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Abstract
Human behavior often consists of a series of distinct activ-

ities, each characterized by a unique pattern of interaction with
the visual environment. This is true even in a restricted domain,
such as a pilot flying an airplane; in this case, activities with dis-
tinct visual signatures might be things like communicating, nav-
igating, monitoring, etc. We propose a novel analysis method
for gaze-tracking data, to perform blind discovery of these hy-
pothetical activities. The method is in some respects analogous
to recurrence analysis, which has previously been applied to eye
movement data. In the present case, however, we compare not in-
dividual fixations, but groups of fixations aggregated over a fixed
time interval (τ). We assume that the environment has been di-
vided into a finite set of discrete areas-of-interest (AOIs). For a
given time interval, we compute the proportion of time spent fix-
ating each AOI, resulting in an N-dimensional vector, where N
is the number of AOIs. These proportions can be converted to
integer counts by multiplying by τ divided by the average fixa-
tion duration, a parameter that we fix at 283 milliseconds. We
compare different intervals by computing the chi-squared statis-
tic. The p-value associated with the statistic is the likelihood of
observing the data under the hypothesis that the data in the two
intervals were generated by a single process with a single set of
probabilities governing the fixation of each AOI. We cluster the
intervals, first by merging adjacent intervals that are sufficiently
similar, optionally shifting the boundary between non-merged in-
tervals to maximize the difference. Then we compare and clus-
ter non-adjacent intervals. The method is evaluated using syn-
thetic data generated by a hand-crafted set of activities. While
the method generally finds more activities than put into the simu-
lation, we have obtained agreement as high as 80% between the
inferred activity labels and ground truth.

Introduction
It has long been known that patterns of eye fixations made

when exploring a scene can reflect specific information-gathering
goals. An early demonstration was Yarbus’ studies of subjects
viewing a painting, while trying to answer different questions
about the contents of the scene[1]. Presumably similar task-
dependent behaviors are manifested in actual work situations,
such as piloting an aircraft. In this paper, we explore a method
for automatically discovering the fixation behaviors linked to dif-
ferent work activities. The method is “blind,” in that it does not
require that the activities be identified ahead of time, rather it dis-
covers the activities based on their unique pattern of eye fixations.

It is assumed that human behavior can be modeled as a se-
quence of distinct activities (see Figure 1). In this work, we as-
sume that the number and nature of the activities is not known
beforehand; the goal is to discover the activities, based on differ-

Figure 1: Cartoon illustrating the concept of sequential switching
between activities. This model assumes that only a single activity
is carried out at any time, so apparent “multi-tasking” can only
occur via rapid switching.

ences in the patterns of eye movements that are produced.
The general strategy will be to choose a temporal window

size, and then compare the eye movement patterns occurring in
pairs of windows at different times. Repeating patterns are con-
sistent with a recurring activity, while differing patterns indicate
different activities. The critical parameter of the analysis is the
duration of the temporal window: if it is longer than the length of
time for which the subject persists in a given activity, then differ-
ent activities will be blurred together, and we will not be able to
resolve the individual activity transitions. Conversely, if the win-
dow is too small, then we may not be able to aggregate enough
data to reliably differentiate between different activities. The suc-
cess or failure of the method will therefore rely upon two parame-
ters of human behavior: the duration of the activity segments, and
the magnitudes of the differences in the eye movement patterns.

A key component of the approach is the comparison of two
eye movement samples, or scan paths. Many methods have been
proposed; a good summary is provided in a recent review paper
[2]. Methods may be divided according to whether or not the
temporal order of the fixations is considered; in the present work,
we choose to disregard temporal order, based on the intuition that
many activities will consist of gathering and integrating informa-
tion prior to making a decision and/or executing an action. It
does not really matter in what order the constituent elements of
information are gathered, although it is likely that fixations to
the action location will always follow fixations to the informa-
tion sources (when these are distinct). In the present work, the
intervals are treated simply as a ”bag of fixations” - the data are
completely characterized by the number of fixations to each area
within the temporal window.
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Figure 2: Graphical depiction of the probability vectors for the 10 synthetic activities. Activities 1-4 are the ”leave-one-out” activities, in
which three of the four AOIs are each visited with equal probability of 1

3 (shown as dark gray); activities 5-10 are the ”leave-two-out”
activities, in which two of the four AOIs are visited with equal probability of 1

2 (shown as light gray). Black cells represent a probability
of 0.

Methods
We assume that the input data consist of a time series of re-

gion labels, representing the objects on which the subject’s gaze
falls at each time step. This assigment of labels to regions in
the environment is often done by the eye-tracking system, based
on a model specified by the experimenter prior to collecting the
data. The regions are typically referred to as ”Areas Of Interest”
(AOIs). The raw data provided by the eye tracking system is as-
sumed to include a time series of AOI labels at the sampling rate
of the system. In the case of a system that detects fixations and
provides summary data such as start time and duration, those data
may be easily converted to a time series.

Generation of synthetic data
Synthetic data were generated using a first-order Markov

process. This means that the probability that a particular AOI
is fixated next depends only on the current AOI. If i is the in-
dex of the present AOI, then the probability that the next AOI
has index j will be written as mi j . The mi j are the elements of the
Markov matrix. The elements of the matrix are constrained in that
each column must sum to 1, reflecting the fact that regardless of
the index (column) of the current AOI, the next fixation must go
somewhere. The asymptotic probabilities that a given area will be
visited may be obtained by exponentiating the matrix; for small
matrices, this process stabilizes after just a few iterations.

In pilot work, activities based on randomly generated
Markov matrices were compared, but these proved difficult to dis-
criminate using reasonable activity durations. To give the method
a fighting chance, we hand-crafted a set of ten activities over a toy
environment having 4 AOIs. Four activities consisted of visitation
to three of the four AOIs, with equal probability, which we refer
to as the ”leave-one-out” activities. Additionally, six ”leave-two-
out” activities were created, having equal probabilities of visiting
the two remaining AOIs. The Markov matrices were constructed
such that transition probabilities were independent of the current
state, making this effectively a 0-order Markov process. Figure

2 shows a graphical representation of these 10 activities, where
the gray level represents the probability of visiting each of the 4
AOIs.

Simulated data were generated by running the model, sim-
ulating an eye tracker data rate of 60 samples per second. The
fixation durations were uniformly distributed from 243 to 323
milliseconds (15-19 frames), with a mean duration of 283 mil-
liseconds (17 frames).

Comparison of fixation sequences
Following a suggestion by Ahumada [3], the chi-squared

statistic [4, 5] is used to compare short sequences of data. The
null hypothesis is that a single process (defined as a set of prob-
abilities for fixating the various AOIs) produced both sequences.
The observations from both intervals are combined to form an
estimate of those probabilities, and the deviations of the observa-
tions are tallied, producing a statistic that is small when the two
intervals are similar, and large when they are different.

The computation is performed using the fixation counts, i.e.
the number of fixations made to each AOI. Let ai and bi be the the
sets of fixations counts for the two intervals, where the subscript
i indexes the AOI, ranging from 1 to N. We begin by computing
the total fixations for each interval,

Ta =
N

∑
i=1

ai Tb =
N

∑
i=1

bi. (1)

The expected fraction of fixations made to each AOI under the
null hypothesis, fi, is computed by averaging the two intervals,

fi =
ai +bi

Ta +Tb
. (2)

The expected number of fixations to each AOI in each interval
is then computed by multiplying the expected fraction times the
total number of fixations in each interval:

ea,i = fi ∗Ta, eb,i = fi ∗Tb. (3)



Figure 3: Matrix of chi-squared values.

Finally, the test statistic is formed by summing the squared devi-
ations between the observed and expected values, normalized by
the expected value:

s =
N

∑
i=1

[
(ai − ea,i)

2

ea,i
+

(bi − eb,i)
2

eb,i

]
. (4)

This statistic is approximately distributed as the χ2 distribution
with N −1 degrees of freedom [5, 6].

To perform the analysis, an interval duration τ is first se-
lected. In earlier versions of this work, a set of partially-
overlapping intervals was considered, with each interval advanced
by τ

4 . This was done to improve temporal resolution for activity
changes. Within an interval, the numbers of 60 Hz samples for
each AOI were totalled, and a fixation count was obtained by di-
viding this number by 17 (the number of samples in the mean
fixation duration of 280 milliseconds). Thus, long fixations, pro-
duced when the Markov model repeated a particular AOI one or
more times, were counted as multiple fixations. The chi-squared
statistic was then computed for all interval pairs.

Figure 3 shows a matrix of chi-squared statistics computed
in this way. In the figure, the numerical values of the statistics
have been converted to gray levels, scaled so that a value of 0 is
mapped to black, and the highest value is mapped to white. The
10 by 10 block structure of the image reflects the 10 synthetic ac-
tivities (diagrammed in Figure 2), which were run in sequence,
each for a duration of 40 seconds. The main diagonal consists
of 10 mostly-black blocks, showing that low chi-squared values
are obtained when a sample from a given activity is compared
to another sample of the same activity. The matrix can be fur-
ther subdivided into a 4 block by 4 block sub-matrix in the lower
left-hand (corresponding to comparisons between the 4 leave-one-
out activities), and a 6 block by 6 block sub-matrix in the upper
right (corresponding to the 6 leave-two-out activities). This 6 by
6 block shows a white ”anti-diagonal” - these blocks correspond
to comparisons of samples from activity pairs that have no shared
AOIs. The other off-diagonal blocks in this upper sub-matrix are

relatively bright, indicating good discriminability between pairs
of leave-two-out activities with one shared AOI. This can be con-
trasted with the relatively dark off-diagonal blocks in the lower
left sub-matrix, showing relatively poor discrimination between
pairs of leave-one-out activities, as each pair necessarily has two
shared AOIs. The 4 block by 6 block sub-matrices in the upper left
and lower right correspond to comparisons between a leave-one-
out activity (visiting 3 AOIs) and a leave-two-out activity (visit-
ing 2 AOIs). Discriminability is relatively poor when 2 AOIs are
shared, and relatively good when only 1 AOI is shared.

Although clustering can be performed on the full matrix, as
shown in Figure 3, this method was abandoned, for a couple of
reasons. First, it is computationally expensive to compute the full
matrix. Second, the fact that overlapping subsequences are not
statistically independent invalidates that standard chi-squared cal-
culation described above, and while it may be possible to correct
for the partial overlap, it seemed an unnecessary complication.
Instead, a procedure was developed to refine the location of the
boundary between adjacent subsequences.

Clustering
The procedure used to generate the results shown in the rest

of this paper began with a set of non-overlapping adjacent inter-
vals of duration τ . A first pass attempted to merge adjacent inter-
vals by computing the chi-squared statistic, and merging when the
associated p value was above a threshold. The intervals were pro-
cessed in temporal order, and the process repeated until no more
merges could be performed.

The significance level chosen to reject a merge is a critical
parameter. A high value of the chi-squared statistic, producing
a low p-value, says that it is unlikely that the two samples were
produced by the same process. When we merge two intervals,
we are effectively accepting the null hypothesis; therefore, to be
conservative, we would choose a large critical p-value rather than
a small one. For example, if we were to use a small p-value, such
as 0.01, we might accept a merge of two intervals with a chi-
squared p-value of 0.02, meaning that we would be assuming that
the two samples came from a single process in spite of the fact the
the odds of observing the data in that case would only be 1 in 50.

These merge passes can be optionally interleaved with a
boundary adjustment phase. In this phase, each pair of adjacent
intervals is examined to see whether a better separation could be
obtained by shifting the boundary between them. A set of possible
boundary locations centered on the current boundary is exhaus-
tively searched, by computing the chi-squared statistic for each
division, and choosing the one with the largest value. The search
space extended by τ

2 in each direction, unless the interval length
is less than τ , in which case only half of the interval is searched.
The interval pairs were considered in order, and intervals whose
boundaries were adjusted were added to a list for reconsideration
in a subsequent pass. Typically, the first pass will adjust almost all
of the interval boundaries, reflecting the fact that the true activity
boundaries rarely align with a multiple of τ . Most, but usually not
all of these will be stable on the second pass, so the third pass will
reconsider a relatively small number of interval pairs, correspond-
ing to those containing an interval that is adjusted on the second
pass. The process terminates when a pass makes no adjustments.
This entire process is relatively time-consuming, which is why we
also computed the results obtained when it is omitted.



Figure 4: Cartoon illustrating rare but occasionally-occurring in-
stability in the interval boundary adjustment procedure.

The basic method just described occasionally fails to termi-
nate. We present here a description of one pattern that has been
observed, which is illustrated in Figure 4. We assume there are
three adjacent intervals that we call A1, B1, and C1. The first pass
adjusts the boundary between A1 and B1, resulting in new inter-
vals A2 and B2, and then adjusts the boundary between B2 and C1,
resulting in new intervals B3 and C2. The second pass adjusts the
boundary between A2 and B3, moving it back to its original loca-
tion, resulting in the original interval A1, along with new interval
B4. Finally, the boundary between B4 and C2 is adjusted, and is
also returned to its original location, resulting in intervals B1 and
C1 once again. Thus, after two passes the partitions have been
changed on each pass but have returned to the original configura-
tion; as the standard algorithm iterates until a pass is performed
with no changes, it will never terminate with this input. This prob-
lem was solved in a somewhat arbitrary way, by keeping a count
of the number of passes, and reducing the boundary point search
space by this count. Eventually this will fail to consider one of
the shifts, and the process will then terminate.

When all possible merges of adjacent intervals have been
performed, we search for the underlying activities by examining
pairs of non-adjacent intervals for possible clustering. We first
create one activity for each interval, initializing the probabilities
from the observed fixation distributions. Then we construct the
matrix of chi-squared statitistics and associated probabilities for
all activity pairs. The entries on the diagonal (corresponding to
comparing an activity with itself) have the statistic set to 0, but
the probability is set to -1, indicating an invalid entry. We then
search the matrix of p-values for the highest value. If that value
exceeds a pre-determined threshold, then the two activities are as-
sumed to have been generated by the same underlying process,
and the fixation counts are pooled. The row and column of the
matrix corresponding to the second activity are deleted, and those
corresponding to the first activity are recomputed using the pooled
counts. After the merge, there is one fewer activity, and the matrix
is reduced in size by one. This process is repeated until there are
no entries that exceed the threshold.

Balancing activity sequences
One of the challenges of this approach is correctly locating

the activity transition boundaries. This is especially true when we

begin with a large temporal window duration τ . When an inter-
val straddles a transition between two activities, it might appear
to have been generated by a third activity that looks like the av-
erage of the first two. For example, for the activities shown in
Figure 2, an interval containing data from both activities 9 and
10 (visiting AOIs 2 and 4, and 3 and 4, respectively) could be
quite similar to activity 4, which visits AOIs 2, 3, and 4. There-
fore, in studying the performance of the system it is important that
the synthetic data that we use for evaluation contain all possible
transitions. The data shown in Figure 3 only sample 9 of the 45
possible transitions (90 if order is considered).

Sequences that are balanced in this way are known as De
Bruijn sequences [7, 8]. For our test case, we construct a sequence
by first creating a fully-connected graph with 10 nodes, represent-
ing the 10 activities. We then wish to find an Eulerian circuit of
this graph, i.e. a traversal that uses each edge exactly once. Such
a circuit does not exist in this case, because all of the nodes have
an odd number of edges. (For an Eulerian circuit to exist, there
can be no more than two.) However, it is possible to construct
a circuit that traverses each edge twice, once in each direction.
There is in fact a very large number of such circuits, and we con-
structed one arbitrarily. In order to sample each of the 90 ordered
transitions, each synthetic data sequence consisted of a series of
91 40-second intervals in which a single activity was used to gen-
erate fixations. The duration of individual fixations was jittered
as described above, sampling from a uniform distribution rang-
ing from 15 to 19 frames. In the course of the sequence, 9 of the
activities were repeated 9 times, while the first activity was re-
peated at the end, giving it an extra interval. As we simulated a
60 Hz eye-tracking system, each 40-second interval was made up
of 2400 samples, and a complete record of the 91 intervals con-
tained 218,400 samples. Ten different sequences were generated
for use in the analysis.

Two parameters controlled the behavior of the analysis: τ ,
the initial duration of the analysis interval, and pθ , the probability
threshold for the chi-squared analysis. The data were analyzed
using various values for these two parameters, with four values of
τ corresponding to 5, 10, 20 and 40 fixations, and values for pθ

of 0.01, 0.02, 0.05, 0.1 and 0.2. A higher value of pθ corresponds
to a more conservative criterion for merging activities.

Results
The number of discovered activities is plotted as a function

of the threshold probability pθ in Figure 5. It can be seen that
the number of activities grows rapidly as pθ is increased, and that
even for a seemingly liberal merging criterion of pθ = 0.01 more
than 20 activities are usually discovered. (Recall that the true
value is 10.)

The number of activities, however, does not really give us a
fair assessment of how well the method is performing, because
many of the activities are represented by short intervals, and so
make up a small part of the data. To obtain a measure that takes
this into account, we first determine which of our discovered ac-
tivities correspond most closely to the ground truth activity prob-
abilities shown in Figure 2. To do this, we take the probability
vector of each of the ground truth activities in turn, and search
the set of discovered activities for the one whose vector of prob-
abilities is closest it. (We use the Euclidean distance between
the probability vectors to define ”closest.”) This discovered activ-
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Figure 5: Number of discovered activities is plotted as a function of the threshold probability pθ used in the chi-squared analysis. The
different curves show the results for different values of the initial interval length τ . The left panel shows results obtains using the interval
boundary adjustment step, while the right panel shows the results with that step omitted.
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Figure 6: Proportion of samples correctly-labeled is plotted as a function of threshold probability pθ , for different values of the initial
interval length τ as in Figure 5. Note that the best performance is obtained when interval boundary adjustment is used (left panel), for the
smallest value of pθ (0.01) and the largest value of τ (40 fixations).

ity is then associated with the ground truth activity. Thus, from
the set of discovered activities, we obtain a subset of 10 that we
assume to be ”correct.” We compute the fraction of samples con-
tained within these correctly labelled intervals; this is plotted as
a function of threshold probability in Figure 6. While most of
these correctly-labeled samples were indeed generated by the as-
sociated ground truth activity, there is the possibility that errors
in activity boundaries may cause a small number of samples to be
mis-labeled, so strictly speaking these numbers are really upper
bounds.

A visualization of the labeling is provided in Figure 7. This

figure represents the first 26 minutes of a single instance of a sim-
ulation of 60 minutes of behavior. The top row, labeled (a), is an
idealized version of the ground truth. Each 40 second interval is
rendered a graphical representation of the generating probabilities
previously shown in Figure 2, with color tints added to aid identi-
fication. This sequence of activities was generated by an instance
of a De Bruijn sequence beginning 1, 4, 7, 10, 3, 6, 9, 2, ... The
second row, labeled (b), is similar to panel (a), but here the light-
nesses represent not the generating probabilities, but rather the
observed probabilities for one particular simulation; these differ
from the generating probabilities due to stochastic variation. The
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Figure 7: Graphical representation of activity sequences, i.e. the probabilities associated with each of the 4 AOIs as a function of time.
The plot shows the first 26 minutes of one of the ten hour-long records of synthetic data used in the analysis. Panel (a): idealized
representation of ground truth. Each 40 second interval is rendered a graphical representation of the generating probabilities previously
shown in Figure 2. Color tints have been added to aid identification. Panel (b): similar to panel (a), but here the lightnesses represent
not the generating probabilities, but rather the observed probabilities for this particular simulation, which differ from the generating
probabilities due to stochastic variation. The probabilities have been pooled across different intervals containing the same activity. This
represents the best result that we could hope to obtain from a single data set. Panel (c): similar to panel (b), but without pooling across
non-adjacent intervals. Panel (d): an approximation of the raw data input to the method. (A small amount of subsampling has been
performed.) Panel (e): results of the method for pθ = 0.01 and τ = 40 fixations, with interval adjustment. Color tints have been applied
to the correctly identified activities, as described in the text. This is an example of the best performance obtained to date (approx 80%
correct). Panel (f): similar to panel (e), this panel shows results obtained with pθ = 0.2 and τ = 40 fixations.

probabilities have been pooled across different intervals contain-
ing the same activity. This represents the best result that we could
hope to obtain from a single data set, in which the segmentation of
activities matches exactly the ground truth, repeated activities are
correctly clustered, and the underlying probabilities are estimated
by pooling over the entire cluster. The third row, labeled (c), is
similar to panel (b), but without pooling across non-adjacent in-
tervals. This shows the stochastic variation in the observed AOI
proportions between different instances of an activity. For exam-
ple, activity 1 (tinted purple) occurs five times, at minute 0, 6.7,
10, 13.3 and 14.7. Each instance has slightly different observed
probabilities, and indicated by the intensities of the correspond-
ing squares. For example, the segment beginning at the 10 minute
mark has a higher than average visitation of AOI 1, while the seg-
ment beginning at 13.3 minutes visits AOI 1 less than average.
The fourth row, labeled (d), shows the raw fixation data, subsam-

pled slightly to a resolution appropriate for the figure. These data
are the input to the method. The fifth and sixth rows, labeled (e)
and (f), show the results of applying the method for two sets of pa-
rameter values. Panel (e) shows results obtained using pθ = 0.01
and τ = 40 fixations, which have produced the best results to date
(as seen above in Figure 6), with approximately 80% of the inter-
vals labeled correctly. Of the 5 intervals generated from activity
1 discussed above, it can be seen that the first, second, fourth and
fifth have been correctly clustered, as indicated by the purple tint,
which the third (at the 10 second mark) was considered to be a
distinct activity, with a higher probability associated with AOI 1.
It can also be noted that the interval associated with this activity
is longer than the ground truth value of 40 seconds. Finally, panel
(f) shows results obtained with a more conservative criterion for
merging intervals, with pθ = 0.2 and τ = 40 fixations. While
some of the intervals are still correctly labeled, it can be seen that



there are many more short intervals that have been classified as
distinct activities.

Discussion
The results demonstrate that the method is capable of blind

discovery of activities, provided the true activities are sufficiently
distinct. It remains an empirical question whether real human ac-
tivities meet this criterion. It should also be noted that there is
a trade-off between the distinctness of the activities and the du-
rations over which single activities are perseverated: less distinct
activities can be discriminated if a longer time window is used
over which to amass statistics. But to be useful in a given domain
of human behavior, this window should not be longer than the
minimum duration of an activity segment; this duration is likely
to vary across domains.

The analysis presented here treats each interval as a “bag
of fixations,” without regard to the order in which the various
AOIs are fixated. In real world human activities, it is possible that
this simplification will result in throwing away useful information
present in the fixation sequence. The analysis could be extended
to incorporate order in a fairly straightforward way, by tabulating
transitions from one AOI to another. In the example considered
here, instead of having 4 AOIs, we would need to consider 16 or-
dered transitions. For the simple, hand-crafted activities used in
our simulations, there are 9 transitions with non-zero probabili-
ties for each of the leave-one-out activities, and 4 transitions for
each of the leave-two-out activities. This illustrates a fundamental
problem: a more detailed activity model (incorporating transition
probabilities) necessarily has more parameters to estimate, and
will therefore require more data (i.e., longer intervals generated
by single activities). A similar problem was studied by Kontse-
vich [?], who developed a statistical model of human behavior in
a penny-matching game. The model had a variable parameter, the
number of previous plays determining the next play. When this
number was very small, the model was simple and easy to accu-
rately estimate, but did not have good predictive power, because
it neglected important components of the behavior. Conversely,
when a large number of previous plays was incorporated into the
model, performance was poor because it was impossible to accu-
rately estimate the parameters from the available data. A “sweet
spot” was found using a small number of previous responses,
which balanced complexity of the model against availability of
data to use to estimate the parameters, allowing the computer to
model (and beat) the human.

Summary
A method has been presented for the blind discovery of be-

havioral activities on the basis of eye fixation patterns. As pre-
sented here, the method relies upon the proportion of fixations
made to distinct areas-of-interest (AOIs); more complicated mod-
els of the behavior incorporating order of visitation and transition
probabilities are possible, but require more data. The method is
potentially applicable to a variety of operator monitoring scenar-
ios.
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