

Safe, High Power / Voltage Battery Module Design Challenges By

Eric Darcy/NASA, Houston, TX USA with contributions from and collaborations with

Jacob Darst, Will Walker, Sean Nogrady, Jim Rogers, Minh Tran, Sam Russell, and Alex Quinn/NASA, Houston, TX USA Paul Coman & Ralph White/White & Associates, Columbia, SC USA Gary Bayles/SAIC, Baltimore, MD USA Brad Strangways/SRI, Arab, AL USA Dan Pounds & Ben Alexander, ThermAvant Technologies/Columbia, MO USA

> Battery Show Europe Stuttgart, Germany 7-9 May 2019

00

Outline

- Goals of Safe, High Power Battery Task
- Major Challenges Driving Designs
 - Thermal management Interstitial AI heat sink
 - Cell design selection for 3C discharge
 - Performance analysis on heat sink spine approach
 - Impact of epoxy, contact area, and conductivity of spine
 - Oscillating heat pipe spine
 - Risk of side wall breaches
- Summary

Safe, High Power Battery Task Top Level Reqts

- 100V, 2 kWh Battery Module
- Capable of 3C discharge continuous (20 minutes)
 100 cycles, 5 year storage life
- Capable of being connected in series and parallel as building block
- Safe
 - Resistant to single cell TR propagation
 - No flames exiting the module enclosure
 - Dead-face power connectors for electrocution hazard mitigation
 - Resistant to corona discharge hazard
- High performance (>160 Wh/kg, 200 Wh/L)
 - Using Li-ion commercial cylindrical cell technology that achieves 225 Wh/kg, 650 Wh/L at 3C

Credits: J. Darst, J. Rogers/JSC

Latest High Power/Energy 18650 Cell Designs

- Specific Energy Range 259-276 Wh/kg
- Energy Density Range 704-735 Wh/L

Panasonic NCR18650GA

C/10 at RT	Panasonic	Samsung	Sony	
	NCR GA	3.5E	VC7	LG MJ1
Discharge Capacity				
(Ah)	3.34	3.49	3.5	3.41
Discharge Energy				
(Wh)	12.16	12.7	12.72	12.46
DC Internal				
Resistance (mohm)	38	35	31	33
Average Mass (g)	47	46	47.4	46.9
Average Volume (L)	0.0173	0.0173	0.0173	0.0173
Specific Energy				
(Wh/kg)	259	276	269	266
Energy Density				
(Wh/L)	704	733	735	720

LG INR18650 MJ1

Sony US18650VC7

Panasonic NCR18650B has a current limiting PTC switch, adding ~10 mohms to cell resistance and trips Note cell skins temp reaching 70°C and specific energy drops to ~223 Wh/kg

Safer, Higher Performing Spacesuit Battery Design

Aluminum interstitial heat sink protects adjacent cells from side wall ruptures during TR and dissipates heat very effectively Features

- 65 High Specific Energy Cell Design 3.4Ah (13P-5S)
- 37Ah and 686 Wh at BOL (in 16-20.5V window)
- Cell design likely to side wall rupture, but supported

Aluminum Interstitial Heat Sink

- With wire EDM, intercell webbing can be narrowed to 250µm ± 25µm
- All surfaces hard anodized for electrical isolation
- Provides for heat transfer & protects adjacent cells from breaches, except for spin groove area

Part	Volume (in^3)	volume (cm^3)	mass (g)	QTY	total mass	Mass frac (%
Cell	1.01100	16.567	46.00	18	828.00	79.59
Heatsink	3.13800	51.423	139.36	1	139.36	13.39
Top Cap plate	0.75300	12.339	22.21	1	22.21	2.13
bot cap plate	0.76200	12.487	22.48	1	22.48	2.16
steel sleeve	0.00601	0.098	0.78	18	14.00	1.35
fasteners	0.00598	0.098	0.77	6	4.64	0.45
mica wrap	0.00524	0.086	0.18	18	3.32	0.32
plastic button	0.01869	0.306	0.35	18	6.34	0.61
paraxylene					0.00	0.00
bus plates					0.00	0.00
				Total Volu	Total mass	wh/kg
				383.881	1040.35592	179.07333
				paras Vol	Paras Mass	
				27.57822	20.41	

Breach: Bottom

Discoloration

Types of Cell Enclosure Failures and Damage Conditions

Spin groove breach

Example of Spin Groove Breach

Cell type: Li-ion 18650 Capacity: 3.5 Ah State of Charge: 100 % (4.2 V) Bottom vent: No Wall thickness: Not known Separator: Polymer Orientation of cell: Positive end up Location of ISCD radially: N/A Location of ISCD longitudinally: N/A Side of ISCD in image: N/A

Location of FOV longitudinally: Top Frame rate: 2000 Hz Frame dimension (Hor x Ver): 1280 x 800 pixels Pixel size: 17.8 μm Credit: Donal Finegan/NREL

2.4C (24A) vs 3C (28.8A) discharge

• Can't fully discharge at 3C rate before inner ring of cells reach 70°C

Inner Cell

Outer Cell

Inner Bore Heat Sink Wall 1 Heat Sink Wall 2

Heak Sink Wall 3 Thermal Support 1

Thermal Support 2 Thermal Support 3

Tip of Thermal Leg
 Aluminum Plate

- ΔT between inner and outer ring of cells is alarming for 96-cell deck
- Lightweight AI interstitial heat sink with 0.5mm cell spacing is inadequate
 - Need to improve heat dissipation from cells to battery housing surfaces

New Approach to Improve Heat Dissipation

- Introduce a conductive spine to heat sink each cell and insulating gaps between pairs of vertical rows of cells
 - Improve heat dissipation to top and bottom

96-cell deck (1 kWh)

How much of cell surface is needed to dissipate needed flux?

- LG MJ1 cell with radial kapton tape at top and bottom of cylindrical wall
 - Several winds to get 0.006" thick
 - Provide gap between can wall and heat sink block
- Thermal paste (2-3 W/mK) bond between cell and block of Al
 - 3/16" wide along curved cell surface
 - 0.006" at thinnest point
 - 1.5" along axial cell length
- Insulate rest of cell with Nomex felt
- 12AWG power wires and 4-wire sensing

Effective Cell Internal Resistance, Re, *significantly reduced at higher temperatures*

- Re with 1s pulses
- Re with 74s pulses

High Power Cell Designs: LG HG2, Samsung 30Q

5% () () () () () () () () () () () () ()	CDBHCSIS			INR18 SAMSI 136	3650-300 NG SDI	
=				Тур)e	
				Chemistry		NCA
oC	Model 18650000		Dimension (mm)	Diameter	18.33 ± 0.07	
140		Model 1	202011GZ	Dimension (mm)	Height	64.85 ± 0.15
THE	Nominal Capacity*(Ah, C _N)		3.0	Weigh	Weight (g)	
NP-			40.0	Initial IR (mΩ AC 1kHz)		13.13 ± 2
Be	Energy (Wh)		10.8	Initial IR (mΩ DC (10A-1A))		19.94 ± 2
	Diameter	18.3 + 0.2/-0.3mm	Nominal Voltage (V)		3.61	
				Charge Method (100mA cut-off)		CC-CV (4.2±0.05V)
		Height	65.2 ±0.2 mm	Ohanna Tina	Standard (min), 0.5C	134min
	Nominal Voltage*(V)		3.6	Charge Time	Rapid (min), 4A	68min
		ge (v)	5.0	Charge Current	Standard current (A)	1.5
	Internal		14 (ave.)	Charge Current	Max. current (A)	4.0
	Impedance**(mOhm)			Disaba	End voltage (V)	2.5
	DCIR(mOhm)		24 (ave.)	Discharge	Max. cont. current (A)	15
					Standard (mAh) (0.2C)	3,040
	Designed charge current		4A	ed discharge Capacity	rated (mAh) (10A)	2,983

Adiabatic Cell & Al 120º Heat Sink Test

Al Block 2.0" wide X 0.75" thick X 2.28" long. There is also a small 0.04" dia hole 0.375" deep located 0.065" below the center of the nest for the Al block T/C. The nest radius providea a 120° contact. Block mass is 140.2g.

Cell to block interface = Omega thermal paste with κ = 2.3W/m°K. Nominal film thickness is 0.003" for the mica-wrapped GA cell and 0.009" for the bare cells. The mica wrapped cell has 0.004" thk mica with 0.002" thk acrylic adhesive layer between the mica and can wall.

Bare cell (no mica) comparison at RT and 9.6A

<u>Cell Design</u>	<u>Ah</u>	<u>Wh</u>
NCR GA	3.154	10.08
Sam 30Q	3.029	10.73

At > 3C, high power cell design (30Q) provides more Wh and less heat than higher capacity cell design (GA)

Analysis to Extract Cell Heat Generation Rate at 9.6A

Paul Coman & Ralph White

21

Graphics: Paul Coman

21

Recap of Test Findings

- Thin webbing, tight nesting heat sink with circumferential cylindrical interface with cells
 provides inadequate heat rejection path at 3C rates
 - Even with the best thermal bond between cell and heat sink
- If we improve the heat dissipation path too much and keep cells < 50°C, cell high rate performance of high energy cell designs will suffer greatly
 - Confirmed on MJ1, M36, VC7, GA, and 35E
- However, temperature impact on 3C performance is much less with higher power cell designs
 - Confirmed on 30Q and HG2
- If cell has short path to heat sink, only small amount of cell surface area is needed for adequate heat dissipation
 - This approach is more likely to prevent TR propagation
- We need to keep high energy cell designs in 50-70°C range to beat capacity performance of high power cell designs
 - However, energy deliver is nearly equivalent between 30Q and GA > 9A, 45°C
- Regardless, battery pack design will need to minimize ∆T between cells to keep them balanced

Solid AI Thermal Path 90° interface Graphic: Paul Coman

Insulation

COUNTERBORE

LOCATED ON POSITIVE SIDE OF CELL

- 90° interface with cell . can wall
- Epoxy bonded interface •

23

- With interface to battery • bottom plate or cold plate
- What ΔT cell to cell will • we get?

ΔT differences – mid-plane cross-section

(Adiabatic case, GA cell heat gen rate - different epoxies & cell contact areas)

thermal conductivity of spine reduces ΔT by 43% **Replacing GA**

25

- with 30Q cell design reduces ΔT by
- Very significant improvements in both cases

Graphs: Paul Coman

Recap of Analysis Findings

Insignificant design factors

- Thermal conductivity of epoxy for cell bond
- Cell to heat sink interface area

Significant design factors

- Thermal conductivity of heat sink spine
- Reducing cell heat generation How to improve κ of heat sink spine
- Oscillating heat pipes

Oscillating Heat Pipes

- Heat transfer fluid encapsulated in microchannels
- Very efficient, high flux heat transfer from hot middle to cooled ends of pipe
- Greatly reduces ∆T between cells vs solid AI spines
- Significantly expands range of initial temperature operating conditions vs solid AI spines

Solid Al vs OHP Spine Performance

 $T_{max} = 76.1 \text{ °C}$ $\Delta T_{max} = 19.1 \text{ °C}$

Credit: J. Boswell, D. Pounds, B. Alexander and E. Darcy, "High Power Battery Heat Sink with an Integrated Oscillating Heat Pipe (OHP)," CITMAV Symposium, Feb 2019

Credit: P. Coman, White & Associates

Both Are Predicted to Protect Adjacent Cells from Propagating TR

Solid AI Spine

28

Credit: J. Boswell, D. Pounds, B. Alexander and E. Darcy, "High Power Battery Heat Sink with an Integrated Oscillating Heat Pipe (OHP)," CITMAV Symposium, Feb 2019

Final Chart

- Take Away Messages
 - Safe, high power battery designs that achieve > 160 Wh/kg are predicted with
 - A high performing commercial high power 18650 cell design
 - A high flux, lightweight oscillating heat pipe technology
 - Verification will be complete this summer

Acknowledgements

 C. Iannello, NASA-NESC for funding the task