to support itself against gravity, the star collapses. Protons and electrons are crushed together to form neutrons and there is a tremendous release of energy from the collapse making the production of the ultra-heavy elements possible. A second process is the collision/merger of two neutron stars, observed for the first time August 17, 2017 [8]. A neutron star is the remnant of a large star after a supernova explosion that has collapsed to the density of nuclear material and consists mainly of neutrons. Visible light was detected from this event and gave evidence that ultra-heavy elements such as platinum and gold were formed in significant amounts. This led

some scientists to postulate it could be the dominant process for formation of ultra-heavy elements.

D. Abundances and Radiation Effects of the Elements

With that general background on the origin of elements, their abundances are now examined. Fig.4 presents the solar abundances of elements in the Periodic Table as a function of mass number. This generally represents the elemental abundances of the solar system [9]. Protons and alpha particles existed shortly after the Big Bang so it is not surprising that the elements H and He are the most abundant. The elements ranging from C to Fe are synthesized in stars larger than the sun in nuclear chain reactions. They are therefore less abundant than the lighter elements H and He. Since the sun ejects these heavy elements during solar particle events but cannot synthesize them, this has the interesting consequence that these heavy elements originated in previous generation stars. Finally, note the rapid decline of the elemental abundances beyond Fe. These ultra-heavy elements are likely only produced in the rare explosive processes discussed in section C.

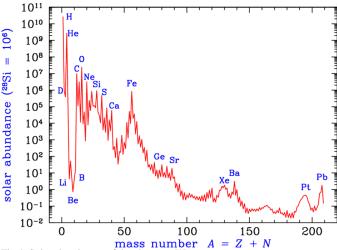


Fig.4. Solar abundances of the elements [9].

A Periodic Table of Radiation Effects can now be constructed that shows the different effects these radiations produce. This is shown in Fig.5 in which the effects are color coded. The blue color indicates that the radiation generally produces total dose effects, including both Total Ionizing Dose (TID) and Total Non-Ionizing Dose (TNID). A green color indicates Single

Event Effects (SEE) and the lavender color indicates charging effects. The table is geared toward radiation effects so electrons and neutrons are included alongside protons. The most abundant radiations, electrons and protons, are largely responsible for cumulative total dose effects that require large numbers of particle strikes in devices. The less abundant alpha particles can contribute to total dose effects to a limited extent as can neutrons. In space neutrons are produced primarily by interactions of protons with spacecraft materials, planetary atmospheres and planetary soils. Due to their large numbers, electrons are mainly responsible for charging, another cumulative effect. The heavy elements C through Fe are not abundant enough to contribute significantly to these cumulative effects but they are important for SEE. Beyond the Fe, Co, Ni group the elemental abundances and therefore the particle radiation fluxes in space are very low. This is shown in the figure by shading only a small portion of the elemental box green. It can, however, be important to consider their effects for high confidence level applications such as destructive or critical SEE. The three remaining elements that have not yet been discussed, Li, Be and B are relatively rare and produced mainly by fragmentation of heavier galactic cosmic ray ions. This will be shown later in Fig.10.

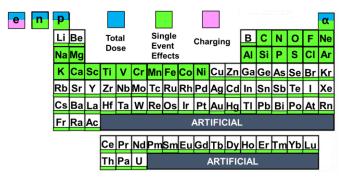


Fig.5. Periodic Table of Radiation Effects.

III. TRANSITION TO MODERN TIMES

Now that the origin of radiations in the early universe has been discussed along with their abundances and effects on electronic devices, let's move on to the transition period to modern times when the era of space climatology emerged. A timeline of this era is shown in Fig.6.

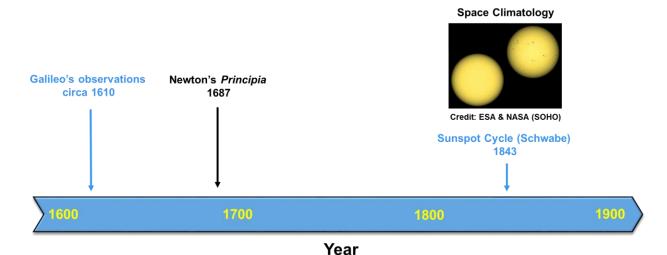


Fig. 6. Timeline for the emergence of space climatology.

The telescope was invented in 1608 by the Dutch lens maker Hans Lippershey. Shortly thereafter Galileo Galilei improved its magnification and was the first to use a telescope to study space. These studies could be regarded as the start of modern experimental astronomy. He was one of the first to observe sunspots through a telescope and hypothesized they were part of the solar surface as opposed to objects orbiting the sun.

Today sunspots are regarded as a proxy to solar activity. They are active regions having twisted magnetic fields that inhibit local convection. The region is therefore cooler than its surrounding and appears darker when viewed in visible light. The connection of sunspots to solar activity can be seen in Fig.7, which compares two images taken at the same time, one in visible light and the other in ultraviolet (uv) light. The bright areas in the uv image indicate high activity and correspond almost exactly to the areas of sunspots, as seen in visible light.

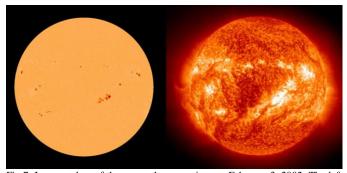


Fig.7. Images taken of the sun at the same time on February 3, 2002. The left image is in visible light and the right image is in ultraviolet light. Credit: ESA and NASA (SOHO).

Later in the century, in 1687, the first edition of Isaac Newton's monumental *Principia Mathematica* was published. This historical book mathematically described the laws of motion and the universal law of gravitation. Significantly, it showed that the law of gravitation could be used to derive Kepler's empirical laws of planetary motion. This could be viewed as the beginning of modern theoretical astronomy.

However, there was something troubling about the orbit of the planet Mercury that could not be entirely explained by Newton's law of gravitation. In particular the observed orbital precession did not exactly match the calculations. It was suspected that there may be an unknown planet inside of Mercury's orbit that was perturbing it and would be difficult to detect due to its proximity to the sun. In 1826 Heinrich Schwabe began a study in an attempt to understand this. It turned out the puzzle of Mercury's orbit would not be solved until Einstein applied his model of general relativity to it. However, Schwabe became interested in studying sunspots, and 17 years of meticulous studies later he published a paper describing the sunspot cycle. The era of modern space climatology began to take form in 1843 with this discovery.

Today it is recognized that understanding the sun's cyclical activity is an important aspect of modeling the space radiation environment. The record of sunspots dates back to the early 1600s, while numbering of sunspot cycles begins in 1749 with cycle number 1. Currently sunspot cycle 24 is nearly over. The sunspot cycle is approximately 11 years long but this can vary as can the activity level from one cycle to the next. This 11-year period is often considered to consist of 7 years of solar maximum when activity levels are high and 4 years of solar minimum when activity levels are low. In reality the transition between solar maximum and solar minimum is a continuous one but it is sometimes considered to be abrupt for convenience. The last 6 solar cycles of sunspot numbers are shown in Fig.8 [10].

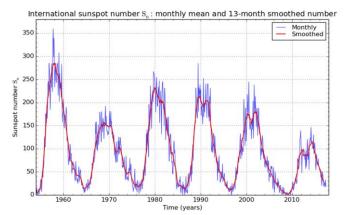


Fig.8. Solar cycles 19 – 24. Credit: WDC-SILSO, Royal Observatory of Belgium

Another common indicator of the approximately 11-year periodic solar activity is the solar 10.7 cm radio flux ($F_{10.7}$). This closely tracks the sunspot cycle. The record of $F_{10.7}$ began part way through solar cycle 18 in the year 1947.

The sun's influence on space climatology and space weather is pervasive. It is a source of solar protons and heavy ions, as well as trapped protons and electrons. Furthermore, it modulates these trapped particle fluxes as well as galactic cosmic ray fluxes entering our solar system. Galactic cosmic ray fluxes interact with the atmosphere and are the main source of atmospheric neutrons. These neutrons decay to protons and electrons and supply additional flux to the trapped particle population. The sun is either a source or a modulator of all energetic particle radiations in the near-Earth region. These radiations are discussed next in section IV.

IV. MODERN TIMES - SPACE CLIMATOLOGY

The prior section brings us to the beginning of the era of space climatology. This modern era is shown by the timeline in Fig.9.

It is marked by the discovery of the energetic space radiations and their impact on electronics that are used in spacecraft.

Galactic cosmic rays (GCR) were discovered in 1912 by Victor Hess using electroscopes in a balloon experiment at altitudes between 13,000 and 16,000 feet [11]. The penetrating power of this radiation was clear to Hess from these initial observations. It would turn out to be many orders of magnitude more energetic than particles emitted from radioactive materials, which were known at the time. Solar energetic particles were subsequently discovered by Scott Forbush in 1942 [12]. It had been known for nearly 100 years prior that bursts of electromagnetic radiation could be emitted by the sun and have an effect on Earth communications but this was the first indication that energetic particles could also be a problem. Shortly after that the transistor was invented at Bell Telephone Laboratories in William Shockley's group [13]. The launch of the first satellites, Sputnik I and II, by the Soviet Union in 1957 was followed by the launch of Explorer I and III by the United States in 1958. The Explorer satellites led to the discovery of the Van Allen Belts by James Van Allen [11]. Researchers began to analyze the effects of radiation on bipolar transistors, primarily for United States Department of Defense applications. With the beginning of this work the first Nuclear and Space Radiation Effects Conference (NSREC) was held at the University of Washington in 1964 [13], [14]. By 1975 SEU was reported to occur in spacecraft [15], although it was apparently observed three years prior to this by the same group for classified work [16]. The NSREC was continuing to expand and held its first Short Course in 1980 [14]. The Radiation and its Effects on Components and Systems (RADECS) Conference began in 1989. By 1991 the NSREC had recognized the importance of space environment research and began to include an environment session in the conference. Twenty-seven more years along the timeline brings us to the most recent conference in 2018.

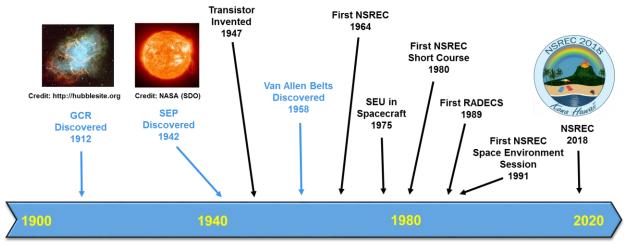


Fig.9. Time line for modern space climatology from the year 1900 to the present and its relation to major radiation effects conferences.

From this perspective, the following sections discuss modern space climatology emphasizing the energetic radiations shown in Fig.9. Section A begins with a definition of space climatology and space weather. Sections B, C and D discuss properties, models and current issues for galactic cosmic rays, solar particle events and the Van Allen Belts, respectively. Section E then applies the models and shows examples of TID and SEU environments, including the effect of shielding. Depending on which models are used for TID analysis, radiation specifications can be based on either radiation design margin (RDM) or confidence level. These approaches are also reviewed and compared.

A. Definition of Space Climatology and Space Weather

It is not difficult to find long and complex definitions of space climatology and space weather, especially the latter. These terms are generally defined here as the condition of the upper atmosphere and beyond, more specifically the conditions of the space radiation environment for a given location or orbit. For space weather the time period of interest is the short term, e.g., daily conditions, whereas for space climatology the time period is an extended one such as a mission duration. This has implications for model use in the design and operation of spacecraft. Climatological models are used during the mission concept, planning and design phases of spacecraft in order to minimize mission risk. These are generally statistical models that allow risk projection well into the future over the mission duration. Space weather models are used during the launch and operation phases in order to manage residual risk. They are generally nowcast or short-term forecast models of the radiation environment. The following discussion deals mainly with the climatological aspects of the radiation environment.

B. Galactic Cosmic Rays

1) Properties

Galactic cosmic rays (GCR) are high-energy charged particles that originate outside of our solar system. Some general characteristics are listed in Table 1. They are composed mainly of hadrons, the abundances of which are listed in the Table [17]. A more detailed look at the relative abundances compared to solar abundances is shown in Fig.10. The two abundance distributions are generally similar. The main differences result from fragmentation of GCR ions that tend to smooth out the GCR distribution relative to the solar abundances. This is particularly noticeable for the elements Li, Be and B (Z=3 to 5), which are produced mainly from fragmentation of heavier GCR ions such as C and O in occasional collisions with interstellar hydrogen or helium. All naturally occurring elements in the Periodic Table (up through uranium) are present in GCR, although there is a steep drop-off for atomic numbers higher than iron (Z=26).

TABLE I
CHARACTERISTICS OF GALACTIC COSMIC RAYS.

Hadron Composition	Energies	Flux	Radiation Effects
90% protons 9% alphas 1% heavier ions	Up to ~10 ²⁰ eV	1 to 10 cm ⁻² s ⁻¹	SEE

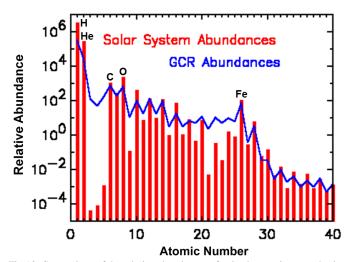


Fig.10. Comparison of the relative abundances of galactic cosmic ray and solar system ions. Credit: NASA (https://imagine.gsfc.nasa.gov/).

The amazing variation in energy range of GCRs is shown in Fig.11 based on data compiled by Swordy [18]. Energies can be up to the order of 10^{20} eV, although the acceleration mechanisms to reach such extreme energies are not understood. GCR with energies less than about 10¹⁵ eV are generally attributed to supernova explosions within the Milky Way galaxy and more recently neutron star collisions. These fluxes, on the order of a few ions cm⁻²s⁻¹, are significant for SEE. On the other hand the origins of GCR with energies greater than about 1015 eV are largely unknown. It is often stated that the origin of GCR with energies beyond 10¹⁸ eV is extragalactic [19]. A theoretical limit, the Greisen-Zatsepin-Kuzmin (GZK) limit [20] shown in Fig.11, is an upper limit in energy that a GCR proton cannot exceed if it travels a long distance as would occur if it originated in another galaxy. The reasoning is that the proton would interact with the omnipresent Cosmic Microwave Background (CMB) and lose energy to it. The CMB is residual electromagnetic radiation left from the Big Bang [4]. However, this limit appears to have been exceeded many times and is a source of controversy. This illustrates how little is known about these ultra-high energy particles. Fortunately particle fluxes at these extreme energies are so low that they are not significant for SEE.

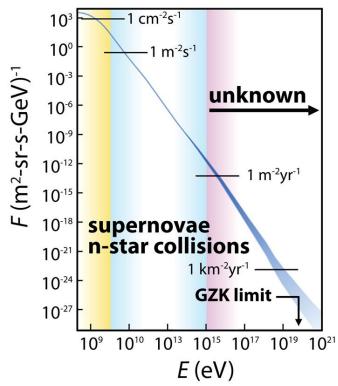


Fig.11. Differential flux vs. energy for GCRs [18].

2) Models

There has been a long-time interest in developing models of GCR fluxes to aid in design of electronic systems, which began with James H. Adams' development of the GCR model in the Cosmic Ray Effects in Microelectronics 1986 (CREME86) code [21], [22]. This section focuses on two popular models used for calculating SEE rates in space, although there are other interesting models that are available [23]-[26].

One model is that developed by R. Nymmik of Moscow State University (MSU) [27]. It is currently used in CREME96 [28], the updated version of the 1986 suite of codes hosted on the Vanderbilt University website, https://creme.isde.vanderbilt.edu. The other is the Badhwar-O'Neill model developed at the NASA Johnson Space Center [29], [30]. The two models are based on the idea that the energy spectra of GCR ions outside of the heliosphere is given by Local Interstellar Spectra (LIS). A diffusion-convection theory of solar modulation is used to describe the GCR penetration into the heliosphere and transport to near Earth at 1 Astronomical Unit (AU). This solar modulation is used as a basis to describe the variation of GCR energy spectra over the solar cycle, as shown in Fig.12 for iron ions [30]. Both models currently use sunspot numbers as input for solar activity leading to solar modulation. The implementation, however, is different. The MSU model uses multi-parameter, semi-empirical fits to relate the sunspot numbers to GCR intensity. The Badhwar and O'Neill model solves the Fokker-Planck differential equation for the solar modulation parameter as a function of sunspot number. This implementation and various sources of GCR data are described by O'Neill in [17]. Fig.13 shows a comparison of the two models with data. Although both of these models are

successfully used for SEE applications, the Badhwar-O'Neill model incorporates a broader and more recent data base and is used extensively by the medical community.

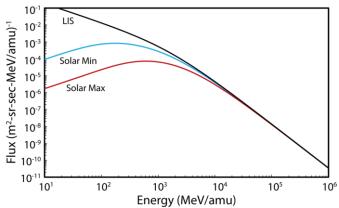


Fig.12. Illustration of solar modulation for GCR iron ions [30].

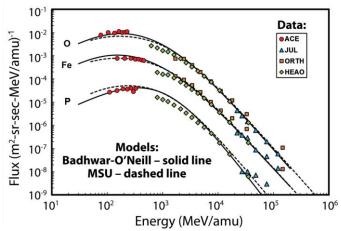


Fig.13. Comparison of the MSU [27] and Badhwar-O'Neill 2014 [30] models with data from various sources.

For SEE analyses energy spectra such as those shown in Figs.12 and 13 are often converted to Linear Energy Transfer (LET) spectra. Integral LET spectra for solar maximum and solar minimum conditions are shown in Fig.14. These spectra include all elements from protons up through uranium. The ordinate gives the flux of particles that have an LET greater than the corresponding value shown on the abscissa. Given the dimensions of the device sensitive volume this allows the flux of particles that deposit a given amount of charge or greater, and therefore an SEE rate, to be calculated in a simple approximation [31]. For some modern devices, however, the LET parameter may have shortcomings for calculating SEE rates in space [32].

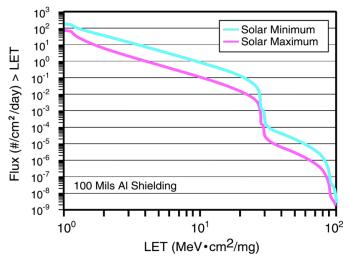


Fig.14. GCR LET spectra for solar maximum and solar minimum conditions. From CREME96: https://creme.isde.vanderbilt.edu.

The LET spectra shown in Fig.14 are applicable to geosynchronous missions where there is no significant geomagnetic attenuation. The Earth's magnetic field, however, needs to be accounted for at altitudes lower than geosynchronous. Due to the basic interaction of charged particles with a magnetic field, the particles tend to follow the geomagnetic field lines. Near the equator the field lines tend to be parallel to the Earth's surface. Thus all but the most energetic ions are deflected away. In the polar regions the field lines tend to point toward or away from the Earth's surface, which allows much deeper penetration of the incident ions. The effect of the geomagnetic field on incident GCR LET spectra can be calculated in CREME96.

3) Current Issue: Elevated Fluxes during "Deep" and Prolonged Solar Minima

In previous sections the solar modulation of GCR flux has been described. Lower solar activity levels result in higher GCR fluxes. As shown in Fig.8, the most recent complete solar minimum period between cycles 23 and 24, approximately centered at the year 2009, was quite "deep" and prolonged. In fact it was the deepest solar minimum of the space era and resulted in the highest GCR fluxes observed in this era. This has raised concerns about solar cycles trending toward this behavior and how elevated the GCR fluxes could get in the future [26].

One of the advantages of basing the solar modulation on sunspot numbers is that there is a continuous detailed record of sunspots dating back to 1749. This allows the GCR fluxes to be estimated over this period of time that covers 24 solar cycles. An example is shown in Fig.15 for 80 MeV/amu oxygen [30]. It is seen that over this extended period of time the peak flux values for each solar minimum have not varied by more than about 30%. The recent deepest minimum of the space era in 2009 can be compared to the deepest since 1750, which occurred in 1810. It can also be compared to the 1977 solar minimum that is used as a default in CREME96, seen to be

more of a typical solar minimum. Given this type of variation, the GCR models should be adequate for design of electronic systems as long as appropriate consideration is given to the recent trend in GCR fluxes. The 1977 period could be used for "typical" specifications while the 2009 period could be used for "worst case" specifications.

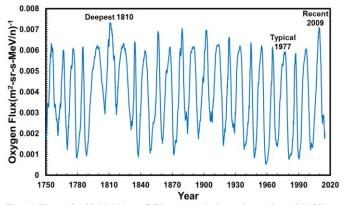


Fig.15. Fluxes for 80 MeV/amu GCR oxygen during solar cycles 1-24 [30].

C. Solar Particle Events

1) Properties

Fig.16 is a schematic showing solar energetic particle production. These particles are likely energized by magnetic reconnection, a process that converts stored magnetic energy to kinetic energy, thermal energy and particle acceleration. The figure illustrates the difference between the terms solar flare and coronal mass ejection (CME), which are often used colloquially and interchangeably. One type of emission process of the sun is electromagnetic in nature. Irradiance is a comparatively low intensity emission that varies with the solar cycle. By contrast a solar flare is a burst of electromagnetic radiation characterized by a sudden brightening as shown on the right-hand side of the figure. It turns out that solar flares are often, but not always, accompanied by solar energetic particles. The second general type of the sun's emission process is mass emission. The solar wind is a steady stream of plasma (a gas of free ions and electrons) consisting of protons, alpha particles and electrons in the eV to keV energy range and has an embedded magnetic field. A CME is a large eruption of plasma that carries an embedded magnetic field stronger than that of the solar wind. A CME image is shown on the left-hand side of Fig.16. A CME that has a high enough speed will drive a shock wave that further accelerates particles. This is analogous to an airplane creating a shock wave if it exceeds the speed of sound. If the CME driven shock reaches Earth it can cause geomagnetic disturbances. CMEs are also a source of solar energetic particles, as shown in the figure. Further properties of solar flares and CMEs are discussed in a review article by Reames giving a detailed account of the many observed differences [33].

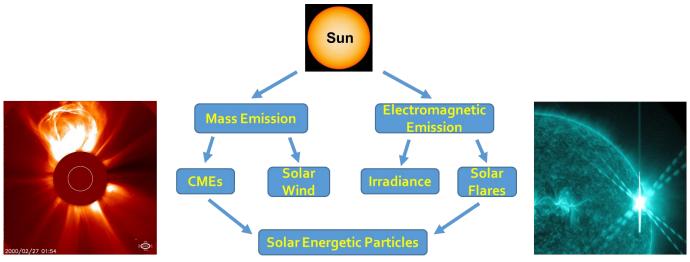


Fig.16. Solar energetic particle production. Image credits: NASA and ESA.

CMEs are the type of solar particle events that are responsible for the major disturbances in interplanetary space and the major geomagnetic disturbances at Earth when they impact the magnetosphere. Therefore the focus here is mainly on CMEs. The mass of magnetized plasma ejected in an extreme CME can be on the order of 10^{17} grams. CME speeds can vary from about 50 to 2500 km/s with an average speed of around 450 km/s. It can take anywhere from hours to a few days to reach the Earth. Table 2 lists some further general characteristics of CMEs.

I ABLE II			
CHARAC	TERISTIC	S OF (MES

Hadron Composition	Energies	Integral Fluence (>10 MeV/amu)	Peak Flux (>10 MeV/amu)	Radiation Effects
96.4% protons 3.5% alphas ~0.1% heavier ions	Up to ~GeV/amu	Up to ~10 ¹⁰ cm ⁻²	Up to ~10 ⁶ cm ⁻² s ⁻¹	TID TNID SEE

All naturally occurring chemical elements ranging from protons to uranium are present in solar particle events. They can cause permanent damage such as TID and TNID that is due mainly to protons with a small contribution from alpha particles. Heavy ions are not abundant enough to significantly contribute to these cumulative effects. An extreme CME can deposit a few krad(Si) of dose behind 100 mils (2.5 mm) of aluminum shielding. Even though the heavy ion content is a small percentage of the total it cannot be ignored. Heavy ions, as well as protons and alpha particles in solar particle events, can cause both transient and permanent SEE.

The solar cycle dependence of both solar particle event and GCR fluxes is shown in Fig.17 in which the differential flux of all carbon, nitrogen and oxygen ions in the 25 to 250 MeV/nucleon range is shown during the time period 1974 to 1996 [34]. Superimposed in blue are the sunspot numbers during that time period illustrating the activity of solar cycles 21 and 22. The solar particle event fluxes are seen as the sharp spikes in the figure, which indicate the statistical and periodic nature of these events. Note that the events occur with greater

frequency during the solar maximum time periods. They are superimposed on the low level background flux of GCR approximately on the order of 10⁻⁴ (cm²-s-sr-MeV/n)⁻¹ that slowly varies with the solar cycle as discussed in section IV.B. The GCR fluxes are approximately anti-correlated with the solar cycle.

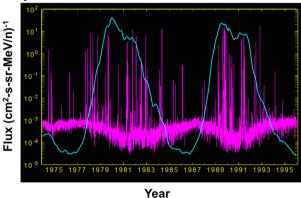


Fig.17. Differential flux of 25-250 MeV/nucleon C, N and O measured with IMP-8 spacecraft instrumentation between 1974 and 1996. Superimposed in blue are the sunspot numbers from solar cycles 21 and 22 [34].

2) Models

There have been a number of climatological models for solar particle events developed over the years for spacecraft design. Due to the stochastic nature of events confidence level based approaches have often been used to allow the spacecraft designer to evaluate risk-cost-performance trades for electronic parts [35]. The first such model was King's analysis of solar cycle 20 data [36]. One "anomalously large" event, the wellknown August 1972 event dominated the fluence of this cycle so the model was often used to predict the number of such events expected for a given mission length at a specified confidence level [37]. Using additional data a model from JPL emerged in which Feynman et al. showed the distribution of solar proton event magnitudes is continuous between small events and extremely large events such as that of August 1972 [38]. The JPL model is a Monte Carlo based approach [39]. Other probabilistic models followed based on more recent and extensive data. A model from Moscow State University

introduced the full solar cycle dependence by assuming the event numbers are directly proportional to sunspot numbers [40]. The NASA Emission of Solar Protons (ESP) and Prediction of Solar Particle Yields for Characterization of Integrated Circuits (PSYCHIC) models are based on Maximum Entropy Theory and Extreme Value Statistics [41], [42]. The European Space Agency (ESA) Solar Accumulated and Peak Proton and Heavy Ion Radiation Environment (SAPPHIRE) model using the Virtual Timelines method invokes a Levy waiting time distribution [43] and continues to evolve [44]. A new model is also under development that updated the data base of the ESP model [45] and incorporates a new approach to solar cycle dependence of event numbers [46]. A summary of a number of statistical models is given in [47].

a) Cumulative Fluence Models

Models for cumulative solar proton fluence are useful for evaluating damage due to TID and TNID. They can also be used to determine long-term SEE rates for devices vulnerable to protons. This can be helpful for estimating the probability of a destructive SEE over the course of a mission.

The most straight forward cumulative solar proton fluence model is ESP/PSYCHIC. It is based on measured annual proton fluences during solar maximum. An advantage of this approach is that it is not necessary to know specific details about the time series of events such as the waiting time distribution, for which there are different approaches [43], [48]. It is implicit in the data. This is shown in Fig.18 where total fluences from 21 solar maximum years are shown as points for 3 different energies [42]. This graph is shown on lognormal probability paper on which a lognormal distribution appears as a straight line. The fitted distributions can then be used to obtain the lognormal parameters for N-year distributions. An example result is shown in Fig.19 for 10 years in geostationary Earth orbit (GEO). As is the case for all the climatological models discussed above the output spectra are obtained at a user specified level of confidence for the mission duration. The confidence level represents the probability that the calculated spectrum will not be exceeded during the mission.

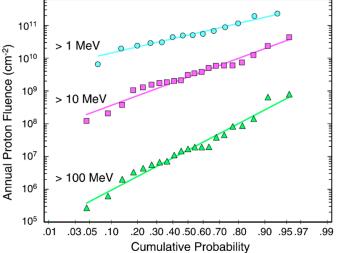


Fig.18. Cumulative annual solar proton event fluences during solar maximum periods for 3 solar cycles plotted on lognormal probability paper. The straight lines are fits to the data [42].

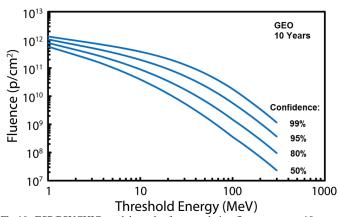


Fig.19. ESP/PSYCHIC model results for cumulative fluence over a 10 year period including 7 years during solar maximum in GEO. Energy spectra are shown for confidence levels ranging from 50 to 99%.

Comparison of the JPL, ESP/PSYCHIC and SAPPHIRE models is shown in Fig.20 for a 2-year solar maximum period at the 95% confidence level [44]. The JPL and SAPPHIRE models are both Monte Carlo based approaches. It is seen that the largest differences between models occurs at high proton energies. A new statistical model, the Ground Level Enhancement (GLE) model, is also shown [49]. It is based on randomly sampling parameters from fitted proton spectra based on neutron monitor data analyzed by Tylka [50]. This model makes for an interesting comparison because it is based on data that are independent of the other models, which are based on space data.

During a space mission the solar particle event fluence that accumulates during the solar maximum time period is often the dominant contribution to the total fluence. A commonly used definition of the solar maximum period is the 7-year period that spans a starting point 2.5 years before and an ending point 4.5 years after a time defined by the maximum sunspot number in the cycle [39]. The remainder of the cycle is considered solar minimum. Fluences that accumulate during solar minimum can be found in a number of publications [40], [43], [51].

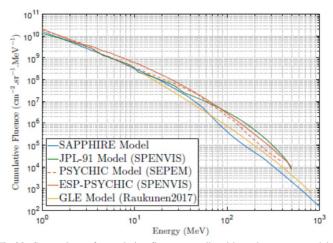


Fig.20. Comparison of cumulative fluences predicted by solar proton models for 2 years during solar maximum at the 95% confidence level [44].

Solar heavy ion models are not as advanced as solar proton models primarily because the data are much more limited. A description of uncertainty propagation is given by Truscott [52]. For microelectronics applications they are needed to assess SEE. The ESP/PSYCHIC cumulative fluence model for solar heavy ions is described in [53]. Due to the limited data available the probabilistic model is restricted to long-term (approximately 1 year or more) cumulative fluences and not worst case events. The approach taken was to normalize the alpha particle fluxes relative to the proton fluxes based on measurements of the Interplanetary Monitoring Platform-8 (IMP-8) and Geostationary Operational Environmental Satellites (GOES) instrumentation during the time period 1973 to 2001. The energy spectra of major heavy elements – C, N, O, Ne, Mg, Si, S and Fe - are normalized relative to the alpha particle energy spectra using measurements of the Solar Isotope Spectrometer (SIS) onboard the Advanced Composition Explorer (ACE) spacecraft for the 7 year solar maximum period of solar cycle 23. Remaining naturally occurring minor heavy elements in the Periodic Table are determined from measurements made by the International Sun-Earth Explorer-3 (ISEE-3) spacecraft or an abundance model. Example results for 2 years during solar maximum at the 50% (median) confidence level behind 100 mils of aluminum shielding are shown in Fig.21.

LET spectra used for SEE analysis have a somewhat unusual shape. Fig.21 demonstrates that this shape is due to the elemental contributions. Interestingly, this can be related back to the nucleosynthesis of elements in the Periodic Table described previously. The maximum LET that an ion can have in a material is called the Bragg Peak. Therefore on an LET plot such as Fig.21, the fluence an ion contributes to the total LET spectrum drops sharply to zero at the Bragg Peak. For example, in silicon this occurs for protons at an LET less than 1. It is seen that protons and alphas produced in Big Bang nucleosynthesis contribute LET values to the total LET spectrum up to about 1 MeV-cm²/mg. Elements formed in stellar nucleosynthesis contribute up to an LET of about 29 MeV-cm²/mg, while elements formed from extreme event nucleosynthesis contribute over the full range of LET values.

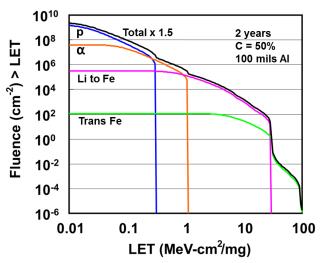


Fig. 21. LET spectra for cumulative fluences of solar protons and heavy ions for 2 solar maximum years at the 50% confidence level behind 100 mils of aluminum shielding. The total fluence is multiplied by a factor of 1.5 for clarity. Also shown are the contributions to the total LET spectrum due to protons, alphas, Z = 3 (Li) to 26 (Fe), and Z = 27 to 92 (trans Fe) [53].

b) Worst Case Event Models

Another consideration for spacecraft design is the worst case solar particle event that occurs during a mission. It is important to know how high the SEE rate can get during such an event. The most straight forward approach is to design to a wellknown large event. The radiation effects community most often uses the October 1989 event while the medical community often uses the August 1972 event. Hypothetical events such as a composite of the February 1956 and August 1972 events have been proposed [54]. There are also event classification schemes in which the magnitudes range from "small" to "extremely large" that may be useful [55], [56]. At one time the so-called Carrington Event of 1859 was widely quoted as being a worst case event over the last 400 years based on the nitrate record in polar ice cores [57]. However, the glaciology and atmospheric communities disagreed with this interpretation, as the Carrington Event was not observed in most ice cores [58]. Although this event resulted in a severe geomagnetic storm it is now recognized that the solar proton fluences for this event are not reliably known.

The commonly used October 1989 event is provided for use as a worst case scenario in the CREME96 suite of codes at three levels of solar particle event intensity [28]. They are the "worst week", "worst day" and "peak flux" models based on proton measurements from the GOES-6 and -7 satellites and heavy ion measurements from the University of Chicago Cosmic Ray Telescope on the IMP-8 satellite. The peak flux model covers the highest 5-minute intensity during the event. Comparisons of these models have been made with data taken by the Cosmic Radiation Environment Dosimetry (CREDO) Experiment onboard the Microelectronics and Photonics Test Bed (MPTB) during a very active period of solar cycle 23 [59]. The data show that 3 major events during this time period approximately equaled the "worst day" model. An example of this is shown by the LET spectra in Fig.22.

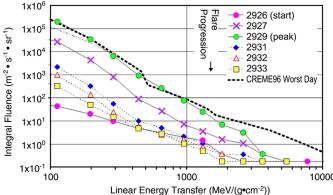


Fig.22. Comparison of a major solar heavy ion event that occurred in November 2001 with the CREME96 "worst day" model. The progression of daily intensities is indicated with the peak intensity occurring on day 2929 of the mission [59]. Note the LET is in units of g⁻¹ and values are therefore a factor of 1000 larger compared to other figures in this paper.

Another approach to worst case event models is to use statistical methods. The idea is analogous to cumulative fluence models where a worst case event would be calculated for a given confidence level and mission duration. There have been several methods proposed for this including extreme value statistics [41], [60], semi-empirical approaches [40], and Monte Carlo calculations [43], [44].

The field of extreme value statistics is one with both an extensive theoretical and applied history. It has frequently been used to describe extreme environmental phenomena such as floods, earthquakes and high wind gusts [61]-[63]. It has turned out to be a useful radiation effects tool when applied to large device arrays such as high density memories [64], gate oxides [65], [66] and sensors [67], [68]. Considering its broad applicability in the radiation effects area, a brief description of the salient features is given here.

Extreme value statistics focuses on the largest or smallest values taken on by a distribution. Thus, the "tails" of the distribution are the most significant. Here the focus is obtaining the extreme value distribution of a random process when information is known about the initial distribution.

Suppose that a random variable, x, is described by a probability density p(x) and corresponding cumulative distribution P(x). These are referred to as the initial distributions. Fig.23 shows an initial probability density for a Gaussian distribution [67]. If a number of observations, n, are made of this random variable there will be a largest value within the n observations. The largest value is also a random variable and therefore has its own probability distribution. This is called the extreme value distribution of largest or maximum values. Examples of these distributions are shown in the figure for n-values of 10 and 100. Note that as the number of observations increases the extreme value distribution shifts to larger values and becomes more sharply defined. The extreme value distributions can be calculated exactly for any initial distribution. The probability density for maximum values is

$$f_{max}(x;n) = n[P(x)]^{n-1}p(x)$$
 (1)

The corresponding cumulative distribution of maximum values is

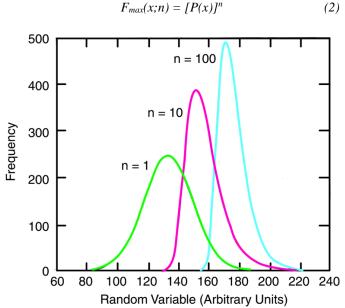


Fig.23. Extreme value distributions for *n*-values of 10 and 100 compared to the initial Gaussian distribution [67].

As n becomes large, the exact distribution of extremes may approach a limiting form called the asymptotic extreme value distribution. If the form of the initial distribution is not known but sufficient experimental data are available, the data can be used to derive the asymptotic extreme value distribution. There are 3 types of asymptotic extreme value distributions of maximum values – the type I or Gumbel, type II and type III distributions [61]-[63].

With this background the problem of worst case event models for solar particle events is now considered. In order to determine a worst case event probabilistically, either by extreme value theory or by Monte Carlo simulation, information about the initial distribution must be known. The first description of the complete initial distribution was determined using Maximum Entropy Theory [41]. This is a mathematical procedure for making an optimal selection of a probability distribution when the data are incomplete by avoiding the arbitrary introduction or assumption of information that is not available. It can therefore be argued that this is the best choice that can be made using the available data [69], [70]. The result is a truncated power law in the distribution of event magnitudes, shown in Fig.24 for the case of > 30 MeV proton event fluences. This describes the essential features of the distribution. The smaller event sizes follow a power law and there is a rapid falloff for very large magnitude events. Note that the figure also shows the October 1989 event used as a worst case situation in CREME96. A variant of this distribution has subsequently been proposed [71] but there is no significant improvement in the overall fit to data [44], resulting in the use of both functional forms. However, it can be argued that the sharp drop-off for large event sizes shown in the data of reference 44 indicates a truncated power law is more appropriate.

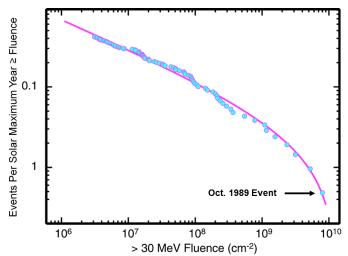


Fig.24. Comparison of the truncated power law distribution to 3 solar cycles of data during solar maximum [41].

Given the initial distribution of event magnitudes such as the one shown in Fig.24, the extreme value method can be applied to obtain a worst case event over the course of a mission. However, this situation is a little more complex. The number of events that occur during a mission is variable, so this must be taken into account. If it is assumed the event occurrence is a Poisson process [39] the worst case distribution can be calculated according to [72], [73]. Example results are shown in Fig.25 for > 30 MeV proton event fluences [41]. The probability of exceeding the fluence shown on the y-axis equals one minus the confidence level.

An interesting feature of this model is the "design limit" shown in the figure. A reasonable interpretation is that it is the best value that can be determined for the largest possible event fluence, given limited data. It is not a physical limit but is an objectively determined engineering guideline for use in limiting design costs.

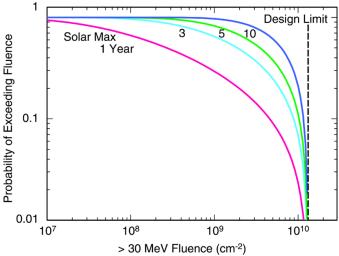


Fig.25. Probability for worst-case event proton fluences expected during the indicated time periods during solar maximum [41].

Other worst case statistical models have been developed for both solar proton event fluences and peak fluxes [40], [43], [44], [60], [72]. There are worst case event statistical models for heavy ions but these are limited due to the lack of data [40], [74]. There is also a probabilistic model for solar electrons that is part of an interplanetary electron model [75].

3) Current Issue: Use of Statistical Models vs. Worst Case Observations

As seen in the last section there are two types of approaches for evaluating worst case solar particle events. One is to use a worst case observation such as the event that occurred in October 1989, as in CREME96. The other is to use a statistical model to calculate the worst case event that will occur during the mission at a specified level of confidence. Fig.24 illustrates a set of data that can be used for these approaches. This section compares the approaches and discusses the advantages and disadvantages of each.

The worst case observation approach is straight forward. On the other hand, a statistical model uses an entire data base of events and there is much to consider. Events can have very different characteristics in terms of magnitudes (fluence or peak flux), time profile, energy spectra and heavy ion content. The proton and heavy ion characterization of a worst case observation are self-consistent. This is not necessarily true for the worst case statistical model in which the proton and heavy ion fluxes are analyzed independently. For example, fluxes for different particles can peak at separate times, leaving open different approaches to what characterizes the worst case.

An advantageous feature of the statistical model is that it allows the designer to make risk, cost, performance trades when selecting electronic parts. For example, a higher risk can be assumed in return for a higher performance or less expensive part. By comparison, a worst case observation such as the October 1989 event has little flexibility in the design environment, which is quite severe. This can make requirements difficult to meet for higher risk missions such as CubeSats. Thus, considering the type of mission can be important for deciding on an approach.

Lastly, it is worth noting the current state of development of these models. The worst case observation approach has a long history of successful use. Worst case statistical models for solar protons are also successfully used while heavy ion models are a developing area of research.

D.The Van Allen Belts

1) Trapped Particle Motion in the Magnetosphere

The Earth's magnetosphere consists of both an external field due to the solar wind and an internal magnetic field. The internal or geomagnetic field originates primarily from within the Earth and is approximately a dipole field. The solar wind and its embedded magnetic field tends to compress the geomagnetic field. During moderate solar wind conditions, the magnetosphere terminates at roughly 10 Earth radii on the sunward side. During turbulent magnetic storm conditions it can be compressed to about 6 Earth radii. The solar wind generally flows around the geomagnetic field and consequently the magnetosphere stretches out to a distance of possibly 1000 Earth radii in the direction away from the sun.

The geomagnetic field is approximately dipolar for altitudes up to about 4 or 5 Earth radii. It turns out that the trapped particle populations are conveniently mapped in terms of the dipole coordinates approximating the geomagnetic field. This dipole coordinate system is not aligned with the Earth's geographic coordinate system. The axis of the magnetic dipole field is tilted about 11.5 degrees with respect to the geographic North-South axis and its origin is displaced by a distance of more than 500 km from the Earth's geocenter. The standard method is to use McIlwain's (B,L) coordinates [76]. Within this dipole coordinate system, L represents the distance from the origin in the direction of the magnetic equator, expressed in Earth radii. One Earth radius is 6371 km. B is simply the magnetic field strength. It describes how far away from the magnetic equator a point is along a magnetic field line. B-values are a minimum at the magnetic equator and increase as the magnetic poles are approached. Further background information on the magnetosphere and (B.L) coordinates can be found in [73], [77].

The basic motion of a trapped charged particle in the geomagnetic field is shown in Fig.26. Charged particles become trapped because the magnetic field can constrain their motion. The particle spirals around and moves along the magnetic field line. As the particle approaches the polar region the magnetic field strength increases and causes the spiral to tighten. Eventually the field strength is sufficient to force the particle to reverse direction. Thus, the particle is reflected between so called "mirror points" and "conjugate mirror points". Additionally there is a slower longitudinal drift of the path around the Earth that is westward for protons and eastward for electrons. This is caused by the radial gradient in the magnetic field. Once a complete azimuthal rotation is made around the Earth, the resulting toroidal surface that has been traced out is called a drift shell or L-shell. The L-shell parameter indicates magnetic equatorial distance from Earth's center in number of Earth radii and represents the entire drift shell. This provides a convenient global parameterization for a complex population of particles.

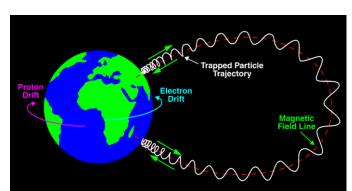


Fig. 26. Motion of a charged trapped particle in the Earth's magnetic field. After E.G. Stassinopoulos [34].

2) Trapped Protons

a) Properties

Some of the characteristics of trapped protons and their radiation effects are summarized in Table 3 and shown in Fig.27. The L-shell range is from slightly more than 1 at the inner edge of the trapped environment out beyond geosynchronous orbits to an L-value of around 10. The atmosphere limits the belt to altitudes above about 200 km. Trapped proton energies extend up to the GeV range. The energetic trapped proton population with energies > 10 MeV is confined to altitudes below 20,000 km, while protons with energies of a few MeV or less are observed at geosynchronous altitudes and beyond. The maximum flux of > 10 MeV protons occurs at an L-value around 1.7 and exceeds 10^5 cm⁻²s⁻¹. Trapped protons can cause TID, TNID and SEE.

TABLE III
TRAPPED PROTON CHARACTERISTICS.

	THE HTED THOTO	TO CHARACTE TERRED TICE	•
L-Shell	Energies	Fluxes*	Radiation
Values	Ellergies	(>10 MeV)	Effects
~1 to 10		II 4	TID
	Up to ~GeV	Up to $\sim 10^5 \text{ cm}^{-2}\text{s}^{-1}$	TNID
		~ 10° CIII -S	SEE

^{*} long-term average

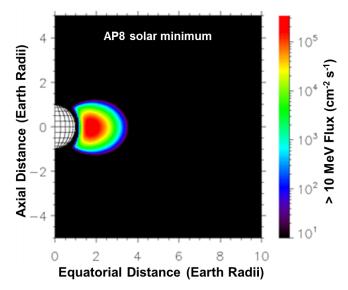


Fig.27. Trapped proton fluxes > 10 MeV mapped in a dipole coordinate system [73].

Trapped proton fluxes in Low Earth Orbit (LEO) are approximately anti-correlated with solar cycle activity. This is most pronounced near the belt's inner edge as shown in Fig.28 [78]. Here $F_{10.7}$, the solar 10.7 cm radio flux, is used as a proxy for solar activity. As solar activity increases the atmosphere expands and causes greater losses of protons to the atmosphere during solar maximum. In addition there is a decreased production of protons in the atmosphere during solar maximum coming from the Cosmic Ray Albedo Neutron Decay (CRAND) process. The CRAND process is the production of atmospheric neutrons from GCR that subsequently decay to

protons (and electrons) and can become trapped. As discussed previously, GCR fluxes are lower during solar maximum.

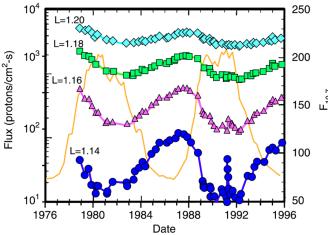


Fig.28. Approximate anti-correlation of low altitude trapped proton flux (points) with $F_{10.7}$ as an indicator of solar activity [78].

For spacecraft that have an orbit lower than about 1000 km the so-called "South Atlantic Anomaly" (SAA) dominates the radiation environment. This anomaly is due to the fact that the Earth's geomagnetic and rotational axes are tilted and shifted relative to each other as discussed before. Thus, part of the proton belt's inner edge is at lower altitudes in the geographic region around South America. It is shown in Fig.29 as a contour plot on geographic coordinates for > 35 MeV proton fluxes at an altitude of about 840 km [79].

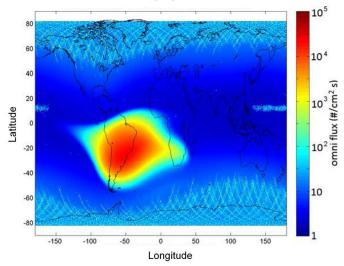


Fig.29. Contour plot of proton fluxes > 35 MeV in the SAA at an altitude of about 840 km measured by the Polar Orbiting Earth Satellite (POES) from July 1998 to December 2011 [79].

Higher energy protons are generally fairly stable in the proton belt. However, during the 1990-1991 Combined Release and Radiation Effects Satellite (CRRES) mission the Air Force Research Laboratory (AFRL) discovered the formation of a transient proton belt in the L-shell 2 to 3 region [80]. It is now known that CMEs can cause geomagnetic storms that suddenly reconfigure the belt. Fig.30 shows that enhanced fluxes can occur in the L-shell 2 to 3 region if a CME is immediately

preceded by another event [73]. Note that although the enhanced flux begins to decay immediately it can remain measureable for well over a year. The figure also shows that a CME can cause reduction of an enhanced flux. The details of these belt reconfigurations are not fully understood.

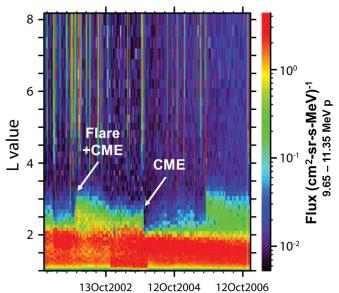


Fig. 30. Sudden changes in 9.65 to 11.35 MeV trapped proton fluxes caused by solar particle events measured on the Satellite for Scientific Applications (SAC-C) [73].

b) Models

The general approach to a trapped particle model calculation is to first use an orbit generator to obtain the geographical coordinates of the spacecraft – latitude, longitude and altitude. Next the geographical coordinates are transformed to a dipole coordinate system in which the particle population is mapped. The trapped particle environment is then determined external to the spacecraft. The Space Environment Information System (SPENVIS) suite of programs has implemented a number of trapped particle models for unrestricted use at http://www.spenvis.oma.be/.

The well-known Aerospace Proton-8 (AP-8) trapped proton model is the eighth version of a model development effort led by James Vette. Over the years these empirical models have been indispensable for spacecraft designers and for the radiation effects community in general. The trapped particle models are static maps of the particle population during solar maximum and solar minimum based on data from the 1960s and 1970s. Because these models provide the mean flux values of the environment, a Radiation Design Margin (RDM) is used for design specifications. Details of the AP-8 model and its predecessors can be found in [81], [82].

The shortcomings of AP-8 and the need for updates have been discussed [83]. Consequently there have been a number of notable efforts to develop new trapped proton models [78], [80], [84]-[86]. Comparisons of these models with AP-8 and each other for different orbits are given by Lauenstein and Barth [87].

Recently more comprehensive models have been developed. One such model was initially called AP-9 and is now undergoing a name change to the International Radiation Environment Near Earth (IRENE) model [79], [88]. AP9/IRENE allows 3 methods of calculation. There is a statistical model for the mean or percentile environment. There is a perturbed model that adds measurement uncertainty and data gap filling errors. Thirdly, there is a Monte Carlo capability that includes space weather variations. AP9/IRENE is based on data taken between 1976 and 2016. It does not include solar cycle variation, i.e., output is averaged over the solar cycle. As a result of its probabilistic approach and use of percentiles, confidence levels can be used for design specifications. The other recent comprehensive model is the Global Radiation Earth Environment model (GREEN) [89]. GREEN is an integration of AP-8 with other models that have been developed in order to expand the overall energy and orbital capabilities. Results for the GREEN model were not available at the time of this writing.

Fig.31 is a comparison of AP-8 and AP-9/IRENE for a polar LEO. The orbital parameters used were those of the Landsat-8 satellite. This provides a reasonable overall comparison as the spacecraft flies through varying portions of the proton belt multiple times each day. Although there are large differences between the models at energies less than 1 MeV, these energies are not significant for most applications. Over most of the remaining energy range the AP8 model shows higher fluxes during solar minimum compared to solar maximum, as expected, while AP9/IRENE generally results in the highest fluxes. AP9/IRENE also extends to higher energies, which is due to the incorporation of the NASA Van Allen Probes data.

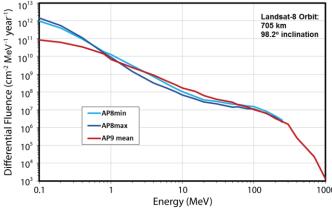


Fig.31. Comparison of the AP8 and AP9/IRENE (version 1.5) models for a polar LEO.

3) Trapped Electrons

a) Properties

Some of the characteristics of trapped electrons are summarized in Table 4 and shown in Fig.32. There is both an inner and an outer zone of trapped electrons. These two zones are very different so the characteristics are listed separately. As is also the case for trapped protons the boundaries of the zones are not sharp and they are to some extent dependent on particle energy. For the purposes of this discussion the inner zone is

assumed to be between L-values of 1 and 2. It was originally thought that electron energies range up to approximately 5 MeV but that has not been observed recently. This electron population tends to remain relatively stable but a long-term average is difficult to ascertain as will be seen in section c. The outer zone has L-values ranging between about 3 and 10 with electron energies generally less than approximately 10 MeV. Here fluxes peak between L-values of 4.0 and 4.5 and the long-term average value for > 1 MeV electrons is about 3 x 10^6 cm⁻²s⁻¹. This zone is very dynamic and the fluxes can vary by orders of magnitude from day to day. An interesting feature of the outer belt is that it extends down to low altitudes at high latitudes. Trapped electrons contribute to TID, TNID and charging effects.

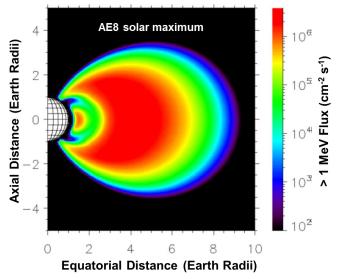


Fig.32. Trapped electron fluxes > 1 MeV according to the AE-8 model during solar maximum [73].

TABLE IV
TRAPPED ELECTRON CHARACTERISTICS.

	L-Shell Values	Energies	Fluxes* (> 1 MeV)	Radiation Effects
Inner Zone	1 - 2	Up to 5 MeV?	uncertain	TID
Outer Zone	3 - 10	Up to ~10 MeV	Up to ~3x10 ⁶ cm ⁻² s ⁻¹	TNID Charging

^{*} long-term average

The distribution of trapped particles is a continuous one throughout the inner and outer zones. Between the two zones is a region where the fluxes are at a local minimum during quiet periods. This is known as the slot region. The location of the slot region is assumed to be between L-values of 2 and 3 for this discussion. This is an attractive one for certain types of missions due to the increased spatial coverage compared to missions in LEO.

b) Models

The long-time standard model for trapped electrons has been the Aerospace Electron-8 (AE-8) model [82], [90]. It consists of two static flux maps of trapped electrons — one for solar maximum and one for solar minimum conditions. Due to the variability of the outer zone electron population, the AE-8 model is valid only for long periods of time. A conservative rule of thumb is that it should not be applied to a period shorter than 6 months.

A feature of the outer zone is its high degree of volatility and dynamic behavior. This results from geomagnetic storms and substorms, which cause major perturbations of the geomagnetic field. Measurements from the Upper Atmosphere Research Satellite (UARS) illustrate the high degree of variability of electron flux levels prior to and after such storms. Fig.33 shows the electron energy spectra for $3.25 < L \le 3.5$ after long-term decay from a prior storm (day 235) and two days after a large storm (day 244) compared to the average flux level over a 1000 day period [91]. It is seen for example, at 1 MeV, that the difference in the one-day averaged differential fluxes over a 9-day period is about 3 orders of magnitude. This illustrates the difference between the long-term average space climate and the short-term space weather in the outer zone.

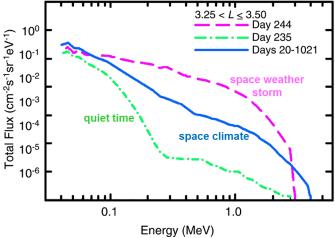


Fig.33. Total electron flux before and after a geomagnetic storm compared to a long-term average as measured onboard the UARS [91].

Due to the volatile nature of the outer zone, it seems natural to resort to probabilistic methods. This is the case for the new AE-9/IRENE trapped electron model [79], [88], which uses the same methodology as described before in the discussion on trapped protons. Other statistical analyses have also been used for both the outer zone and slot region [91]-[94]. Another approach used to describe outer zone fluxes has been to relate them to the level of disturbance of the geomagnetic field by using geomagnetic activity indices such as A_p [95] and K_p [96].

An important orbit in the outer zone that is widely used for telecommunications satellites is GEO. Fig.34 shows a comparison between the AE8 and AE9/IRENE mean values. AE8 has no solar cycle dependence in GEO so there is no distinction between solar maximum and solar minimum, as was the case in Fig.31. It is seen that AE8 gives more conservative fluxes over most of the energy range. The group at ONERA, the French National Aerospace Research Center, has also done considerable work on trapped electron models for GEO. Their most recent model is IGE-2006 [97], which gives the option of a maximum (worst case), mean or minimum (best case) flux output. When calculation of the mean flux is done in SPENVIS and compared to Fig.34, results show lower fluxes than both AE8 and AE9/IRENE except at energies approximately less than 0.1 MeV. However, the IGE-2006 model has been incorporated into the group's new comprehensive GREEN model for trapped electrons so more detailed comparisons are deferred until GREEN becomes available for use.

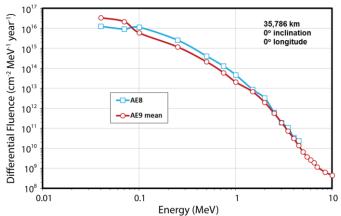
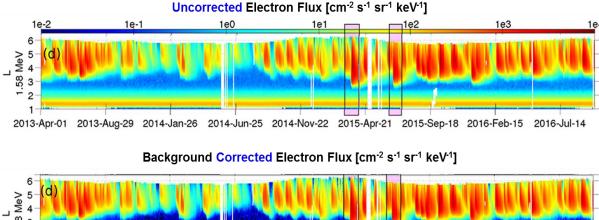


Fig.34. Comparison of the AE8 and AE9/IRENE (version 1.5) models for GEO.

Fig.35 gives a good overall view of the dynamic behavior of trapped electrons for about a 3.5 year period as measured by Van Allen Probes instrumentation [98]. Fluxes of 0.75 MeV electrons are mapped out according to L-shell values as a function of time. Color coding of electron intensities are shown along the top of the graph. The 2 boxed areas indicate the most severe storm periods. The figure shows the volatile nature of the outer zone (L > 3). During storm periods electrons can be injected into the slot region (2 < L < 3). Here they are fairly short-lived as the decay period is about 10 days. During severe storms electrons can also be injected into the inner zone (1 < L < 2). Note the stability of the inner zone as the injected electrons decay away very slowly and persist strongly more than a year after the storm.

Background Corrected Electron Flux [cm⁻² s⁻¹ sr¹ keV⁻¹] Outer Slot Inner

Fig. 35. Fluxes of 0.75 MeV electrons mapped according to L-shell as a function of time for approximately 3.5 years. Fluxes are background corrected [98].


c) Current Issue: The Case of the Missing Electrons

2013-Apr-01 2013-Aug-29 2014-Jan-26 2014-Jun-25 2014-Nov-22

Fig.35 is a good indicator of the behavior of the electron belts in recent times for energies up to about 0.75 MeV. The inner zone is fairly stable for long periods of time, as evidenced in the figure. When high energy (> 1.5 MeV) electron data are similarly examined as shown in the top portion of Fig.36 [98], nothing looks out of the ordinary. The outer belt looks volatile and the inner belt appears stable. While inner zone fluxes predicted by models in current use such as AE8 and AE9/IRENE are not large for energies between 1.5 MeV and a

maximum of about 5 MeV, they are ordinarily accounted for in radiation effects analysis. However, the top portion of the figure has not been corrected for background counts, which is mainly due to high energy protons. The Van Allen Probes instrumentation has improved capability in this regard and when background counts are removed the result is shown in the bottom portion of Fig.36. The high energy electrons of the inner zone are almost completely gone. In fact there is no evidence of > 1.5 MeV electrons in the inner zone since the Van Allen Probes were launched in 2012. This is the case of the missing electrons.

2015-Apr-21 2015-Sep-18 2016-Feb-15 2016-Jul-14

2013-Apr-01 2013-Aug-29 2014-Jan-26 2014-Jun-25 2014-Nov-22 2015-Apr-21 2015-Sep-18 2016-Feb-15 2016-Jul-14

Fig.36. Fluxes of 1.58 MeV electrons mapped according to L-shell as a function of time for approximately 3.5 years. The top graph is uncorrected for background counts and the bottom graph is corrected. Note the difference in the inner zone (1 < L < 2) [98].

The question of what happened to this portion of the inner zone remains. Instrumentation prior to the Van Allen Probes has not had the same capability for analyzing background. It therefore seems fairly certain that some of the older data reported as trapped electrons were actually due to high energy proton contamination. In addition the situation may also reflect a difference in time periods. The injection of > 1.5 MeV electrons into the inner zone may require extreme magnetic storms while the storms during the Van Allen Probes era have been fairly mild.

This brings up the question of how TID requirements for inner zone missions are affected. As an example the LEO corresponding to the Hubble Space Telescope is examined and presented in Fig.37. Electron fluence-energy spectra are shown calculated with 2 models. The first is the AE8 model, which

consists of older data from the 1960s and 1970s. The other is AE9/IRENE, which is based on Van Allen Probes data and CRRES data for the inner zone. The only non-zero electron fluxes in AE9/IRENE are due to the CRRES data, which is mainly the result of the severe storm of March 1991. It is seen that the models agree well out to energies of about 1 MeV. Above this it is not surprising from the above discussion that the AE8 model shows higher fluxes. Analysis of TID behind 2.5 mm of aluminum shielding for the Hubble orbit shows that if AP8/AE8 is used electrons contribute less than 20% of the TID. If AP9/AE9/IRENE is used electrons contribute less than 2% of the TID. The newer model shows inner belt electrons are less significant. Thus, although they present an interesting scientific challenge inner belt electrons are unlikely to drive radiation effects problems except possibly surface effects.

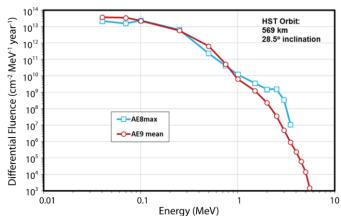


Fig.37. Comparison of the AE8 and AE9/IRENE (version 1.5) models for the LEO of the Hubble Space Telescope.

E. Example Environments Including Shielding

1) Total Ionizing Dose

Total ionizing dose vs. shielding depth curves will be compared using both the traditional margin-based approach and a confidence level based approach that is now possible with the new environment models. A highly elliptical orbit is chosen because it is exposed to all particle populations that contribute significantly to TID – trapped protons, trapped electrons and solar protons. The orbital parameters used were those of the first portion of the NASA Magnetic MultiScale (MMS) mission. Shielding calculations were done for a solid aluminum sphere geometry with dose in silicon calculated at the center of the sphere.

For the traditional approach, the dose-depth curve is calculated for the mean environment and a margin is applied to that. Different margins can be used for different applications. Here a margin of times 2 is considered, which is often used by government organizations. This is shown in Fig.38 where the AP8, AE8 and ESP/PSYCHIC models were used. It is compared to the more recent method, where the dose-depth curve is calculated for a given level of confidence. This necessitates the use of the AP9/AE9/IRENE models because they are the only trapped particle models with this capability. Fig.38 shows results using the newer trapped particle models along with the ESP/PSYCHIC model to calculate the dosedepth curve at the 95% confidence level. No margin is applied to this. It is seen that the results agree well out to about 6 mm of aluminum shielding. Beyond this the difference is primarily due to greater high-energy proton flux levels predicted by AP9/IRENE. A secondary reason is that the newer models extend to higher proton and electron energies. For those readers interested in transitioning to the confidence level based approach, dose-depth curves at the 95% confidence level are fairly consistent with using a mean environment and times 2 margin for various orbits.

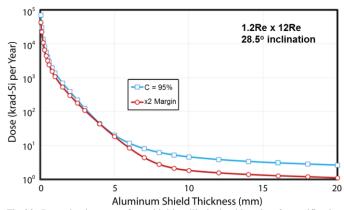


Fig.38. Dose-depth curves for a highly elliptical orbit using 2 specification methods. The orbit of 1.2 x 12 Earth radii (1274 km perigee x 70,080 km apogee) at a 28.5 degree inclination includes trapped protons, trapped electrons and solar protons contributing to TID.

The confidence level based TID approach has several advantages over the traditional margin based approach. When convolved with laboratory test data it allows the device TID failure probability for a given level of shielding to be calculated for the mission [99]. An example of this is shown in Fig.39 for several orbits for bipolar transistors that are used for high speed, low power applications. It can be argued this is a better characterization of a device radiation performance in space. It also allows more systematic trades during the design process and is amenable to reliability analyses, which is not possible if only a TID margin is known.



Fig.39. Failure probability for Solid State Devices, Inc., SFT2907A bipolar transistors as a function of shielding level for various orbits [99].

2) Single Event Upset

Next SEE environments are considered. The examples presented here are restricted to single event upset (SEU) data and calculations. Fig.40 shows SEU data from the Air Force Research Laboratory SeaStar spacecraft detected on a solid state recorder for more than 4 years [100]. The spacecraft was in a polar LEO. The SEU count per day is shown on the y-axis. There is a slowly varying background of upsets due to trapped protons and GCR. In this case it is believed most of these SEU were due to trapped protons. Superimposed on this background are sharp increases in the upset rate due to radiation bursts from solar particle events. The largest event spikes were due to the

July 14-15, 2000 and November 9, 2000 events. In addition rate spikes due to subsequent smaller events are also seen. Although the environment here is different than what is observed in

Fig.17, note the general similarity in that the effects are due to background radiation that varies slowly with solar cycle superimposed with solar particle events.

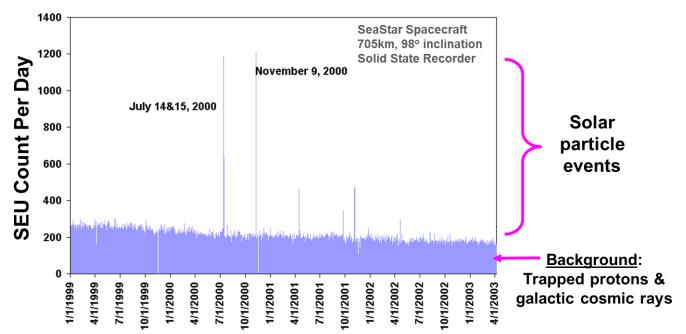


Fig. 40. SEU count per day for a solid state recorder on AFRL's SeaStar spacecraft in a polar LEO. Data were obtained for more than 4 years beginning in January 1999. Upsets due to the solar particle events of July and November 2000 are identified [100].

Finally, calculated SEU rates are shown for the same highly elliptical orbit considered previously in Fig.38. In this orbit the calculations must account for GCR and solar heavy ions. Additionally if the device is sensitive to proton-induced upset, solar protons and trapped protons must also be considered. SEU rates are shown in Fig.41 that were calculated for a 4 Gbit NAND flash memory [101]. The sensitive volume was obtained from process reverse engineering and publicly available data. It is seen that increased shielding reduces SEU rates for the worst case solar particle event, the October 1989 event, used in the CREME96 suite of programs. Proton-induced upsets, both those caused by solar protons and trapped protons, can also be reduced with increased shielding. However, the upset rates due to GCR are fairly constant with increased shielding due to their energetic and penetrating nature. Thus, the GCR environment provides a lower limit for the SEU rate that is not practical to reduce significantly. The rates provided here for heavy ions do not include fragmentation processes in shielding. For discussion of this the reader is referred to [102].

Fig.41. SEU rates calculated for a 4 Gbit NAND flash memory for a worst case solar particle event (CREME96 worst 5 minutes, worst day and worst week), solar protons (PSYCHIC), trapped protons (AP-8) and GCR during solar minimum and solar maximum as a function of shielding [101].

V.SUMMARY

This paper presented a space climatology timeline ranging from the Big Bang to the present. It began with a description of the early universe including the origin and abundances of particles significant for radiation effects. It continued to a transition period to modern times when the era of modern space climatology began to emerge due to discoveries of sunspots and the solar activity cycle, along with development of early astronomical methods. The timeline concluded in the modern era that featured the discovery of energetic space radiations and their effects on spacecraft electronics.

VI. ACKNOWLEDGMENTS

The author thanks Pat O'Neill of Johnson Space Center for providing the calculations and data for Figs.12, 13 and 15. He further thanks Craig Stauffer of AS&D, Inc. for assistance with calculations and Martha O'Bryan of AS&D, Inc. for assistance with graphics.

REFERENCES

- [1] S.W. Hawking, A Brief History of Time, New York, NY, USA: Bantam Books, 1988.
- [2] S.W. Hawking, A Briefer History of Time, New York, NY, USA: Bantam Dell, 2005.
- [3] M. Livio, Brilliant Blunders, New York, NY, USA: Simon & Schuster, 2013.
- [4] J.C. Mather and J. Boslough, The Very First Light, New York, NY, USA: Basic Books, 2008.
- [5] D. Christian, Origin Story, New York, NY, USA: Little, Brown & Co., 2018.
- [6] M. Livio, "Hubble's top ten scientific discoveries," invited presentation at the IEEE NSREC, Seattle, WA, USA, July 2005.
- [7] F. Hoyle, "The synthesis of the elements from hydrogen," Monthly Notices Royal Astronom. Soc., vol. 106, issue 5, pp. 343-383, Oct. 1946.
- [8] D. Kasen et al., "Origin of the heavy elements in binary neutron-star mergers from a gravitational wave event," *Nature*, 2017. [Online]. Available: http://dx.doi.org/10.1038/nature24453.
- [9] E. Anders and N. Grevesse, "Abundances of the elements: meteoritic and solar," *Geochimica et Cosmochimica Acta*, vol. 53, pp. 197-214, Jan. 1989
- [10] WDC-SILSO, World Data Center Sunspot Number and Long-term Solar Observations, Royal Observatory of Belgium, Sunspot Number Catalogue. [Online]. Available: http://www.sidc.be/SILSO/.
- [11] B. Rossi, Cosmic Rays, New York, NY, USA: McGraw-Hill, Inc., 1964.
- [12] S.E. Forbush, "Three unusual cosmic-ray increases possibly due to charged particles from the sun," *Phys. Rev.*, vol. 70, pp. 771-772, Oct. 1946.
- [13] K.F. Galloway, "From displacement damage to ELDRS: fifty years of bipolar transistor radiation effects at the NSREC," *IEEE Trans. Nucl. Sci.*, vol. 60, no. 3, pp. 1731-1739, June 2013.
- [14] R.L. Pease, "A brief history of the NSREC," *IEEE Trans. Nucl. Sci., vol.* 60, no. 3, pp. 1668-1673, June 2013.
- [15] D. Binder, E.C. Smith and A.B. Holman, "Satellite anomalies from galactic cosmic rays," *IEEE Trans. Nucl. Sci.*, vol. 22, no. 6, pp. 2675-2680, Dec. 1975.
- [16] E.L. Petersen, "The single event revolution," *IEEE Trans. Nucl. Sci.*, vol. 60, no. 3, pp. 1824-1835, June 2013.
- [17] M.A. Xapsos, P.M. O'Neill and T.P. O'Brien, "Near-earth space radiation models," *IEEE Trans. Nucl. Sci.*, vol. 60, no. 3, pp. 1691-1705, June 2013.
- [18] S. Swordy, "The energy spectra and anisotropies of cosmic rays," Space Sci. Rev., vol. 99, pp. 85-94, Feb. 2001.
- [19] A.I. Mrigakshi, D. Matthia, T. Berger, G. Reitz and R.F. Wimmer-Schweingruber, "Assessment of galactic cosmic ray models," *J. Geophys. Res.*, vol. 117, A08109, Aug. 2012.
- [20] K. Greisen, "End to the cosmic ray spectrum?," Phys. Rev. Lett., vol. 16, pp. 748-750, April 1966.

- [21] J.H. Adams, Jr., R. Silberberg and C.H. Tao, "Cosmic ray effects on microelectronics, part I: the near-earth particle environment," Naval Research Laboratory, Washington, DC, USA, NRL Memorandum Report 4506, Aug. 1981.
- [22] J.H. Adams, Jr., "Cosmic ray effects on microelectronics, part IV," Naval Research Laboratory, Washington, DC, USA, NRL Memorandum Report 5901, Dec. 1987.
- [23] A.J. Davis, *et al.*, "Solar minimum spectra of galactic cosmic rays and their implications for models of the near-earth radiation environment," *J. Geophys. Res.*, *vol. 106*, no. A12, pp. 29,979-29,987, Dec. 2001.
- [24] N.V. Kuznetsov, H. Popova and M.I. Panasyuk, "Empirical model of long-time variations of galactic cosmic ray particle fluxes," *J. Geophys. Res. Space Phys., vol. 122*, pp. 1463-1472, Feb. 2017.
- [25] F. Lei, A. Hands, S. Clucas C. Dyer and P. Truscott, "Improvements to and validations of the QinetiQ atmospheric radiation model (QARM)," *IEEE Trans. Nucl. Sci.*, vol. 53, no. 4, pp. 1851-1858, Aug. 2006.
- [26] D. Matthia, T. Berger, A.I. Mrigakshi and G. Reitz, "A ready-to-use galactic cosmic ray model," Adv. Space Res., vol. 51, pp. 329-338, 2013.
- [27] R.A. Nymmik, M.I. Panasyuk and A.A. Suslov, "Galactic cosmic ray flux simulation and prediction," Adv. Space Res., vol. 17, no. 2, pp. (2)19-(2)30, 1996.
- [28] A.J. Tylka et al., "CREME96: a revision of the cosmic ray effects on microelectronics code," *IEEE Trans. Nucl. Sci.*, vol. 44, pp. 2150-2160, Dec. 1997.
- [29] P.M. O'Neill, "Badhwar-O'Neill 2010 galactic cosmic ray flux model: revised," *IEEE Trans. Nucl. Sci.*, vol. 57, pp. 3148-3153, Dec. 2010.
- [30] P.M. O'Neill, "Badhwar-O'Neill 2014 galactic cosmic ray flux model description," NASA Johnson Space Center, Houston, TX, USA, NASA/TP-2015-218569, March 2015.
- [31] E.L. Petersen, J.C. Pickel, J.H. Adams, Jr. and E.C. Smith, "Rate prediction for single event effects a critique," *IEEE Trans. Nucl. Sci.*, vol. 39, pp. 1577-1599, Dec. 1992.
- [32] R.A. Reed et al., "Impact of ion energy and species on single event effects analysis," *IEEE Trans. Nucl. Sci.*, vol. 54, pp. 2312-2321, Dec. 2007.
- [33] D.V. Reames, "Particle acceleration at the sun and in the heliosphere," Space Sci. Rev., vol. 90, pp. 413-491, 1999.
- [34] J.L. Barth, "Modeling space radiation environments," in 1997 IEEE NSREC Short Course. Piscataway, NJ: IEEE Publishing, 1997.
- [35] M.A. Xapsos, C. Stauffer, J.L. Barth and E.A. Burke, "Solar particle events and self-organized criticality: are deterministic predictions of events possible?," *IEEE Trans. Nucl. Sci.*, vol. 53, no. 4, pp. 1839-1843, Aug. 2006.
- [36] J.H. King, "Solar proton fluences for 1977-1983 space missions," J. Spacecraft, vol. 11, pp. 401-408, 1974.
- [37] E. G. Stassinopoulos and J.H. King, "Empirical solar proton models for orbiting spacecraft applications," *IEEE Trans. Aerospace and Elect. Sys.*, vol. 10, pp. 442-450, 1974.
- [38] J. Feynman, T.P. Armstrong, L. Dao-Gibner and S.M. Silverman, "New interplanetary proton fluence model," *J. Spacecraft, vol.* 27, pp. 403-410, 1990.
- [39] J. Feynman, G. Spitale, J. Wang and S. Gabriel, "Interplanetary fluence model: JPL 1991," J. Geophys. Res., Vol. 98, pp. 13281-13294, 1993.
- [40] R.A. Nymmik, "Probabilistic model for fluences and peak fluxes of solar energetic particles," *Radiat. Meas.*, vol.30, pp. 287-296, 1999.
- [41] M.A. Xapsos, G. P. Summers, J.L. Barth, E.G. Stassinopoulos and E.A. Burke, "Probability model for worst case solar proton event fluences," *IEEE Trans. Nucl. Sci.*, vol. 46, pp. 1481-1485, Dec. 1999.
- IEEE Trans. Nucl. Sci., vol. 46, pp. 1481-1485, Dec. 1999.
 [42] M.A. Xapsos, G.P. Summers, J.L. Barth, E.G. Stassinopoulos and E.A. Burke, "Probability model for cumulative solar proton event fluences," IEEE Trans. Nucl. Sci., vol. 47, no. 3, pp. 486-490, June 2000.
- [43] P. Jiggens et al., "ESA SEPEM project: peak flux and fluence model," IEEE Trans. Nucl. Sci., vol. 59, no. 4, pp. 1066-1077, Aug. 2012.
- [44] P. Jiggens et al., "Updated model of the solar energetic proton environment in space," J. Space Weather Space Clim., submitted for publication.
- [45] Z.D. Robinson, J.H. Adams, Jr., M.A. Xapsos and C.A. Stauffer, "Database of episode-integrated solar energetic proton fluences," J. Space Weather Space Clim., vol. 8, A24, Jan. 2018.
- [46] J.H. Adams, Jr., W.F. Dietrich and M.A. Xapsos, "Probabilistic solar energetic particle models," *Proc.* 32nd Int. Cosmic Ray Conf., Beijing, 2011.
- [47] M.A. Xapsos, "Modeling the space radiation environment," in 2006 IEEE NSREC Short Course. Piscataway, NJ: IEEE Publishing, 2006.
- [48] I. Jun et al., "Statistics of solar particle events: fluences, durations and time intervals," Adv. Space Res., vol. 40, pp. 304-312, 2007.

- [49] O. Raukunen et al., "Two solar proton fluence models based on ground level enhancement observations," J. Space Weather Space Clim., submitted for publication.
- [50] A.J. Tylka and W.F. Dietrich, "A new and comprehensive analysis of proton spectra in ground-level enhanced (GLE) solar particle events," *Proc.* 31st Int. Cosmic Ray Conf., Lódź, Poland, 2009.
- [51] [51] M.A. Xapsos, C. Stauffer, G.B. Gee, J.L. Barth, E.G. Stassinopoulos and R.E. McGuire, "Model for solar proton risk assessment," *IEEE Trans. Nucl. Sci.*, Vol. 51, pp. 3394-3398, Dec. 2004.
- [52] P. Truscott et al., "Methods for and the influence of uncertainty propagation in the solar energetic particle environment modelling (SEPEM) system," *IEEE Trans. Nucl. Sci.*, submitted for publication.
- [53] M.A. Xapsos, C. Stauffer, T. Jordan, J.L. Barth and R.A. Mewaldt, "Model for cumulative solar heavy ion energy and linear energy transfer spectra," *IEEE Trans. Nucl. Sci.*, vol. 54, pp. 1985-1989, Dec. 2007.
- [54] B.J. Anderson and R.E. Smith, "Natural orbital environment guidelines for use in aerospace vehicle development," NASA Marshall Space Flight Center, Huntsville, AL, USA, NASA Technical Memorandum 4527, June 1994.
- [55] R.A. Nymmik, "Models describing solar cosmic ray events," *Radiat. Meas.*, vol. 26, pp. 417-420, 1996.
- [56] E.G. Stassinopoulos, G.J. Brucker, D.W. Nakamura, C.A. Stauffer, G.B. Gee and J.L. Barth, "Solar flare proton evaluation at geostationary orbits for engineering applications," *IEEE Trans. Nucl. Sci.*, vol. 43, pp. 369-382, April 1996.
- [57] K.G. McCracken, G.A.M. Dreschoff, E.J. Zeller, D.F. Smart and M.A. Shea, "Solar cosmic ray events for the period 1561 1994 1. identification in polar ice," *J. Geophys. Res.*, vol. 106, pp. 21585-21598, 2001.
- [58] E.W. Wolff et al., "The Carrington event not observed in most ice core records," *Geophys. Res. Lett.*, vol. 39, no. L08503, April 2012.
- [59] C.S. Dyer, K. Hunter, S. Clucas, D. Rodgers, A. Campbell and S. Buchner, "Observation of solar particle events from CREDO and MPTB during the current solar maximum," *IEEE Trans. Nucl. Sci.*, vol. 49, pp. 2771-2775, Dec. 2002.
- [60] M.A. Xapsos, G.P. Summers and E.A. Burke, "Probability model for peak fluxes of solar proton events," *IEEE Trans. Nucl. Sci.*, vol. 45, pp. 2948-2953, Dec. 1998.
- [61] E. Gumbel, Statistics of Extremes, New York, NY, USA: Columbia University Press, 1958.
- [62] A.H-S. Ang and W.H. Tang, Probability Concepts in Engineering Planning and Design, vol. II, New York, NY, USA: John Wiley & Sons, Inc., 1975.
- [63] E. Castillo, Extreme Value Theory in Engineering, Boston, MA, USA: Academic Press, 1988.
- [64] P.J. McNulty, L.Z. Scheick, D.R. Roth, M.G. Davis and M.R.S. Tortora, "First failure predictions for EPROMs of the type flown on the MPTB satellite," *IEEE Trans. Nucl. Sci.*, vol. 47, pp. 2237-2243, Dec. 2000.
- [65] P.J. Vail and E.A. Burke, "Fundamental limits imposed by gamma dose fluctuations in scaled MOS gate insulators", *IEEE Trans. Nucl. Sci.*, vol. 31, pp. 1411-1416, Dec. 1984.
- [66] M.A. Xapsos, "Hard error dose distributions of gate oxide arrays in the laboratory and space environments," *IEEE Trans. Nucl. Sci.*, vol. 43, pp. 3139-3144, Dec. 1996.
- [67] E.A. Burke, G.E. Bender, J.K. Pimbley, G.P. Summers, C.J. Dale, M.A. Xapsos and P.W. Marshall, "Gamma induced dose fluctuations in a charge injection device," *IEEE Trans. Nucl. Sci.*, vol. 35, pp. 1302-1306, Dec. 1988.
- [68] P.W. Marshall, C.J. Dale, E.A. Burke, G.P. Summers and G.E. Bender, "Displacement damage extremes in silicon depletion regions," *IEEE Trans. Nucl. Sci.*, vol. 36, pp. 1831-1839, Dec. 1989.
- [69] E.T. Jaynes, "Information theory and statistical mechanics," Phys. Rev., vol. 106, pp. 620-630, 1957.
- [70] J.N. Kapur, Maximum Entropy Models in Science and Engineering, New York, NY, USA: John Wiley & Sons, Inc., 1989.
- [71] R.A. Nymmik, "Improved environment radiation models," Adv. Space Res., vol. 40, pp. 313-320, 2007.
- [72] M.A. Xapsos, G.P. Summers and E.A. Burke, "Extreme value analysis of solar energetic proton peak fluxes," *Solar Phys.*, vol. 183, pp. 157-164, 1998.
- [73] S. Bourdarie and M. Xapsos, "The near-earth space radiation environment," *IEEE Trans. Nucl. Sci.*, vol. 55, no. 4, pp. 1810-1832, Aug. 2008.
- [74] P. Jiggens et al., "The solar accumulated and peak proton and heavy ion radiation environment (SAPPHIRE) model," *IEEE Trans. Nucl. Sci.*, vol. 65, no. 2, pp. 698-711, Feb. 2018.

- [75] B. Taylor, G. Vacanti, E. Maddox and C.I. Underwood, "The interplanetary electron model (IEM)," *IEEE Trans. Nucl. Sci.*, vol. 58, pp. 2785-2792, Dec. 2011.
- [76] C.E. McIlwain, "Coordinates for mapping the distribution of magnetically trapped particles," *J. Geophys. Res.*, vol. 66, pp. 3681-3691, 1961.
- [77] M. Walt, Introduction to Geomagnetically Trapped Radiation, Cambridge, MA, USA: University Press, 1994.
- [78] S.L. Huston and K.A. Pfitzer, "A new model for the low altitude trapped proton environment," *IEEE Trans. Nucl. Sci.*, vol. 45, pp. 2972-2978, Dec. 1998.
- [79] W.R. Johnston et al., "Recent updates to AE9/AP9/SPM radiation belt and space plasma specification model," *IEEE Trans. Nucl. Sci.*, vol. 62, pp. 2760-2766, Dec. 2015.
- [80] M.S. Gussenhoven, E.G. Mullen and D.H. Brautigam, "Improved understanding of the earth's radiation belts from the CRRES satellite," *IEEE Trans. Nucl. Sci.*, vol. 43, no. 2, pp. 353-368, April 1996.
- [81] D.M. Sawyer and J.I. Vette, "AP-8 trapped proton environment for solar maximum and solar minimum," NASA Goddard Space Flight Center, Greenbelt, MD, USA, NSSDC/WDC-A-R&S, 76-06, Dec. 1976.
- [82] J.I. Vette, "The NASA/National Space Science Data Center trapped radiation environment program (1964-1991)," NASA Goddard Space Flight Center, National Space Science Data Center, Greenbelt, MD, USA, NSSDC 91-29, Nov. 1991.
- [83] E.J. Daly, J. Lemaire, D. Heynderickx and D.J. Rodgers, "Problems with models of the radiation belts," *IEEE Trans. Nucl. Sci.*, vol. 43, no. 2, pp. 403-414, April 1996.
- [84] D. Heynderickx, M. Kruglanski, V. Pierrard, J. Lemaire, M.D. Looper and J.B. Blake, "A low altitude trapped proton model for solar minimum conditions based on SAMPEX/PET data," *IEEE Trans. Nucl. Sci.*, vol. 46, pp. 1475-1480, Dec. 1999.
- [85] S.L. Huston, "Space environments and effects: trapped proton model," Boeing Co., Huntington Beach, CA, USA, Final Report NAS8-98218, Jan. 2002.
- [86] D. Boscher et al., "A new proton model for low altitude high energy specification," *IEEE Trans. Nucl. Sci.*, vol. 61, pp. 3401-3407, Dec. 2014.
- [87] J-M. Lauenstein and J.L. Barth, "Radiation belt modeling for spacecraft design: model comparisons for common orbits," in 2005 IEEE Radiation Effects Data Workshop Proceedings. Piscataway, NJ: IEEE Publishing, pp. 102-109, 2005.
- [88] G. Ginet *et al.*, "The AE9, AP9 and SPM: new models for specifying the trapped energetic particle and space plasma environment," *Space Sci. Rev.*, *vol. 179*, issue 1-4, pp. 579-615, Nov. 2013.
- [89] A. Sicard-Piet *et al.*, "GREEN: a new global radiation earth environment model," J. Ann. Geophys., submitted for publication.
- [90] J.I. Vette, "The AE-8 trapped electron environment," NASA Goddard Space Flight Center, Greenbelt, MD, USA, NSSDC/WDC-A-R&S 91-24, Nov. 1991.
- [91] W.D. Pesnell, "Fluxes of relativistic electrons in low earth orbit during the decline of solar cycle 22," *IEEE Trans. Nucl. Sci.*, vol. 48, pp. 2016-2021, Dec. 2001.
- [92] G.L. Wrenn, D.J. Rodgers and P. Buehler, "Modeling the outer belt enhancements of penetrating electrons," J. Spacecraft and Rockets, vol. 37, no. 3, pp. 408-415 May-June 2000.
- [93] H.C. Koons, "Statistical analysis of extreme values in space science," J. Geophys. Res., vol. 106, no. A6, pp. 10915-10921, June 2001.
- [94] D.H. Brautigam, K.P. Ray, G.P. Ginet and D. Madden, "Specification of the radiation belt slot region: comparison of the NASA AE8 model with TSX5/CEASE data," *IEEE Trans. Nucl. Sci.*, vol. 51, pp. 3375-3380, Dec. 2004
- [95] D.H. Brautigam, M.S. Gussenhoven and E.G. Mullen, "Quasi-static model of outer zone electrons," *IEEE Trans. Nucl. Sci.*, vol. 39, pp. 1797-1803. Dec. 1992.
- [96] A.L. Vampola, "The ESA outer zone electron model update," in Environment Modelling for Space-based Applications, Symposium Proc. (ESA SP-392), W. Burke and T.-D. Guyenne, Eds., ESTEC, Noordwijk, Netherlands, 18-20 Sept., 1996.
- [97] A. Sicard-Piet, et al., "A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV," Space Weather, vol. 6, issue 7, pp. 1-13, July 2008.
- [98] S.G. Claudepierre et al., "The hidden dynamics of relativistic electrons (0.7 – 1.5 MeV) in the inner zone and slot region," J. Geophy. Res.: Space Phys., vol. 122, issue 3, pp. 3127-3144, March 2017.
- [99] M.A. Xapsos et al., "Inclusion of radiation environment variability in total dose hardness assurance methodology," *IEEE Trans. Nucl. Sci.*, vol. 64, no. 1, pp. 325-331, Jan. 2017.

- [100] C. Poivey *et al.*, "Single event upset (SEU) study of SeaStar, and the MAP anomaly," presented at the 2002 Single Event Effects Symposium, Los Angeles, CA, USA, April 2002.
- [101] J.A. Pellish, *et al.*, "Impact of spacecraft shielding on direct ionization soft error rates for sub-130 nm technologies," *IEEE Trans. Nucl. Sci., vol. 57*, pg. 3183-3189, Dec. 2010.
- [102] P.M. O'Neill, "Ionizing radiation environment inside spacecraft," in 2015 *IEEE NSREC Short Course*. Piscataway, NJ: IEEE Publishing, 2015.