

AIAA Space and Astronautics Forum

Session IS-01 ISHM for Space Systems September 13, 2016

Functional Fault Model Development Process to Support Design Analysis and Operational Assessment

Kevin J. Melcher

NASA Glenn Research Center Cleveland, Ohio 44135 U.S.A

William A. Maul

Vantage Partners LLC. Brookpark, OH 44142 U.S.A. Joseph A. Hemminger

ZIN Technologies, Inc. Brookpark, OH 44142 U.S.A.

Presentation Outline

- Introduction
 - Purpose
 - Motivation
 - What is a Functional Fault Model
- FFM Development Process
 - Phase 1: Knowledge Acquisition
 - Phase 2: Conceptual Design
 - Phase 3: Implementation & Verification
 - Phase 4: Application
- Concluding Remarks

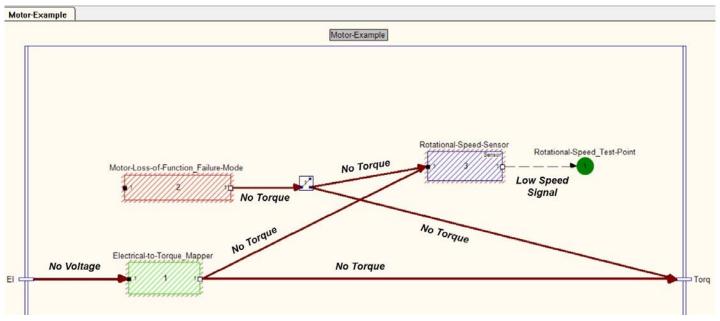
Purpose of paper

- To characterize and document the current process used by NASA to develop functional fault models (FFMs)
- To identify new technologies and capabilities that contribute to an improved process.

Motivation for the paper

- Process has evolved over past 10 years with push to support development of new NASA human-rated space systems
- Modeling guidelines, best practices, and software tools have been developed to substantially improve:
 - The efficiency of the FFM development and verification process
 - The utility and impact of FFM applications
- Benchmark for future FFM development efforts as the process continues to evolve

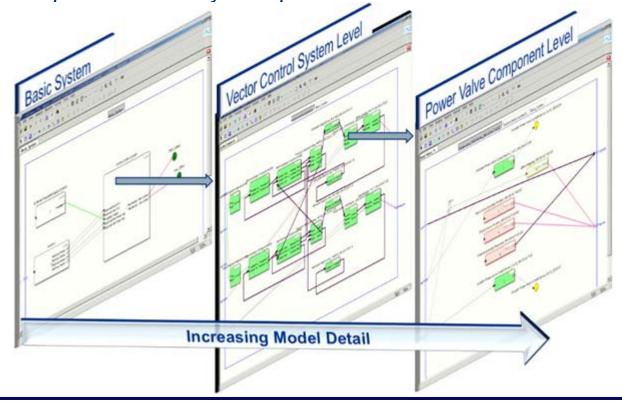
What is a Functional Fault Model?


- Directed graph representation of failure effect propagation paths within the system architecture
- Developed to address limitations of traditional methods
- Initial models can be qualitative supporting requirements verification early in system design process

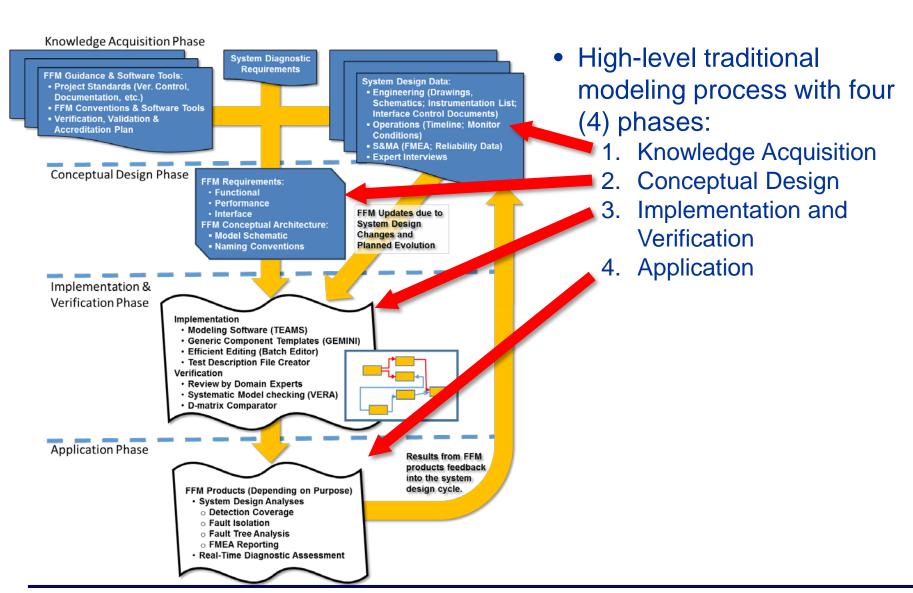
 Early models may be evolved to support real-time failure mode detection and isolation

 TEAMS Designer® software currently Mechanical Mechanical Sensor used for FFM development Element 1 Element **Effects Electrical** Fluid Electrical Fluid Component Effects Effects Component FM₂ FM₃ Mechanical Mechanical Sensor Element 2 Effects Element

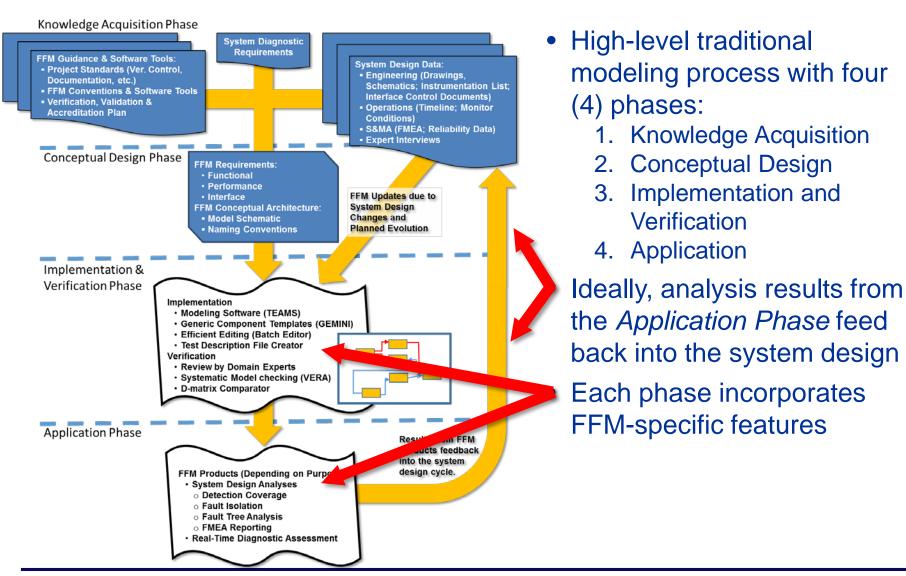
Functional Fault Models in TEAMS



- Modules represent systems, assemblies, components
- Failure Mode Modules contain the qualitative failure information
- Mapper Modules represent the nominal transition of the failure effects being propagated
- Test-Points represent the observation points of the system (typically associated with sensors)
- Tests detect specific failure effects


Functional Fault Models in TEAMS

- Hierarchical modeling capability:
 - Supports a model structure that reflects a hierarchical decomposition of system hardware & software
 - Facilitates portioning of large complex models into smaller models for implementation by multiple individual modelers



FFM Development Process: Overview



FFM Development Process: Overview

Phase 1: Knowledge Acquisition

- System-level requirements impact all phases of the FFM dev. process
- Examples: Abort conditions, launch commit criteria, line replaceable units
- System Design Data
 - Information that defines the system design and operation
 - Examples: Engineering drawings and reports, concept of operations, Failure Modes and Effects Analysis (FMEA)
- FFM Guidance & Software Tools
 - Information needed to implement a model that informs the Conceptual Design, Implementation & Verification, and Application phases
 - Examples: modeling conventions, model VV&A plan
- Establish System Breakdown Structure (SRS) & other databases

Phase 2: FFM Conceptual Design

Conceptual Design Phase

FFM Requirements:
 • Functional
 • Performance
 • Interface
FFM Conceptual Architecture:
 • Model Schematic
 • Naming Conventions

- FFM Requirements
 - Flowed down from system diagnostic requirements, FFM conventions and practices
 - Functional: Failure modes, test points, test logic
 - Performance: Time to detect/isolate failures, False positive/negative rates

- Interface: FFM-to-FFM, system to FFM to key decision makers on ground or vehicle
- FFM Conceptual Architecture
 - System Operational Profile
 - Model Schematic/Structure
 - Naming Conventions

NASA

Phase 2: Conceptual Design

FFM Rqmts: Modeling Conventions & Practices

- Approved by NASA's SLS, Orion, and Ground Systems FFM communities.
- Documents FFM best practices of all three communities.
- Benefits:
 - Model elements and sub-models have consistent look and feel
 - Improves human understanding
 - Enables more efficient integration of independently developed FFMs
 - Facilitates development of the interfaces needed for integration of FFMs with realtime systems
 - Improves traceability of model features back to source documents

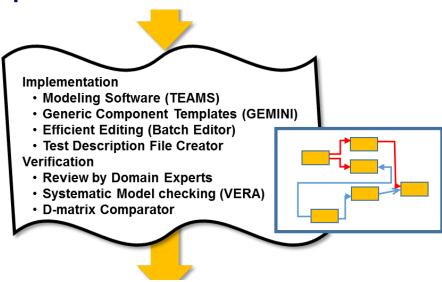
K0000190528-GEN

REVISION: Rev 2 DATE: 12/01/2015

ADVANCED GROUND SYSTEMS MAINTENANCE (AGSM) PROJECT

NASA GROUND SYSTEMS AND LAUNCH VEHICLES

TESTABILITY ENGINEERING AND MAINTENANCE


SYSTEM (TEAMS)

MODELING CONVENTIONS AND PRACTICES

Phase 3: Implementation & Verification

Implementation & Verification Phase

Start Modeling

Create/Revise FFM

- TEAMS Designer software
- NASA-developed software tools
 - Batch Editor
 - GEneric Model INstantlator (GEMINI) software
 - Test Description File Creator

Verify FFM

- Review by domain experts
- NASA-developed software tools
 - VERification Analysis (VERA) Tool
 - D-matrix Comparator

Tightly Coupled Lower-Level Processes

Phase 3: Implementation & Verification

NASA-Developed Tools

Batch Editor

- Includes model query and update commands to efficiently make broad systematic changes to FFMs (not available in TEAMS)
- Commands cover a wide variety of TEAMS modules & features
- Graphical or command line user interfaces
- Used by several other NASA-developed FFM tools to extract model information
- GEneric Model INstantItation (GEMINI) Tool
 - Supports the use of generic model libraries
 - Generates component-specific FFMs by adding user-provided component data to generic component models
- Test Description File Creator
 - Aligns real-time system data to FFM tests (mode dependent)
 - Defines thresholds—results in quanitative diagnostic assessment

Phase 3: Implementation & Verification

NASA-Developed Tools

- VERification Analysis (VERA) Tool
 - Checks model for adherence to NASA FFM conventions & practices
 - Reads model information into MS Excel Workbook
 - Analyzes model in four areas:
 - Technical
 - Practices & Conventions
 - Cosmetic
 - Informational content
 - Generates detailed reports that identify non-compliant FFM features
 - Provides scores to support accreditation of the model for operational use.
- D-Matrix Comparator
 - Reports differences between D-matrices from two different FFMs
 - Useful for regression testing to ensure minor model checks reflected in results

Phase 4: Application

Application Phase

FFM Analysis Products

- Failure Detectability Report
 - Analyzes FFM for detected / undetected failure modes
 - Verifies detection coverage rqmts.
- Test Utilization Report
 - Analyzes FFM for used/not used tests (sensors)
 - Supports sensor selection/buy-in
- Fault Isolation Report
 - Analyzes failure mode uniqueness/ ambiguity
 - Verifies rqmts for algorithms used to detect failure effects

- Component Isolation Report
 - Analyzes isolation of failure modes to user-defined components
 - Verifies requirements for line replaceable units
- FMEA Report
 - Uses data embodied in FFM to generate a report containing failure mode description data and detection capabilities from FFM

Phase 4: Application

Application Phase

Moving FFM from analytical use to real-time:

- Interface policies & software for generating FFM input from the real-time data
 - Handling dynamic data
 - Loss of data
 - Align FFM tests with software that processes real-time data

Real-time Diagnostic Assessment:

- Provide a list of failure modes, components, and sensors that align to the latest test detection
- Textual information traceable to design and FFM documentation
- Used by decision makers in flight and on ground.

Concluding Remarks

- This paper presented an iterative, four (4) phase process to support the development of FFMs.
- Special emphasis was placed on key approaches, capabilities, and tools that are unique to FFMs.
- The process has proved beneficial to recent systems engineering assessments under NASA's Ares I, Space Launch System, and Ground Systems Development and Operations Programs.
- Continued evolution of the process is anticipated as:
 - Current capabilities mature,
 - Additional capabilities are developed,
 - All capabilities are demonstrated in future flight and ground systems.

Acknowledgements

This work was conducted under the NASA Space Launch System Program Mission and Fault Management Project

Presenter Contact Information

Email: kevin.j.melcher@nasa.gov

Office Phone: 216-433-3743